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On the Gleason-Kahane-Żelazko Theorem
for Associative Algebras

Moshe Roitman and Amol Sasane

Abstract. The classical Gleason-Kahane-Żelazko Theorem states that a
linear functional on a complex Banach algebra not vanishing on units,
and such that Λ(1) = 1, is multiplicative, that is, Λ(ab) = Λ(a)Λ(b) for

all a, b ∈ A. We study the GKŻ property for associative unital algebras,
especially for function algebras. In a GKŻ algebra A over a field of at
least 3 elements, and having an ideal of codimension 1, every element
is a finite sum of units. A real or complex algebra with just countably
many maximal left (right) ideals, is a GKŻ algebra. If A is a commutative

algebra, then the localization AP is a GKŻ-algebra for every prime ideal P
of A. Hence the GKŻ property is not a local-global property. The class of
GKŻ algebras is closed under homomorphic images. If a function algebra
A ⊆ F

X over a subfield F of C, contains all the bounded functions in
F
X , then each element of A is a sum of two units. If A contains also a

discrete function, then A is a GKŻ algebra. We prove that the algebra of
periodic distributions, and the unitisation of the algebra of distributions
with support in (0,∞) satisfy the GKŻ property, while the algebra of
compactly supported distributions does not.

Mathematics Subject Classification. Primary 15A86, Secondary 46F10,
47B49.

1. Introduction

We study the Gleason-Kahane-Żelazko property (Definition 1.1 below) of asso-
ciative unital algebras, especially of function algebras. We will also investigate
the validity of the GKŻ theorem in some natural convolution algebras of dis-
tributions.
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1.1. Background

The classical Gleason-Kahane-Żelazko Theorem, proved independently by Glea-
son [4], and by Kahane and Żelazko [8], provides a characterization of the
maximal ideals of a commutative complex Banach algebra A: a subspace of A
is a maximal ideal if and only if it has codimension 1 and contains no units.
Equivalently, a linear functional Λ : A → C not vanishing on units, and such
that Λ(1A) = 1, is multiplicative, that is, Λ(ab) = Λ(a)Λ(b) for all a, b ∈ A.
The formulation in terms of linear functionals was extended by Żelazko to any
complex Banach algebra [25], thus providing a characterization of the ideals
of codimension 1 (that are necessarily maximal) in a complex Banach algebra.

Definition 1.1. Let A be a unital algebra over a field F. The algebra A is said
to have the GKŻ property (or to be a GKŻ algebra) if every linear functional
Λ : A → F not vanishing on units, and such that Λ(1A) = 1, is multiplicative.

In Definition 1.1 we allow the case that 1A = 0A, that is the case that A
is the zero algebra because, although we always start with a nonzero algebra,
we may obtain sometimes zero algebras. By the above definition, a zero algebra
is a GKŻ algebra.

The converse of the GKŻ property is obvious: if Λ is a multiplicative
nonzero linear functional on A, then Λ does not vanish on units and Λ(1A) = 1.

Remark 1.2. Let A be an algebra over a field F. Every proper subspace of A
is contained in a subspace of codimension 1. Thus the maximal subspaces of
A are the subspaces of codimension 1.

An algebra A satisfies the GKŻ-property if and only if each subspace of
A of codimension 1 not containing units is multiplicatively closed, equivalently
it is an ideal (necessarily maximal).

There is an extensive literature on extensions of the Gleason-Kahane-
Żelazko Theorem. See, e.g., the surveys [6] and [13].

Definition 1.3. A function algebra over a field F on a non-empty set X, is a
unital subalgebra of the F-algebra F

X (the set of all functions X → F, with
addition and multiplication defined componentwise) such that 1FX ∈ A.

1.2. Summary

In Sect. 2 we deal with the GKŻ property for algebras, in Sect. 3 for function
algebras, and in Sect. 4 for distribution algebras.

