
Technology Gaps, Trade and Income*

Thomas Sampson†

London School of Economics

September 2022

Abstract

This paper quantifies the contribution of technology gaps to international income inequal-

ity. I develop an endogenous growth model where cross-country differences in R&D efficiency

and cross-industry differences in innovation and adoption opportunities together determine

equilibrium technology gaps, trade patterns and income inequality. Higher R&D efficiency

countries are richer and have comparative advantage in more innovation-dependent industries.

I calibrate R&D efficiency by country and innovation-dependence by industry using R&D,

patent and bilateral trade data. Counterfactual analysis implies technology gaps account for

one-quarter to one-third of nominal wage variation within the OECD.

Keywords: Technology gaps, Development accounting, Comparative advantage, Innovation,

Technology diffusion, Endogenous growth.
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Most innovation takes place in a small number of rich, industrialized economies.1 And since
technology diffusion is not instantaneous, more innovative firms and countries use better technolo-
gies. This paper studies the technology gaps that arise from innovation and diffusion (Parente and
Prescott 1994; Buera and Oberfield 2020). What determines the size of international technology
gaps? How do technology gaps differ across industries? And how important are technology gaps
in explaining cross-country variation in wages and incomes?

The paper makes two main contributions. First, it develops a theory of equilibrium interna-
tional technology gaps when productivity levels are determined by the innovation and adoption
investments of heterogeneous firms. The theory assumes that firms behind the technology frontier
benefit from an advantage of backwardness (Gerschenkron 1962) and that knowledge spillovers
are stronger within than across countries (Keller 2002). I use the model to isolate the mechanisms
through which country-level differences in the efficiency of innovation affect technology gaps,
trade flows and incomes. The model is both analytically tractable and sufficiently rich to be used
for quantitative analysis.

The paper’s second contribution is to calibrate the model and quantify how international varia-
tion in innovativeness affects trade and incomes. The calibration strategy exploits the model’s pre-
diction that cross-country differences in innovation efficiency generate Ricardian comparative ad-
vantage due to sectoral heterogeneity in the innovation and diffusion technologies. Consequently,
trade data can be used to infer sufficient statistics that capture how innovation efficiency affects
technology gaps in each industry. The quantification provides a novel way to evaluate international
variation in living standards due to technology gaps. By contrast, previous development account-
ing research identifies productivity differences with the Solow residual after accounting for factor
endowments (Caselli 2005), or estimates the effect of misallocation on the efficiency with which
given technologies and factors are used (Acemoglu and Zilibotti 2001; Hsieh and Klenow 2009;
Hsieh et al. 2019).

The components of the model are introduced in Section 1. First, the efficiency of R&D varies
across countries due to differences in national innovation systems (Nelson 1993). Countries with
better national innovation systems have an absolute advantage in R&D. Second, firms choose
whether to upgrade their productivity through innovative R&D or through technology adoption
(Benhabib, Perla and Tonetti 2014; König, Lorenz and Zilibotti 2016). Firms are heterogeneous in
their R&D capabilities and, in equilibrium, there exists a capability threshold above which firms
select into R&D. In countries with higher R&D efficiency the threshold is lower, which implies
the share of firms that innovate is greater. Allowing for firm-level selection between R&D and
adoption is a key distinction between the theory and existing quantitative models of trade and

1For example, the US and Japan accounted for 48% of applications filed under the World Intellectual Property
Organization’s Patent Cooperation Treaty in 2014, while producing 28% of world GDP.
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productivity.
Third, there are knowledge spillovers within and across countries. Knowledge is used as an

input to both R&D and technology adoption and the knowledge level in each country is an aver-
age of the domestic productivity frontier and global knowledge capital. The weight given to the
domestic frontier determines the localization of knowledge spillovers. There is also an advantage

of backwardness that increases the efficiency of technology investment for less productive firms,
regardless of whether they choose innovation or adoption (Gerschenkron 1962; Griffith, Redding
and Van Reenen 2004). I allow both the localization of knowledge spillovers and the advantage of
backwardness to be industry-specific.2

The presence of international knowledge spillovers and an advantage of backwardness ensures
that on a balanced growth path technology gaps (i.e. relative productivity levels) are stable, both
between domestic firms and across countries. Section 2 characterizes balanced growth in a global
economy with many countries and industries and studies equilibrium technology gaps. Countries
with higher R&D efficiency are more productive and richer. Likewise, within country-industry
pairs, firms that perform R&D are more productive than those that adopt and productivity is in-
creasing in R&D capability among innovative firms.

owever, the size of technology gaps is endogenous and differs by industry depending upon the
dispersion and concentration forces. The dispersion force results from the localization of knowl-
edge spillovers. The concentration force comes from global knowledge spillovers and the ad-
vantage of backwardness. Within countries, a greater advantage of backwardness strengthens the
concentration force and reduces productivity variation. Across countries, not only is this effect
present, but the localization of knowledge spillovers also plays a role. More localized spillovers
magnify the advantage of firms in more productive countries and widen technology gaps.

In steady state, the strength of the dispersion and concentration forces in each industry can be
summarized by a single sufficient statistic: the elasticity of a country’s relative average productivity
to its R&D efficiency. I call this elasticity the industry’s innovation-dependence. The theory
implies that innovation-dependence is decreasing in the advantage of backwardness and increasing
in the localization of knowledge spillovers. When innovation-dependence is low, the gap between
leaders and followers is small, whereas high innovation-dependence increases the productivity
advantage that accrues to innovators. Consequently, international technology gaps are greater in
more innovation-dependent industries. It follows that countries with higher R&D efficiency have
Ricardian comparative advantage in industries with lower advantage of backwardness and more
localized knowledge spillovers.3

2Peri (2005) shows that the impact of international borders on knowledge flows varies by sector. Doraszelski and
Jaumandreu (2013) find that the effect of current productivity on future productivity growth, conditional on R&D
investment, differs across industries.

3This prediction provides an endogenous growth formalization of Krugman’s (1985) argument that comparative
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While cross-industry variation in innovation-dependence determines the pattern of compara-
tive advantage, the level of innovation-dependence determines the cross-country wage and income
inequality. In a single sector economy with free trade, the elasticity of a country’s relative wage
to its R&D efficiency is proportional to innovation-dependence. With trade costs and many sec-
tors, the relationship is more complex, but the mechanism is the same: when industries are more
innovation-dependent, countries with higher R&D efficiency have a greater technological advan-
tage and this leads to larger differences in wages and income per capita. The model formalizes this
intuition and unpacks the determinants of innovation-dependence.

To quantify the importance of technology gaps, Section 3 calibrates a first-order approximation
to the model using data on 25 OECD economies. Two key sets of parameters are required: R&D
efficiency by country and innovation-dependence by industry. Both are calibrated by matching
model-implied moments to their empirical counterparts. Since the share of firms that choose R&D
rather than adoption is increasing in R&D efficiency, the industry-level ratio of R&D expenditure
to value-added is larger in countries with higher R&D efficiency. Using this moment, I calibrate
R&D efficiency from cross-country, within-industry variation in innovation intensity. I obtain two
independent measures of R&D efficiency using data on innovation inputs (R&D) and innovation
outputs (patents), respectively.

Given R&D efficiency, I estimate innovation-dependence for 22 goods industries using the
gravity equation for bilateral trade implied by the model. The innovation-dependence of each
industry is estimated to match the observed correlation between R&D efficiency and trade flows.
I estimate innovation-dependence separately using the R&D efficiency measure calibrated from
R&D data and the measure calibrated from patent data, but the two sets of estimates are similar
with a correlation of 0.88. In both cases, innovation-dependence is highest in the Computers,
Machinery and equipment, and Chemicals industries and lowest in Mining. An out-of-sample
validation test confirms that countries with higher R&D efficiency have a comparative advantage
in industries with larger estimated innovation-dependence.

Using the calibrated model, I quantify the impact of R&D efficiency differences by comparing
the calibrated equilibrium to a counterfactual economy where R&D efficiency is the same in all
countries. The counterfactual analysis shows that technology gaps account for an important share
of variation in both nominal wages and real income per capita across OECD countries.

Eliminating R&D efficiency differences increases nominal wages relative to the US by around
20% for the average sample country. Since richer countries tend to be more innovative, equalizing
R&D efficiency also reduces cross-country inequality in wages and incomes. The results imply that
R&D efficiency differences account for one-quarter to one-third of nominal wage dispersion within

advantage can be characterized in terms of technology gaps when countries are ranked by their technological level and
industries by their technological intensity.
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the OECD. Under the assumption that innovation-dependence is zero in the services sector, I also
find that R&D efficiency accounts for around 15% of variation in real income per capita. Section
4 shows that these conclusions are robust to generalizing how the R&D and adoption technologies
differ across countries and industries, and to incorporating inter-industry knowledge spillovers in
the model.

As well as generating wage and income differences, technology gaps have large effects on
comparative advantage. For example, in the calibration based on R&D data, eliminating R&D
efficiency differences increases exports relative to the US for the average country by 94 log points
more for the Chemicals industry at the 90th percentile of the innovation-dependence distribution
than for the Agriculture industry at the 10th percentile.

By quantifying the impact of differences in innovativeness on living standards, this paper pro-
vides new evidence on the sources of international inequality and contributes to a small quanti-
tative literature on technology gaps. Parente and Prescott (1994) calibrate a single sector model
with exogenous growth and show that observed income disparities could be explained by plausi-
ble cross-country differences in the research technology, which they label barriers to technology
adoption. Likewise, Klenow and Rodrı́guez-Clare (2005) argue that variation in R&D investment
may be sufficient to generate observed international productivity gaps. Using a directed technical
change model, Gancia, Müller and Zilibotti (2013) estimate the barriers to adoption needed to fit
cross-country output differences and find that if all countries used frontier technologies then GDP
per worker of the average OECD economy relative to the US would increase from 0.68 to 0.91.
Relative to these studies, the paper’s contribution is to quantify the impact of technology gaps
using innovation and trade data without targeting observed income differences in the calibration.

In related development accounting research, Alviarez, Cravino and Ramondo (2021) use cross-
country variation in the market shares of multinational firms to estimate that firm-embedded pro-
ductivity differences account for one-third of cross-country income dispersion in their sample of
mostly European countries. Although R&D efficiency is only one of the possible sources of firm-
embedded productivity, the finding that it accounts for around 15% of income dispersion implies
that innovativeness is an important determinant of firm-embedded productivity.

In common with this paper, Buera and Oberfield (2020) and Cai, Li and Santacreu (2022) de-
velop dynamic quantitative trade models incorporating knowledge diffusion. I differ from these pa-
pers in modelling technology upgrading by incumbent firms, rather than building upon the frame-
work for studying trade and innovation pioneered by Eaton and Kortum (2001, 2002). But a more
important distinction is that, whereas their work asks how trade liberalization affects productivity,
I study the extent to which technology gaps explain income differences. Eaton and Kortum (1999)
also build a model of innovation and diffusion in five leading research countries, but their objective
is to estimate the extent of international technology diffusion.
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The theoretical framework in this paper builds upon research modelling the effect of interna-
tional knowledge diffusion on productivity in single sector economies (Parente and Prescott 1994;
Howitt 2000; Buera and Oberfield 2020; Lind and Ramondo 2022) and studying how endogenous
innovation affects comparative advantage (Grossman and Helpman 1990; Somale 2021; Cai, Li
and Santacreu 2022). It is also related to product cycle theories of imitation and trade (Krugman
1979; Grossman and Helpman 1991), learning-by-doing models of how initial conditions shape
long-run comparative advantage (Redding 1999), recent papers on innovation and/or imitation by
incumbent firms (Atkeson and Burstein 2010; Perla and Tonetti 2014; Akcigit and Kerr 2018),
and to work by Akcigit, Ates and Impullitti (2018) who study how technology gaps arise from
endogenous firm-level innovation in a Schumpeterian economy with two asymmetric countries.
Relative to these literatures, the theoretical contribution of this paper lies in developing a model
with endogenous innovation and adoption that facilitates the quantitative analysis of technology
gaps in the global economy. In particular, allowing for asymmetric countries and industries, trade
costs, and firm-level selection between R&D and adoption enhances the mapping between model
and data.

The methodology used to estimate innovation-dependence from bilateral trade data is related
to empirical studies that test for comparative advantage using the interaction of country and indus-
try characteristics (Romalis 2004; Nunn 2007; Manova 2013) and, particularly, to the approach
developed by Costinot (2009) to reveal cross-country variation in institutional quality. Costinot,
Donaldson and Komunjer (2012), Hanson, Lind and Muendler (2013) and Levchenko and Zhang
(2016) show how structural gravity models can be used to infer productivity differences from trade
flows. In their work Hanson, Lind and Muendler (2013) and Levchenko and Zhang (2016) ana-
lyze how the pattern of comparative advantage changes over time, while remaining agnostic about
mechanisms, whereas this paper provides a theory and quantification of cross-sectional variation in
steady state technology gaps. An alternative approach to measuring international technology dif-
ferences is to use data on the adoption of specific technologies (Caselli and Coleman 2001; Comin,
Hobijn and Rovito 2009; Comin and Mestieri 2018). Consistent with my model, such studies find
that the rate at which new technologies are adopted differs greatly across countries and is strongly
positively correlated with GDP per capita. The framework presented in this paper shows how tech-
nology gaps can be quantified using trade data even when direct measures of technology use are
unavailable, as is the case for many technologies and sectors.

1 Technology Gap Model

This section develops a model of technology gaps and trade. There are S countries indexed by
s and J industries indexed by j. I assume that output and factor markets are competitive, time
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t is continuous and all model parameters are time invariant. To simplify notation, I suppress the
dependence of endogenous variables on time except when necessary to avoid confusion.

1.1 Production

Within each country, all firms in a given industry produce the same homogeneous output good.
However, output is differentiated by country of origin following Armington (1969), implying that
the output price pjs in industry j is country-specific.

Firms differ in their productivity θ, which is a time-varying, firm-level state variable. Labor is
the only factor of production and a firm with productivity θ that employs lP production workers
produces output:

y = θ
(
lP
)β
, with 0 < β < 1. (1)

The assumption β < 1 implies that there are decreasing returns to scale in production.4

At each moment in time, firms in industry j and country s choose production employment to
maximize the flow of production profits πP = pjsy − wslP taking the output price pjs, the wage
ws and productivity θ as given. Solving the profit maximization problem yields:

lPjs(θ) =

(
βpjsθ

ws

) 1
1−β

, πPjs(θ) = (1− β)

(
β

ws

) β
1−β

(pjsθ)
1

1−β . (2)

Employment, output and profits are all increasing in the firm’s productivity and the output price,
but decreasing in the wage level.

1.2 Technology Investment

Each firm’s productivity grows over time at a rate that depends upon its investment in technology
upgrading. Firms can choose between two types of technology investment: R&D and adoption.
R&D investment seeks to create new ideas and technologies through innovation, while adoption is
aimed at learning about and implementing existing production techniques.

R&D technology. Firms are heterogeneous in their R&D capability ψ. R&D capability is a
time invariant firm characteristic that increases the efficiency of R&D investment. A firm with
capability ψ and productivity θ that employs lR workers to undertake R&D (and does not invest in
adoption) has productivity growth given by:

4Decreasing returns to scale ensure the firm’s static profit maximization problem is concave. Concavity could
also result from firms facing downward sloping demand curves. In an environment where each firm produces a
differentiated variety with a constant elasticity of substitution between varieties and there is monopolistic competition
between firms, the firm would face an equivalent optimization problem. However, this alternative would make the
model analytically intractable in general equilibrium given the existence of many asymmetric countries and industries.
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θ̇

θ
= ψBs

(
θ

χRjs

)−γj (
lR
)α − δ, (3)

where Bs > 0, γj > 0, δ > 0 and α ∈ (0, 1) are parameters, and χRjs denotes the R&D knowledge
level in industry j and country s. The knowledge level χRjs is non-rival and does not vary across
firms.

Conditional on current productivity and R&D employment, equation (3) shows that productiv-
ity growth is increasing in the firm’s R&D capability. At the same time, conditional on capability
and R&D employment, productivity growth is decreasing in the firm’s current productivity with
elasticity γj . This implies that there exists an advantage of backwardness, which benefits firms
further from the technology frontier.5 I allow the strength of the advantage of backwardness γj to
vary by industry to capture differences in the extent to which generating new ideas and techniques
is harder for more productive firms.

The returns to R&D also depend upon country-level R&D efficiency Bs, which captures vari-
ation in the quality of a country’s national innovation system. Countries with a higher R&D effi-
ciency Bs have an absolute advantage in R&D. The parameter α determines the returns to scale in
R&D, while δ is the rate at which a firm’s technical knowledge depreciates causing its productivity
to decline. The assumption δ > 0 captures obsolescence of previously acquired techniques as well
as loss of knowledge resulting from labor force turnover.6

Because knowledge is partially non-excludable, R&D generates knowledge spillovers that al-
low firms to build upon the knowledge created by past innovations. The knowledge level χRjs cap-
tures these spillovers and the specification of the R&D technology implies that a higher knowledge
level increases productivity growth all else equal.

Analysis of cross-border knowledge flows finds that domestic spillovers are stronger than
international spillovers (Branstetter 2001; Keller 2002) and that the geographic localization of
spillovers may vary by industry due to differences in the importance of tacit knowledge, cross-
border communication, and whether production techniques must be adapted to local requirements
(Evenson and Westphal 1995; Peri 2005). To model this geography of knowledge spillovers, I
assume the knowledge level χRjs depends upon both the domestic productivity frontier and global
knowledge capital accumulated through past R&D investments.

Formally, let ω index firms and let Ωjs denote the set of firms operating in industry j in country
s. Define θmax

js (ω) = supω̃∈Ωjs,ω̃ 6=ω {θ(ω̃)} as the supremum of the productivity of all firms in

5Using industry level data for OECD countries, Griffith, Redding and Van Reenen (2004) find that the effect of
R&D on productivity growth is increasing in distance to the frontier. At the firm level, Bartelsman, Haskel and Martin
(2008) and Griffith, Redding and Simpson (2009) both estimate that lower productivity relative to the domestic frontier
raises productivity growth in the UK.

6Doraszelski and Jaumandreu (2013) estimate the persistence of productivity and conclude that “old knowledge is
hard to keep” (p.1341).
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industry j in country s excluding firm ω. The definition implies θmax
js (ω) is exogenous to firm ω.

In equilibrium, there will always be a continuum of firms at the productivity frontier.7 Therefore,
θmax
js (ω) = θmax

js and does not vary with ω. The R&D knowledge level χRjs of industry j in country
s is then given by:

χRjs =
(
θmax
js

) κj
1+κj χ

1
1+κj

j , (4)

where χj denotes global knowledge capital in industry j. This specification assumes all knowledge
spillovers occur within industries.8

The knowledge level depends upon domestic spillovers through θmax
js and global spillovers

through χj . The parameter κj > 0 determines the localization of knowledge spillovers, which
varies by industry. A higher κj implies spillovers are more localized because the elasticity of
the knowledge level to the domestic productivity frontier is increasing in κj , while the elasticity to
global knowledge capital is decreasing. Since knowledge spillovers are localized, firms in countries
with a greater frontier productivity benefit from access to a higher knowledge level.

Global knowledge capital χj is a state variable of the world economy that increases over time
as R&D investment leads to the creation of new ideas and technologies. I assume growth in χj
depends upon a weighted sum of R&D investment by all firms in all countries:

χ̇j
χj

=
S∑
s=1

Mjs

∫ ψmax

ψmin

λjs(ψ)lRjs(ψ)dG(ψ). (5)

where Mjs denotes the mass of firms that produce good j in country s, λjs(ψ) ≥ 0 determines the
strength of R&D spillovers and G(ψ) is the cumulative distribution function of R&D capabilities,
which is assumed to be continuous with support

[
ψmin, ψmax

]
and does not vary across countries.

Note that this specification allows the strength of R&D spillovers to vary by country, industry and
the firm’s R&D capability. However, adoption investment does not affect global knowledge capital
because it does not generate new ideas.

Adoption technology. Although innovation and imitation are closely related activities (Rosen-
berg 1990), adoption differs from R&D in two important ways. First, it does not require the rare
combination of firm capability and institutional support that enables knowledge creation. There-
fore, I assume neither firm-level R&D capability ψ nor country-level R&D efficiency Bs affect the
efficiency of adoption investment BA. It follows that firms with higher R&D capability and coun-
tries with higher R&D efficiency have a relative advantage at innovation compared to adoption.

7In steady state this observation follows from assuming that there exist a continuum of firms with each capability
ψ. Outside steady state it also requires assuming an initial condition in which there are either zero or a continuum of
firms with each (ψ, θ) pair.

