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Abstract

A tournament is an orientation of a complete graph. We say that a vertex x in a tournament T⃗

controls another vertex y if there exists a directed path of length at most two from x to y. A vertex

is called a king if it controls every vertex of the tournament. It is well known that every tournament

has a king. We follow Shen, Sheng, and Wu [8] in investigating the query complexity of finding a

king, that is, the number of arcs in T⃗ one has to know in order to surely identify at least one vertex

as a king.

The aforementioned authors showed that one always has to query at least Ω(n4/3) arcs and

provided a strategy that queries at most O(n3/2). While this upper bound has not yet been improved

for the original problem, Biswas et al. [3] proved that with O(n4/3) queries one can identify a

semi-king, meaning a vertex which controls at least half of all vertices.

Our contribution is a novel strategy which improves upon the number of controlled vertices:

using O(n4/3 polylog n) queries, we can identify a ( 1

2
+ 2

17
)-king. To achieve this goal we use a novel

structural result for tournaments.
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1 Introduction and Related Work

A tournament is a directed graph in which there is exactly one directed edge between every

pair of vertices. Due to their usefulness in modelling many real world scenarios such as game

tournaments, voting strategies and many more, tournaments are a very well studies concept

in structural as well as algorithmic graph theory. The early monograph of Moon [7] has been

followed by extensive research on the topic. For example, Dey [4] studied the identiĄcation

of the Şbest subset of verticesŤ in a tournament motivated by the high cost of comparing a

pair of drugs for a speciĄc disease. Goyal et al. [5] studied the identiĄcation of vertices with

speciĄc in- or out-degrees.

In this work we investigate the query complexity of Ąnding a king in a tournament graph,

that is, a vertex from which we can reach every other vertex of the tournament via a directed

path of length at most two. It is well known that every tournament has such a vertex.

The study of query complexity problems in tournaments has the following general shape:

Initially, we are only given the vertex set of the tournament while the directions of its arcs

are hidden from us. For each pair of vertices u, v we can, at unit cost, learn whether the

arc uv or vu is in the tournament. Our goal is to use the fewest possible queries in order

to reveal some combinatorial object in the tournament. The motivation for our paper is

found in Shen, Sheng, and WuŠs work [8] on the query complexity of identifying a king. They
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25:2 When You Come at the King You Best Not Miss

showed that Ω(n4/3) queries are always necessary and provided an algorithm which reveals a

king using O(n3/2) queries. Ajtai et al. [1] independently proved the same upper bound in

the context of imprecise comparison.

One of the enticing aspects of this setting is its game-theoretic nature: we can altern-

atively think of it as an adversarial game where one player, the seeker, wants to identify a

combinatorial structure by querying arcs of the tournament while an adversary, the obscurer,

tries to delay the seeker for as long as possible by choosing the orientation of queried arcs.

When reading Shen, Sheng, and Wu [8], one may be tempted to conjecture that a better

analysis of their obscurer-strategy for Ąnding a king can lead to a better lower bound.

However, Biswas et al. [3] showed that against this strategy, the seeker can Ąnd a king with

O(n4/3) queries. They also showed that there exists a seeker strategy with O(n4/3) queries

for identifying a semi-king, that is, a vertex which controls at least half of all vertices. This

result is optimal by Lemma 6, Biswas et al. [3]. In fact, one needs to make Ω(t4/3) queries

for identifying a vertex which controls at least t ≤ n vertices against the obscurer-strategy of

Shen, Sheng and Wu. (See Lemma 6 of Biswas et al. [3] and Ajtai et al. [1] for more details.)

Therefore, if there exists an obscurer-strategy that proves a stronger than Ω(n4/3) lower

bound for the king problem, then this strategy must rely on some factors which distinguish

the king problem from the semi-king problem. In our eyes, this means that such a lower

bound is much more difficult to Ąnd than one might think at Ąrst.

Proceeding from the above, it is tempting to try to improve the upper bound by using a

variation of the seeker-strategy from Shen, Sheng, and Wu [8] and we can interpret the Biswas

et al. [3]Šs seeker-strategy for Ąnding a semi-king as such an attempt. These strategies both

rely on repeatedly selecting a set of vertices and then querying all the edges between them

to Ąnd a maximum out-degree (MOD) vertex in this sub-tournament1. Balasubramanian,

Raman and Srinivasaragavan [2] showed that identifying an MOD vertex in a tournament of

size k requires Ω(k2) queries in the worst case, which may explain the limits of the existing

seeker strategies.

Our Result

In this paper, we proceed along the line of research just described. On the one hand, we

show that with Õ(n4/3) queries2, it is possible to identify a (1
2 + 2

17 )-king, which indicates

that improving upon the Ω(n4/3) lower bound is probably even harder than indicated by the

semi-king results. On the other hand, our technique does not rely on Ąnding MOD vertices

of sub-tournaments which circumvents the inherent high cost of this operation.