The main result of §2.1 (The GKŻ property of algebras and generation by
units), is that a GKŻ algebra A over a field of at least 3 elements and having
an ideal of codimension 1, is generated by units, that is, every element of A is
a finite sum of units (Theorem 2.1 (1)), equivalently, A = span(U(A)). A GKŻ
function algebra over a field F with at least 3 elements is unit generated.

In §2.2 (Linear coverings), we prove that if the field F is infinite, and
A \ U(A) is contained in a union of less than |F| proper one-sided ideals,
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then the algebra A satisfies the GKŻ property. (Proposition 2.15). Thus a real
or complex algebra with just countably many maximal left ideals is a GKŻ
algebra. We also show that if A is a commutative algebra, then the localization
AP is a GKŻ-algebra for every prime ideal P of A. Hence the GKŻ property
is not a local-global property.

In §2.3 (The GKŻ property for homomorphic images) we show that the
class of GKŻ algebras is closed under homomorphic images (Proposition 2.18),
and provide a sufficient condition for the GKŻ property of A assuming that
A/I is a GKŻ algebra for an ideal I of A (Proposition 2.19). Naturally, A

satisfies the GKŻ property if and only if A/ Jac(A) does (Proposition 2.21),
where Jac(A) is the Jacobson radical of A.

In §4.2 (Unitisation), we show that the unitisation of a radical algebra is
a GKŻ algebra, and provide a topological sufficient condition for an algebra
to be radical (Proposition 2.26).

In Sect. 3 (On the GKŻ property of function algebras), we prove that if
a function algebra A ⊆ F

X over a subfield F of C contains all the bounded
functions in F

X , then each element of A is a sum of two units. If A contains
also a discrete function, then A is a GKŻ algebra.

In Sect. 4 (Algebras of distributions), we prove that the algebra of periodic
distributions, and the unitisation of the algebra of distributions with support
in (0,∞) satisfy the GKŻ property, while the algebra of compactly supported
distributions does not. Actually, we started our paper with the study of the
GKŻ property for some distribution algebras, and this study led us to more
general results.

1.3. Conventions and Notations

Unless otherwise stated, all the algebras in this paper are nonzero unital as-
sociative algebras, not necessarily commutative, over a field F. We use the
notation 1A for the unity of the algebra A, and U(A) for the group of units (in-
vertible elements) of A. Using the F-algebra monomorphism F → A, f �→ f1A,
we may assume that F ⊆ A. In the whole paper, we denote by F a field, by
A a nonzero associative unital algebra over F, and by X a nonempty set.
Thus a function algebra is a subalgebra of F

X with the same unity. We let
F

• = F \ {0}. The cardinality of a set X is denoted by |X|. If Y is a subset
of X, we denote by IY the indicator (characteristic function) of Y . If A ⊆ F

X

is a function algebra, and x ∈ X, the projection px is defined as the function
px : A → X (f �→ f(x)). The field of two elements is denoted by F2. A proper
subspace of an algebra A is a subspace of A different from A, possibly zero.
Similarly, we use proper ideals, etc. If A is an algebra and a ∈ A, then ρ(a)
(the resolvent of a) is the set of all scalars λ ∈ F such that a−λ1 is invertible,
and σ(a) (the spectrum) of a is the set F \ ρ(a).
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2. The GKŻ Property of General Algebras

2.1. The GKŻ Property of Algebras and Generation by Units

There are several equivalent ways to define the property of an algebra to
be generated by units: as an algebra, as a ring, as a vector space (that is,
A = span(U(A)), and as an additive group (which means that every element
of A is a finite sum of units). For two surveys on rings generated by units, see
[18] and [19, Section 1].

Theorem 2.1. Let A be a GKŻ algebra over a field F of at least 3 elements. If A
has an ideal of codimension 1, (equivalently, if there exists a linear functional
on A not vanishing on units), then A is generated by units.