8Section 4.2 generalizes the model to include inter-industry knowledge spillovers.
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Second, while both R&D and adoption draw upon existing knowledge, prior inventions are more
useful to adopters than innovators. Consequently, I assume that the adoption knowledge level is
greater than the R&D knowledge level χAjs = ηχRjs with η > 1.9

Suppose the productivity growth of a firm that employs lR R&D workers and lA adoption
workers is given by:

θ̇

θ
= θ−γj

{[
ψBs

(
χRjs
)γj] 1

α lR +
[
BA
(
χAjs
)γj] 1

α lA
}α
− δ. (6)

This specification implies that the decreasing returns to scale in technology investment generated
by α < 1 apply to the firm’s combined employment of R&D and adoption workers, meaning that no
firm will invest in both R&D and adoption simultaneously. Firms invest in R&D if ψBs

(
χRjs
)γj >

BA
(
χAjs
)γj and adoption otherwise. Moreover, for firms that choose adoption, productivity growth

is given by:

θ̇

θ
= BA

(
θ

χAjs

)−γj (
lA
)α − δ, (7)

showing that the adoption technology has the same functional form as the R&D technology in
equation (3).

Optimal technology investment. Each firm chooses paths for employment in R&D and adop-
tion to maximize its value subject to productivity growth satisfying equation (6). Firms take the
current and future values of χRjs and χAjs as given when making technology investments. Because
technology investments affect productivity growth, but not the current value of θ, the technology
investment problem is separable from the firm’s static production decision.

Let Vjs(ψ, θ) be the value of a firm with capability ψ and productivity θ. Vjs(ψ, θ) equals the
expected present discounted value of the firm’s production profits minus its technology investment
costs on the optimal investment path:

Vjs(ψ, θ) = sup
{lR,lA}

{∫ ∞
t

exp

[
−
∫ t̃

t

(ιs + ζ) dt̂

] [
πPjs(θ)− ws

(
lR + lA

)]
dt̃

}
, (8)

where ιs denotes the interest rate and πPjs(θ) is given by (2). All endogenous variables in this
expression, including the firm’s value function, are time dependent.

9This specification is equivalent to assuming that R&D and adoption draw upon the same knowledge stock χRjs,
but that knowledge is more useful in adoption than R&D (since η > 1).
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1.3 Entry

Entrants must pay a fixed cost to establish a firm. To set-up a unit flow of new firms, a potential
entrant must hire fE workers where fE > 0 is an entry cost parameter. Following the idea flows
literature I assume that the capability ψ and initial productivity θ of each entrant are determined
by a random draw from the joint distribution of ψ and θ among incumbent firms in the entrants’
country and industry at the time the firm is created. Thus, the distribution of productivity θ at each
capability level ψ is the same for entrants and incumbents. This specification implies the existence
of spillovers from incumbents to entrants within a country-industry pair.10

There is free entry and the free entry condition requires that the cost of entry equals the expected
value of entry meaning:

fEws =

∫
(ψ,θ)

Vjs(ψ, θ)dH̃js(ψ, θ), (9)

where H̃js(ψ, θ) denotes the cumulative distribution function of (ψ, θ) across firms.
Let LEjs be aggregate employment in entry in industry j and country s. Then the total flow of

entrants in industry j and country s is LEjs/f
E . Since firms die at rate ζ this means the mass of

firms Mjs evolves according to:

Ṁjs = −ζMjs +
LEjs
fE

. (10)

1.4 Closing the Model

To complete the description of the model, we need to define consumer preferences, specify trade
costs and impose market clearing conditions.

Each country has a representative consumer with identical preferences who consumes a single
consumption good that is produced as a Cobb-Douglas aggregate of industry outputs. The rep-
resentative consumer has intertemporal preferences with discount rate ρ > 0 and unit elasticity
of intertemporal substitution, and allocates a fraction µj of expenditure to industry j. Let cs de-
note consumption per capita, zs be the price of the consumption good and Ls be the population of
country s. There is no population growth.

Within industries let σ > 1 be the Armington demand elasticity, which determines the sub-
stitutability of output produced in different countries. Suppose trade costs take the iceberg form,

10In Sampson (2016a) spillovers from incumbents to entrants lead to endogenous growth through a dynamic selec-
tion mechanism. In this paper the dynamic selection mechanism is absent because there is no fixed cost of production,
meaning that firm exit is not endogenous. Instead, R&D investment by incumbent firms is the source of long-run
growth. Garcia-Macia, Hsieh and Klenow (2019) estimate that most growth in US manufacturing comes from incum-
bent firms, rather than creative destruction or the introduction of new varieties.
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such that τjss̃ units of industry j output must be shipped from country s to country s̃ in order for
one unit to arrive at the destination.

The system of demand and price index equations implied by these preferences can be found
in Appendix A.1. The Armington assumption is sufficient to generate constant elasticity demand,
which implies equilibrium bilateral trade flows follow a gravity equation. In particular, demand in
s̃ for industry j output produced in country s is given by:

xjss̃ = (τjss̃pjs)
−σ P σ−1

js̃ µjzs̃cs̃Ls̃,

where Pjs̃ denotes the price index for industry j in country s̃.
I assume there is no international lending, meaning asset markets clear at the national level.

Labor markets clearing also occurs country-by-country, while output markets clear at the country-
industry level. I let global consumption expenditure be the numeraire, implying

∑S
s=1 zscsLs = 1.

Finally, to ensure concavity in firms’ intertemporal optimization problems, I assume that the
returns to scale in production and R&D, the advantage of backwardness and the localization of
knowledge spillovers satisfy the following restriction.

Assumption 1. For all industries j, the parameters of the global economy satisfy: 1
1−β > γj >

α
1−β +

κjγj
1+κj

.

This completes the specification of the model. Appendix A.1 provides the full set of equilib-
rium equations and defines an equilibrium of the global economy. The economy’s state variables
are the joint distributions H̃js(ψ, θ) of firms’ capabilities and productivity levels for all country-
industry pairs, global knowledge capital χj in each industry and the mass of firms Mjs in all coun-
tries and industries. An initial condition is required to pin down the initial values of these state
variables. Note that, apart from any differences in initial conditions, the only exogenous sources of
cross-country variation are differences in R&D efficiency Bs, population Ls and trade costs τjss̃.

2 Balanced Growth Path

This section characterizes a balanced growth path equilibrium of the global economy, focusing pri-
marily on how R&D efficiency affects comparative advantage and international income inequality.
Full details of the solution together with proofs of the propositions can be found in Appendix A.

Let Hjs(θ) be the cumulative distribution function of productivity in industry j and country
s. I define a balanced growth path as an equilibrium in which all aggregate country and industry
variables have constant growth rates and the productivity distributionsHjs(θ) shift outwards at con-
stant rates. Appendix A.2 shows that, on any balanced growth path, the existence of cross-border
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knowledge spillovers implies Hjs(θ) must shift outwards at the same rate gj in all countries.11

Moreover, rising productivity is the only source of growth and the growth rate of consumption per
capita q =

∑
j µjgj is the same everywhere. It follows that, on a balanced growth path, cross-

country heterogeneity leads to differences in the levels, not growth rates, of endogenous variables.

2.1 Firm Productivity Dynamics

Productivity dynamics depend upon firms’ technology investment choices. How do firms behave
on a balanced growth path? To solve for optimal firm behavior, we start by determining whether
firms invest in R&D or adoption. A higher capability ψ increases the returns to R&D investment,
but not to adoption investment. Consequently, there exists a capability threshold ψ∗js such that firms
invest in R&D if and only if their capability exceeds ψ∗js. From equation (6) and χAjs = ηχRjs we
have:

ψ∗js = ηγj
BA

Bs

, (11)

which implies that the R&D threshold ψ∗js is increasing in the advantage of backwardness γj , de-
creasing in R&D efficiencyBs and independent of the firm’s current productivity. This means that,
on the extensive margin, there is more R&D in industries where the advantage of backwardness is
smaller and in countries that are better at R&D.12

Now consider the R&D investment problem faced by a firm with capability ψ ≥ ψ∗js. Let φ ≡(
θ/χRjs

) 1
1−β be the firm’s productivity relative to the R&D knowledge level. I show in Appendix

A.3 that changing variables from θ to φ allows the firm’s problem to be written as an optimal control
problem in which the payoff function depends upon time only through exponential discounting.
Consequently, the firm’s value is a stationary function of its relative productivity and the value
function Vjs (ψ, φ) satisfies the Hamilton-Jacobi-Bellman equation:

(ρ+ ζ)Vjs (ψ, φ) = πPjs(φ) +
dVjs (ψ, φ)

dt
,

where the profit flow πPjs(φ) is given by substituting φ =
(
θ/χRjs

) 1
1−β into equation (2). Appendix

A.3 solves the firm’s dynamic problem and shows that, on a balanced growth path, it has a unique,

11The assumption, embodied in equation (4), that the knowledge level χRjs is homogeneous of degree one in the pair(
θmax
js , χj

)
is a necessary condition for the existence of a balanced growth path. Since productivity growth depends

upon current productivity relative to the R&D and adoption knowledge levels, this assumption ensures knowledge
spillovers are sufficiently strong to sustain ongoing productivity growth and is analogous to Romer’s (1990) assumption
that knowledge production is linear in the existing knowledge stock.

12I assume the parameter values are such that ψ∗
js ∈

(
ψmin, ψmax

)
∀s implying both adoption and R&D take place

in every country.
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locally saddle-path stable steady state and that the firm’s steady state relative productivity and R&D
employment are given by:

φ∗js =

αβ β
1−β (ψBs)

1
α

(
pjsχ

R
js

ws

) 1
1−β

(δ + gj)
α−1
α

ρ+ ζ + γj (δ + gj)


α

γj(1−β)−α

, (12)

lR∗js =

αβ β
1−β (ψBs)

1
γj(1−β)

(
pjsχ

R
js

ws

) 1
1−β

(δ + gj)
γj(1−β)−1

γj(1−β)

ρ+ ζ + γj (δ + gj)


γj(1−β)

γj(1−β)−α

. (13)

The steady state and transition dynamics are shown in Figure 1. Along the stable arm, relative
productivity and R&D employment increase over time for firms that start with φ below φ∗js, while
the opposite is true for firms with initial φ above φ∗js. The existence of an advantage of backward-
ness is necessary for the stability of the steady state because it introduces a negative relationship
between productivity levels and productivity growth, all else constant.

lR

φ

φ̇ = 0

l̇R = 0

lR∗

φ∗

Stable arm

Figure 1: Firm steady state and transition dynamics

The steady state has several important properties. First, in steady state all surviving R&D firms
in an industry have the same productivity growth rate gj , meaning that the steady state satisfies
Gibrat’s law for surviving firms. Second, φ∗js is increasing in ψ implying that, within each country-
industry pair, more capable firms have higher steady state relative productivity levels. This explains
why, even though R&D capability differs across firms, steady state growth rates do not. The
advantage of backwardness raises the R&D efficiency of less productive firms and, in steady state,
this exactly offsets the disadvantage from low ψ implying all firms grow at the same rate.
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Third, the steady state is consistent with two key stylized facts about R&D highlighted by Klette
and Kortum (2004): (i) productivity and R&D investment are positively correlated across firms
since φ∗js and lR∗js are both increasing in ψ, and; (ii) among firms with positive R&D investment,
R&D intensity is independent of firm size. To see this observe that using (1), (2) and (13) implies
the steady state ratio of R&D investment to sales satisfies:

wsl
R∗
js

pjsyjs
(
φ∗js
) =

α (δ + gj)

ρ+ ζ + γj (δ + gj)
, (14)

which is constant within each industry. R&D intensity is increasing in the returns to scale in
R&D α, the knowledge depreciation rate δ and the industry growth rate gj , and decreasing in the
advantage of backwardness γj , the interest rate ρ and the firm exit rate ζ .

Fourth, inequality in productivity levels and size between R&D firms is endogenous and steady
state inequality is strictly increasing in α and β and strictly decreasing in γj .13 An increase in α
raises the returns to scale in R&D which disproportionately benefits higher capability firms that
employ more R&D workers. Similarly, an increase in β raises the returns to scale in production
giving higher capability, larger firms a greater incentive to raise productivity by increasing R&D
investment. By contrast, a higher advantage of backwardness γj reduces steady state technology
gaps between firms.14

The adoption investment problem faced by firms with capability below the R&D threshold ψ∗js
is formally equivalent to the R&D investment problem of a firm with threshold capability ψ∗js.

15 It
follows that the steady state relative productivity and adoption employment of firms with capability
below ψ∗js are given by (12) and (13), respectively, but with ψ = ψ∗js. By allowing firms to draw
upon existing knowledge, adoption permits firms with capability below the R&D threshold to attain
the same steady state productivity level as a firm with R&D capability ψ∗js. Consequently, adopters
constitute a fringe of firms with mass MjsG

(
ψ∗js
)

that compete with innovators and all have the
same steady state productivity.

13See the proof of Proposition 1. All inequality results hold for any measure of inequality that respects scale
independence and second order stochastic dominance. See Lemma 2 in Sampson (2016b) for a proof of how elasticity
changes affect inequality.

14In most heterogeneous firm models, such as Melitz (2003), the lower bound is the only endogenously determined
parameter of the productivity distribution. This holds not only in static economies, but also in the growth models of
Sampson (2016a) and Perla, Tonetti and Waugh (2021). An exception is Bonfiglioli, Crinò and Gancia (2018) who
allow firms to choose between receiving productivity draws from distributions with different shapes.

15To see this, substitute χAjs = ηχRjs and (11) into (7) to obtain:

θ̇

θ
= ψ∗

jsBs

(
θ

χRjs

)−γj (
lA
)α − δ.

This expression is equivalent to the R&D technology (3) except that the firm’s R&D capability ψ has been replaced
by the capability threshold ψ∗

js.
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The discussion above characterizes the productivity dynamics of incumbent firms. However,
the evolution of the industry productivity distribution Hjs(θ) also depends upon entry and exit.
Recall that all firms exit exogenously at rate ζ and that entering firms draw their capability and
productivity from the joint distribution of ψ and θ among incumbents. Consequently, net entry
does not affect Hjs(θ) because the productivity distributions of entering, exiting and incumbent
firms are identical. Moreover, if all incumbent firms with capability ψ are in steady state, then each
new firm that draws capability ψ enters at its steady state productivity level. Since all surviving
firms grow at rate gj in steady state, it follows that the industry productivity distribution shifts
outwards at rate gj provided all incumbent firms are in steady state.

By contrast, if any incumbent firms are not in steady state, then the shape of the productivity
distributionHjs(θ) varies over time as firms transition towards steady state.16 This is not consistent
with balanced growth. Therefore, entry, exit and firms’ optimal R&D and adoption investment de-
cisions generate balanced growth if and only if all incumbent firms are in steady state. Proposition
1 summarizes the model’s predictions regarding firm-level productivity outcomes on a balanced
growth path.

Proposition 1. Suppose Assumption 1 holds. On a balanced growth path equilibrium all firms in

the same industry grow at the same rate and within any country-industry pair:

(i) Firms that invest in R&D have higher productivity than firms that invest in adoption;

(ii) Among firms that invest in R&D, productivity and R&D employment are strictly increasing in

firm capability;

(iii) Productivity inequality between firms is strictly decreasing in the industry’s advantage of back-

wardness, but strictly increasing in the returns to scale in production and R&D and the country’s

R&D efficiency.

2.2 General Equilibrium

Having characterized firm-level behavior, we can now solve for a balanced growth path equilib-
rium. For this purpose, let Ψjs be defined by:

Ψjs ≡
∫ ψmax

ψ∗js

ψ
1

γj(1−β)−αdG(ψ) +
(
ψ∗js
) 1
γj(1−β)−α G

(
ψ∗js
)
. (15)

Ψjs is the average effective capability of firms in industry j and country s accounting for the fact
that adoption is equivalent to R&D with capability ψ∗js. Ψjs is strictly increasing in the R&D
threshold ψ∗js and, therefore, strictly decreasing in country-level R&D efficiency Bs. It captures

16Formally, a balanced growth path only requires a mass Mjs of firms to be in steady state, which allows for
individual firms with zero mass to deviate from steady state. I overlook this distinction since it does not matter for
industry or aggregate outcomes.

15



the benefits resulting from selection into adoption, which are larger in countries with lower R&D
efficiency.

Using the individual’s budget constraint, the definitions of the R&D and adoption knowledge
levels, the free entry condition, the goods, labor and asset market clearing conditions and firms’
steady state productivity and employment levels, Appendix A.5 shows that on a balanced growth
path labor market clearing requires:

Ls =
J∑
j=1

µj
ρ+ ζ

(
ζ + βρ+

αρ (δ + gj)

ρ+ ζ + γj (δ + gj)

)
Zjs, (16)

while asset market clearing implies that asset holdings per capita as are given by:

asLs =
J∑
j=1

µj
ρ+ ζ

(
1− β − α (δ + gj)

ρ+ ζ + γj (δ + gj)

)
wsZjs, (17)

and the productivity growth rate in industry j satisfies:

gj =
S∑
s=1

µj
α (δ + gj)

ρ+ ζ + γj (δ + gj)

Zjs
Ψjs

∫ ψmax

ψ∗js

λjs(ψ)ψ
1

γj(1−β)−αdG(ψ), (18)

where:

Zjs ≡
S∑
s̃=1

τ 1−σ
jss̃ (ρas̃ + ws̃)Ls̃w

−σ
s

(
BsΨ

γj(1−β)

1+κj
−α

js

) (σ−1)(1+κj)

γj

∑S
ŝ=1 τ

1−σ
jŝs̃ w

1−σ
ŝ

(
BŝΨ

γj(1−β)

1+κj
−α

jŝ

) (σ−1)(1+κj)

γj

. (19)

Equations (16)-(18), together with the definition of Zjs in (19), comprise a system of equations
in the 2S + J unknown wage levels ws, asset holdings as and industry growth rates gj . Any
solution to this system of equations gives a balanced growth path. I prove in Appendix A.6 that
there exists a unique balanced growth path in the case where J = 1 and there are no trade costs.
More generally, I assume existence and derive results that must hold on any balanced growth path.

The equilibrium conditions show that, conditional on industry growth rates, R&D efficiency
affects wages and asset holdings only through the Zjs terms. Zjs can be interpreted as a measure
of industry size since Zjs

Zjs̃
=

Ljs
Ljs̃

where Ljs denotes total employment in industry j in country s.
Zjs depends upon R&D efficiency Bs both directly and indirectly through Ψjs. In an economy
without adoption this indirect effect is absent. Zjs also depends upon labor costs and upon market
access, which is a function of trade costs and real demand in each destination.17

17Characterizing the equilibrium industry growth rates gj given by equation (18) is not the focus of this paper and
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2.3 Technology Gaps and Comparative Advantage

On a balanced growth path relative productivity levels within each industry are stationary. How-
ever, the location of the productivity distribution in each country depends upon its R&D efficiency.
Consequently, variation in R&D efficiency generates technology gaps. This section characterizes
the technology gaps that support a balanced growth path equilibrium and analyzes how technology
gaps affect comparative advantage.

Let θ
∗
js ≡

[
E
(
θ∗js
) 1

1−β
]1−β

denote the average steady state productivity of firms in country s
and industry j. The technology gap between countries s and s̃ in industry j is given by:

θ
∗
js

θ
∗
js̃

=

Bs

Bs̃

(
Ψjs

Ψjs̃

) γj(1−β)

1+κj
−α


1+κj
γj

, (20)

which shows that Bs has a direct positive effect on productivity, as well as an indirect negative
effect through Ψjs.18 The direct effect results from R&D being more productive, all else equal,
when Bs is higher. The indirect effect occurs because countries with higher Bs have a lower R&D
threshold ψ∗js, which reduces average effective capability Ψjs. However, the direct effect is always
stronger than the indirect effect, meaning that the net effect ofBs on average productivity is strictly
positive.

Equation (20) also implies that R&D efficiency differences are the only source of international
technology gaps in this model. Technology gaps do not depend upon trade costs because trade
costs do not affect the price-wage ratio pjs/ws, which determines relative technology investment
rates and, consequently, relative productivity levels. This ratio is pinned down by the free entry
condition independently of trade costs (see Appendix A.5), meaning that any potential impact of
trade cost variation on technology investment is offset by adjustments in net entry. The finding
that technology gaps are independent of trade costs relies on the assumption that trade does not
affect international knowledge spillovers. Linking knowledge spillovers to trade, as in Baldwin
and Robert-Nicoud (2008) or Buera and Oberfield (2020), would introduce an additional source of
variation in technology gaps.

the counterfactual analysis in Section 3 does not require solving for gj . However, to offer insight into the determinants
of growth in this economy, Appendix A.6 shows that in a single sector version of the model growth is increasing in
the R&D spillovers λs (·), the size of each country Ls and the R&D efficiency of each country Bs, but decreasing
in the adoption knowledge premium η and adoption efficiency BA. Growth is also higher in the open economy than
autarky due to the existence of global knowledge spillovers, but does not depend upon the localization of knowledge
spillovers κ or the level of trade costs τss̃. Lower trade costs increase the effective size of export markets, but also
expose domestic firms to increased import competition. In the single sector version of the model, as in Grossman
and Helpman (1991, ch.9) and Eaton and Kortum (2001), these effects exactly offset, leaving R&D employment and
growth unchanged.