Technical Overview

Our result is based on the combinatorial structure of tournaments, which may be of independ-

ent interest. We believe that this paper provides a novel toolkit which could lead towards

resolving the query complexity of Ąnding a king. SpeciĄcally, we design a seeker-strategy

which consists of two main stages:

(i) The seeker queries the orientation of a set of edges deĄned by a so-called template-graph.

These queries are non-adaptive in the sense that the queries do not change as a result

of the answers provided by the obscurer.

1 The relationship between MOD vertices and kings is well-established: Landau [6], while studying the
structure of animal societies, showed that every MOD vertex is a king, but non-MOD kings can exist as
well.

2 The big-Õ notation hides constants and polylogarithmic factors
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(ii) The seeker analyses the answer to the queries of (i) in order to select queries that lead

to the revelation of a (1
2 + 2

17 )-king.

The template-graph is an undirected graph over the tournamentŠs vertices that has Õ(n4/3)

edges, with the property that every set of vertices of size around n2/3 or more has edges

to almost all the graph. In Section 3, we use the probabilistic method to prove that such

a graph exists. Given the template-graph, the seekerŠs queries in the Ąrst stage are simply

given by its edges, i. e. if there exists an edge uv in the template-graph, then the seeker asks

the obscurer about the orientation of the edge uv in the tournament. The sparsity of the

template-graph ensures that the seeker does not make too many queries and the connectivity

of every sufficiently large set ensures that we do not miss any relevant information.

The second stage of the seeker-strategy is built on showing that when the obscurer chooses

how the edges of the template graph are oriented they have a trade-off. The trade-off is

either to reveal an ultra-set or not. We show that if the obscurer reveals an ultra-set, then

the seeker can reveals a ( 1
2 + 2

17 )-king with Õ(n4/3) extra queries. If the obscurer does not do

this, then the seeker can use this to Ąnd a partition of the vertex set of the tournament into

sets of size O(n2/3) each (which we refer to as tiles), so that the edges of the template-graph

that are incident to the tiles satisfy a certain property. We obtain this combinatorial object

by showing that if such a partition does not exist, then a simple set of queries already reveals

a ( 1
2 + 2

17 )-king.

The tiles are analysed by the construction of what we refer to as the free matrix which

contains a row for every tile and a column for every vertex of the tournament. An entry of

the matrix indexed by a given tile-vertex pair is 1 if every edge between the vertex and a

vertex in the tile is directed towards the tile, otherwise the entry is 0. We then use this free

matrix to guide the seeker-strategy.

Given that the Ąrst part of the seeker-strategy is non-adaptive and against any adversary,

this approach also reveals a combinatorial property of tournaments: for any Ąxed tournament

and template graph with the same set of vertices, knowing only the direction of the arcs of

the tournament that correspond to the arcs of the template graph is sufficient for Ąnding a

set of vertices S of size O(n2/3) such that querying all edges inside of S necessarily reveals a

( 1
2 + 2

17 )-king. We note that fraction 2
17 is the result of balancing the various trade-offs in

the seeker strategy.

The rest of the paper is organised as follows. In Section 2, we provide necessary deĄnitions

and prove some basic lemmas about tournaments that are used in the rest of the paper.

Section 3 is dedicated to the formal deĄnition and the proof of existence of template graphs.

In Section 4, we describe our seeker-strategy and prove that it leads to the discovery of a

( 1
2 + 2

17 )-king. In Section 5, we give concluding remarks and open problems.

2 Preliminaries

For simplicity, we assume that the vertices of any n-vertex graph are the numbers [n] :=

¶1, . . . , n♢.

An orientation of a graph G is a directed graph obtained from G by replacing every one

of its edges by a directed arc.

d(v, X),N(v) Given an undirected graph G, a vertex v ∈ V (G), and a vertex set X ⊆ V (G)

we deĄne the relative degree d(v, X) := ♣N(v) ∩ X♣, where N(v) is the neighbourhood of v

in G.

d+(X),N+(v) For a vertex v in a directed graph G⃗, a vertex u in G⃗ is an out-neighbour

of v, if the edge between u and v is oriented from v to u. For a directed graph G⃗, we denote

the out-neighbourhood of a vertex v ∈ G⃗ by N+(v) and its out-degree by d+(v). For a vertex

FSTTCS 2022



25:4 When You Come at the King You Best Not Miss

set X ⊆ V (G⃗), we let d+(X) be the number of arcs from a vertex in X to a vertex not in

X. d+(v, X) Given additionally a vertex subset X ⊆ V (G), we deĄne the relative out-degree

d+(v, X) := ♣N+(v) ∩ X♣.