Proof. Let Λ be a linear functional that does not vanish on units. Replacing
Λ by Λ

Λ(1) , we may assume that Λ(1) = 1. Assume that A is not generated by
units, that is, A �= span(U(A)). There exists a subspace V of A of codimension
1 containing U(A). Let a ∈ A \ V . Thus A = Fa ⊕ V . Let a2 = λa + w, where
λ ∈ F, and w ∈ V . Since F contains at least three elements, we may choose
c ∈ F such that

c2 − λc − Λ(w) �= 0.

There exists a unique linear functional Ψ : A → F such that Ψ(v) = Λ(v) for
all v ∈ V , and Ψ(a) = c. Hence

Ψ(a2) = Ψ(λa + w) = λc + Λ(w) �= c2 = (Ψ(a))2,

so Ψ is not multiplicative. On the other hand, Ψ(u) = Λ(u) �= 0 for all u ∈
U(A), and Ψ(1) = Λ(1) = 1, contradicting the assumption that A has the
GKŻ property. �
Corollary 2.2. A GKŻ function algebra over a field F with at least 3 elements
is unit generated.

Proof. Let A ⊆ FX be a nonzero function algebra. For all x ∈ X, the projec-
tion px is a multiplicative functional, and px(IX) = 1. By Theorem 2.1, A is
generated by units. �

An algebra A is said to satisfy the GKŻ property vacuously if each linear
functional on A vanishes on some unit, equivalently, if each maximal subspace
of A contains a unit. Clearly, if A is a GKŻ algebra vacuously, then A is a
GKŻ algebra.

Remark 2.3. In Theorem 2.1, the condition on the existence of an ideal of
codimension 1 is essential, but not necessary.

Indeed, consider the C-algebras C(x) and C(x)[y], where x and y are
two independent indeterminates over C. Both these algebras satisfy the GKŻ
property vacuously by the next Lemma 2.4. However, span(U(C(x)) = C(x),
so the condition is not necessary, and span(U(C(x)[y])) = C(x) �= C(x)[y], so
the condition is essential. �
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Lemma 2.4. Let F � K be two fields, and let A be an algebra over K. Then A

is a GKŻ algebra vacuously over F.

Proof. Let V be an F-subspace of A of codimension 1. Since F � K, we have
[K : F] > 1, so V contains a nonzero scalar k ∈ K, and k ∈ U(A). �

Theorem 2.1 implies:

Corollary 2.5. Let A be an algebra over a field of cardinality ≥ 3, that is not
generated by units. Then A is a GKŻ algebra ⇔ A is a GKŻ algebra vacuously.

Remark 2.6. If A is an algebra, then span(U(A)) is a subalgebra of A with the
same units.

Proposition 2.7. Let F be a field of at least 3 elements.
(1) The following three conditions are equivalent:

(a) A is a GKŻ algebra.
(b) A is a GKŻ algebra vacuously.
(c) span(U(A)) is a GKŻ algebra vacuously.

(2) If C � A are two algebras with the same units, then either both A and C

are GKŻ algebras vacuously, or both of them are not GKŻ algebras.

Proof. (1) (a) ⇒ (b) If A is not a GKŻ algebra vacuously, then by Theorem
2.1, A = span(U(A)), a contradiction. (b) ⇒ (a) Clear. (b) ⇒ (c) If
condition (c) does not hold, then there exists a linear functional Λ on C
not vanishing on units and such that Λ(1C) = 1. Thus Λ can be extended
to a linear functional ˜Λ on A. We see that ˜Λ does not vanish on units,
since U(A) = U(C), and ˜Λ(1A) = 1, contradicting (b). (c) ⇒ (b) If (b)
does not hold, then there exists a linear functional on A not vanishing on
units and preserving unity. Its restriction to C has the same properties,
contradicting (c).

(2) Clearly, (1) implies (2).
�

Corollary 2.8. If A is a GKŻ algebra, then all proper subalgebras of A with the
same units, are GKŻ algebras vacuously.

For group rings, see [14].

Remark 2.9. If A is an algebra, then span(U(A)) is a homomorphic image of
the group ring F[U(A)].