18To see that the indirect effect is negative note that γj(1 − β) > α(1 + κj) by Assumption 1 and that Ψjs is
decreasing in Bs by (11).
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The magnitude of international technology gaps is determined by the elasticity of productivity
to R&D efficiency, which I call innovation-dependence IDjs since it controls the extent to which
countries benefit from being more innovative. Formally, define:

IDjs ≡
∂ log

(
BsΨ

γj(1−β)

1+κj
−α

js

) 1+κj
γj

∂ logBs

=
1 + κj
γj

+

[
(1− β)− α (1 + κj)

γj

]
∂ log Ψjs

∂ logBs

. (21)

In general, innovation-dependence may vary across industries due to differences in γj and κj and
across countries due to differences in the elasticity of Ψjs to Bs. However, in Section 3 I calibrate
a first-order approximation of the model in which ∂ log Ψjs

∂ logBs
is constant across countries, implying

that innovation-dependence only varies by industry.
Innovation-dependence is decreasing in the advantage of backwardness γj and increasing in

the localization of knowledge spillovers κj .19 A higher advantage of backwardness raises the
relative efficiency of technology investment at less productive firms and decreases the share of
firms that undertake R&D. Both these effects reduce innovation-dependence. By contrast, more
localized knowledge spillovers increase innovation-dependence by making technology investment
more reliant on domestically generated knowledge.

Differences in innovation-dependence across industries give rise to Ricardian comparative ad-
vantage. To see this, let EXjss̃ = τjss̃pjsxjss̃ denote the value of exports from s to s̃ in industry j
inclusive of trade costs. On a balanced growth path:

logEXjss̃ = υ1
js̃ + (σ − 1)

(
log θ

∗
js − logws − log τjss̃

)
, (22)

where υ1
js̃ is a destination-industry specific term defined in Appendix A.7. Equation (22) implies

exports are increasing in average productivity and decreasing in the wage level. An increase in
average productivity raises exports by reducing the output price pjs, whereas higher wages increase
labor costs and raise the output price. Equation (22) also implies that the pattern of comparative
advantage is stable on a balanced growth path because productivity and wage growth do not vary
by country.

By substituting for θ
∗
js in (22) we obtain:

logEXjss̃ = υ2
js̃+(σ − 1)

(
1 + κj
γj

logBs +
γj(1− β)− α(1 + κj)

γj
log Ψjs − logws − log τjss̃

)
,

(23)
19See the proof of Proposition 2 for details.
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showing that R&D efficiency affects exports both directly and indirectly through Ψjs and ws. In
addition, conditional on the wage, the elasticity of exports to R&D efficiency equals σ − 1 times
innovation-dependence IDjs. This observation motivates the calibration strategy in Section 3.

Using equation (23), we can characterize the pattern of comparative advantage on a balanced
growth path. We have:

∂2 logEXjss̃

∂γj∂ logBs

= (σ − 1)
∂IDjs

∂γj
< 0,

∂2 logEXjss̃

∂κj∂ logBs

= (σ − 1)
∂IDjs

∂κj
> 0.

Thus, countries with higher R&D efficiency have a comparative advantage in more innovation-
dependent industries where γj is lower and κj is higher. Proposition 2 summarizes these results.

Proposition 2. Suppose Assumption 1 holds. On a balanced growth path equilibrium:

(i) Countries with higher R&D efficiency have greater average productivity in each industry;

(ii) Countries with higher R&D efficiency have a comparative advantage in more innovation-

dependent industries where the advantage of backwardness is smaller and the localization of

knowledge spillovers is greater.

It is worth noting that the proof of Proposition 2 does not rely on the labor, output or asset market
clearing conditions. This implies that the pattern of comparative advantage on a balanced growth
path is independent of how the market clearing conditions are specified.

Proposition 2 characterizes comparative advantage assuming γj and κj are the only parameters
that vary across industries. But it is straightforward to check that Proposition 2 continues to hold
if there is also industry-level heterogeneity in the Armington elasticity σj , the capability distribu-
tion Gj(ψ), the returns to scale in production βj , the returns to scale in R&D αj , the knowledge
depreciation rate δj , the adoption knowledge advantage ηj , the exit rate ζj and the entry cost fEj .

In this case, countries with higher R&D efficiency also have a comparative advantage in in-
dustries with higher returns to scale in production βj and R&D αj and in industries with a lower
adoption knowledge advantage ηj . Higher returns to scale in production and R&D increase the
average technology gap between innovators and adopters within countries as shown in Proposition
1, which gives a comparative advantage to countries where a higher proportion of firms invest in
R&D. A higher ηj raises the R&D threshold by (11), which shrinks international technology gaps
since the adoption technology is independent of R&D efficiency.

2.4 International Inequality

How do wages, income and consumption differ across countries on a balanced growth path? The
simplest case to consider is a single sector economy with free trade. In this case equations (16),
(19) and (20) yield:
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ws
ws̃

(
Ls
Ls̃

) 1
σ

=

(
θ
∗
s

θ
∗
s̃

)σ−1
σ

=

[
Bs

Bs̃

(
Ψs

Ψs̃

) γ(1−β)
1+κ

−α
] 1+κ

γ
σ−1
σ

,

which shows that the relative wage of country s is increasing in its relative average productivity
and, consequently, in its R&D efficiency.20 Moreover, differentiating this expression gives that the
elasticity of the relative wage to R&D efficiency equals (σ − 1) /σ times innovation-dependence.
From Proposition 2 innovation-dependence is decreasing in the advantage of backwardness and
increasing in the localization of knowledge spillovers. Thus, wage inequality caused by differences
in R&D efficiency is higher when the advantage of backwardness is smaller and when knowledge
spillovers are more localized.

The intertemporal budget constraint implies consumption per capita depends upon assets per
capita, wages and the consumption price through:

cs =
ρas + ws

zs
,

implying that consumption per capita equals real income per capita. With a single industry, assets
per capita as are proportional to ws by (16) and (17). Because of free trade all countries also face
the same consumption price zs, meaning that consumption per capita cs is proportional to ws. It
follows that international inequality in incomes and consumption is the same as inequality in wages
and is increasing in the degree of innovation-dependence. Proposition 3 summarizes these results.

Proposition 3. Suppose Assumption 1 holds, the economy has a single industry and there is free

trade. On a balanced growth path equilibrium:

(i) Each country’s wage, income per capita and consumption per capita relative to other countries

is strictly increasing in its R&D efficiency;

(ii) International inequality in wages, income per capita and consumption per capita due to differ-

ences in R&D efficiency is greater when innovation-dependence is higher. Consequently, inequality

is strictly decreasing in the advantage of backwardness and strictly increasing in the localization

of knowledge spillovers.

In the general case with trade costs and many industries, innovation-dependence continues to be
the key determinant of the mapping from R&D efficiency differences to international inequality.
In particular, equations (16), (17) and (19) show that, conditional on industry growth rates, Bs

enters the balanced growth path equations for ws, as, zs and, therefore, cs only through the term

BsΨ

γj(1−β)

1+κj
−α

js .21 It follows that the elasticities of ws, as, zs and cs to Bs can all be expressed in
terms of the innovation-dependence levels in the J industries.

20The relative wage is also decreasing in relative population Ls/Ls̃ due to the assumption of Armington demand.
21See Appendix A.8 for the derivation of equilibrium consumption prices zs.
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A simple example arises when all industries are non-tradable. In this case, equilibrium con-
sumption per capita satisfies:

cs
cs̃

=
J∏
j=1

Bs

Bs̃

(
Ψjs

Ψjs̃

) γj(1−β)

1+κj
−α

µj(1+κj)

γj

,

which shows that relative consumption per capita in country s is increasing in R&D efficiency
Bs with an elasticity

∑J
j=1 µjIDjs that equals the expenditure share weighted average of industry

nnovation-dependence levels. Consequently, a higher innovation-dependence in any industry raises
the elasticity of relative consumption per capita to R&D efficiency.

With finite trade costs, exporters’ market shares vary by importer meaning that the terms-
of-trade effects of productivity differences are country-specific. Consequently, the relationship
between R&D efficiency, wages and incomes is more complex and depends upon the entire system
of equations (16)-(19). However, by estimating innovation-dependence and calibrating the model,
it is possible to quantify the impact of variation in R&D efficiency on wage and income inequality
in the general model. The remainder of the paper takes up this challenge.

3 Quantitative Analysis

This section calibrates the model and quantifies the effect of R&D efficiency differences on trade
flows and international inequality.

3.1 Model Approximation

Before calibrating the model, I log-linearize the balanced growth path equilibrium conditions by
taking a first order approximation to average effective capability Ψjs around an equilibrium where
the share of firms that perform R&D vanishes. The approximation makes the equilibrium condi-
tions log-linear in R&D efficiency Bs, which facilitates the calibration.

Suppose the R&D capability distribution G(ψ) is truncated Pareto with lower bound ψmin = 1

and shape parameter k, where k > 1
γj(1−β)−α for all industries j.22 Using this functional form in

(15) to compute average effective capability Ψjs and letting ψmax →∞ yields:23

Ψjs ≈
(
ψ∗js
) 1
γj(1−β)−α

[
1 +

(
ψ∗js
)−k

k [γj(1− β)− α]− 1

]
. (24)

22The assumption ψmin = 1 is without loss of generality.
23Appendix A.9 provides further details on the derivation of the approximation.
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Taking a first order approximation to this expression for large ψ∗js then gives:

Ψjs ≈
(
ψ∗js
) 1
γj(1−β)−α =

(
ηγj

BA

Bs

) 1
γj(1−β)−α

, (25)

where the second equality follows from the solution for the R&D threshold in equation (11).
Since the approximation drops terms of order

(
ψ∗js
)−k, it is valid provided

(
ψ∗js
)−k is small. With

ψmax →∞,
(
ψ∗js
)−k equals the share of firms that undertake R&D. In UK data for 2008-09, 9.9%

of goods firms report performing R&D, which is consistent with
(
ψ∗js
)−k being small. Section 3.6

computes an upper bound on the approximation error in the counterfactual results and shows that
it is not quantitatively important.

With this approximation to Ψjs, the innovation-dependence of each industry is constant across
countries. Applying the approximation to ∂ log Ψjs

∂ logBs
and using equation (21) yields:

IDjs = IDj =
(1− β)κj

γj (1− β)− α
. (26)

Note that IDj is increasing in κj , α and β, and decreasing in γj , meaning that the signs of the
relationships between these parameters and innovation-dependence, characterized in Section 2.3,
are unaffected by taking the approximation.

Now substituting the approximation to Ψjs into the definition of Zjs in equation (19) yields:

Zjs =
S∑
s̃=1

τ 1−σ
jss̃ (ρas̃ + ws̃)Ls̃w

−σ
s B

(σ−1)IDj
s∑S

ŝ=1 τ
1−σ
jŝs̃ w

1−σ
ŝ B

(σ−1)IDj
ŝ

, (27)

implying that the industry size measure Zjs depends upon R&D efficiency only throughBIDj
s . Sec-

tion 3.4 shows how R&D and bilateral trade data can be used to obtain model-consistent estimates
of BIDj

s .

3.2 Calibration Strategy

The goal of the counterfactual analysis is to quantify how R&D efficiency affects trade, wages
and incomes, not to analyze growth rates. Focussing on this objective simplifies the calibration
by reducing the number of parameters needed to calibrate the model. To see this, first note that
equation (14) implies the R&D intensity of innovative firms FiRDj is given by:

FiRDj =
α(δ + gj)

ρ+ ζ + γj(δ + gj)
.

Substituting this equation into the balanced growth path equilibrium conditions (16) and (17) then
yields:
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Ls =
J∑
j=1

µj (ζ + βρ+ ρF iRDj)

ρ+ ζ
Zjs, asLs =

J∑
j=1

µj (1− β − FiRDj)

ρ+ ζ
wsZjs. (28)

Equation (28) together with the expression for Zjs in equation (27) can be used to solve for wages
ws and assets as without fully calibrating the model. Inspection of equations (27) and (28) shows
that this approach requires calibrating trade costs τjss̃, R&D efficiency Bs, innovation-dependence
IDj , firm-level R&D intensity FiRDj , the discount rate ρ, the Armington elasticity σ, industry
expenditure shares µj , the returns to scale in production β and the exit rate ζ . However, parameters
such as the returns to scale in R&D α, the knowledge depreciation rate δ and the strength of R&D
spillovers λjs(ψ) are not needed, which reduces the information required to calibrate the model.
The cost of adopting this calibration strategy is that the quantitative analysis does not address the
determinants of growth.

When solving the calibrated model, I assume the economy has J−1 tradable industries and one
non-tradable services industry. The goods trade data that I use to calibrate IDj does not provide
information on the innovation-dependence of non-tradables. However, taking the limit of equation
(27) as τjss̃ →∞ for all s̃ 6= s implies that if industry j is non-tradable then:

Zjs = (ρas + ws)
Ls
ws
.

It follows that equilibrium wages ws and assets as do not depend upon innovation-dependence in
the non-tradable sector. The intuition for this result is related to the Balassa-Samuelson effect: in
an open economy nominal wages are determined by productivity in tradable sectors.

The innovation-dependence of non-tradables does affect real variables through the price index.
Consequently, the counterfactual analysis focuses on nominal wages as the main outcome of inter-
est. However, I also calculate real incomes under the assumption that the innovation-dependence of
non-tradables equals zero. This assumption will lead the model to underestimate variation in real
incomes caused by differences in R&D efficiency if the innovation-dependence of non-tradables is
positive.

3.3 Data

This section briefly describes the data sources used for the quantitative analysis. Full details can
be found in Appendix C.

The primary data constraint is the limited availability of internationally comparable data on
R&D expenditure at the industry-level, which is needed to calibrate R&D efficiency. From the
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OECD’s ANBERD database, I obtain R&D expenditure for 20 ISIC 2 digit manufacturing indus-
tries. The OECD defines R&D as “work undertaken in order to increase the stock of knowledge
. . . and to devise new applications of knowledge” (OECD 2015, p.44). This definition corresponds
to the model’s conceptualization of R&D as investment that seeks to expand the knowledge stock
through discovering new ideas or developing new production techniques. By contrast, the goal of
adoption is to learn about existing knowledge and techniques, meaning adoption investment should
not be counted in R&D data.

The coverage of ANBERD at the 2 digit level has improved over time, but the annual data has
many missing values. Consequently, I pool data for 2010-14 and, for each year, keep countries
where R&D intensity is available for at least two-thirds of industries. This gives a baseline sample
of 25 OECD countries with R&D intensity data. As an alternative innovation measure, I also use
patent data from the OECD’s Patents by technology database.

Value-added, output and trade by 2 digit ISIC industry for 2010-14 are taken from the OECD’s
STAN database. Gravity variables are from the CEPII gravity data set. Additional country-level
variables are obtained from the Penn World Tables, the IMF’s International Financial Statistics and
the World Bank’s World Development Indicators, Worldwide Governance Indicators, Financial
Structure Database and Doing Business data set.

The analysis also uses firm-level data on R&D investment in the UK. This data comes from
two surveys undertaken by the Office for National Statistics: the Business Enterprise R&D Survey,
and; the Annual Business Survey.

3.4 Calibration

The main parameters needed for the calibration are the R&D efficiency of each country Bs and
the innovation-dependence of each industry IDj . This section calibrates these parameters using
moments derived from the model’s equilibrium conditions and then briefly describes how the re-
maining parameters are calibrated. The calibrated model has 25 countries and 23 industries (22
tradable goods industries and one non-tradable services industry).

R&D efficiency. R&D efficiency differences can be inferred from cross-country variation in
innovation intensity. Let industry R&D intensity RDjs be the ratio of industry R&D expenditure
to industry value-added. At the firm-level, R&D intensity is the same for all firms that innovate by
equation (14). However, because firms are heterogeneous and choose between R&D and adoption,
industry R&D intensity depends upon the share of firms that select into R&D. Computing RDjs

from (1), (2), (12) and (13), imposing the first order approximation for large ψ∗js and using (11) to
substitute for ψ∗js gives:
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RDjs =
α(δ + gj)

ρ+ ζ + γj(δ + gj)

k [γj(1− β)− α]

k [γj(1− β)− α]− 1
η−kγj

(
Bs

BA

)k
. (29)

Equation (29) shows that R&D intensity is higher in countries with greater R&D efficiency. An
increase in Bs results in a larger share of firms performing R&D, which raises RDjs.24

Using equation (29) to take the ratio of RDjs for any pair of countries implies:

RDjs

RDjs̃

=

(
Bs

Bs̃

)k
, (30)

showing that the relative R&D intensity of countries s and s̃ in industry j depends upon their
relative R&D efficiency levels. I use equation (30) to calibrate R&D efficiency differences from
within-industry, cross-country variation in observed R&D intensity. In particular, let bs ≡ k logBs

denote log R&D efficiency in country s and suppose R&D efficiency is normalized to one for the
US, i.e. BUS = 1. Using data on industry-level R&D intensity for each of the 25 sample countries,
I calibrate log R&D efficiency bRs as the median (across industries) of log (RDjs/RDjs̃) where
s̃ = US.

In the model, R&D expenditure corresponds directly to innovation investment. However, given
the difficulties in measuring R&D and obtaining internationally comparable R&D data, I also cali-
brate R&D efficiency from data on innovation outputs (patents) instead of inputs (R&D). Appendix
D.1 shows how patenting intensity, defined analogously to R&D intensity as the industry-level ratio
of patents to value-added, can be used to calibrate R&D efficiency. Let bPs denote log R&D effi-
ciency calibrated as the median (across industries) of log patenting intensity in country s relative
to the US.

Figure 2 plots bPs against bRs for the 25 sample countries. The two measures of log R&D
efficiency have a correlation of 0.88, although bPs has higher variance than bRs . Both measures
are strongly positively correlated with GDP per capita implying that, on average, countries with
higher R&D efficiency are richer.25 The correlation with log GDP per capita in 2012 is 0.73

for bRs and 0.78 for bPs . Most of the variation in R&D efficiency is between richer and poorer
countries. However, there are notable differences in R&D efficiency even within wealthy countries,
for example compare Canada and Italy to France and the US in Figure 2.

Innovation-dependence. Countries with higher R&D efficiency have a comparative advantage

24In the model cross-country variation in RDjs comes entirely from the extensive margin, but this restriction is
not necessary to obtain the industry-level equilibrium conditions used in the calibration. For example, if firm output
is the sum of output of a unit mass of non-tradeable tasks and R&D capability has distribution G(ψ) across tasks
then all international variation in RDjs comes from the intensive margin, but the balanced growth path is otherwise
unchanged.

25For consistency with the model, GDP per capita is measured as GDP per member of the working age population.
See Appendix C for details.
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Figure 2: R&D efficiency

Notes: R&D efficiency for 2010-14 calculated using OECD’s ANBERD, Patents by technology
and STAN databases.

in more innovation-dependent industries, as shown in Proposition 2. Consequently, the correla-
tion between R&D efficiency and bilateral trade flows can be used to estimate each industry’s
innovation-dependence.26

However, a challenge in calibrating innovation-dependence, is that R&D efficiency may be
correlated with other country characteristics that affect productivity and trade, such as institutional
quality and factor endowments. To allow for this possibility, suppose that instead of equation (1),
the production function is given by y = Ajsθ

(
lP
)β , where Ajs is the allocative efficiency of indus-

try j in country s, which is exogenous and time invariant. Otherwise, the model is unchanged. If
countries with better national innovation systems also have better economic institutions and poli-
cies more broadly, allocative efficiency Ajs and R&D efficiency Bs will be positively correlated.

It is straightforward to solve the model incorporating Ajs (see Appendix B.1 for details). Al-
though Ajs enters the equilibrium conditions, all the theoretical results in Section 2 continue to
hold because the effects of allocative efficiency and R&D efficiency on technology gaps and in-
come differences are separable.27 In particular, using the approximation to Ψjs, the export equation
(23) can be written as:

26An alternative approach would be to estimate innovation-dependence using productivity data. However, measur-
ing international productivity differences requires comparable cross-country price data, which is less widely available
than trade data.

27Because of this separability, I use the version of the model without allocative efficiency differences except when
estimating innovation-dependence.
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logEXjss̃ = υ3
js̃ + (σ − 1) (IDj logBs + logAjs − logws − log τjss̃) , (31)

where υ3
js̃ = υ2

js̃ + σ−1
γj

γj(1−β)−α(1+κj)

γj(1−β)−α log
(
ηγjBA

)
. It follows that correlation between allocative

efficiency and R&D efficiency could lead to omitted variable bias in estimating the effect of R&D
efficiency on trade. In order to alleviate this concern, I use country characteristics known to affect
productivity and comparative advantage as proxies for allocative efficiency.

