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A filter oracle for a clutter consists of a finite set V and an oracle which, given any set X ⊆ V , decides in 
unit time whether X contains a member of the clutter. Let A2n be an algorithm that, given any clutter 
C over 2n elements via a filter oracle, decides whether C is ideal. We prove that in the worst case, A2n

makes at least 2n−1 calls to the filter oracle. Our proof uses the theory of cuboids.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).
1. Background

Let V be a finite set, and C a family of subsets of V , called 
members. C is a clutter over ground set V if no member con-
tains another one [9]. C is ideal if the set covering polyhedron {

x ∈RV : ∑u∈C xu ≥ 1 ∀C ∈ C; x ≥ 0
}

is integral. The terminology 
was coined in [6]. However, the notion goes back to a 1963 
manuscript wherein Alfred Lehman extended the width-length in-
equality of Moore and Shannon [13] and Duffin [8] for two-
terminal networks to arbitrary ideal clutters [11] (the manuscript 
was published years later in 1979). This manuscript reached Ray 
Fulkerson in 1965 which reportedly influenced his work in the 
area, prominently on blocking theory of polyhedra [10].

An important aspect of all ideal clutters, going all the way back 
to Lehman’s first manuscript on the topic, has been the structure of 
such clutters. This aspect remains largely mysterious to this date, 
in part due to the fact that there are several structurally different 
examples of ideal clutters coming from undirected and directed 
graphs, binary matroids, and the unit hypercube (see [1]). Thinking 
about this problem from a computational complexity perspective 
leads to the following: What is the time complexity of detecting 
the property of idealness?
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Using basic polyhedral theory, one can show easily that test-
ing idealness belongs to co-NP. In fact, rather surprisingly Ding, 
Feng and Zang [7] showed that testing idealness is co-NP-complete 
(even for clutters where every element of the ground set belongs 
to at most two members), and so testing idealness is NP-hard.

Many examples of clutters from Combinatorial Optimization, 
such as arborescences, cuts, T -joins, and dijoins, have exponen-
tially many members (in the size of the ground set). For this rea-
son, for some problems, it may be more appropriate to work in a 
model where C is inputted via an oracle. More precisely, a filter or-
acle for a clutter C consists of V along with an oracle which, given 
any set X ⊆ V , decides in unit time whether or not X contains a 
member.

In the filter oracle model, it is no longer clear that testing 
idealness belongs to co-NP. Using a seminal theorem of Lehman 
on minimally non-ideal clutters [12], Seymour showed that testing 
idealness indeed belongs to co-NP [15]. Given Ding et al.’s co-NP-
completeness result in the explicit model, one would not expect 
the classification to be any different in the filter oracle. In par-
ticular, one would not expect testing idealness in the filter oracle 
model to belong to NP.

In this brief note, we prove that in fact the situation in the filer 
oracle is determined independently of the “P versus NP” question. 
We prove that in the filter oracle model, testing idealness cannot 
be done in polynomial time, period. Our proof also proves that 
even the task of “finding a �3 minor”, a first test for detecting 
non-idealness, cannot be done in polynomial time.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2. Cuboids

Our main result is proved by using the concept of cuboids, 
initiated in [4] and developed in [2], which allows us to get an 
understanding of the “local geometry” of ideal clutters.

A cuboid is a clutter C whose ground set can be partitioned into 
pairs {ui, vi}, i ∈ [n] such that |{ui, vi} ∩ C | = 1 for all i ∈ [n] and 
C ∈ C . C can be represented as a subset of {0, 1}n . More precisely, 
for each C ∈ C , let p(C) be the point in {0, 1}n such that p(C)i = 0
if and only if C ∩ {ui, vi} = {ui}. Let S := {p(C) : C ∈ C}. We call C
the cuboid of S , denote by cuboid(S) := C and by C(p) the member 
of C corresponding to p ∈ {0, 1}n . Note that the operator cuboid(·)
takes any subset of {0, 1}n to a cuboid. S is cube-ideal if cuboid(S)

is an ideal clutter. It is known that S is cube-ideal if, and only if, 
the convex hull of S can be described by 0 ≤ x ≤ 1 and inequalities 
of the form 

∑
i∈I xi + ∑

j∈ J (1 − x j) ≥ 1 for disjoint I, J ⊆ [n] [4,2]. 
Thus, the set {0, 1}n is cube-ideal. Moreover, if S is cube-ideal then 
so is every restriction of it, where a restriction is defined as any set 
obtained from S after fixing some coordinates to 0 or 1 and then 
dropping the coordinates.

Let p ∈ {0, 1}n . The set S	p is defined as {x	p : x ∈ S}, where 
the second 	 denotes coordinate-wise sum mod 2; we call S	p
the twisting of S with respect to p. It can be readily seen that twist-
ing preserves cube-idealness. The localization of S at p, denoted by 
loc(S; p), is the clutter over ground set [n] whose members are 
the inclusionwise minimal sets in {C ⊆ [n] : χC ∈ S	p}. In partic-
ular, if p ∈ S then loc(S; p) = {∅}. In the original paper [2] where 
this notion was developed, “the localization of S at p” was referred 
to instead as “the induced clutter of S with respect to p”. We feel 
this new terminology is more appropriate.