Corollary 2.10. No proper algebra extension of a group ring F[G] with the same
units satisfies the GKŻ property.

Proof. This follows from Theorem 2.1, since the augmentation homomorphism
of F[G] is a multiplicative linear functional. �

For an application of Corollary 2.10 to distribution algebras, see §4.3.
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Proposition 2.11. (1) F2 is the only field for which all algebras generated by
units satisfy the GKŻ property.

(2) F2 is the only field for which the only unit generated function algebra is
the field itself (up to isomorphism).

Proof. (1) Let A be a unit generated algebra over F2. If Λ : A → F2 is a
linear functional not vanishing on units, then Λ(u) = 1 for every unit u
in A. Since A = span(U(A)), we obtain that Λ is multiplicative, implying
that A is a GKŻ algebra. On the other hand, if |F| > 2, let c ∈ F \ {0, 1}.
Consider the polynomial ring F[x]. Let Λ : F[x] → F be the unique linear
functional over F, such that Λ(xn) = 1 for all nonnegative integers n �= 2,
and Λ(x2) = c. Clearly, Λ is not multiplicative, implying that F[x] is not
a GKŻ algebra.

(2) Let A ⊆ F
X
2 be a function algebra. The only unit of F

X
2 is IX . Hence

span(U(A)) = F2IX . It follows that A = span(U(A)) ⇔ A = F2IX .
On the other hand, if |F| > 2, then every GKŻ algebra over F is unit
generated by Theorem 2.1, and by (1), there are GKŻ algebras A that
are not isomorphic to F.

�

As shown by Vamos [21, page 418], each element of a real or complex
Banach algebra is a sum of two units, as an immediate consequence of the
spectral theorem. Analogously, we have:

Remark 2.12. Let A be an F-algebra. Let a ∈ A such that ρ(a) �= ∅. Then
a is a sum of at most 2 units. Hence, if every element of A has a non-empty
resolvent, then each element of A is a sum of at most 2 units.

Indeed, let λ ∈ ρ(a). If λ = 0, then a is invertible. If λ �= 0, then a =
(a − λ1) + λ1, is a sum of two units. �

2.2. Linear Coverings

Remark 2.13. A one-sided ideal V of codimension 1 of the algebra A is a
maximal ideal.

Indeed, V is multiplicatively closed, so V is an ideal. �

Lemma 2.14. Let V be a subspace A of codimension 1 that is not an ideal. Then
there exist a finitely generated subspace V0 of V such that AV0 = V0A = A.

Proof. By Remark 2.13, V is not a left ideal, so V � AV , implying that
AV = A. Similarly, V A = A. Hence there exist finitely generated subspaces
V1 and V2 of V such that AV1 = V2A = A. Set V0 = V1 ∪ V2. �

Proposition 2.15. Let A be an F-algebra. Then A is a GKŻ algebra under each
of the following conditions:
(1) A\U(A) is a contained in a union of at most two proper one-sided ideals.
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(2) F is infinite, and A \U(A) is contained in a union of less than |F| proper
one-sided ideals.

(3) F is infinite, and A\U(A) is contained in a union of finitely many proper
one-sided ideals.

Proof. Let V be a subspace of A of codimension 1 that contains no units.
(1) We have V ⊆ A \ U(A) ⊆ I1 ∪ I2, where I1, I2 are two one-sided ideals

of A, not necessarily distinct. Viewing A as an additive group, we obtain
that V ⊆ Ik for some k = 1, 2. Since codim V = 1, we see that V = Ik,
so V is an ideal by Remark 2.13. Hence A is a GKŻ algebra.

(2) By Lemma 2.14, there exists a finitely generated subspace V0 of V such
that AV0 = V0A = A. Since V0 is contained in a union of less than |F|
proper one-sided ideals, it follows from [10, Theorem 1.2] or from [1, Main
Theorem], that V0 is contained in one of the one-sided ideals I in this
union. Hence V = I, so V is an ideal by Remark 2.13, and A is a GKŻ
algebra.