To estimate the exports equation, I also parameterize bilateral trade costs. Following Eaton
and Kortum (2002), I model trade costs as a function of gravity variables. In addition, I include
exporter-industry fixed effects to capture the possibility that export costs vary by countries as ar-
gued by Waugh (2010). Specifically, suppose τjss = 1 meaning there are no internal trade costs
and that international trade costs can be expressed as:

log τjss̃ = DIST ijss̃ +BORDjss̃ + CLANGjss̃ + FTAjss̃ + δ1
js, (32)

where: the impact of bilateral distance on trade costs DIST ijss̃ depends on which of i = 1, . . . , 6

intervals the distance between countries s and s̃ belongs to: [0, 375), [375, 750), [750, 1500),
[1500, 3000), [3000, 6000), or ≥ 6000 miles; BORDjss̃ denotes the effect of sharing a border;
CLANGjss̃ gives the effect of sharing a common language; FTAjss̃ is the impact of having a free
trade agreement, and; δ1

js is an exporter-industry fixed effect. The impact of all gravity variables
on trade costs is allowed to vary by industry.

Using this parameterization of trade costs and rearranging the exports equation (31) yields the
specification that I estimate to obtain innovation-dependence:

log

(
EXjss̃

EXjs̃s̃

)
− (σ − 1) log

(
ws̃
ws

)
= − (σ − 1)

IDj

k
bs̃ − (σ − 1)Ajs̃ (33)

− (σ − 1)
(
DIST ijss̃ +BORDjss̃ + CLANGjss̃ + FTAjss̃ + δ2

js

)
+ εjss̃,

where δ2
js = δ1

js−IDjbs/k−Ajs and εjss̃ captures unmodelled variation in trade costs, productivity
and comparative advantage. The left hand side of this expression is observable given a value for
σ − 1. From equation (22), we see that σ − 1 equals both the trade elasticity and the elasticity of
exports to average productivity. Costinot, Donaldson and Komunjer (2012) estimate this elasticity
in an Eaton and Kortum (2002) framework. For the baseline calibration, I set σ − 1 equal to their
preferred estimate of 6.53, while Section 3.6 reports robustness checks for alternative values of the
trade elasticity.

Equation (33) is estimated including the interaction of industry dummies with (1 − σ)bRs̃ on
the right hand side. The resulting coefficient estimates give the innovation-dependence of each
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industry j relative to the shape parameter of the R&D capability distribution IDj/k. Note that the
parameter k cancels out when IDj/k is multiplied by calibrated log R&D efficiency bs = k logBs.
When solving the calibrated model, the product of these two terms is sufficient to quantify the
impact of R&D efficiency on comparative advantage, wages and income levels (recall equation
27). Consequently, there is no need to calibrate k.

Table 1 reports estimates of IDj/k obtained from (33) using pooled trade data for 2010-14. The
sample includes exports of 117 countries to the 25 OECD importers for which R&D efficiency can
be calibrated. It covers 22 ISIC goods industries at the 2 digit level (the 20 manufacturing industries
used to calculate R&D efficiency plus the Agriculture and Mining industries). See Appendix C for
data details.

Column (a) does not include controls for the importer’s allocative efficiency Ajs̃. Estimated
innovation-dependence is highest in Machinery and equipment, Computers, and Pharmaceuticals,
and lowest in Mining and Agriculture. However, these estimates are likely to be biased upwards
by correlation between bRs̃ and Ajs̃.

As proxies for allocative efficiency, column (b) adds measures of the importer’s institutional
quality, business environment and financial development. Institutional quality is measured by the
rule of law, control of corruption, government effectiveness, political stability, regulatory qual-
ity, and voice and accountability variables from the Worldwide Governance Indicators. Business
environment is the country’s distance to the frontier in the Doing Business data set. Financial
development is measured by the log of private credit as a share of GDP. As expected, including
these controls reduces the magnitude of the innovation-dependence estimates, but the pattern of
cross-industry variation is similar to column (a).

Column (c) also controls for sources of comparative advantage other than R&D efficiency by
including the interaction of industry dummy variables with the importer’s rule of law, log private
credit to GDP ratio, log physical capital per employee and human capital. This specification al-
lows for comparative advantage due to institutional quality (Nunn 2007), financial development
(Manova 2013) and Heckscher-Ohlin effects (Romalis 2004). Adding the comparative advantage
controls further reduces the innovation-dependence estimates. Average innovation-dependence in
column (c) is 0.28, compared to 0.43 in column (b) and 0.55 in column (a). However, the pattern
of variation in innovation-dependence across industries is similar in all three columns.

Finally, column (d) estimates the same specification as column (c), but using the R&D effi-
ciency measure based on patenting intensity bPs̃ . The innovation-dependence estimates in column
(d) are smaller than in column (c), reflecting the fact that bPs̃ exhibits greater dispersion than bRs̃ .
But reassuringly the correlation between the estimates in column (c) and those in column (d) is
0.89. In each case, innovation-dependence is largest in the Computers, Machinery and equipment,
and Chemicals industries and lowest in Mining. All except two of the 22 innovation-dependence
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estimates in column (c) and all except six of those in column (d) are positive and significantly
different from zero at the 10 percent level.

The baseline calibration uses R&D efficiency calibrated from R&D data and the innovation-
dependence estimates in column (c). But I also assess the robustness of the counterfactual results
to using patent data to calibrate R&D efficiency together with the innovation-dependence estimates
in column (d). In both cases I set innovation-dependence to zero for any industry where the point
estimate of innovation-dependence is negative.

Other parameters. The remaining parameters are calibrated as follows using data from 2012
or the nearest available year (see Appendix C for further details). Bilateral trade costs τjss̃ are
calculated from equation (32) using the coefficient estimates obtained when estimating innovation-
dependence. I use the trade cost estimates from the specification estimated in column (c) of Table
1 for the baseline R&D data calibration and those corresponding to column (d) for the patent data
calibration. FiRDj is computed from UK firm-level data. Population Ls is calibrated to the work-
ing age population from the World Development Indicators. I assume σ−1 = 6.53, consistent with
the value of the trade elasticity used to estimate innovation-dependence. Expenditure shares µj are
calibrated to the average across OECD countries of each industry’s share of domestic absorption.
The exit rate ζ is set to 0.103, which is the average OECD death rate of employer enterprises in
the business economy excluding holding companies. The share of profits in firm revenue before
accounting for R&D investment is 1−β. I set β = 0.85 implying a profit share of 15% as in Gabler
and Poschke (2013) and close to Barkai’s (2017, Figure 2b) estimate of the aggregate US profit
share in 2012. Finally, I let the discount rate ρ = 0.04, which implies a risk free interest rate of 4%

per annum. Numerically, solving the model using these parameters with different initial guesses
for wages and assets, delivers a unique equilibrium.

3.5 Model Validation

Before undertaking counterfactual analysis, I perform three validation exercises to assess the
model’s empirical credibility under the assumption that sample countries are on a balanced growth
path. First, I compare wages and incomes implied by the calibrated model to their observed val-
ues. Second, I examine cross-industry differences in firm-level R&D investment choices. Third, I
conduct an out-of-sample test of the model’s predictions for comparative advantage.

Wages and incomes. The left hand panel of Figure 3 plots calibrated against observed nominal
wages for the calibration using R&D data. There is an upwards sloping, approximately log-linear
relationship between the two variables with a correlation of 0.89. However, there is more varia-
tion in observed than calibrated wages. The standard deviation of log wages is 2.3 times higher
for observed wages. The right hand panel shows that a similar log-linear relationship holds for
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calibrated and observed income per capita, except that the standard deviation is now 4.7 times
higher for observed than for calibrated log income per capita. The calibrated model explains less
of the observed variation in income per capita than in wages because assuming that innovation-
dependence equals zero in non-tradables reduces cross-country dispersion in consumption prices
without affecting equilibrium wages.

Although wage and income data were not targeted by the calibration, Figure 3 shows that
the pattern of cross-country wage and income differences is comparable in the model and the data,
except that calibrated wages and incomes exhibit less dispersion. Similar results hold for the patent
data calibration.
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Figure 3: Calibrated Versus Observed Wages and Real Incomes

Notes: Model calibrated in 2012 using R&D data to measure R&D efficiency. Observed nominal
wages in 2012 from Penn World Tables 9.0. Observed real GDP per capita, defined as GDP per
member of the working age population, calculated from Penn World Tables 9.0 and the World
Development Indicators. Variables normalized to zero for the US.

Firm-level R&D investment. The second validation exercise analyzes cross-industry variation
in the intensive and extensive margins of firm-level R&D investment. Let ShRDjs denote the share
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of firms that perform R&D and FiRDj be firm-level R&D intensity conditional on performing
R&D. All else equal, the model predicts that ShRDjs, FiRDj and innovation-dependence IDj are
each decreasing in the advantage of backwardness γj .28 Consistent with this prediction, FiRDj

and ShRDjs calculated from UK data are positively correlated with the innovation-dependence
estimates in columns (c) and (d) of Table 1; the correlations range between 0.32 and 0.48.

The model also delivers a prediction for the functional form relationship between FiRDj and
ShRDjs. Equations (11) and (14) together yield:

1

FiRDj

= − 1

αk log η
logShRDjs −

log
(
BA/Bs

)
α log η

+
ρ+ ζ

α(δ + gj)
. (34)

This equation implies that the inverse of FiRDj is linearly decreasing in logShRDjs. Figure 4
plots 1/F iRDj against negative logShRDjUK using UK data. A linear relationship fits the data
well for most industries, as shown by the solid line, which plots the line of best fit excluding two
outliers (industries 0103 and 17). Moreover, departures from linearity are negatively correlated
with industry growth rates gj as predicted by equation (34).29 These results show that the model is
consistent with the observed variation in FiRDj and ShRDjs in the UK.

Out-of-sample comparative advantage test. The final validation exercise uses the innovation-
dependence estimates from Section 3.4 to perform an out-of-sample test of the proposition that
countries with higher R&D efficiency have a comparative advantage in more innovation-dependent
industries. The baseline estimation covered 25 countries for which R&D efficiency could be com-
puted from OECD data. To conduct the out-of-sample test I use Eurostat data to calculate R&D
efficiency for an additional nine European countries (see Appendix C for details). I then estimate
the following variant of equation (33):

log

(
EXjss̃

EXjs̃s̃

)
− (σ − 1) log

(
ws̃
ws

)
= ξCompAdvjs̃ + Controlsjss̃ + εjss̃, (35)

where s̃ indexes the nine out-of-sample countries, s indexes their trading partners, CompAdvjs̃ =

− IDj
k
bs̃ equals the interaction of R&D efficiency and innovation-dependence and Controlsjss̃

denotes the same set of trade cost, productivity and comparative advantage controls included in
columns (c) and (d) of Table 1.

Table 2 reports the results from estimating (35) using pooled trade data from 2010-14 for 20

28For ψmax → ∞, ShRDjs =
(
ψ∗
js

)−k
= η−kγj

(
Bs/B

A
)k

, which is decreasing in γj since η > 1. FiRDj is
decreasing in γj by equation (14).

29A robust regression of 1
FiRDj

on − logShRDjUK and gj yields a positive coefficient on − logShRDjUK with
p-value 0.00 and a negative coefficient on gj with p-value 0.13 (see Appendix C for details on how industry growth
rates gj are calculated). As the slope of the relationship between 1

FiRDj
and − logShRDjUK depends upon the

product αk log η, it could be used to jointly calibrate the returns to scale in technology investment, dispersion in
R&D capability across firms and the extent to which existing knowledge is more useful for adoption than innovation.
However, the quantitative analysis does not require calibrating this bundle of parameters.
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Figure 4: Firm-level R&D investment

Notes: Share of firms that invest in R&D and median R&D intensity of firms with positive R&D
investment computed for UK industries from Office for National Statistics’ Annual Business Sur-
vey and Business Expenditure on Research and Development data set. Both variables calculated
for 2008-09 using 2 digit ISIC Revision 4 goods industries. Solid line shows predicted relation-
ship from linear regression excluding industries 0103 and 17.

ISIC 2 digit manufacturing industries and 117 partner countries. In column (a), CompAdvjs̃ is
calculated using bRs̃ and the innovation-dependence estimates from column (c) of Table 1, while
column (b) uses bPs̃ and the corresponding innovation-dependence estimates. The model predicts
the coefficient ξ of CompAdvjs̃ should be positive and equal to the trade elasticity. The estimated
value of ξ equals 5.3 in column (a) and 13.1 in column (b). Subject to the caveats that the esti-
mation only uses R&D efficiency for nine countries, and that the estimated trade elasticity differs
across specifications, these results show that the relationship between R&D efficiency and com-
parative advantage that exists in the baseline sample is also present out-of-sample. This supports
the proposition that countries with higher R&D efficiency have a comparative advantage in more
innovation-dependent industries.

3.6 Counterfactual Analysis

The goal of the counterfactual analysis is to quantify the extent to which R&D efficiency dif-
ferences explain cross-country variation in comparative advantage, wages and incomes. For this
purpose, I compare the calibrated equilibrium to a counterfactual economy where R&D efficiency
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is the same in all 25 sample countries, but the other calibrated parameters are unchanged.30 For
any variable x, let xo be the observed value of x in the data and xc be the difference between the
value of x in the counterfactual economy and in the calibrated model. The counterfactual change
xc quantifies the effect of eliminating R&D efficiency differences on x.

R&D efficiency differences are quantitatively important in determining comparative advantage.
Let CAcjs be the counterfactual change in the comparative advantage of country s relative to the
US defined by:

CAcjs = − (σ − 1) logBs

(
IDj −

1

J − 1

∑
j

IDj

)
,

where the summation only includes tradable industries. This definition implies that the cross-
industry average of each country’s CAcjs equals zero. Moreover, since log exports satisfy equation
(31), CAcjs maps one-to-one into counterfactual changes in log exports (defined relative to the US
and to the average change across industries in country s).

Figure 5 plots the cross-country average ofCAcjs by industry for the calibration using R&D data
(similar results are obtained with patent data). Industries are ordered with innovation-dependence
increasing from left to right. Because the US has higher than sample average R&D efficiency, the
counterfactual mechanically decreases average comparative advantage relative to the US in low
innovation-dependence industries and increases average comparative advantage relative to the US
in high innovation-dependence industries. These effects are evident in Figure 5.

More importantly, the figure shows that eliminating differences in R&D efficiency has large
effects on comparative advantage and trade. At one extreme, average comparative advantage in
Computers relative to the US increases by 143 log points, implying that average exports of Com-
puters (relative to the US and compared to the average industry) rise by the same amount. Likewise,
in the counterfactual with no R&D efficiency differences, average exports relative to the US in-
crease by 94 log points more for Chemicals at the 90th percentile of the innovation-dependence
distribution, than for Agriculture at the 10th percentile.

Next, consider wages. The left hand panel of Figure 6 plots the counterfactual change in nom-
inal log wages logwcs against observed log wages logwos for the R&D calibration. Both variables
are normalized to zero for the US. Eliminating R&D efficiency differences raises relative wages in
countries with lower R&D efficiency and the figure shows that this results in higher wage gains for
countries with smaller observed wages. The counterfactual wage changes are economically sig-
nificant. For example, compared to the calibrated equilibrium, wages relative to the US increase

30The counterfactual analysis holds productivity growth gj and, consequently, firm-level R&D intensity FiRDj

constant. This is equivalent to assuming that any growth effects of changes in R&D efficiency are offset by variation
in other parameters that impact growth, but do not effect the calibrated equilibrium conditional on FiRDj , for example
changes in the strength of R&D spillovers.
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Figure 5: Counterfactual Change in Comparative Advantage

Notes: Average counterfactual change in comparative advantage by industry from author’s cal-
culations. Sample includes 25 OECD countries. Comparative advantage defined relative to US.
Counterfactual sets R&D efficiency equal across countries. Model calibrated in 2012 using R&D
data to measure R&D efficiency. Industries are 2 digit ISIC Revision 4 industries.

by 56% for Turkey, 23% for Spain and 15% for Canada. On average, eliminating R&D efficiency
differences raises wages relative to the US by 18 log points or 22% (see Table 3, column a). For
comparison, the average observed wage gap relative to the US is 52 log points.

What determines the magnitude of the counterfactual wage changes? Section 2.4 showed that,
in a single sector economy with free trade, the elasticity of relative wages to R&D efficiency
equals (σ − 1) /σ times innovation-dependence. The counterfactual results imply that this finding
generalizes to an economy with many sectors. Let Qs ≡ −σ−1

σ
bs
∑

j µjIDj , where the sum-
mation computes the expenditure share weighted average innovation-dependence across tradable
industries. Qs accounts for essentially all of the variation in counterfactual wage changes. The
correlation between logwcs and Qs is 0.99 and the R-squared from regressing logwcs on Qs equals
0.98. It follows that the magnitude of wage gaps due to R&D efficiency differences is determined
by the extent to which R&D efficiency varies across countries together with the average level of
innovation-dependence.

By eliminating wage differences due to variation in R&D efficiency, the counterfactual reduces
wage dispersion. The standard deviation of model-implied log wages is 55% lower in the counter-
factual economy than in the calibrated equilibrium. To quantify the contribution of R&D efficiency
differences to international wage inequality, I follow the development accounting literature and
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Figure 6: Counterfactual Log Wage and Real Income Changes

Notes: Counterfactual changes calculated by setting R&D efficiency equal across countries. Ob-
served nominal wages in 2012 from Penn World Tables 9.0. Observed real GDP per capita,
defined as GDP per member of the working age population, calculated from Penn World Tables
9.0 and the World Development Indicators. Variables normalized to zero for the US. Model cal-
ibrated in 2012 using R&D data to measure R&D efficiency.

compare wage gaps caused by variation in R&D efficiency with observed wage dispersion. Specif-
ically, I compute the ratio of the standard deviation of the log wage change caused by eliminating
R&D efficiency differences to the standard deviation of observed log wages:

Wage dispersion ratio =
StdDev (logwcs)

StdDev (logwos)
.

The wage dispersion ratio measures the share of observed wage differences that can be explained
by variation in R&D efficiency. Column (a) of Table 3 reports that the wage dispersion ratio
equals 0.32.31 Thus, R&D efficiency differences account for just under one-third of observed

31The standard deviation of log wages is used to measure dispersion because Figure 6 shows a linear relationship
between logwcs and logwos . Suppose logwcs = −ξw logwos . Then the wage dispersion ratio equals ξw. Indeed,
regressions of logwcs on negative logwos give coefficient estimates close to the wage dispersion ratios in Table 3.
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wage dispersion within the OECD. This result implies that technology gaps are quantitatively
important in explaining wage gaps within the OECD, but also that other sources of cross-country
heterogeneity, such as factor endowment differences and misallocation, account for the majority
of wage differences.

Wages are the primary outcome of interest for the reasons discussed in Section 3.2. How-
ever, I also calculate the counterfactual changes in real income per capita when R&D efficiency
is equalized across countries. The right hand panel of Figure 6 plots the counterfactual change
logGDPPCc

s against observed log income per capita logGDPPCo
s . And column (a) of Table

3 reports the average counterfactual change in income per capita relative to the US and the in-
come dispersion ratio, defined as the standard deviation of logGDPPCc

s relative to the standard
deviation of logGDPPCo

s .
The counterfactual increases real incomes relative to the US in poorer countries, leading to

a decline in real income dispersion. But as expected, given the assumption that the innovation-
dependence of services is zero, R&D efficiency accounts for a smaller share of variation in real
incomes than in nominal wages. Average real income per capita relative to the US increases by 5.9

log points, compared to an average observed income per capita gap of 40 log points. The income
dispersion ratio equals 0.17, implying that technology gaps due to R&D efficiency differences
explain around one-sixth of real income dispersion in the OECD.32

When interpreting these results, it is worth noting that the share of wage and income variation
accounted for by R&D efficiency differences may depend upon the sample of countries studied.
In particular, R&D efficiency differences may be more important between countries at different
stages of development than within groups of similar countries. In Figure 6 there are six countries
that benefit noticeably more from the elimination of R&D efficiency differences than the rest of the
OECD.33 Dropping these countries when calculating the wage and income dispersion ratios yields
a wage dispersion ration of 0.25 and an income dispersion ratio of 0.10. Thus, R&D efficiency
differences explain a slightly lower share of wage and income variation within higher income
OECD countries than in the full sample, but remain quantitatively important.

It is also informative to compare the baseline results with an alternative counterfactual that
eliminates goods trade by assuming all industries are non-tradable, but does not change R&D effi-
ciency levels. In this case nominal wages are not comparable across countries, but counterfactual
real incomes are still of interest. Eliminating trade reduces average real income per capita relative
to the US by 2.7 log points, with more open economies experiencing larger relative income de-

Using the Gini coefficient as an alternative wage dispersion measure and taking the ratio of the counterfactual to
observed Gini coefficients gives a wage dispersion ratio of 0.42.

32When the Gini coefficient is used to measure income dispersion, the income dispersion ratio equals 0.18.
33These six countries are Chile, Czech Republic, Hungary, Mexico, Poland and Turkey. They are the poorest sample

countries (as measured by observed nominal wages) and also have the lowest calibrated R&D efficiency levels.
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clines. The income dispersion ratio for this autarky counterfactual is 0.080. These results imply
that goods trade plays a less important role than R&D efficiency differences in explaining income
variation within the OECD.