N++[v] The (closed) second-out-neighbourhood N++[v] of v is the set of vertices u ∈ V (G⃗)

for which there exists a directed path from v to u of length at most two.

control, direct Ű For simplicity we will adopt the following vocabulary for digraphs. We

say that a vertex x controls a vertex y if y ∈ N++[x]. We say that x directly controls a

vertex y if y ∈ N+(x) ∪ ¶x♢. We extend both of these terms to vertex sets U , for example,

we will often write statements like Şx controls at least half of the vertices in UŤ.

T⃗ , T⃗ [S] A tournament is a digraph T⃗ obtained from a complete graph by replacing each

edge with a directed arc. As done usually, we denote the subgraph induced by a vertex

set S ⊆ V (T⃗ ), with T⃗ [S]. Note that an induced subgraph of a tournament is necessarily also

a tournament. We will need the following basics facts about tournaments in the following.

▶ Lemma 1. Let T⃗ be a tournament with m vertices and α ∈ [0, 1] such that αm is even.

Then T⃗ has at least (1 − α)m vertices of out-degree at least αm/2.

Proof. Let S initially be the vertices of T⃗ and proceed according to the following process:

Ąnd a vertex of out-degree at least αm/2 and remove it from S; and repeat until no such

vertex exists in S. From here on we focus on set S after the vertex removal process ended.

Let r = ♣S♣ be the size of the Ąnal set and consider the sub-tournament T⃗ [S]. We know

that by averaging considerations, every tournament of size r has at least one vertex of

out-degree at least r/2 − 1/2. We also know that S does not contain any vertex of out-degree

at least αm/2. Hence, we conclude that r ≤ αm.

Consequently, our process discovered m − r ≥ (1 − α)m vertices of out-degree at least

αm/2 in T⃗ . ◀

▶ Lemma 2. Let G⃗ be an orientation of a complete bipartite graph (V0, V1, E), where

♣V0♣ = ♣V1♣ = m, and m is divisible by 4 . Then, there exists i ∈ ¶0, 1♢, such that Vi has at

least m/2 + 1 vertices v, where d+(v, V1−i) ≥ m/4.

Proof. Let S initially contain all the vertices in V0 ∪V1 and proceed according to the following

process: We Ąnd a vertex of out-degree at least m/4 and remove it from S. Repeat until no

such vertex exists and we are left with S′ ⊆ S.

Every orientation of the complete bipartite graph Kt,t must contain, by a simple averaging

argument, a vertex of out-degree at least t/2. Therefore the induced subgraph G⃗[S′] must

have at least one partite set of size strictly less than m/2 or we could continue the process.

Consequently, our process discovered at least m/2 + 1 vertices of out-degree at least m/4 in

that partite set. ◀

▶ Lemma 3. Let T⃗ be a tournament on 2m vertices, where m is divisible by 4. Let further

sets S0, S1 be a partition of the vertices of T⃗ into sets of equal size. Then there exists a

vertex v such that both d+(v, S0) ≥ m/4 and d+(v, S1) ≥ m/4.

Proof. By Lemma 1, for both i ∈ ¶0, 1♢, there exist m/2 vertices v in Si such that ♣N+(v) ∩

Si♣ ≥ m/4. By Lemma 2 for one of i ∈ ¶0, 1♢, there exist m/2 + 1 vertices v such that

♣N+(v) ∩ S1−i♣ ≥ m/4. Then by the pigeonhole principle, there exists i ∈ ¶0, 1♢ and a vertex

v ∈ Si, such that ♣N+(v) ∩ Si♣ ≥ m/4, for every i ∈ ¶0, 1♢, as claimed. ◀
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3 Constructing the template-graph

▶ Definition 4 (κ-template-graph). Let κ ∈ (0, 1) and G be an undirected graph over the vertex

set [n]. The graph G is a κ-template-graph, if for every pair of disjoint sets H1, H2 ⊆ [n] both

of size at least κn2/3, there exists at least one edge between them, that is, ♣E(H1, H2)♣ ≥ 1.

For the remainder of this section, we Ąx κ ∈ (0, 1) and set p = 2 log n+2
κn2/3 . We next show that

with strictly positive probability the ErdősŰRenyi random graph G(n, p) is a κ-template-graph,

with O(n4/3 log n) edges, where the O notation hides a dependence on κ. By the probabilistic

method, this implies that there actually exists such a graph.

All probabilities in the following are with respect to the probability space of this random

graph.

▶ Lemma 5. Let κ ∈ (0, 1). With probability at least 3/4, the graph G(n, p), where p is

defined as above, is a κ-template-graph.

Proof. Note that if we prove the statement of the lemma for sets of size exactly (up to

rounding errors) κn2/3, then the claim follows for all larger sets as well. To prove this, we

next show, with the help of the union bound, that the probability that G(n, p) has two

disjoint subsets of vertices, each of size κn2/3, with no edge between them is strictly less

than 1/4.