(3) is a particular case of (2).
�

Corollary 2.16. Let A ⊆ F
X be a function algebra. Assume that |X| < |F|, and

that each f ∈ A such that f(x) �= 0 for all x ∈ X is invertible in A. Then A

is a GKŻ-algebra. In particular, if |X| < |F|, then F
X is a GKŻ algebra. More

particularly, if F = R, C, and X is countable, then A is a GKŻ-algebra.

Proof. We have A \ U(A) ⊆ ⋃

x∈X p−1
x (0). Hence A is a GKŻ algebra by

Proposition 2.15. �
Proposition 2.17. Let A be an algebra over a field F.
(1) If A has at most two maximal left (or at most two maximal right) ideals,

then A satisfies the GKŻ property.
(2) Let A be an algebra over an infinite field F. If the cardinality of the set

of left ideals, or of the right ideals, is < |F|, then A is a GKŻ algebra.
(3) If the field F = R or C, and A has just countably many left ideals, then

A is a GKŻ algebra.
(4) If A is commutative, then the localization AP is a GKŻ-algebra for every

prime ideal P of A. Hence the GKŻ property is not a local-global property.
(5) Assume that A is commutative and that the field F is infinite. Let P be a

set of less than |F| prime ideals. Then the algebra B =
⋂

P∈P AP satisfies
the GKŻ property.

Proof. Items (1), (2) and (3) immediately follow from Proposition 2.15.
(4) AP has just one maximal ideal, so it a GKŻ-algebra by (1).
(5) This follows from Proposition 2.15 since the set of non-units of the algebra

B is contained in
⋃

P∈P PAP .
�
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2.3. The GKŻ Property for Homomorphic Images

We show first that the class of GKŻ algebras is closed under homomorphic
images (Proposition 2.18). Equivalently, if I is an ideal of a GKŻ algebra A,
then also A/I is a GKŻ algebra. Then we deal with the converse, and show
that under suitable assumptions, if A/I is a GKŻ algebra for a certain ideal
I, then A is a GKŻ algebra.

Proposition 2.18. A homomorphic image of a GKŻ algebra is a GKŻ algebra.

Proof. We have to show that if I is an ideal of a GKŻ algebra A, then A/I is
a GKŻ algebra. Let W be a subspace of A/I of codimension 1 that contains
no units. Hence W = V/I, where V is a subspace of A of codimension 1, that
contains I, but no units modulo I. We infer that V contains no units of A,
implying that V is an ideal of A, since A is a GKŻ algebra. Hence W = V/I

is an ideal of A/I. It follows that A/I is a GKŻ algebra. �
For a partial converse of Proposition 2.18, see the next Proposition 2.19,

Recall that if I is an ideal of A, an element t ∈ A/I is liftable to a unit in A
if t contains a unit in A, that is, t + I = u + I for some u ∈ U(A).

Proposition 2.19. Let A be an algebra over F.
(1) Let I be an ideal of A. Then A/I is a GKŻ algebra ⇔ each maximal

subspace of A containing I, but no units modulo I, is an ideal.
(2) If each unit of A/I is liftable to A, then A is a GKŻ algebra ⇔ A/I is a

GKŻ algebra.

Proof. (1) ⇒ See Proposition 2.18. ⇐ Let V be a maximal subspace of A
containing I, but no units modulo I. Thus V/I is a maximal subspace of
A/I that contains no units. Hence V/I is an ideal of A/I, implying that
V is an ideal of A.

(2) follows from (1) since in this case a subspace of A containing I, contains
no units in A if and only if it contains no units modulo I.

�
By Proposition 2.17 (1), if A is a unital algebra with a unique maximal

left ideal J , then A satisfies the GKŻ property. For another generalization,
see Proposition 2.21 (2) below. Indeed, in this case J = Jac(A), the Jacobson
radical of A. Recall that Jac(A) is the intersection of all maximal left ideals of
A, and that in this definition ‘left ’ can be changed to ‘right’, so Jac(A) is a
two-sided ideal. For the Jacobson radical theory, see e.g., [5, section 13B], [9,
Part II, §1], and [11, Chapter 2.4].