Robustness. The baseline results in column (a) of Table 3 are robust to a series of alternative
calibrations. Column (b) of Table 3 reports the impact of eliminating R&D efficiency differences
when data on patenting intensity is used to calibrate R&D efficiency. For the patent data calibra-
tion, the wage dispersion ratio is 0.27 and the income dispersion ratio is 0.13. Comparing column
(b) to column (a) shows that the counterfactual changes are similar regardless of whether R&D
or patent data is used to calibrate the model. Indeed, the correlation of logwcs for the two cali-
brations is 0.86, while the correlation of logGDPPCc

s is 0.87. Given the challenges inherent in
measuring innovation, this consistency alleviates potential concerns that the results are driven by
measurement error in R&D or patent data.

Appendix D.2 describes a series of additional robustness checks that: (i) modify how innovation-
dependence is estimated; (ii) reduce the elasticity of patenting to R&D expenditure in the patent
data calibration, and; (iii) vary the trade elasticity σ − 1 between 2.5 and 8.5 and allow for cross-
industry heterogeneity in trade elasticities using estimates from Caliendo and Parro (2015).

These alternative calibrations do not make a substantial difference to the quantitative results
(see Table A1). For example, increasing the trade elasticity dampens counterfactual changes in
wages and incomes. However, the difference is small because of two countervailing effects. On
the one hand, an increase in σ reduces estimated innovation-dependence by inflating the size of
the independent variable (σ − 1) bs̃ in the exports equation (33). On the other hand, increasing σ
raises the elasticity of relative wages and incomes to R&D efficiency conditional on innovation-
dependence, which depends upon (σ − 1) /σ as shown in Section 2.4. Overall, the robustness
checks reinforce the conclusion that R&D efficiency accounts for an economically significant frac-
tion of wage and income variation within the OECD.

Finally, Appendix D.3 studies how using a first order approximation to the model affects the
counterfactual results. The appendix shows that the approximation reduces cross-country inequal-
ity due to R&D efficiency differences and computes an upper bound on the size of the approx-
imation error in the baseline R&D calibration. Performing the counterfactual analysis without
approximating the model increases the wage dispersion ratio from 0.32 in column (a) of Table 3 to
at most 0.36, and the income dispersion ratio from 0.17 to at most 0.19. These comparisons imply
that the approximation error is small.
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4 Generalizations

This section analyzes how relaxing some of the simplifying assumptions made in the baseline
model affects the quantitative results. It starts by generalizing how national innovation systems af-
fect the R&D and adoption technologies, and then introduces inter-industry knowledge spillovers.

4.1 R&D and Adoption Technologies

In the baseline model, R&D efficiency is homogeneous across industries and the efficiency of
technology adoption is the same for all firms and countries. Relaxing these assumptions allows for
cross-industry heterogeneity in how national innovation systems determine R&D efficiency and
for the possibility that more innovative firms and countries also have an advantage in adoption.
Suppose industry-level R&D efficiency is given by Bjs = B

ν0j
s where ν0j > 0 is the elasticity of

Bjs to country-level R&D efficiency Bs. National innovation systems matter more in industries
with higher ν0j . In addition, assume that instead of equation (7), the adoption technology is given
by:

θ̇

θ
= ψν1jBABν0jν2j

s

(
θ

χAjs

)−γj (
lA
)α − δ,

where ν1j, ν2j ∈ [0, 1). This specification allows the returns to adoption to be greater, all else equal,
for firms with higher R&D capability ψ and countries with higher R&D efficiency Bs. However,
since ν1j and ν2j are below one, the efficiency of R&D relative to adoption is increasing in ψ and
Bs as in the baseline model.

Appendix B.1 solves the generalized model and shows that the structure of the balanced growth
path equilibrium is unchanged. Moreover, Propositions 1, 2 and 3 continue to hold. It also shows
that, conditional on Bs, the calibration strategy developed in Section 3 remains valid. In partic-
ular, Bs and IDj are still sufficient statistics for quantifying international technology gaps. And
although innovation-dependence IDj depends upon ν0j and ν2j in the generalized model, it can be
calibrated from trade data as before.

However, the generalization does affect the calibration of R&D efficiency Bs. Cross-industry
variation in ν0j , ν1j and ν2j means that the ratio of industry-level R&D intensities in any county
pair differs by industry. Consequently, a double differences approach is required to calibrate R&D
efficiency (see Appendix D.4 for details). Log R&D efficiency calibrated from R&D data using
this approach has a correlation of 0.99 with bRs and 0.88 with bPs .

The counterfactual results for the generalized model are reported in column (c) of Table 3.
Eliminating R&D efficiency differences has similar effects on wages and real incomes as in the
baseline R&D calibration. The wage dispersion ratio in column (c) is 0.31 and the income disper-
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sion ratio is 0.16. These findings demonstrate that the baseline quantitative results are robust to
introducing greater flexibility in how national innovation systems and firm capabilities affect the
returns to technology investment.

Both the baseline model and this generalization assume that technology gaps depend upon a
single dimension of cross-country heterogeneity Bs. An interesting avenue for future work would
be to allow for country-specific adoption efficiency BA

s and estimate the correlation between adop-
tion efficiency and R&D efficiency. Implementing this idea would require using an additional
observable moment to calibrate BA

s .

4.2 Inter-industry Spillovers

In the baseline model, knowledge spillovers occur exclusively within industries. To introduce
inter-industry spillovers, assume that, instead of equation (4), the knowledge level χRjs satisfies:

χRjs = χj

[
J∏
i=1

(
θmax
is

χRis

)dij]κj
, with

J∑
i=1

dij = 1. (36)

This expression implies that domestic spillovers are a weighted average across industries of the
ratio of frontier productivity θmax

is to R&D knowledge χRis. The parameter dij ∈ [0, 1] determines
the strength of domestic knowledge spillovers from industry i to industry j. Note that setting
djj = 1 and dij = 0 for i 6= j gives the baseline specification with only intra-industry spillovers.34

Appendix B.2 solves this extension of the model and shows that the calibration and counterfac-
tual analysis in Section 3 are unchanged, meaning that the quantitative results in Table 3 continue
to hold even with inter-industry spillovers. However, inter-industry spillovers do affect the deter-
minants of innovation-dependence, which is now given by:

IDj = κj

J∑
i=1

dij(1− β)

γi(1− β)− α
. (37)

The key difference from the baseline model (compare equation 37 with equation 26) is that the
innovation-dependence of industry j now depends upon the advantage of backwardness in all other
industries, with weights given by the spillover parameters dij . Innovation-dependence is high in
industries that receive strong spillovers from industries with a low advantage of backwardness.35

The conclusion that inter-industry spillovers do not affect the baseline results holds for the

34See Huang and Zenou (2020) for a related formulation of inter-industry spillovers in a version of the Romer (1990)
growth model.

35Appendix B.2 also discusses the case where inter-industry spillovers impact the growth of global knowledge
capital χj . Global inter-industry spillovers affect equilibrium growth rates gj , but leave innovation-dependence levels,
equilibrium technology gaps, and the quantitative results unchanged.
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specification of spillovers in equation (36). Future research should provide additional evidence
on the nature of cross-border and cross-industry spillovers and facilitate a better understanding of
how the localization of knowledge spillovers, the advantage of backwardness, and the strength of
inter-industry spillovers determine innovation-dependence levels.

5 Conclusions

Understanding the origins of cross-country differences in income per capita is one of the central
concerns of economics. The extent to which the geography of innovation contributes to inter-
national inequality depends upon the rate at which technologies diffuse across national borders.
When diffusion is fast, the technology gap between innovators and imitators is small, whereas
slow diffusion increases the advantage that accrues to knowledge creators. Yet evidence on the
quantitative importance of technology gaps is scarce.

By building a quantifiable model of innovation and adoption in open economies, this paper
develops a new methodology to estimate the importance of international technology gaps in ex-
plaining cross-country income differences. Rather than treating productivity as a residual, the
paper shows how the size of technology gaps can be inferred from data on innovation intensity
and bilateral trade. More innovative countries have a comparative advantage in more innovation-
dependent industries, and, when innovation-dependence is higher, international wage and income
gaps due to differences in R&D efficiency are larger.

Counterfactual analysis implies that eliminating R&D efficiency differences within the OECD
would increase wages relative to the US by around 20% for the average country. Moreover, R&D
efficiency accounts for one-quarter to one-third of nominal wage dispersion and approximately
15% of real income per capita dispersion in the OECD. The empirical analysis also finds that there
is substantial heterogeneity in innovation-dependence across industries, implying that differences
in R&D efficiency are an important source of Ricardian comparative advantage.

While the quantitative analysis in this paper focuses on cross-sectional technology gaps, the
modelling framework has many potential applications. It could be used to decompose the sources
of growth in open economies with endogenous innovation and adoption, to characterize transition
dynamics following changes in R&D efficiency, or to estimate changes in technology gaps over
time. For example, the analysis could be adapted to study whether recent advances in information
and communication technologies have promoted global convergence by shrinking international
technology gaps. Addressing such questions would provide further insight into how access to
technologies shapes global economic outcomes.
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R&D efficiency measure
Patenting 

intensity
(a) (b) (c)  (d) 

0.454 0.333 0.169 0.00742

(0.0561) (0.0468) (0.0898) (0.0621)

0.371 0.250 ‐0.105 ‐0.140

(0.0860) (0.0658) (0.133) (0.0780)

0.480 0.359 0.210 0.0608

(0.0463) (0.0434) (0.0782) (0.0579)

0.507 0.417 0.286 0.117

(0.0465) (0.0505) (0.0640) (0.0516)

0.473 0.370 0.334 0.131

(0.0566) (0.0606) (0.0547) (0.0428)

0.479 0.386 0.340 0.122

(0.0590) (0.0679) (0.0835) (0.0699)

0.520 0.397 0.201 0.0282

(0.0627) (0.0394) (0.0678) (0.0451)

0.580 0.451 0.341 0.127

(0.0549) (0.0388) (0.0668) (0.0535)

0.579 0.460 0.274 0.109

(0.0572) (0.0383) (0.0611) (0.0396)

0.479 0.359 0.141 0.0530

(0.0452) (0.0424) (0.0782) (0.0363)

0.587 0.474 0.379 0.189

(0.0513) (0.0519) (0.0948) (0.0576)

0.622 0.496 0.223 0.168

(0.0735) (0.0610) (0.141) (0.0964)

0.603 0.478 0.376 0.183

(0.0518) (0.0362) (0.0507) (0.0373)

0.568 0.447 0.295 0.118

(0.0520) (0.0384) (0.0583) (0.0384)

0.577 0.425 0.265 0.178

(0.0458) (0.0487) (0.0745) (0.0338)

0.598 0.475 0.333 0.138

(0.0548) (0.0360) (0.0561) (0.0387)

0.653 0.487 0.599 0.295

(0.0580) (0.0408) (0.119) (0.0542)

0.606 0.530 0.370 0.185

(0.0871) (0.0688) (0.0958) (0.0383)

0.712 0.599 0.380 0.213

(0.0780) (0.0522) (0.107) (0.0618)

0.552 0.387 0.274 0.188

(0.0480) (0.0363) (0.0839) (0.0328)

0.563 0.380 0.256 ‐0.00330

(0.0969) (0.0633) (0.128) (0.0545)

0.547 0.424 0.254 0.103

(0.0659) (0.0397) (0.0651) (0.0520)

Observations 171,152 171,152 171,152 171,152

R‐squared 0.524 0.652 0.697 0.694

Trade cost controls Yes Yes Yes Yes

Productivity level controls No Yes Yes Yes

Comparative advantage controls No No Yes Yes

F test innovation‐dependence equal across industries 0.133 0.001 0.067 0.000
Average innovation‐dependence 0.551 0.427 0.282 0.117

Basic metals (24)

Fabricated metal products, except machinery and equipment (25)

Computer, electronic and optical products (26)

Electrical equipment (27)

Textiles (13)

Wearing apparel (14)

Leather and related products (15)

Rubber and plastics products (22)

Other non‐metallic mineral products (23)

Table 1: Innovation‐dependence by industry

Innovation‐dependence estimated relative to the shape parameter of the R&D capability distribution. Standard errors clustered by importer‐industry 

in parentheses. R&D efficiency is measured from data on R&D intensity in columns (a)‐(c) and patenting intensity in column (d). Trade cost controls 

are: exporter‐industry fixed effects; interaction of industry dummy variables with six bilateral distance intervals, and; whether the countries share a 

border, common language or free trade agreement. Productivity level controls are the importer's rule of law, control of corruption, government 

effectiveness, political stability, regulatory quality, voice and accountability, ease of doing business and log private credit as a share of GDP. 

Comparative advantage controls are the interaction of industry dummy variables with the importer's rule of law, log private credit as a share of GDP, 

log physical capital per employee and human capital. Sample includes 25 importers and 117 exporters and uses data for 2010‐14.

Machinery and equipment n.e.c. (28)

Motor vehicles, trailers and semi‐trailers (29)

Other transport equipment (30)

Furniture, other manufacturing (3133)

R&D intensity

Wood and products of wood and cork, except furniture (16)

Paper and paper products (17)

Printing and reproduction of recorded media (18)

Coke and refined petroleum products (19)

Chemicals and chemical products (20)

Basic pharmaceutical products and pharmaceutical preparations (21)

Agriculture, forestry and fishing (0103)

Mining and quarrying (0508)

Food products, beverages and tobacco (1012)



R&D efficiency measure R&D intensity Patenting intensity

(a)  (b) 

5.27 13.13

(0.48) (1.27)

Observations 31,996 31,996

R‐squared 0.85 0.86

Trade cost controls Yes Yes

Productivity level controls Yes Yes

Comparative advantage controls Yes Yes
Dependent variable is bilateral imports relative to domestic trade adjusted for efficiency wage differences. CompAdv is interaction of 

country R&D efficiency with industry innovation‐dependence. Standard errors clustered by importer‐industry in parentheses. Column (a) 

uses measures of R&D efficiency and innovation‐dependence from R&D intensity data. Column (b) uses measures of R&D efficiency and 

innovation‐dependence from patenting intensity data. Trade cost controls are exporter‐industry fixed effects and the interaction of industry 

dummy variables with six bilateral distance intervals and whether the countries share a border, a common language or a free trade 

agreement. Productivity level controls are the importer's rule of law, control of corruption, government effectiveness, political stability, 

regulatory quality, voice and accountability, ease of doing business and log private credit as a share of GDP. Comparative advantage 

controls are the interaction of industry dummy variables with the importer's rule of law, log private credit as a share of GDP, log physical 

capital per employee and human capital. Sample includes 9 importers and 117 exporters and uses data for 2010‐14.

Table 2: Out‐of‐sample comparative advantage test

CompAdv

R&D efficiency measure R&D intensity
Patenting 

intensity

R&D intensity: 

Generalized 

model

(a)  (b)  (c) 

Average change relative to US 0.18 0.14 0.18

Dispersion ratio 0.32 0.27 0.31

Average change relative to US 0.059 0.042 0.059

Dispersion ratio 0.17 0.13 0.16

(i) Nominal wage

(ii) Real income 

per capita

Table 3: Counterfactual results

Row (i) reports the average log wage change relative to the US between the counterfactual economy and the calibrated model, and the 

ratio of the standard deviation of the log wage change to the standard deviation of observed log wages. Row (ii) gives the same statistics 

for real GDP per capita, defined as GDP per member of the working age population. Counterfactual sets R&D efficiency equal across 

countries. Observed wages and GDP per capita calculated from the Penn World Tables 9.0 and World Development Indicators for 2012. For 

column (a) the model is calibrated using R&D data. For column (b) the calibration uses patent data. Column (c) uses the generalized model 

in Section 5.1 calibrated with R&D data. 
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A Proofs and Derivations

A.1 Equilibrium definition from Section 1.4

The representative consumer in country s with initial assets as chooses a consumption path to
maximize utility subject to the budget constraint:

ȧs = ιsas + ws − zscs. (38)

Solving the intertemporal optimization problem gives the Euler equation:

ċs
cs

= ιs − ρ−
żs
zs
. (39)

The transversality condition for intertemporal optimization in country s is:

lim
t̃→∞

{
as(t̃) exp

[
−
∫ t̃

t

ιs(t̂)dt̂

]}
= 0. (40)

Aggregate consumption in country s is given by:

csLs =
J∏
j=1

(
Xjs

µj

)µj
, with Xjs =

(
S∑
s̃=1

x
σ−1
σ

js̃s

) σ
σ−1

and
J∑
j=1

µj = 1,

whereXjs denotes consumption of industry j output in country s and xjs̃s is industry j output from
country s̃ that is consumed in country s. Solving consumers’ intratemporal optimization problem
yields:

1



PjsXjs = µjzscsLs, (41)

zs =
J∏
j=1

P
µj
js , (42)

xjs̃s =

(
τjs̃s

pjs̃
Pjs

)−σ
Xjs, (43)

Pjs =

(
S∑
s̃=1

τ 1−σ
js̃s p

1−σ
js̃

) 1
1−σ

. (44)

Summing up across firms using (2) we have that aggregate production employment LPjs in
industry j and country s is:

LPjs = Mjs

(
βpjs
ws

) 1
1−β
∫
θ

θ
1

1−β dHjs(θ), (45)

where Hjs(θ) denotes the cumulative distribution function of productivity. Similarly, aggregate
output is:

Yjs = Mjs

(
βpjs
ws

) β
1−β
∫
θ

θ
1

1−β dHjs(θ). (46)

Let lRjs (ψ, θ) and lAjs (ψ, θ) denote the optimal R&D and adoption employment of a firm with
capability ψ and productivity θ. Then LRjs = Mjs

∫
(ψ,θ)

lRjs (ψ, θ) dH̃js (ψ, θ) gives aggregate R&D
employment, while LAjs = Mjs

∫
(ψ,θ)

lAjs (ψ, θ) dH̃js (ψ, θ) gives aggregate adoption employment.
The labor market clearing condition in each country s is:

Ls =
J∑
j=1

(
LPjs + LRjs + LAjs + LEjs

)
, (47)

where LEjs is aggregate employment in entry.
Output market clearing requires that domestic output Yjs equals the sum of sales to all countries

inclusive of the iceberg trade costs:

Yjs =
S∑
s̃=1

τjss̃xjss̃. (48)

Asset market clearing requires that total asset holdings equal the aggregate value of all domestic
firms:
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asLs =
J∑
j=1

Mjs

∫
(ψ,θ)

Vjs(ψ, θ)dH̃js(ψ, θ). (49)

An equilibrium of the global economy is defined by time paths for consumption per capita cs,
assets per capita as, the wage ws, the interest rate ιs, the consumption price zs, consumption levels
Xjs and xjs̃s, prices Pjs and pjs, production employment LPjs, industry output Yjs, the mass of firms
Mjs, knowledge levels χRjs and χAjs, global knowledge capital χj , R&D employment LRjs, adoption
employment LAjs, entry employment LEjs and the joint distribution of firms’ capabilities and produc-
tivity levels H̃js(ψ, θ) for all countries s, s̃ = 1, . . . , S and all industries j = 1, . . . J such that: (i)
individuals choose consumption per capita to maximize utility subject to the budget constraint (38)
giving the Euler equation (39) and the transversality condition (40); (ii) individuals’ intratempo-
ral consumption choices imply consumption levels and prices satisfy (41)-(44); (iii) firms choose
production employment to maximize production profits implying industry level production em-
ployment and output are given by (45) and (46), respectively; (iv) firms’ productivity levels evolve
according to the R&D technology (3) and the adoption technology (7) and firms choose R&D and
adoption employment to maximize their value (8); (v) the R&D and adoption knowledge levels are
given by (4) and χAjs = ηχRjs; (vi) global knowledge capital evolves according to (5); (vii) there is
free entry and entrants draw capability and productivity levels from the joint distribution H̃js(ψ, θ)

implying the free entry condition (9) holds and the mass of firms evolves according to (10), and;
(viii) labor, output and asset market clearing imply (47)-(49) hold.

A.2 Growth rates on balanced growth path from Section 2

The first step in solving the model is to derive a set of restrictions on equilibrium growth rates that
must hold on any balanced growth path. Let gj be the growth rate of global knowledge capital χj .
Differentiating (4) and χAjs = ηχRjs yields:

χ̇Ajs
χAjs

=
χ̇Rjs
χRjs

=
κj

1 + κj

θ̇max
js

θmax
js

+
gj

1 + κj
.

It follows that on a balanced growth path the productivity frontier θmax
js , together with the R&D

and adoption knowledge levels, must grow at constant rate gj in all countries.36 Consequently,
the productivity distribution Hjs(θ) shifts outwards at rate gj for all s. This means Hjs(θ, t) =

Hjs

(
egj(t̃−t)θ, t̃

)
for all times t, t̃ and productivity levels θ. The productivity growth rate of each

industry is constant across countries because κj <∞ ensures the existence of some global knowl-
edge spillovers.