Let H1 and H2 be any pair of disjoint subsets of [n] of size κn2/3, then the total number

of vertex pairs between them is (κn2/3)2. The probability that none of these pairs is an edge

in the template-graph G is accordingly (1 − p)(κn2/3)2

.

We apply the exponential bound (1 − p)k ≤ e−pk for a k-round Bernoulli trial and obtain

(1 − p)(κn
2
3 )2

≤ e−p(κn2/3)2

= e−(2 log n+2)κn2/3

= n−2κn2/3

e−2κn2/3

≤
1

4
n−2κn2/3

,

where the last inequality holds when n is large enough so that κn
2
3 ≥ 1 and hence e−2κn2/3

< 1
4 .

Since the total number of pairs of sets H1, H2 of size κn2/3 is bounded above by n2κn2/3

, the

claim now follows from the union bound. ◀

▶ Theorem 6. Let κ ∈ (0, 1), there exists a κ-template-graph G with at most O(n4/3 log n/κ)

edges.

Proof. The expected number of edges of G(n, p) for our choice of p = (2 log n + 2)/(κn2/3)

is less than m := (2 log n + 2)n4/3/κ. Since every edge of the graph is selected independently,

by the Chernoff bound the probability that the number of edges in G(n, p) exceeds 2m is at

most

e−p(n
2)/3 ≤ e

−
(2 log n+2)

κn2/3
n(n−1)

6

≤ e−(2 log n+2)n/6 ≤
1

4

where the last inequality holds for n ≥ 4.

Together with Lemma 5 this implies that with probability at least 1/2, G(n, p) is a κ-

template-graph G with at most O(n4/3 log n/κ) edges. The claim follows by the probabilistic

method. ◀

FSTTCS 2022



25:6 When You Come at the King You Best Not Miss

4 The seeker strategy

Having proved the existence of a κ-template-graph, we next examine the properties of an

arbitrary orientation of such a graph. Given a κ-template-graph Gκ on a vertex set [n], we

use G⃗κ (henceforth) to refer to a directed graph obtained by replacing every edge of Gκ

by a directed arc. Note that we assume nothing about G⃗κ and analyze as if its arcs were

arbitrarily oriented by an adversary.

▶ Definition 7 (η-weak, η-strong, η-ultra). η-weak, η-strong, η-ultra For an oriented template-

graph G⃗κ and any η > 0, a set H ⊆ [n] is η-weak if d+(H) < (1/2 + η)n, is η-strong if

d+(H) ≥ (1/2 + η)n. We call a set η-ultra if every subset H ′ ⊂ H, of size at least ♣H♣/2 is

η-strong.

To understand why η-ultra sets are important, it is useful to think of the seeker as trying to

force the obscurer to reveal enough information (in the form of query answers) so that the

seeker can achieve their goal. This is done by Ąrst querying the orientation of all the edges

of a template graph and nothing else. The observation below implies that if the orientation

of the edges of the template graphs reveals an eta-ultra set, of size Õ(n2/3), then the seeker

can achieve its goal with an additional Õ(n4/3) queries. Thus, the obscurer cannot reveal

such an ultra-set. However, as we show further on, by doing this the obscurer reveals enough

information for the seeker to achieve their goal.

▶ Observation 8. Let H ⊆ V (G⃗κ) be an η-ultra set. Then we can find a (1/2 + η)-king using

≤ ♣H♣2 additional queries.

Proof. Query all ≤ ♣H♣2 edges inside H. Let v ∈ H be a vertex such that d+(v, H) ≥ ♣H♣/2.

Since H is η-ultra, the set H ′ := N+(v) ∩ H is η-strong, meaning d+(H ′) ≥ (1/2 + η)n.

Therefore ♣N++[v]♣ ≥ (1/2 + η)n and v is a (1/2 + η)-king. ◀

▶ Definition 9 (Free set). Free set, F (W ) Let W ⊆ V (G⃗κ) be an η-weak set. Then the free

set of W is the vertex set F (W ) := V (G⃗κ) \ (N+(W ) ∪ W ), that is, all vertices that lie

neither in W nor in N+(W ).

▶ Observation 10. Let W be an η-weak set. Then ♣F (W )♣ > ( 1
2 − η)n − ♣W ♣.

By the properties of template-graphs, namely that each pair of large enough sets must have

an edge between them, and by the deĄnition of free sets it follows that all the arcs of G⃗κ

between a sufficiently large set W and its free set F (W ) must point towards W . Let us

formalize this intuition:

▶ Definition 11 (α-covers). For α ∈ [0, 1] we say that a set S α-covers a set W if ♣N+(S) ∩

W ♣ ≥ α♣W ♣.

▶ Lemma 12. In the template graph, for every set W ⊂ [n] of size n2/3 and every subset

S ⊆ F (W ) of size at least κn2/3, it holds that S (1 − κ)-covers W .