Proposition 2.20. Each maximal subspace V of A without units contains Jac(A),
so Jac(A) is the intersection of all maximal subspaces of A without units.

Proof. There exists a unique linear functional Λ on A such that ker Λ = V
and Λ(1) = 1. Let c ∈ Jac(A). We have Λ(c) ∈ σ(c) = {0}. Hence Λ(c) = 0,
so c ∈ V . �
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Proposition 2.21. If I is an ideal contained in Jac(A), then A is a GKŻ algebra
⇔ A/I is a GKŻ algebra.

Proof. This follows from Proposition 2.19, since I ⊆ Jac(A), so an element of
A is a unit in A if and only if it is a unit modulo I. �
Proposition 2.22. Let I be an ideal of the algebra A. Assume that each maximal
subspace of A that does not contain units and does not contain I, is an ideal
in A. Equivalently, assume that if Λ is a linear functional such that Λ(u) �= 0
for all u ∈ U(A), Λ(1A) = 1 and Λ(I) �= (0), then Λ is multiplicative. Then A

is a GKŻ algebra ⇔ A/I is a GKŻ algebra.

Proof. In view of Proposition 2.18, we have to prove just the implication ⇐.
Let V be a maximal subspace of A that does not contain units and does not
contain I. If V is not an ideal, then I ⊆ V and V/I is not an ideal in A/I, a
contradiction. Thus every maximal subspace of A is an ideal, so A is a GKŻ
algebra. �
Remark 2.23. If A contains an element a with empty spectrum, then A is GKŻ
algebra vacuously.

Indeed, if Λ is a linear functional that does vanish on units such that
Λ(1) = 1, then Λ(a) ∈ σ(a) = ∅, a contradiction. �
Proposition 2.24. Let I be an ideal of a generated by units algebra A satisfying
the following two conditions:
(1) There exists an element c ∈ A such that c+λ1 is invertible modulo I for

all λ ∈ F.
(2) Each unit in A/I is liftable to a unit in A.

Then A is a GKŻ algebra.

Proof. By (1), the element c + I has an empty spectrum in A/I. Hence, A/I

is a GKŻ algebra by Remark 2.23. By Proposition 2.19, A is a GKŻ algebra.
�

2.4. Unitisation

Recall that the unitisation of an F-algebra A (not necessarily unital) is the
algebra B = F ⊕ A (a direct sum of additive groups) with multiplication
defined by (λ + a)(μ + b) = λμ + λb + μa + ab for λ, μ ∈ F, and a, b ∈ A. We
identify F with the subfield F1B of B.

For the next proposition recall that that if I is an ideal of an algebra A,
not necessarily unital, then J ⊆ Jac(A) if and only if each element a ∈ I is left
quasiregular, that is, 1+a is left invertible in the unitisation of A, equivalently,
there exists an element b ∈ A such that a+b+ab = 0 (see e.g., [22]). Moreover,
an ideal I of A is contained in Jac(A) if and only if each element of I is left
invertible. Here, ‘left’ can be replaced by ‘right’ or omitted ([9] and [5]). Hence,
a non zero non-unital algebra l A is radical )(that is, A = Jac(A)), if and only
if each element of A is quasiregular.
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Lemma 2.25. Let A be a nonzero F-algebra, not necessarily unital, and let B
the unitisation of A. The following conditions are equivalent:
(1) A is radical algebra.
(2) A = Jac(B).
(3) 1 + A ⊆ U(B) (here 1 ∈ F ⊆ B, so 1 /∈ A).
(4) U(B) = F

•(1 + A) (a direct product of multiplicative groups).
(5) U(B) = B \ A.

Proof. We have:
A = Jac(A) ⇔ each element of A is quasiregular ⇔ A = Jac(B) ⇔ (3).