36To see this, note that the R&D technology (3) implies balanced growth is possible only if the productivity frontier
and the R&D knowledge level grow at the same rate in each country.
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Now let qs be the growth rate of consumption per capita cs. On a balanced growth path the
individual’s budget constraint (38) implies:

ẇs
ws

=
ȧs
as

= qs +
żs
zs
. (50)

while substituting the free entry condition (9) into the asset market clearing condition (49) gives:

asLs =
J∑
j=1

Mjsf
Ews.

Since there is no population growth it follows that Ṁjs = 0.
Next, the growth rate of production employment can be obtained by differentiating (45). Since

the productivity distribution Hjs(θ) shifts outwards at rate gj this yields:

L̇Pjs
LPjs

=
1

1− β

(
ṗjs
pjs
− ẇs
ws

+ gj

)
.

On a balanced growth path L̇Pjs = 0. Therefore, substituting (50) into the expression above we
obtain:

qs =
ṗjs
pjs

+ gj −
żs
zs
. (51)

Now, differentiating the industry price index (44) yields:

Ṗjs
Pjs

=

∑S
s̃=1 τ

1−σ
js̃s p

1−σ
js̃

ṗjs̃
pjs̃

P 1−σ
js

,

which is time invariant if and only if output prices pjs grow at the same rate in all countries imply-
ing:

Ṗjs
Pjs

=
ṗjs̃
pjs̃

, (52)

for all s, s̃ = 1, . . . , S. Differentiating the consumption price equation (42) gives:

żs
zs

=
J∑
j=1

µj
Ṗjs
Pjs

.

Multiplying both sides of (51) by µj , summing across industries and using the previous expression,
(52) and

∑J
j=1 µj = 1 we obtain:
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J∑
j=1

µjqs = qs =
J∑
j=1

µjgj,

which shows that the growth rate of consumption per capita is the same in all countries. The
numeraire condition

∑S
s=1 zscsLs = 1 then implies:

żs
zs

= −q, (53)

and substituting this result into (51) shows that output prices pjs and, therefore, also industry prices
Pjs decline at rate gj . Note also that using (41) to substitute for Xjs in (43) and appealing to (53)
together with the fact prices decline at rate gj implies xjs̃s grows at rate gj . It then follows from
the industry output market clearing condition (48) that industry output Yjs also grows at rate gj .

Finally, substituting (53) into the Euler equation (39) yields that the interest rate is time invari-
ant, constant across countries and given by ιs = ρ. Since the discount rate ρ > 0 and nominal
assets per capita remain constant over time, the transversality condition (40) is satisfied.

Collecting together the results above, we have on a balanced growth path the growth rate of
consumption per capita q =

∑J
j=1 µjgj is the same in all countries and equals a weighted average

of productivity growth in the J industries where the weights are given by the industry expenditure
shares. Consumption prices zs decline at rate q, while nominal wages ws and assets per capita as
remain constant over time. This implies real wages and assets per capita grow at rate q. Employ-
ment in production, R&D, adoption and entry in each country-industry pair is time invariant, as is
the mass of firms Mjs. Industry output Yjs and the quantity sold in each market xjss̃ grow at rate
gj , while prices pjs and Pjs decline at rate gj .

A.3 Solution to firm’s R&D problem in Section 2.1

Firms take the time paths of ws, pjs, χRjs, χ
A
js and ιs as given. In particular, suppose the economy is

on a balanced growth path, implying ws is time invariant, pjs declines at rate gj , χRjs and χAjs both
grow at rate gj , and ιs = ρ.

Taking the time derivative of φ and using the R&D technology (3) implies:

φ̇

φ
=

1

1− β
[
ψBsφ

−γj(1−β)
(
lR
)α − (δ + gj)

]
. (54)

Substituting the production profits function (2) into the value function (8), using ιs = ρ and chang-
ing variables from θ to φ, the optimization problem of a firm with capability ψ can be written
as:
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max
φ,lR

∫ ∞
t

e−(ρ+ζ)(t̃−t)ws

1− β
β

(
βpjsχ

R
js

ws

) 1
1−β

φ− lR
 dt̃,

subject to the growth of φ being given by (54) and an initial value for φ at time t. Since ws is
constant, pjs declines at rate gj and χRjs grows at rate gj , the payoff function depends upon time
only through exponential discounting meaning the firm faces a discounted infinite-horizon optimal
control problem of the type studied in Section 7.5 of Acemoglu (2009) with state variable φ and
control variable lR.

The current-value Hamiltonian for the firm’s problem is:

H(φ, lR, λ) =

1− β
β

(
βpjsχ

R
js

ws

) 1
1−β

φ− lR
ws + λ

φ

1− β
[
ψBsφ

−γj(1−β)
(
lR
)α − (δ + gj)

]
,

where λ is the current-value costate variable. From Theorem 7.13 in Acemoglu (2009), any solu-
tion must satisfy:

0 =
∂H
∂lR

= −ws + λ
α

1− β
ψBsφ

1−γj(1−β)
(
lR
)α−1

, (55)

(ρ+ ζ)λ− λ̇ =
∂H
∂φ

=
1− β
β

(
βpjsχ

R
js

ws

) 1
1−β

ws

+
λ

1− β
{

[1− γj(1− β)]ψBsφ
−γj(1−β)

(
lR
)α − (δ + gj)

}
,

0 = lim
t̃→∞

[
e−(ρ+ζ)(t̃−t)H(φ, lR, λ)

]
, (56)

where equation (56) is the transversality condition. Differentiating the upper expression with re-
spect to time gives:

(1− α)
l̇R

lR
= [1− γj(1− β)]

φ̇

φ
+
λ̇

λ
, (57)

and using the first order conditions of the Hamiltonian to substitute for λ and λ̇, and (54) to substi-
tute for φ̇ yields:

l̇R

lR
=

1

1− α

ρ+ ζ + γj (δ + gj)− αβ
β

1−βψBs

(
pjsχ

R
js

ws

) 1
1−β

φ1−γj(1−β)
(
lR
)α−1

 . (58)
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Equations (54) and (58) are an autonomous nonlinear system of differential equations in (φ, lR)

whose unique steady state (φ∗js, l
R∗
js ) is given by (12) and (13). Suppose we write the system as:(

φ̇

l̇R

)
= F

(
φ

lR

)
.

At the steady state, the Jacobian DF of the function F is:

DF

(
φ∗js

lR∗js

)
=

 −γj (δ + gj)
α

1−β
φ∗js
lR∗js

(δ + gj)

−1−γj(1−β)

1−α
lR∗js
φ∗js

[ρ+ ζ + γj (δ + gj)] ρ+ ζ + γj (δ + gj)

 .

The trace of the Jacobian is ρ+ ζ which is positive. The determinant of the Jacobian is:∣∣∣∣∣DF
(
φ∗js

lR∗js

)∣∣∣∣∣ = − (δ + gj) [ρ+ ζ + γj (δ + gj)]
γj(1− β)− α
(1− α)(1− β)

,

which is negative by Assumption 1. This means the Jacobian has one strictly negative and one
strictly positive eigenvalue. Therefore, by Theorem 7.19 in Acemoglu (2009), the steady state is
locally saddle-path stable. There exists an open neighborhood of the steady state such that if the
firm’s initial φ lies within this neighborhood, the system of differential equations given by (54) and
(58) has a unique solution. The solution converges to the steady state along the stable arm of the
system as shown in Figure 1 in the paper. From equation (57) it follows that λ̇→ 0 as the solution
converges to the steady state. Since ρ + ζ > 0 this implies the solution satisfies the transversality
condition (56).

The solution to (54) and (58) is a candidate for a solution to the firm’s problem. To show it
is in fact the unique solution we can use Theorem 7.14 in Acemoglu (2009). Suppose λ is the
current-value costate variable obtained from the solution to (54) and (58). Equation (55) implies λ
is always strictly positive. Therefore, given any path for φ on which φ is always positive we have
limt̃→∞

[
e−(ρ+ζ)(t̃−t)λφ

]
≥ 0. Now define:

H(φ, λ) = max
lR
H(φ, lR, λ),

=

1− β
β

(
βpjsχ

R
js

ws

) 1
1−β

ws −
λ (δ + gj)

1− β

φ+
1− α
α

w
−α
1−α
s

(
αλψBs

1− β

) 1
1−α

φ
1−γj(1−β)

1−α ,

where the second line follows from solving the maximization problem in the first line. Assumption
1 implies H(φ, λ) is strictly concave in φ. Thus, the sufficiency conditions of Theorem 7.14 in
Acemoglu (2009) hold, implying the solution to (54) and (58) is the unique solution to the firm’s
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optimal control problem.

A.4 Proof of Proposition 1

On a balanced growth path the productivity distribution Hjs(θ) must shift outwards at rate gj . The
evolution of Hjs(θ) depends upon productivity growth at surviving firms and how the productiv-
ity distribution of entrants compares to that of exiting firms. Entrants draw their capability and
productivity from the joint distribution of ψ and θ among incumbents and all incumbents face
instantaneous exit probability ζ . Therefore, if all incumbent firms are in steady state, each new
firm enters with its steady state productivity level and net entry does not affect Hjs(θ). Since all
surviving firms grow at rate gj in steady state, it follows that firm-level productivity dynamics are
consistent with balanced growth if and only if all incumbent firms are in steady state.

Parts (i) and (ii) of the proposition follow immediately from the solution of the firm’s intertem-
poral optimization problem in Section 2.1. For part (iii), consider two firms in the same country and
industry with capabilities ψ and ψ′, respectively. The ratio of these firms’ steady state productivity
levels is:

θ∗js(ψ
′)

θ∗js(ψ)
=



(
ψ′

ψ

) 1−β
γj(1−β)−α

, ψ′ ≥ ψ ≥ ψ∗js,(
ψ′

ψ∗js

) 1−β
γj(1−β)−α

, ψ′ ≥ ψ∗js ≥ ψ,

1, ψ∗js ≥ ψ′ ≥ ψ.

When both firms perform R&D, technology gaps and productivity inequality are strictly increasing
in α and β and strictly decreasing in γj . Conditional on ψ∗js, productivity inequality between R&D
and adoption firms is also strictly increasing in α and β and strictly decreasing in γj . There is no
productivity inequality within adopters. However, a higher advantage of backwardness or a lower
R&D efficiency reduces industry-level productivity inequality by increasing ψ∗js and decreasing
the fraction of firms that choose R&D.

Combining these results, it follow that aggregate productivity inequality within each country-
industry pair is strictly increasing in α, β and Bs and strictly decreasing in γj . From (2) inequality
in production employment, revenue and profits are also strictly increasing in α, β and Bs and
strictly decreasing in γj .
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A.5 Derivation of balanced growth path equilibrium equations (16)-(18)

Suppose the global economy is on a balanced growth path. Using (2), (8), (12) and (13) implies
that on a balanced growth path the steady state value of a firm with capability ψ ≥ ψ∗js is:

Vjs
(
ψ, θ∗js

)
=

(
1− β − α(δ + gj)

ρ+ ζ + γj(δ + gj)

)
ws
ρ+ ζ

×

[
ααβγjβBsψ

(
pjsχ

R
js

ws

)γj
(δ + gj)

α−1

[ρ+ ζ + γj(δ + gj)]
α

] 1
γj(1−β)−α

,

where θ∗js = χRjs
(
φ∗js
)1−β is the firm’s steady state productivity, which is growing over time.

The steady state value of firms with capability ψ ≤ ψ∗js, which choose adoption, is given by the
same expression, but with ψ = ψ∗js. Assumption 1 implies 1 − β >

α(δ+gj)

ρ+ζ+γj(δ+gj)
which ensures

Vjs
(
ψ, θ∗js

)
is positive.

Section 2.1 showed that on a balanced growth path each new firm enters with the steady state
productivity level corresponding to its capability. Since entrants’ capabilities have distribution
G(ψ), substituting the above expression for Vjs

(
ψ, θ∗js

)
into the free entry condition (9) yields:

fE =

(
1− β − α (δ + gj)

ρ+ ζ + γj (δ + gj)

)
Ψjs

ρ+ ζ

[
ααβγjβBs

(
pjsχ

R
js

ws

)γj
(δ + gj)

α−1

[ρ+ ζ + γj(δ + gj)]
α

] 1
γj(1−β)−α

.

(59)
Next, observe that on a balanced growth path:∫

θ

θ
1

1−β dHjs(θ) =

∫ ψmax

ψmin

(
χRjs
) 1

1−β φ∗jsdG(ψ),

where φ∗js is given by (12) for R&D firms and by (12) with ψ = ψ∗js for adopters. Thus, by
substituting (13) and (45) into the labor market clearing condition (47) and using (10) with Ṁjs = 0

to solve for LEjs we obtain:

Ls =
J∑
j=1

Mjs

{(
1 +

α

β

δ + gj
ρ+ ζ + γj(δ + gj)

)
Ψjs (60)

×

[
ααβγj−αBs

(
pjsχ

R
js

ws

)γj
(δ + gj)

α−1

[ρ+ ζ + γj(δ + gj]
α

] 1
γj(1−β)−α

+ fEζ

 .

Similarly, substituting (12), (41), (43) and (46) into the goods market clearing condition (48) and
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using (59) we obtain:

S∑
s̃=1

(
τjss̃pjs
Pjs̃

)1−σ

µjzs̃cs̃Ls̃ = fE(ρ+ ζ)

(
1− β − α(δ + gj)

ρ+ ζ + γj(δ + gj)

)−1

Mjsws. (61)

On a balanced growth path ȧs = 0 and ιs = ρ. Therefore, the individual’s budget constraint
implies:

zscs = ρas + ws, (62)

while substituting the free entry condition (9) into the asset market clearing condition (49) gives:

asLs =
J∑
j=1

Mjswsf
E. (63)

Equations (59)-(63) together with R&D knowledge levels (4), knowledge capital growth rates
(5), consumption prices (42) and industry price indices (44) form a system of 4JS + 4S + J

equations. Together with the numeraire condition
∑S

s=1 zscsLs = 1, the steady state relative pro-
ductivity levels in (12) and the initial global knowledge capital in each industry χj these equations
determine the 4JS + 4S + J unknowns ws, as, cs, zs, gj, pjs, Pjs,Mjs and χRjs for all industries
j = 1, . . . , J and all countries s = 1, . . . , S.

To simplify this system, start by substituting (59) and (61) into (60) giving:

Ls =
J∑
j=1

µj
ρ+ ζ

(
ζ + βρ+

αρ(δ + gj)

ρ+ ζ + γj(δ + gj)

) S∑
s̃=1

(
τjss̃pjs
Pjs̃

)1−σ
zs̃cs̃Ls̃
ws

. (64)

Using (44) to obtain the industry price index, (59) to substitute for pjs, (4) to give χRjs and (12) to
solve for relative steady state productivity levels then implies:

(
pjs
Pjs̃

)1−σ

=

w1−σ
s

(
BsΨ

γj(1−β)

1+κj
−α

js

) (σ−1)(1+κj)

γj

∑S
ŝ=1 τ

1−σ
jŝs̃ w

1−σ
ŝ

(
BŝΨ

γj(1−β)

1+κj
−α

jŝ

) (σ−1)(1+κj)

γj

. (65)

Substituting this expression into (64) and using (62) yields equation (16). Equation (17) can be
derived in a similar manner by substituting (61) and (65) into the asset market clearing condition
(63). Finally, substituting steady state R&D employment (13) together with (59), (61) and (65)
into (5) yields equation (18).
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A.6 Proof of existence and uniqueness of balanced growth path in single
sector economy with free trade

Equations (16)-(18) are a non-linear system of 2S + J equations in the unknown wages ws, asset
holdings as and growth rates gj . Existing methods are insufficient to prove this system has a unique
solution. Therefore, to establish sufficient conditions for a unique balanced growth, I impose
assumptions that make this system separable inws, as and gj . Free trade implies that asset holdings
as can be eliminated from the labor market clearing equation (16). And setting J = 1 implies that
ws and as can be eliminated from the growth equation (18).

I will start by proving that, under free trade, equations (16) and (17) yield a unique solution for
ws and as given growth rates gj . I will then show that, when the economy has a single sector, there
exists a unique equilibrium growth rate. Together these results imply that a single sector economy
with free trade has a unique balanced growth path.

Using the numeraire condition
∑S

s=1 zscsLs = 1 and equation (62) gives
∑S

s=1 (ρas + ws)Ls =

1. Substituting this expression into (19) with τjss̃ = 1 for all j, s, s̃ gives:

Zjs =

w−σs

(
BsΨ

γj(1−β)

1+κj
−α

js

) (σ−1)(1+κj)

γj

∑S
ŝ=1 w

1−σ
ŝ

(
BŝΨ

γj(1−β)

1+κj
−α

jŝ

) (σ−1)(1+κj)

γj

, (66)

and using this expression in (16) implies that the S-dimensional wage vector w = (w1, . . . , wS)

satisfies f(w) = 0 where f : RS
++ → RS and element s of the vector f is given by:

fs(w) =
J∑
j=1

µj
ρ+ ζ

(
ζ + βρ+

αρ (δ + gj)

ρ+ ζ + γj (δ + gj)

) w−σs

(
BsΨ

γj(1−β)

1+κj
−α

js

) (σ−1)(1+κj)

γj

∑S
ŝ=1w

1−σ
ŝ

(
BŝΨ

γj(1−β)

1+κj
−α

jŝ

) (σ−1)(1+κj)

γj

−Ls.

Suppose the growth rates gj for j = 1, . . . , J are known. To prove that f(w) = 0 implies a
unique solution for wages I use results from Allen, Arkolakis and Li (2015). For all s = 1, . . . , S

define the scaffold function F : RS+1
++ → RS by:

11



Fs (w̃, ws) =
J∑
j=1

µj
ρ+ ζ

(
ζ + βρ+

αρ (δ + gj)

ρ+ ζ + γj (δ + gj)

) w−σs

(
BsΨ

γj(1−β)

1+κj
−α

js

) (σ−1)(1+κj)

γj

∑S
ŝ=1 w̃

1−σ
ŝ

(
BŝΨ

γj(1−β)

1+κj
−α

jŝ

) (σ−1)(1+κj)

γj

−Ls.

Note that fs (w) = Fs (w, ws) for all s and the function F is continuously differentiable.
To prove existence it is now sufficient to show that conditions (i)-(iii) of Lemma 1 in Allen,

Arkolakis and Li (2015) are satisfied. Condition (i) follows from observing that, for any w̃,
Fs (w̃, ws) is strictly decreasing in ws, positive for ws sufficiently close to zero and negative for
ws sufficiently large. To see that condition (ii) holds, note that 1 − σ < 0 implying Fs (w̃, ws) is
strictly increasing in w̃ŝ for all ŝ.

Now, given λ > 0 and w̃ ∈ RS
++ define ws(λ) by Fs [λw̃, ws(λ)] = 0. Let u ∈ (0, 1) be such

that −1 + σu < 0. Then Fs [λw̃, λ1−uws(1)] is strictly negative if λ > 1 and strictly positive if
λ < 1. Since Fs (w̃, ws) is strictly decreasing inws it follows that ws(λ) < λ1−uws(1) if λ > 1 and
ws(λ) > λ1−uws(1) if λ < 1. Therefore, when λ → ∞, λ

ws(λ)
→ ∞ and when λ → 0, λ

ws(λ)
→ 0

implying condition (iii) holds. Thus, a solution exists.
To prove uniqueness I use Theorem 2 in Allen, Arkolakis and Li (2015). Since fs (w) is strictly

increasing in wŝ whenever ŝ 6= s, f (w) satisfies gross substitution. Also, fs (w) can be written as
fs (w) = f̃s (w)−Ls where f̃s (w) is positive and homogeneous of degree minus one, while Ls is
positive and homogeneous of degree zero in w. Consequently, Theorem 2 in Allen, Arkolakis and
Li (2015) implies the solution is unique.

Using the solution for wages and equation (66) for Zjs, assets as are given immediately by
(17). This completes the proof that under free trade there exists a unique solution for ws and as
given growth rates gj .

Now suppose the economy has a single sector. Setting J = 1 and substituting (16) into (18)
yields:

g [ρ+ ζ + γ(δ + g)]

α(ρ+ ζ)(δ + g)

(
ζ + βρ+

αρ (δ + g)

ρ+ ζ + γ (δ + g)

)
=

S∑
s=1

Ls
Ψs

∫ ψmax

ψ∗s

λs(ψ)ψ
1

γ(1−β)−αdG(ψ).

(67)
This expression holds regardless of whether there are trade costs. The left hand side is a strictly
increasing function of g with range [0,∞), while the right hand side is a positive constant. Thus,
there exists a unique equilibrium productivity growth rate g and, with a single sector, the consump-

12



tion growth rate also equals g. It follows immediately that, if J = 1 and there are no trade costs,
the global economy has a unique balanced growth path.

Equation (67) can be used to characterize the determinants of the equilibrium growth rate in a
single sector economy. Growth is higher when R&D spillovers λs(·) are stronger and when there
is more employment in R&D. This generates a scale effect whereby growth is increasing in the
size Ls of each country. It also implies growth is increasing in the R&D efficiency Bs of each
country because higher R&D efficiency reduces the R&D threshold ψ∗s . Similarly, growth declines
when adoption becomes more attractive relative to R&D due to an increase in either the adoption
knowledge premium η or adoption efficiency BA.