Proof. Consider a set S ⊆ F (W ) of size κn2/3. Then, by Lemma 5, there is at least one

edge s1w1 between some s1 ∈ S and w1 ∈ W . Remove w1 from W and apply the argument

to the remainder. In this way, we construct a sequence w1, . . . , wt such that each wi has at

least one neighbour in S.

The application of Lemma 5 is possible until the remainder of W has size less than κn2/3,

hence the process works for at least t = n2/3 − κn2/3 = (1 − κ)n2/3 steps. Now simply note

that each edge swi for s ∈ S must be oriented from s to wi since S is a subset of F (W ). It

follows that ♣N+(S) ∩ W ♣ ≥ (1 − κ)♣W ♣, as claimed. ◀
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In the previous lemma lies the inherent usefulness of free sets. If, for some set W of size n2/3,

we Ąnd a vertex v that has at least κn2/3 out-neighbours in the free set F (W ), then v controls

almost all of W . As observed above, η-weak sets have necessarily large free sets which makes

them Şeasy targetsŤ for our strategy.

We now show that in case no η-ultra set exists (in which case we already win as per

Observation 8), we can instead partition most of the vertices of V (G⃗κ) into weak sets.

▶ Definition 13. An η-weak tiling of G⃗κ is a vertex partition W1, . . . , Wm, R where ♣Wi♣ =

n2/3, ♣R♣ < 2n2/3 and every set Wi is η-weak. We call the sets Wi the tiles and R the

remainder.

By deĄnition, the number of tiles m in an η-weak tiling is at least n1/3 − 2.

▶ Lemma 14. Fix η > 0. For large enough n, G⃗κ either contains an η-ultra set of size 2n2/3

or an η-weak tiling.

Proof. We construct the tiling iteratively. Assume we have constructed W1, . . . , Wj so far.

Let R := V (G⃗κ) \
⋃

i≤j Wi be all the vertices of G⃗κ which are not yet part of the tiling. If

♣R♣ < 2n2/3 we are done, so assume otherwise. Let H ⊆ R be an arbitrary vertex set of size

2n2/3. If H is η-ultra, then by Observation 8, we are done. Otherwise there exists an η-weak

set Wj+1 ⊆ H, ♣Wj+1♣ = ♣H♣/2. Add this set to the tiling and repeat the construction. At

the end of this procedure, we will either Ąnd an η-ultra set or an η-weak tiling. ◀

Our goal is now to Ąnd a vertex whose out-neighbourhood has large intersections with many

free sets. To organise this search, we deĄne the following auxiliary structure:

▶ Definition 15 (Free matrix). Let W1, . . . , Wm, R be an η-weak tiling of G⃗κ and let W =

¶W1, . . . , Wm♢. The free matrix M of the tiling W, R is a binary matrix with m rows indexed

by W and n columns indexed by [n]. The entry at position (Wi, v) ∈ W × V is 1 if v ∈ F (Wi)

and 0 otherwise.

weight,
∑

M We will use the following notation in the rest of this section. Given a free

matrix M of an η-weak tiling W, R let M [W ′, U ] denote a sub-matrix of M induced by

a subset W ′ ⊆ W of the tile set and a subset U ⊆ [n] of the vertex set. For example, a

column of M corresponding to a vertex v ∈ [n] can be written as M [W, ¶v♢] in this notation.

Analogously a row of M corresponding to a tile Wi ∈ W can be written as M [¶Wi♢, [n]].

Given a sub-matrix M ′ of the free matrix M , we call the number of 1Šs in M ′ the weight of

M ′ and denote it by
∑

M ′.

The following is a direct consequence of the construction of the free matrix and Observa-

tion 10.

▶ Observation 16. Every row of the free matrix M has a weight of at least ( 1
2 − η − n−1/3)n.

▶ Definition 17 (Good Sub-Matrix). A sub-matrix M [W, U ], for some U ⊂ [n], is η-good if,

each one of its rows has weight at least ( 1
2 − η − 2n−1/3 log1/2 n)♣U ♣.

We next show that a good sub-matrix with 2n2/3 columns exists, by using the probabilistic

method. SpeciĄcally, we show that if we randomly pick 2n2/3 columns from the matrix

M [W, [n]] then with strictly positive probability the matrix that includes exactly these

columns is good.

▶ Lemma 18. Let η ∈ (0, 1
2 ). For large enough n the free matrix M has an η-good sub-matrix

with 2n2/3 columns.

FSTTCS 2022



25:8 When You Come at the King You Best Not Miss

Proof. Select K ⊂ [n] of size 2n2/3 uniformly at random. Let M ′ = M [W, K].