The localizations of S at points outside the set are very helpful 
in studying cube-idealness. A key insight for this note is that S is 
cube-ideal if, and only if, the localization of S at every point in 
{0, 1}n − S is ideal [2]. Consequently, if for example S excludes a 
unique point p of {0, 1}n , then S is cube-ideal, because loc(S; p) =
{{1}, {2}, . . . , {n}} is clearly an ideal clutter.

3. The result

We are almost ready to prove the main result of this note. 
Let n ≥ 1 be an integer, and let Gn denote the skeleton graph of 
the unit hypercube [0, 1]n . Given S ⊆ {0, 1}n , if Gn[{0, 1}n − S] has 
maximum degree at most 2, then S is cube-ideal. This result was 
first proved in [5], and further studied in [3]. It can also be readily 
shown using the characterization of cube-idealness in terms of the 
localizations. The result, however, does not extend from 2 to 3. Let 
S3 := {e1 + e2, e2 + e3, e1 + e3, e1 + e2 + e3} ⊆ {0, 1}3, where ei de-
notes the ith standard unit vector of appropriate dimension. Then 
S3 is not cube-ideal because its convex hull has a facet-defining in-
equality of the form x1 + x2 + x3 ≥ 2. Moreover, in G3[{0, 1}3 − S3], 
the vertex 0 has 3 neighbors e1, e2, e3.

Theorem 1. Let A2n be an algorithm that, given any clutter C over 2n
elements via a filter oracle, decides whether or not C is ideal. Then in the 
worst case, A2n must make at least 2n−1 calls to the filter oracle.

Proof. For all p ∈ {0, 1}n and distinct i, j, k ∈ [n], let S(p:i, j,k) :=
{0, 1}n − {p, p	ei, p	e j, p	ek}. Then S(p:i, j,k) is not cube-ideal as 
it has an S3 restriction, while every proper superset S ′ of S(p:i, j,k)

is cube-ideal as Gn[{0, 1}n − S ′] has degree at most 2. In partic-
ular, cuboid

(
S(p:i, j,k)

)
is a non-ideal clutter, while cuboid

(
S ′) is 

ideal for every S ′ � S(p:i, j,k) . Thus, A2n must distinguish between 
cuboid

(
S(p:i, j,k)

)
and cuboid

(
S ′) for every S ′ � S(p:i, j,k) . Conse-

quently, for every point q ∈ {p, p	ei, p	e j, p	ek}, the algorithm 
must query the set C(q) or a superset of it. In fact, we can say 
more.
754
Given neighbors r, r′ of Gn , it can be readily seen that C(r), C(r′)
differ in exactly one element. This observation implies that by 
adding a new element to C(r) one obtained another set which 
contains C(r′) for some neighbor r′ of r. Now, for each q ∈
{p, p	ei, p	e j, p	ek} − {p}, every neighbor of q in Gn except for 
p belongs to both S(p:i, j,k) and S ′, S ′ � S(p:i, j,k) , so in order to dis-
tinguish between the two sets the algorithm must query either 
C(q) or C(q) ∪ C(p).

By applying the argument above to every p ∈ {0, 1}n and dis-
tinct i, j, k ∈ [n], we conclude the following: For every q and 
every neighbor of it p in Gn , A2n must query at least one of 
C(q), C(q) ∪ C(p). Let S ′ := {

q ∈ {0,1}n : 1
q ≡ 0 (mod 2)
}

. Then 
{C(q), C(q) ∪ C(q	e1) : q ∈ S ′} consists of 2|S ′| = 2n distinct sets, 
and A2n queries at least one of C(q), C(q) ∪ C(q	e1) for each 
q ∈ S ′ . This implies that A2n queries at least 2n−1 sets, as re-
quired. �

Let C be a clutter over ground set V . Let I, J be disjoint sub-
sets of V . The minor of C obtained after deleting I and contracting 
J , denoted C \ I/ J , is the clutter over ground set V − (I ∪ J )
whose members are the inclusionwise minimal sets in {C − J : C ∈
C, C ∩ I = ∅}. Given a filter oracle for C , we also have one for every 
minor C \ I/ J [15].

Being ideal is closed under taking minor operations [14]. Two 
clutters are isomorphic if one can be obtained from the other by 
relabeling its ground set. Denote by �3 any clutter isomorphic to 
{{1, 2}, {2, 3}, {3, 1}}. It can be readily checked that �3 is the only 
non-ideal clutter over a ground set of size at most three. In partic-
ular, if a clutter has a �3 minor, then it is non-ideal.

Let S ⊆ {0, 1}n . It can be readily seen that every localization of 
S is a (contraction) minor of cuboid(S). Thus, since loc(S3;0) =
{{1, 2}, {2, 3}, {1, 3}}, cuboid(S3) has a �3 minor, proving once 
again that S3 is not cube-ideal. It can also be readily seen that 
if R is a restriction of S , then cuboid(R) is a minor of cuboid(S). 
Consequently, in the proof of Theorem 1, it can be readily seen 
that cuboid

(
S(p:i, j,k)

)
has a �3 minor, while cuboid

(
S ′) is ideal 

and therefore has no �3 minor for every S ′ � S . Thus, the proof 
also implies the following.

Theorem 2. Let D2n be an algorithm that, given any clutter C over 2n
elements via a filter oracle, decides whether or not C has a �3 minor. 
Then in the worst case, D2n must make at least 2n−1 calls to the filter 
oracle. �
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