Growth is higher in the open economy than in autarky because the R&D spillovers specified
in (5) are global in scope. However, growth does not depend upon the localization of knowledge
spillovers κ, which affects countries’ relative knowledge levels, but not the rate of increase of
global knowledge capital. The growth rate is also independent of the level of trade costs.

A.7 Proof of Proposition 2

To derive (20) start by substituting the free entry condition (59) into (12) and using θ∗js = χRjs
(
φ∗js
)1−β

to obtain:

(
θ∗js
) 1

1−β =

[
fE

ρ+ ζ

(δ + gj)
1
α

(
1− β
α

ρ+ ζ + γj(δ + gj)

δ + gj
− 1

)−1
B

1
α
s

Ψjs

] α
γj(1−β)

ψ
1

γj(1−β)−α
(
χRjs
) 1

1−β ,

(68)
where ψ = ψ∗js for firms that choose adoption. Setting ψ = ψmax in this expression and using (4)
to substitute for χRjs then implies:

θ∗max
js =

[
fE

ρ+ ζ

(δ + gj)
1
α

(
1− β
α

ρ+ ζ + γj(δ + gj)

δ + gj
− 1

)−1
B

1
α
s

Ψjs

]α(1+κj)

γj

(ψmax)
(1−β)(1+κj)

γj(1−β)−α χj.

Substituting this expression and (4) back into (68) and integrating over the capability distribution
yields:

θ
∗
js =

[
fE

ρ+ ζ

(δ + gj)
1
α

(
1− β
α

ρ+ ζ + γj(δ + gj)

δ + gj
− 1

)−1
]α(1+κj)

γj

(ψmax)
(1−β)κj

γj(1−β)−α χj

(
BsΨ

γj(1−β)

1+κj
−α

js

) 1+κj
γj

,

(69)
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and dividing this equation by the equivalent expression for country s̃ gives (20).
Using (41) and (43) the exports of country s to country s̃ in industry j are given by:

EXjss̃ = τ 1−σ
jss̃

(
pjs
Pjs̃

)1−σ

µjzs̃cs̃Ls̃.

Substituting (65) into this expression and taking logs we obtain equation (23) where:

υ2
js̃ = log (µjzs̃cs̃Ls̃)− log

 S∑
ŝ=1

τ 1−σ
jŝs̃ w

1−σ
ŝ

(
BŝΨ

γj(1−β)

1+κj
−α

jŝ

) (σ−1)(1+κj)

γj

 ,
and substituting (69) into this expression gives equation (22) where:

υ1
js̃ = υ2

js̃−(σ−1) log


[
fE

ρ+ ζ

(δ + gj)
1
α

(
1− β
α

ρ+ ζ + γj(δ + gj)

δ + gj
− 1

)−1
]α(1+κj)

γj

(ψmax)
(1−β)κj

γj(1−β)−α χj

 .

Next, differentiating the definition of Ψjs and using that the R&D threshold ψ∗js is given by
(11) yields:

∂ log Ψjs

∂ logBs

=
−1

γj(1− β)− α

(
ψ∗js
) 1
γj(1−β)−α G(ψ∗js)

Ψjs

,

and differentiating (69) then implies:

∂ log θ
∗
js

∂ logBs

=
1 + κj
γj

1− γj(1− β)− α(1 + κj)

(1 + κj) [γj(1− β)− α]

(
ψ∗js
) 1
γj(1−β)−α G(ψ∗js)

Ψjs

 ,
which is strictly positive. Inspection of this expression shows immediately that ∂2 log θ

∗
js

∂κj∂ logBs
> 0 and

differentiating with respect to γj gives:

∂2 log θ
∗
js

∂γj logBs

=
−1

γj

∂ log θ
∗
js

∂ logBs

− α(1− β)κj

γj [γj(1− β)− α]2

(
ψ∗js
) 1
γj(1−β)−α G(ψ∗js)

Ψjs

− γj(1− β)− α(1 + κj)

γj [γj(1− β)− α]

∂

∂γj

(ψ∗js) 1
γj(1−β)−α G(ψ∗js)

Ψjs

 .
The first two terms on the right hand side of this expression are negative. Computing the derivative
in the third term and using the definition of Ψjs to collect terms gives:
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∂

∂γj

(ψ∗js) 1
γj(1−β)−α G(ψ∗js)

Ψjs

 =

(
ψ∗js
) 1
γj(1−β)−α G(ψ∗js)

Ψ2
js

[
log η

γj(1− β)− α

∫ ψmax

ψ∗js

ψ
1

γj(1−β)−αdG(ψ)

+ log η
ψ∗jsG

′(ψ∗js)

G(ψ∗js)
Ψjs +

1− β
[γj(1− β)− α]2

∫ ψmax

ψ∗js

(
logψ − logψ∗js

)
ψ

1
γj(1−β)−αdG(ψ)

]
,

which is positive since η > 1. It follows that ∂2 log θ
∗
js

∂γj∂ logBs
< 0 as claimed in Proposition 2.

A.8 Derivation of balanced growth path consumption prices from Section
2.4

From (42) and (44) we have:

zs =
J∏
j=1

(
S∑
s̃=1

τ 1−σ
js̃s p

1−σ
js̃

) µj
1−σ

,

and combining (4), (59) and (68) with ψ = ψmax gives:

pjs = β−β (ψmax)
−(1−β)κj
γj(1−β)−α

[
fE(ρ+ ζ)

(
1− β − α(δ + gj)

ρ+ ζ + γj(δ + gj)

)−1
] γj(1−β)−α(1+κj)

γj

×

[
α(δ + gj)

α−1
α

ρ+ ζ + γj(δ + gj)

]−α(1+κj)

γj ws
χj

(
BsΨ

γj(1−β)

1+κj
−α

js

)− 1+κj
γj

.

Using these two expressions to obtain the ratio of consumption prices in countries s and s̃ then
yields:

zs
zs̃

=
J∏
j=1


∑S

ŝ=1 τ
1−σ
jŝs w

1−σ
ŝ

(
BŝΨ

γj(1−β)

1+κj
−α

jŝ

) (σ−1)(1+κj)

γj

∑S
ŝ=1 τ

1−σ
jŝs̃ w

1−σ
ŝ

(
BŝΨ

γj(1−β)

1+κj
−α

jŝ

) (σ−1)(1+κj)

γj



µj
1−σ

.
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A.9 Derivation of model approximation in Sections 3.1 and 3.4

The assumption that the capability distribution is truncated Pareto with lower bound ψmin = 1 and
shape parameter k means G(ψ) = 1−ψ−k

1−(ψmax)−k
. Using this functional form in (15) to calculate Ψjs

yields:

Ψjs =
k

1− (ψmax)−k

(ψ∗js) 1
γj(1−β)−α−k − (ψmax)

1
γj(1−β)−α−k

k − 1
γj(1−β)−α

+

(
ψ∗js
) 1
γj(1−β)−α −

(
ψ∗js
) 1
γj(1−β)−α−k

k

 .
Letting ψmax →∞ and collecting terms gives equation (24).

Next, differentiate the above expression for Ψjs with respect to Bs to obtain:

∂ log Ψjs

∂ logBs

=
1

Ψjs

1

1− (ψmax)−k

(
ψ∗js
) 1
γj(1−β)−α

γj(1− β)− α

[
1−

(
ψ∗js
)−k] ∂ logψ∗js

∂ logBs

.

From equation (11) we have
∂ logψ∗js
∂ logBs

= −1. Consequently, letting ψmax → ∞ and taking a first
order approximation for large ψ∗js implies:

∂ log Ψjs

∂ logBs

≈ −1

γj(1− β)− α
.

Substituting this equation into (21) gives IDj =
(1−β)κj

γj(1−β)−α as claimed in the paper.
To obtain the expression for industry-level R&D intensity in equation (29), start by noting that

RDjs is defined as:

RDjs =

∫
θ
wsl

R
js(θ)dHjs(θ)∫

θ
pjsyjs(θ)dHjs(θ)

.

Using equations (1), (2), (12) and (13) and the functional form for G(ψ) to compute this ratio
implies:

RDjs =
α(δ + gj)

ρ+ ζ + γj(δ + gj)

γj(1− β)− α
k [γj(1− β)− α]− 1

k

1− (ψmax)−k

(
ψ∗js
) 1
γj(1−β)−α−k − (ψmax)

1
γj(1−β)−α−k

Ψjs

.

Letting ψmax →∞, using the approximation to Ψjs in (25) and substituting for ψ∗js from (11) then
gives equation (29).
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B Model Extensions

B.1 Generalization of model

This appendix generalizes the baseline model in three ways. First, it allows for exogenous produc-
tivity differences at the country-industry level that are not caused by variation in R&D efficiency.
Instead of equation (1), assume the production technology is:

y = Ajsθ
(
lP
)β
,

where Ajs is a time invariant allocative efficiency term that varies by country and industry.
Second, it assumes that the extent to which a higher quality national innovation system in-

creases R&D efficiency differs across industries. In particular, suppose R&D efficiency varies
across industries as well as countries and is given by Bjs = B

ν0j
s where ν0j > 0 determines

the elasticity of Bjs to country-level R&D efficiency Bs. National innovation systems are more
important in industries with higher ν0j .

Third, it relaxes the assumption that the efficiency of technology adoption is constant across
firms and countries. Suppose technology adoption is more efficient in countries with higher R&D
efficiency and that firms with higher R&D capability also have higher adoption capability. This
assumption is consistent with evidence that adoption and innovation draw upon similar capabilities
(Rosenberg 1990). Instead of (7), I assume that the adoption technology is given by:

θ̇

θ
= ψν1jBABν0jν2j

s

(
θ

χAjs

)−γj (
lA
)α − δ,

where ν1j, ν2j ∈ [0, 1). The parameter ν1j sets the elasticity of a firm’s adoption capability to its
R&D capability, while ν2j determines the elasticity of adoption efficiency to R&D efficiency. Both
elasticities may vary by industry. Imposing ν1j, ν2j < 1 ensures that, as in the baseline model, the
efficiency of R&D relative to adoption is increasing in ψ and Bs.

With these generalizations, the model can be solved using the same series of steps described in
Section 2. The main differences from the baseline model are as follows. The R&D threshold (11)
is now given by:

ψ∗js = η
γj

1−ν1j
(
BA
) 1

1−ν1j B

−ν0j(1−ν2j)

1−ν1j
s .

Steady state relative productivity and R&D employment are still given by (12) and (13), respec-
tively, except that in both equations pjs is multiplied by Ajs and Bs is replaced by Bjs = B

ν0j
s .

The adoption investment problem of a firm with R&D capability ψ is equivalent to the R&D
investment problem of a firm with capability ψν1j

(
ψ∗js
)1−ν1j . Therefore, the steady state relative
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productivity and adoption employment of a firm with capability ψ < ψ∗js equal the corresponding
values for a hypothetical firm with capability ψν1j

(
ψ∗js
)1−ν1j that chooses to invest in R&D. In

addition, the average effective capability in industry j and country s is:

Ψjs ≡
∫ ψmax

ψ∗js

ψ
1

γj(1−β)−αdG(ψ) +
(
ψ∗js
) 1−ν1j
γj(1−β)−α

∫ ψ∗js

ψmin

ψ
ν1j

γj(1−β)−αdG(ψ).

Given the above modifications to the definitions of ψ∗js and Ψjs, the general equilibrium equa-
tions (16)-(18) are unchanged, other than that the definition of Zjs becomes:

Zjs ≡
S∑
s̃=1

τ 1−σ
jss̃ (ρas̃ + ws̃)Ls̃w

−σ
s Aσ−1

js

(
B
ν0j
s Ψ

γj(1−β)

1+κj
−α

js

) (σ−1)(1+κj)

γj

∑S
ŝ=1 τ

1−σ
jŝs̃ w

1−σ
ŝ Aσ−1

jŝ

(
B
ν0j

ŝ Ψ

γj(1−β)

1+κj
−α

jŝ

) (σ−1)(1+κj)

γj

.

Crucially, relative average steady state firm productivity levels are still given by (20) with Bs

replaced by Bjs, implying international technology gaps due to R&D efficiency are independent
of Ajs. However, allocative efficiency does affect income levels (through Zjs) and comparative
advantage. In particular, the bilateral exports equation (23) is replaced by:

logEXjss̃ = υ4
js̃ + (σ − 1)

(
1 + κj
γj

ν0j logBs

+
γj(1− β)− α(1 + κj)

γj
log Ψjs + logAjs − logws − log τjss̃

)
,

where υ4
js̃ is an importer-industry specific term.

It follows from these observations that all the main theoretical results in the baseline model
continue to hold, including Propositions 1, 2 and 3. However, in contrast to the baseline model,
trade and income levels are affected by allocative efficiency differences, while industry-level vari-
ation in R&D efficiency depends upon ν0j and the parameters ν1j and ν2j affect the equilibrium
through ψ∗js and Ψjs.

Taking a first order approximation to Ψjs for large ψ∗js implies that in the generalized model:

Ψjs ≈
k [γj(1− β)− α]

k [γj(1− β)− α]− ν1j

[
ηγjBAB−ν0j(1−ν2j)

s

] 1
γj(1−β)−α , (70)

and using this approximation to calculate innovation-dependence yields:
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IDj = ν0j

[
κj(1− β)

γj(1− β)− α
+ ν2j

γj(1− β)− α(1 + κj)

γj [γj(1− β)− α]

]
. (71)

As in the baseline model, innovation-dependence is increasing in the localization of knowledge
spillovers κj and decreasing in the advantage of backwardness γj . In addition, it is now increasing
in both ν0j and ν2j . A higher ν0j raises innovation-dependence by making the returns to R&D more
sensitive to Bs, while an increase in ν2j implies Bs has a stronger effect on adoption efficiency.
However, innovation-dependence is independent of ν1j . Variation in ν1j affects both selection into
R&D and firms’ adoption capabilities. In the approximated model, these extensive and intensive
margin effects exactly cancel, meaning that the elasticity of average effective capability Ψjs to Bs

does not depend upon ν1j .
Next, equations (70) and (71) can be used to obtain generalized versions of the key equations

needed to calibrate the model and undertake counterfactual analysis. First, Zjs can be written as:

Zjs =
S∑
s̃=1

τ 1−σ
jss̃ (ρas̃ + ws̃)Ls̃w

−σ
s Aσ−1

js B
(σ−1)IDj
s∑S

ŝ=1 τ
1−σ
jŝs̃ w

1−σ
ŝ Aσ−1

jŝ B
(σ−1)IDj
ŝ

.

Except for the inclusion of the allocative efficiency terms, this equation is identical to the corre-
sponding expression in the baseline model (equation 27). It follows that, conditional on knowing
Bs and IDj , wage and income differences due to variation in R&D efficiency can be calculated
using (28) exactly as in the baseline model. In particular, it is not necessary to calibrate ν0j , ν1j or
ν2j .

Second, substituting (70) into the trade equation (23) and using (71) gives the bilateral exports
equation (31) that is used to estimate innovation-dependence in Section 3.4. Consequently, given
values for Bs (up to a multiplicative constant), innovation-dependence can be estimated exactly as
in the baseline model.

Finally, note that industry-level R&D intensity satisfies:

RDjs =
α(δ + gj)

ρ+ ζ + γj(δ + gj)

k [γj(1− β)− α]− ν1j

k [γj(1− β)− α]− 1

[
η

γj
1−ν1j

(
BA
) 1

1−ν1j B

−ν0j(1−ν2j)

1−ν1j
s

] ν1j
γj(1−β)−α−k

.

(72)
Unlike in the baseline model, the elasticity of R&D intensity to R&D efficiency Bs differs across
industries. Appendix D.4 explains how this expression can be used to calibrate R&D efficiency in
the generalized model.

19



B.2 Inter-industry spillovers

Suppose the economy is unchanged from the baseline model except that the R&D knowledge level
satisfies equation (36). It is straightforward to check that the balanced growth path solution to the
baseline model is unaffected, except that equation (65) is replaced by:

(
pjs
Pjs̃

)1−σ

=
w1−σ
s

(
BsΨ

γj(1−β)−α
js

)σ−1
γj
∏J

i=1

(
BsΨ

−α
is

) (σ−1)κjdij
γi∑S

ŝ=1 τ
1−σ
jŝs̃ w

1−σ
ŝ

(
BŝΨ
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,

which implies that equation (19) becomes:

Zjs ≡
S∑
s̃=1

τ 1−σ
jss̃ (ρas̃ + ws̃)Ls̃w
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−α
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ŝ

(
BŝΨ

γj(1−β)−α
jŝ
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(
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.

Using equations (36) and (68) also yields that the technology gap between countries s and s̃ in
industry j satisfies:

θ
∗
js

θ
∗
js̃

=

[
Bs

Bs̃

(
Ψjs

Ψjs̃

)γj(1−β)−α
] 1
γj J∏

i=1

[
Bs

Bs̃

(
Ψis

Ψis̃

)−α]κjdijγi

.

Consequently, innovation-dependence can be defined as:

IDjs ≡
∂ log

∂ logBs

[(
BsΨ

γj(1−β)−α
js

) 1
γj

J∏
i=1

(
BsΨ

−α
is

)κjdij
γi

]
.

Now, taking a first order approximation to Ψjs for large ψ∗js gives equation (25). It follows that
in the approximated model innovation-dependence is given by equation (37), Zjs can be written
as in equation (27), and bilateral exports satisfy (31). This means that the calibration and counter-
factual analysis presented in Section 3 are unaffected by the inclusion of inter-industry domestic
spillovers.

An alternative approach to incorporating inter-industry spillovers in the model is to assume that
inter-industry spillovers affect global knowledge capital χj . Suppose, for example, that growth in
χj is given by:

χ̇j
χj

=
J∑
i=1

d̃ij

S∑
s=1

Mis

∫ ψmax

ψmin

λis(ψ)lRis(ψ)dG(ψ), with
J∑
i=1

d̃ij = 1.

This expression generalizes equation (5) by allowing R&D investment in any industry to contribute
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to the growth of global knowledge capital in all other industries. The parameter d̃ij determines the
strength of spillovers from industry i to industry j.

With this modification to the model, the balanced growth path equilibrium conditions are un-
changed except that, instead of equation (18), productivity growth satisfies:

gj =
J∑
i=1

d̃ij

S∑
s=1

µi
α (δ + gi)

ρ+ ζ + γi (δ + gi)

Zis
Ψis

∫ ψmax

ψ∗is

λis(ψ)ψ
1

γi(1−β)−αdG(ψ).

Since the calibration and counterfactual analysis do not use this equation, it immediately follows
that allowing inter-industry spillovers to affect global knowledge capital does not affect any of the
quantitative results in this paper.

C Data

R&D: R&D intensity is calculated as the industry-level ratio of business R&D expenditure in
the OECD’s ANBERD database to current price value-added in the OECD’s STAN database for 2
digit ISIC Revision 4 manufacturing industries (OECD 2018a,b). To reduce the number of missing
observations, I merge industries 10 (Food), 11 (Beverages) and 12 (Tobacco) into a combined
industry labelled 1012 and industries 31 (Furniture), 32 (Other manufacturing) and 33 (Repair and
installation of machinery and equipment) into a combined industry labelled 3133. This leaves 20
industries in the sample.

I use R&D data from 2010-14 for country-year pairs where R&D intensity is observed for
at least two-thirds of industries. The sample includes 25 OECD countries: Australia, Austria,
Belgium, Canada, Chile, Czech Republic, Denmark, Finland, France, Germany, Hungary, Ireland,
Italy, Japan, Korea, Mexico, Netherlands, Norway, Poland, Portugal, Slovenia, Spain, Turkey,
UK and USA. R&D data for Belgium, France and the UK is allocated across industries based
on product field, whereas firms’ main activity is used for all other countries. Median log R&D
intensity bRs is computed over all sample industries and years with available data. Because US
R&D intensity is missing for a small number of industry-year pairs, I first compute each country’s
median log R&D intensity relative to Germany, which has no missing data, and then normalize
BUS = 1.
Patents: Counts of triadic patent families by inventor’s country and priority date for 2010-14
are from the OECD’s Patents by technology database (OECD 2020). The data is for International
Patent Classification 4 digit classes and is converted to the 20 ISIC 2 digit manufacturing industries
in the R&D intensity sample using the probability based mapping from Lybbert and Zolas (2014).
Since industry-level count data for triadic patent families can be volatile from year-to-year, I use
average patents and average value-added per year during the sample period to compute patenting
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intensity. Industry value-added at current national prices is taken from the OECD’s STAN database
(OECD 2018b) and converted to US dollars using exchange rates from the IMF’s International
Financial Statistics (IMF 2018). Median log patenting intensity bPs is computed over all sample
industries with available data.