We set p = 1/2 − η − n−1/3 and t = n−1/3 log1/2 n. By Observation 16, every row of M

has weight at least pn. By the Hypergeometric tail bound the probability that a speciĄc row

of M ′ has weight less than (p − t)n is at most e−2t22n2/3

≤ 1/n, where the inequality follows

from our choice of t. Then by the union bound the probability that every row of M ′ has

weight at least (p − t)n is strictly positive.

Note that by our choice of p and t, we get that (p − t)n , for large enough n, is at least

as large as (1/2 − η − 2n−1/3 log1/2 n)n, therefore a good sub-matrix M ′ exists with strictly

positive probability. By the probabilistic methods the claim therefore holds. ◀

Next we show that the only way that the adversary does not provide us with a (1/2 + δ)-king

once we have identiĄed a δ-good sub-matrix is if the distribution of 1Šs in that matrix is very

restricted. We will use this additional structure to Ąnd a (1/2 + δ)-king in the sequel. For

simplicity, we Ąrst query all the edges between the vertices associated with the columns of

the δ-good sub-matrix, but note that this is not strictly necessary: we can instead inspect all

potential partitions (with properties as stated in the lemma) and only if no such partition

exists query said edges which then surely identiĄes a (1/2 + δ)-king. With this change the

lemma is consistent with the structural claim from the introduction.

▶ Lemma 19. Let M ′ = M [W, V ] be a δ-good sub-matrix of M with 2n2/3 columns. Let

further κ + δ ≤ 1/2. If we query each one of the O(n4/3) edges in V , then either we find

a ( 1
2 + δ)-king, or we find partitions V1 ⊎ V2 = V and W1 ⊎ W2 = W with the following

properties:

♣V1♣ = ♣V2♣ = n2/3

♣W1♣ ≥ ( 1
2 − δ − κ)n1/3 − 2 and ♣W2♣ < ( 1

2 + δ + κ)n1/3

Every row in M ′[W1, V1] has weight at most κn2/3

Every row in M ′[W2, V1] has weight at least κn2/3

Proof. We query all the edges in V × V and select a vertex y ∈ V such that d+(y, V ) ≥ n2/3.

Let V1 be an arbitrary subset of N+(y) ∩ V of size n2/3 and let V2 = V \ V1. Partition the

rows of M ′ into W1 ∪ W2 so that W1 contains all rows with weight less than κn2/3 in the

sub-matrix M ′[W, V1].

We claim that if ♣W1♣ < ( 1
2 − δ − κ)n1/3 − 2 then y is a ( 1

2 + δ)-king. By construction,

every row in W2 has weight at least κn2/3 in M ′[W, V1] and if the condition of the claim

holds then ♣W2♣ ≥ ( 1
2 + δ + κ)n1/3. By Lemma 12, the set V1 must (1 − κ)-cover every tile in

W2. It follows that

♣N++[y]♣ ≥ (1 − κ)
∣

∣

⋃

W2

∣

∣ ≥ (1 − κ)



1

2
+ δ + κ



n1/3



n2/3

= (1 − κ)
1

2
+ δ + κ



n =
1

2
+ δ +

κ

2
− κδ − κ2



n

=



1

2
+ δ + κ

1

2
− δ − κ





n

≥
1

2
+ δ



n

where the last inequality holds since δ + κ ≤ 1/2. ◀

Lemma 19 implies the following about good sub-matrices.

▶ Lemma 20. Let M ′ = M [W, V ] be a δ-good sub-matrix with ♣V ♣ = 2n2/3 and W1 ⊎ W2,

V1 ⊎ V2 be partitions as in Lemma 19. Then every row in M ′[W1, V2] has weight at least

(1 − 2δ − 2κ)n2/3.
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Proof. Since M ′ is a δ-good sub-matrix, by DeĄnition 17, every row in M ′[W1, V ] has weight

at least (1/2 − δ − 2n−1/3 log1/2 n)2n2/3. By Lemma 19, every row in M ′[W1, V1] has weight

at most κn2/3. Therefore, the weight of every row in M ′[W1, V2] is

≥ (1/2 − δ − 2n−1/3 log1/2 n)2n2/3 − κn2/3

= (1 − 2δ − 4
log1/2 n

n1/3
− κ)n2/3

≥ (1 − 2δ − 2κ)n2/3

where we assume that n is large enough so that 4 log1/2 n
n1/3 ≤ κ. ◀

Our Ąnal technical lemma lets us, for a given set of rows of M , identify a set of columns with

high enough weight when restricted to those rows.

▶ Lemma 21. Let U ⊂ [n] be of size 2n2/3 and W ′ ⊂ W. Then there exists a set V ′ ⊂ [n]\U ,

of size n2/3 such that every column in M [W ′, V ′] has weight at least (1/2 − δ − 3n−1/3)♣W ′♣.

Proof. Let Ū := [n] \ U and let V ′ be an arbitrary subset of n2/3 columns in M [W ′, Ū ] with

the largest column-weight. Let t be the smallest weight among these columns when restricted

to M [W ′, V ′]. We bound the weight of M [W ′, Ū ] Ąrst from below and then from above, then

we use these bounds to show that t > ( 1
2 − δ − 3n−1/3) · ♣W ′♣, which implies that V ′ is the

claimed set.

For the lower bound on the weight of M [W ′, Ū ], we use the simple fact that

∑

M [W ′, Ū ] =
∑

M [W ′, [n]] −
∑

M [W ′, U ]. (1)

By Observation 16, every row of the matrix M has weight least ( 1
2 − δ − n−1/3) · n. It follows

that
∑

M [W ′, [n]] is at least ( 1
2 − δ − n−1/3) · n · ♣W ′♣. For the second term, we have the

trivial bound
∑

M [W ′, U ] ≤ ♣U ♣ · ♣W ′♣ = 2n2/3 · ♣W ′♣. Plugging these values into (1) we

obtain

∑

M [W ′, Ū ] ≥ (
1

2
− δ − n−1/3) · n · ♣W ′♣ − 2n2/3 · ♣W ′♣

= (
1

2
− δ − 3n−1/3) · n · ♣W ′♣.

(2)

For the upper bound on the total weight of M [W ′, Ū ] we use that

∑

M [W ′, Ū ] =
∑

M [W ′, V ′] +
∑

M [W ′, Ū \ V ′]. (3)

We use the trivial bound
∑

M [W ′, V ′] ≤ ♣V ′♣ · ♣W ′♣ = n2/3 · ♣W ′♣ for the Ąrst term. By

deĄnition of the value t, we have that every column in M [W ′, Ū \ V ′] has weight at most t.

Accordingly,
∑

M [W ′, Ū \ V ′] ≤ t · ♣Ū \ V ′♣ = t · (n − 3n2/3). Plugging in these values into

(3) we obtain

∑

M [W ′, Ū ] ≤ n2/3 · ♣W ′♣ + t · (n − 3n2/3). (4)

Finally, (2) and (4) taken together give us that

t · (n − 3n2/3) + n2/3 · ♣W ′♣ ≥ (
1

2
− δ − 2n−1/3) · n · ♣W ′♣.

Consequently, t > ( 1
2 −δ−3n−1/3)·♣W ′♣ and we conclude that V ′ has the claimed property. ◀
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We are Ąnally ready to prove our seeker-strategy for Ąnding a 1/2 + δ-king using Õ(n4/3)

queries. For readability, we will state our main result in terms of concrete and simple values

for κ and δ, however, note that smaller values of κ allow δ to be slightly larger than the

stated bound of 2
17 .

▶ Theorem 22. Fix δ = 2
17 , let κ = 1

4000 . For large enough n, there exists a seeker strategy

for finding a (1/2 + δ)-king using Õ(n4/3) edge queries.

Proof. We construct the template-graph Gκ and query all Õ(n4/3) of its edges to obtain G⃗κ.

By Lemma 14, we either obtain a δ-ultra set of size 2 · n2/3 or a δ-weak tiling of G⃗κ. If

we Ąnd the former, by Observation 8 we can Ąnd a (1
2 + δ)-king using O(n4/3) additional

queries. Therefore assume that we obtained a δ-weak tiling W, R of G⃗κ.

Let M be the free matrix of W, R. By Lemma 18, M has a δ-good sub-matrix M [W, V ]

with ♣V ♣ = 2n2/3. We query all O(n4/3) edges in V × V and by Lemma 19 either identify

a ( 1
2 + δ)-king, or obtain partitions V1 ⊎ V2 = V , W1 ⊎ W2 with properties as listed in

Lemma 19. Importantly, by Lemma 20, every row in the sub-matrix M [W1, V2] has weight

at least (1 − 2δ − 2κ)n2/3.

We now apply Lemma 21 with W ′ = W2 and Ąnd a set of columns V3 ⊆ [n] \ V of size

n2/3 such that every column in M [W2, V3] has weight at least ( 1
2 − δ − 3n−1/3)♣W2♣. We

now query all edges in V3 × V3 and V2 × V3, since ♣V2♣ = ♣V3♣ = n2/3 this amounts to O(n4/3)

additional queries.

Since G⃗[V2 ∪ V3] is completely revealed, it is a tournament of size 2n2/3 and we apply

Lemma 3 using the bipartition (V2, V3) to Ąnd a vertex v ∈ V2 ∪ V3 such that d+(v, V2) and

d+(v, V3) are both at least n2/3/4. We claim that v is a ( 1
2 + δ)-king. Let in the following

V ′
2 = N+(v) ∩ V2 and V ′

3 = N+(v) ∩ V3. We Ąrst prove the following two claims about these

two sets:

▷ Claim 23. Every row in M [W1, V ′
2 ] has weight at least κn2/3.