International patent applications filed under the Patent Cooperation Treaty in 2014 are from the
World Intellectual Property Organization (WIPO 2016). Share of US and Japan in world GDP at
market exchange rates in 2014 calculated from the World Bank’s World Development Indicators
(World Bank 2022).
Trade, output and value-added: Bilateral trade for 2 digit ISIC Revision 4 goods industries is
from the OECD’s STAN Bilateral Trade by Industry and End-use database (OECD 2018c). Sales of
domestic production to the domestic market EXjss is calculated as the difference between output
and the sum of exports to all destinations. Output at current national prices is taken from the STAN
Database for Structural Analysis (OECD 2018b) and converted to US dollars using exchange rates
from the IMF’s International Financial Statistics (IMF 2018).

The trade sample comprises imports of the 25 countries where R&D efficiency is observed
from all 117 partner countries that have a population greater than 1 million in 2010 and for which
nominal wages per efficiency unit of labor employed can be calculated using the Penn World Tables
9.0 (Feenstra, Inklaar and Timmer 2015). The data covers 22 industries: the 20 manufacturing
industries included in the R&D intensity sample, Agriculture, forestry and fishing (labelled 0103),
and; Mining and quarrying (labelled 0508).

Gravity variables are from the CEPII gravity dataset (Head and Mayer 2014). Distance is
population weighted. The Common language dummy denotes country-pairs that share a common
official or primary language. The Free trade agreement dummy denotes country-pairs that have
notified a regional trade agreement to the World Trade Organization.

Industry growth rates are estimated using OECD STAN data on value-added volumes per per-
son engaged from 1995-2014 (OECD 2018b). The sample comprises the 27 OECD countries that
report data for at least half the sample years in at least half the sample industries. Each industry’s
growth rate is estimated as the time trend from a regression of log value-added volume per person
engaged on a trend and country fixed effects.
Country-level variables: GDP, population, nominal wages, physical capital per employee and
human capital are from the Penn World Table 9.0 (Feenstra, Inklaar and Timmer 2015). Nominal
wages are calculated as labor’s share of GDP times output-side GDP at current purchasing power
parties (PPPs) times the price level of current GDP divided by persons engaged. The wage variable
used to estimate innovation-dependence is the nominal wage per efficiency unit of labor employed,
which is calculated as the nominal wage divided by human capital. Physical capital per employee
is given by the capital stock at current PPPs divided by persons engaged.
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Working age population is measured as the population aged 15-64 from the World Bank’s
World Development Indicators (World Bank 2021). GDP per capita is defined as GDP per member
of the working age population, where GDP is output-side real GDP at chained PPPs from the Penn
World Table.

The Worldwide Governance Indicators are from the World Bank (World Bank 2018a). Finan-
cial development, measured as private credit by deposit money banks and other financial institu-
tions as a share of GDP is from the World Bank’s Financial Structure Database (C̆ihák et al. 2012).
Data for Canada is unavailable after 2008, so I extrapolate by holding Canadian financial develop-
ment constant at its 2008 value. Business environment is measured by a country’s global distance
to the frontier for Ease of doing business from the World Bank’s Doing Business data set (World
Bank 2018b). All these variables are time-varying.
UK firm-level R&D: The share of firms that perform R&D ShRDjs and the share of value-added
produced by firms that perform R&D ShV Ajs are computed from the UK’s Annual Business
Survey, which is a representative sample of production, construction, distribution and service in-
dustries (ONS 2021). The Annual Business Survey data is reported for UK SIC 2007 industries,
which corresponds to ISIC Revision 4. The data does not cover Northern Ireland.

Firms are asked whether they have “plans to carry out in-house Research and Development
during the next two years”. I identify firms that answer yes to this question as R&D firms and
drop non-respondents from the calculations. Value-added is measured as approximate gross value-
added at basic prices. The R&D and value-added shares are computed for each 2 digit goods
industry using sampling weights and I measure the average shares for 2008-09. For the Coke and
refined petroleum products industry (19), the data implies that R&D firms are, on average, smaller
than other firms, so I set ShV Ajs = ShRDjs.

To measure R&D intensity, I match the Annual Business Survey with the Business Enterprise
Research and Development data set (ONS 2017) and compute the R&D intensity of each firm
that performs R&D as the ratio of total R&D expenditure to approximate gross value-added at
basic prices. R&D intensity FiRDj is then calculated as the median of all firm-level observations
pooled for 2008-09 for each 2 digit goods industry and for the services sector. Due to sample size
restrictions on data disclosure, R&D intensity for the Agriculture, forestry and fishing industry
(0103) and the Coke and refined petroleum products industry (19) are calculated using 2008-13
data.
Additional calibration parameters: Expenditure shares are calculated as the industry’s share of
domestic absorption, where domestic absorption is defined as output plus imports minus exports.
Output at current national prices is taken from the OECD’s STAN Database for Structural Analysis
(OECD 2018b) and converted to US dollars using exchange rates from the IMF’s International
Financial Statistics (IMF 2018). Imports and exports by industry are from the OECD’s STAN
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Bilateral Trade by Industry and End-use database (OECD 2018c). The calibrated expenditure
shares are averages over all OECD countries for which data is available for all industries in 2012.

The exit rate is the average across OECD countries in 2012 of the death rate of employer
enterprises in the business economy excluding holding companies. Data on death rates is from the
OECD Structural and Demographic Business Statistics Business Demography Indicators using the
ISIC Revision 4 classification (OECD 2018d).

Caliendo and Parro (2015) estimate trade elasticities for ISIC Revision 3 goods sectors at ap-
proximately the 2 digit level of aggregation. I take the benchmark estimates from the 99% sample
in their Table 1. Caliendo and Parro do not use the estimated elasticities for the Basic metals, Ma-
chinery and Auto sectors because these elasticities are not robust across specifications. For these
sectors, I set the trade elasticity equal to the estimated aggregate elasticity. Caliendo and Parro’s
sectors map one-to-one into 2 digit ISIC Revision 4 industries with the following exceptions: I
map Textile to the Textiles (13), Wearing apparel (14) and Leather (15) industries; Paper to the
Paper (17) and Printing (18) industries; Chemicals to the Chemicals (20) and Pharmaceutical (21)
industries, and; for the Computers (26) industry I take the average of the trade elasticities in the
Office, Communication and Medical sectors.
Out-of-sample comparative advantage test: R&D intensity is calculated from Eurostat data as
the ratio of business expenditure on R&D to value-added at factor costs for 2 digit NACE Revi-
sion 2 manufacturing industries, which correspond directly to ISIC Revision 4 industries (Eurostat
2018a,b). As for the baseline sample, I merge industries 10, 11 and 12 and industries 31, 32 and
33, which leaves 20 industries. R&D efficiency is computed as the median log R&D intensity over
all sample industries and years from 2008-15, where the sample includes those country-year pairs
where R&D intensity is observed for at least half of all industries. These sample selection criteria
are weaker than for the baseline OECD sample, which allows for a larger sample. Nine countries
meet the criteria: Bulgaria, Croatia, Cyprus, Estonia, Greece, Lithuania, Romania, Slovakia and
Sweden. To compute R&D efficiency from patent data for these nine countries, I use the same
procedure as for the baseline sample, except that the data covers 2008-15 and industry value-added
data is from Eurostat.

All other variables for the out-of-sample test are taken from the same sources used for the
baseline estimation, except for industry output, which is from Eurostat. The sample covers bilateral
trade in 20 manufacturing industries with 117 partner countries that have a population greater than
1 million in 2010 and for which the nominal wage per efficiency unit of labor employed can be
calculated using the Penn World Tables 9.0.
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D Calibration

D.1 Patent data calibration

Let Patentsjs be the number of patents generated by industry j in country s. Suppose Patentsjs =

Λ0
jRDX

Λ
js where RDXjs denotes R&D expenditure in industry j and country s, Λ0

j is an industry-
specific constant that captures cross-industry differences in the extent to which innovations can
be patented and the benefits of patenting, and Λ is the elasticity of industry patenting to R&D

expenditure. Let V Ajs denote industry value-added. Then patenting intensity PATjs ≡
Patents

1
Λ
js

V Ajs

satisfies:

PATjs =
(
Λ0
j

) 1
Λ
RDXjs

V Ajs
,

=
(
Λ0
j

) 1
Λ

α(δ + gj)

ρ+ ζ + γj(δ + gj)

k [γj(1− β)− α]

k [γj(1− β)− α]− 1
η−kγj

(
Bs

BA

)k
,

where the second equality uses equation (29). Comparing the expression above to equation (29)
implies:

PATjs
PATjs̃

=
RDjs

RDjs̃

=

(
Bs

Bs̃

)k
.

It follows that, as an alternative to using R&D intensity data, R&D efficiency can also be calibrated
from within industry, cross-country variation in patenting intensity.

The patent data used to calibrate R&D efficiency covers the same period, countries and indus-
tries as the R&D data. Since there is home bias in patent applications, I only count triadic patent
families that have been filed jointly at the US, Japanese and European patent offices. Patenting in-
tensity is calculated assuming the elasticity of patenting to R&D Λ equals one. A unit elasticity is
consistent with the firm-level estimates of Lewbel (1997) and the conclusions of Griliches (1990).
In the robustness checks detailed in Appendix D.2, I allow for an elasticity below one.

D.2 Robustness checks in Section 3.6

Table A1 reports a series of robustness checks on the baseline counterfactual results. For each
robustness check, I first recalibrate the model and then calculate the counterfactual changes in
wages and income per capita relative to the US when differences in R&D efficiency are eliminated.
In each calibration, innovation-dependence and trade costs are estimated including the productivity
and comparative advantage controls from columns (c) and (d) of Table 1, except in the importer
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fixed effects calibrations in columns (c) and (d) of Table A1 where the productivity controls are
omitted. In all cases, I set innovation-dependence equal to zero whenever its point estimate is
negative.

The first robustness check adds another control when estimating innovation-dependence – the
interaction of industry dummy variables with the importer’s log GDP per capita. GDP per capita
proxies for omitted variables that affect productivity and comparative advantage and may be cor-
related with R&D efficiency. However, because it is partly determined by R&D efficiency, it is not
included in the baseline specification. Column (a) reports the results when R&D data is used to
measure R&D efficiency, while patent data is used in column (b). The difference from the baseline
results is negligible.

Second, I estimate innovation-dependence including importer fixed effects in equation (33)
and dropping the productivity controls, which only vary by importer. This specification estimates
innovation-dependence up to an additive constant. Consequently, I normalize the innovation-
dependence estimates by setting the innovation-dependence of the Coke and refined petroleum
products industry equal to zero. This normalization is conservative compared to the positive
innovation-dependence estimates for the Coke industry obtained in Table 1. When importer fixed
effects are included, the Coke industry has the second lowest innovation-dependence estimate for
both the R&D and patent data calibrations (ahead of only Mining and quarrying). For the R&D
data calibration, including importer fixed effects slightly reduces counterfactual wage and income
changes. Column (c) reports that the wage dispersion ratio equals 0.27 and the income dispersion
ratio is 0.12. The results for the patent data calibration in column (d) are also lower than in the
baseline, though the differences are small.

Next, I repeat the baseline R&D and patent data calibrations, except that I set innovation-
dependence to zero in all industries where estimated innovation-dependence is insignificant at the
10 percent level. This change reduces wage and income variation caused by differences in R&D
efficiency, but as columns (e) and (f) show the counterfactual results differ little from the baseline
results in Table 3.

The baseline patent data calibration in column (b) of Table 3 calculates patenting intensity
PATjs under the assumption that the elasticity of patenting to R&D expenditure Λ = 1. Griliches
(1990) concludes that the firm-level patenting elasticity is probably close to unity, but also ac-
knowledges that estimates below one are common in the literature. Therefore, in column (g) I
calibrate the model assuming Λ = 0.5. Reducing Λ increases the variation in implied R&D ef-
ficiency given observed differences in patenting and value-added, which in turn compresses the
innovation-dependence estimates obtained from equation (33). Together these effects lead to small
declines in the wage and income dispersion ratios.

Column (h) reports an upper bound on the effect of eliminating R&D efficiency differences for
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the R&D data calibration when the model is solved without taking a first order approximation. See
Appendix D.3 below for details.

Columns (i)-(p) study the impact of calibrating the model using alternative values of the trade
elasticity σ − 1, which in the baseline R&D and patenting calibrations equals 6.53. Columns (i)
and (j) reduce the trade elasticity to 2.5 for the R&D intensity and patenting intensity calibrations,
respectively. Columns (k) and (l) use an elasticity of 4.5, which is close to the aggregate elasticity
estimated by Caliendo and Parro (2015). Columns (m) and (n) increases the elasticity to 8.5.
The results show that increasing the trade elasticity reduces the magnitude of counterfactual wage
and income changes because it leads to lower innovation-dependence estimates. The patent data
calibration is more sensitive to changes in the trade elasticity than the R&D data calibration for
which differences from the baseline results are not large. Finally, columns (o) and (p) use the the
industry-specific trade elasticities estimated by Caliendo and Parro (2015). Again, the results are
similar to the baseline.

D.3 Model approximation

This appendix describes how to calculate an upper bound on the approximation error that results
from using a first order approximation to Ψjs in the counterfactual analysis. Comparing equations
(24) and (25) shows that the approximation drops the term Ejs given by:

Ejs = 1 +

(
ψ∗js
)−k

k [γj(1− β)− α]− 1
. (73)

Since ψ∗js is decreasing in R&D efficiency Bs, this expression implies Ejs is increasing in Bs. Not
taking the approximation to Ψjs leaves the equations used to solve the calibrated model unchanged
(see equation 28), except that Zjs in equation (27) is replaced by:

Zjs =
S∑
s̃=1

τ 1−σ
jss̃ (ρas̃ + ws̃)Ls̃w

−σ
s B

(σ−1)IDj
s E
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γj

]
js∑S

ŝ=1 τ
1−σ
jŝs̃ w

1−σ
ŝ B

(σ−1)IDj
ŝ E

(σ−1)

[
1−β−

α(1+κj)

γj

]
jŝ

, (74)

where IDj is still given by equation (26). Because Assumption 1 ensures γj(1− β) > α(1 + κj),
Zjs is increasing in Ejs. It follows that using the approximation to Ψjs reduces wage inequality
caused by differences in R&D efficiency Bs.

The exponent of Ejs in equation (74) is bounded above by (σ− 1)(1−β). Therefore, to obtain
an upper bound on the approximation error, I start by setting the exponent equal to this upper bound
and assume that:
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. (75)

The next step is to calibrate Ejs. Let ShV Ajs denote the share of industry value-added pro-
duced by firms that perform R&D and note that:

Ejs − 1 =

(
ηγjBA

)−k
k [γj(1− β)− α]− 1

Bk
s =

ShV Ajs − ShRDjs

1− ShV Ajs
,

where the first equality is obtained by substituting equation (11) into equation (73), and the second
equality uses ShRDjs = η−kγj

(
Bs/B

A
)k, equation (29) andRDjs =

α(δ+gj)

ρ+ζ+γj(δ+gj)
ShV Ajs. Using

UK data to measure ShV Ajs and ShRDjs allows me to calibrate Ejs by industry in the UK. The
calibrated values ofBk

s relative to the US can then be used to inferEjs in all other sample countries.
Finally, I calculate the counterfactual effect of eliminating R&D efficiency differences (i.e.

setting both Bs and Ejs equal across countries) when Zjs satisfies equation (75). To quantify the
approximation error for a given calibration of R&D efficiency and innovation-dependence levels,
the counterfactual analysis uses the calibrated parameters from the baseline R&D data calibration.
When solving for real income per capita, I continue to assume that non-tradable prices are not
directly affected by R&D efficiency.

The counterfactual results are shown in column (h) of Table A1. As noted above, R&D ef-
ficiency accounts for a larger share of international wage and income inequality when including
variation in Ejs, but the difference is small. On average, wages relative to the US increase by
20 log points compared to 18 log points in the baseline calibration, and the wage dispersion ratio
is 0.36 compared to 0.32 in the baseline. Real income per capita relative to the US increases by
6.6 log points on average compared to 5.9 log points in the baseline, and the income dispersion
ratio is 0.19 compared to 0.17 in the baseline. These comparisons show that the Ejs term, which
is dropped when taking a first order approximation to Ψjs, is not quantitatively important for the
counterfactual outcomes studied in the paper.

D.4 Calibration of R&D efficiency in generalized model from Section 4.1

The objective is to calibrate R&D efficiency in the generalized model. Using equation (72) and
taking the ratio of RDjs across countries gives:

RDjs

RDjs̃

=

(
Bs

Bs̃

) k[γj(1−β)−α]−ν1j
γj(1−β)−α

ν0j(1−ν2j)

1−ν1j
,

which shows that, unlike in the baseline model, the relative R&D intensity of different countries
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varies by industry. However, for any set of countries s, ŝ and s̃, the equation above implies:

log
(
RDjs
RDjs̃

)
log
(
RDjŝ
RDjs̃

) =
log
(
Bs
Bs̃

)
log
(
Bŝ
Bs̃

) .
After normalizing BUS = 1, this expression can be used to calibrate the ratio of log R&D efficien-
cies for any pair of sample countries. Arbitrarily fixing the value of logBs in any one country then
pins down log R&D efficiency for each country up to an unknown multiplicative constant, which
is sufficient information to implement the quantitative analysis.

Let bGs denote the calibrated log R&D efficiency of country s in the generalized model. For-
mally, I compute bGs as:

bGs = Medianŝ 6=s̃

Kŝ Medianj,t

 log
(
RDjst
RDjs̃t

)
log
(
RDjŝt
RDjs̃t

)
 .

To understand this expression, start by noting that taking the median across industries and years
of the term inside square brackets gives an estimate of log R&D efficiency of country s relative
to country ŝ under the assumption that bGs̃ = 0. Multiplying this estimate by Kŝ then fixes R&D
efficiency in one country. In particular, I choose Kŝ such that the difference between the log R&D
efficiencies of Germany and the Czech Republic is the same as in the baseline R&D calibration in
Section 3.4. Finally, to obtain bGs , I take the median across all possible comparison countries ŝ.

Since US R&D intensity data is missing for a small number of industry-year pairs, I compute
bGs with Germany as country s̃ and then normalize bGUS = 0. The medians are calculated over all
sample industries and years from 2010-14 with available data and over all countries in the baseline
sample.
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Patenting 

elasticity     

= 0.5

Approximation 

error

R&D efficiency measure
R&D 

intensity

Patenting 

intensity

R&D 

intensity

Patenting 

intensity

R&D 

intensity

Patenting 

intensity

Patenting 

intensity

R&D       

intensity

(a)  (b)  (c)  (d)  (e)  (f)  (g)  (h)

Average change relative to US 0.18 0.13 0.15 0.13 0.17 0.13 0.23 0.20

Dispersion ratio 0.32 0.25 0.27 0.26 0.31 0.25 0.25 0.36

Average change relative to US 0.057 0.035 0.043 0.038 0.058 0.036 0.069 0.066

Dispersion ratio 0.17 0.11 0.12 0.11 0.17 0.11 0.12 0.19

R&D efficiency measure
R&D 

intensity

Patenting 

intensity

R&D 

intensity

Patenting 

intensity

R&D 

intensity

Patenting 

intensity

R&D 

intensity

Patenting 

intensity

(i) (j) (k) (l) (m) (n) (o) (p)

Average change relative to US 0.23 0.22 0.19 0.16 0.17 0.13 0.19 0.14

Dispersion ratio 0.38 0.43 0.34 0.31 0.32 0.24 0.36 0.26

Average change relative to US 0.062 0.059 0.058 0.046 0.060 0.041 0.083 0.045

Dispersion ratio 0.18 0.18 0.17 0.14 0.17 0.12 0.24 0.13

Row (i) reports the average counterfactual log wage change relative to the US, and the ratio of the standard deviation of the counterfactual log wage change to the standard 

deviation of observed log wages. Row (ii) gives the same statistics for real GDP per capita, defined as GDP per member of the working age population. Counterfactual sets R&D 

efficiency equal across countries. Observed wages and GDP per capita calculated from the Penn World Tables 9.0 and World Development Indicators in 2012. For columns (a) and (b) 

innovation‐dependence is estimated including the interaction of industry dummy variables with the importer's log GDP per member of the working age population as an additional 

control. For columns (c) and (d) innovation‐dependence is estimated including importer fixed effects as controls and the innovation‐dependence estimate for Coke and refined 

petroleum products is normalized to zero. For columns (e) and (f) all innovation‐dependence estimates that are insignificant at the 10 percent level are set equal to zero. For column 

(g) R&D efficiency is calculated from patenting data assuming that the elasticity of patenting to R&D expenditure equals 0.5.  Column (h) uses the baseline R&D intensity calibration 

and reports an upper bound on the effect of eliminating R&D efficiency differences when the model is solved without taking a first order approximation. Industry‐specific trade 

elasticities used in columns (o) and (p) from Caliendo and Parro (2015).

Robustness check Trade elasticity = 2.5 Trade elasticity = 4.5 Trade elasticity = 8.5
Industry‐specific trade 

elasticities

(i) Nominal wage

(ii) Real income per 

capita

Table A1: Counterfacutal robustness checks

(i) Nominal wage

(ii) Real income per 

capita

GDP per capita Importer fixed effectsRobustness check
Significant innovation‐

dependence estimates