Proof of the claim. According to Lemma 20, every row in M [W1, V2] has weight at least

(1 − 2δ − 2κ)n2/3. Since ♣V ′
2 ♣ = ♣V2♣/4 = n2/3/4, we have that each row in M [W1, V ′

2 ] has

weight at least

(1 − 2δ − 2κ)n2/3 −
3

4
n2/3

which is larger than κn2/3 for δ ≤ 1
8 − 3κ

2 which holds true for our choices of δ and κ. ◁

▷ Claim 24. At least ( 1
2 − δ − 4κ − 3n−1/3) ♣W2♣

1−4κ rows in M [W2, V ′
3 ] have weight at least

κn2/3.

Proof of the claim. Recall that by choice of V3, every column in M [W2, V3] and therefore also

M [W2, V ′
3 ] has weight at least ( 1

2 − δ − 3n−1/3)♣W2♣. Accordingly,

∑

M [W2, V ′
3 ] ≥ (

1

2
− δ − 3n−1/3)♣W2♣ · ♣V ′

3 ♣

≥ (
1

2
− δ − 3n−1/3)♣W2♣ ·

1

4
n2/3.

(5)

Let t denote the number of rows in M [W2, V ′
3 ] with weight at least κn2/3. Our goal is to

Ąnd a lower bound for t. Since t is minimized if every row that has weigth at least κn2/3 has

in fact the maximum possible weight ♣V ′
3 ♣ = n2/3/4, we can lower-bound t using

t

4
n2/3 + (♣W2♣ − t)κn2/3 ≥

∑

M [W2, V ′
3 ].
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Combining this inequality with (5), we obtain

t
n2/3

4
+ (♣W2♣ − t)κn2/3 ≥ (

1

2
− δ − 3n−1/3)♣W2♣ ·

1

4
n2/3

⇐⇒ t(1 − 4κ) ≥ (
1

2
− δ − 4κ − 3n−1/3)♣W2♣

⇐⇒ t ≥ (
1

2
− δ − 4κ − 3n−1/3)

♣W2♣

1 − 4κ
. ◀

Now note that for every tile W ∈ W for which the row M [¶W♢, V ′
2 ∪ V ′

3 ] has weight at

least κn2/3 we have that d+(v, F (W )) ≥ κn2/3, therefore by Lemma 12 the set N+(v)∩F (W )

(1 − κ)-covers W . In other words, v controls at least (1 − κ)n2/3 vertices in W .

Our goal is now to lower-bound the total number of such tiles, hence let s denote the

total number of rows in M [W, V ′
2 ∪ V ′

3 ] with weight at least κn2/3. By the previous two

observations and by plugging in the concrete values of δ = 2
17 and κ = 1

4000 , we have that

s ≥ ♣W1♣ + (
1

2
− δ − 4κ − 3n−1/3)

♣W2♣

1 − 4κ

= ♣W1♣ + (
6483

17000
− 3n−1/3)♣W2♣

1000

999
.

Again we are aiming to prove a lower-bound, thus we assume that W1 is as small as possible.

By Lemma 19, this means that

♣W1♣ = (
1

2
− δ − κ)n1/3 − 2 =

25983

68000
n1/3 − 2 and

♣W2♣ = (
1

2
+ δ + κ)n1/3 =

42017

68000
n1/3.

Plugging in the sizes of W1, W2 we obtain

s ≥ ♣W1♣ + (
6483

17000
− 3n−1/3)♣W2♣

1000

999

≥
25983

68000
n1/3 + (

6483

17000
− 3n−1/3)

42017

67932
n1/3 − 2

≥
475777

769896
n1/3 − 4.

Since v controls a (1 − κ) = 3999
4000 fraction of each tile counted by s and each tile has a size

of n2/3, we Ąnally have the following lower bound on the second out-neighbourhood of v:

♣N++[v]♣ ≥
3999

4000
sn2/3 ≥

3999

4000
·

475777

769896
n − 4n2/3

= 0.61782 . . . n − 4n2/3.

This value lies, for large enough n, above our target value of (1
2 + δ)n = 0.61764 . . . n. ◀

5 Conclusion

We have shown how the usage of a template-graph helped us devise a seeker strategy that

reveals a ( 1
2 + 2

17 )-king in a tournament using Õ(n4/3) queries, shedding light on a long-

standing open problem. Our approach begins with a non-adaptive querying strategy based

on what we called a template graph, which then helps to guide the seeker to identify a small

set of queries which necessarily lead to the discovery of a ( 1
2 + 2

17 )-king.

Naturally, we ask whether it is possible to Ąnd an improved strategy which reveals a

( 1
2 + δ)-king with δ substantially larger than 2

17 using a similar amount of queries.
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