Thus the first three conditions are equivalent. Since B = F + A, we see
that the last three conditions are also equivalent. �
Proposition 2.26. The unitisation of a a radical algebra is a GKŻ algebra.
Moreover, A is a radical algebra if there exists a Hausdorff topology on A such
that limn→∞ an = 0 in this topology for all a ∈ A.

Proof. Assume that A is a radical algebra, and B is the unitisation of A. By
Lemma 2.25, A = Jac(B). Since B/ Jac(B) = B/A ∼= F, it follows that B

satisfies the GKŻ property by Proposition 2.21. Alternatively, it follows from
Lemma 2.25 that U(B) = B \ A, so A is the unique maximal one-sided ideal
of A. By Proposition 2.15, B is a GKŻ algebra.

Assume that A has a Hausdorff topology as described. Let a ∈ A. Since
limn→∞ an = 0, the geometric series

∑∞
n=0 converges in A, and its sum s

satisfies in B: s(1 − a) = (1 − a)s = 1, so 1 − a is invertible in B. By Lemma
2.25, B is a GKŻ-algebra. �

For an application of Proposition 2.26 to distribution algebras see §4.2.

3. On the GKŻ Property of Function Algebras

In this section we investigate the GKŻ property for function algebras, using
ideas related to connections between ideals of a commutative ring and ultra-
filters, although we do not use ultrafilters explicitly. Instead of ideals, we use
maximal subspaces with no units. For ideals and ultrafilters see the classical
book [3], for later results see [12], and for the basics of ultrafilter theory see
[23].

Let A be an algebra over a subfield F of C. We prove that if F contains
all the bounded functions in F

X , then each element of A is a sum of two units
(Proposition 3.4). If A contains also a discrete function, then A is a GKŻ
algebra (Corollary 3.12). The condition that A contains all bounded functions
is implied by the following condition: if f ∈ A, g ∈ F

X , and |g| ≤ |f | (that is,
|g(x)| ≤ |f(x)| for all x ∈ X), then g ∈ A.

For the next Lemma 3.1, see [24] and especially Eric Wofsey’s answer. In
this lemma, the implications (1) ⇒ (2) ⇒ (3) are easily proved. Nevertheless,
we indicate all the relevant implications.
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Lemma 3.1. Let A be a commutative algebra, and let Λ be a linear functional
on A such that Λ(u) �= 0 for all u ∈ U(A) and Λ(1) = 1. Let e be an idempotent
in A. We have:

(1) Let u, v ∈ U(A). Then
(a) ue + v(1 − e) ∈ U(A).
(b) Exactly one of the two scalars Λ(ue) and Λ(v(1 − e)) vanishes.

(2) (a) Λ(e) = 0, 1.
(b) For all u ∈ U(A), Λ(ue) = 0 if Λ(e) = 0, and Λ(u) = Λ(ue) �= 0 if

Λ(e) = 1.
(c) Λ(ue) = Λ(u)Λ(e) for all u ∈ U(A)) and idempotents e ∈ A.

(3) If A is generated by units, then
(a) Λ(ae) = 0 for all a ∈ A and idempotents e in ker Λ, so ker Λ contains

the ideal generated by the idempotents it contains.
(b) Λ(ae) = Λ(a)Λ(e) for all a ∈ A and idempotents e ∈ A.

Proof. (1) (a) (ue+v(1−e)(u−1e+v−1(1−e)) = 1, so ue+v(1−e) ∈ U(A).
(b) Since Λ(e + (1 − e)) = 1, the scalars Λ(e) and Λ(1 − e) cannot both

vanish. Suppose that both of these scalars are nonzero. Then

Λ (Λ(v(1 − e))u(e) − Λ(ue)v(1 − e)) = 0,

although Λ(v(1 − e))u(e) − Λ(ue)v(1 − e) ∈ U(A) by (1) (a), a
contradiction.

(2) (a) follows from (1)(b) applied to u = v = 1.
(b) follows from (1)(b) applied to u and to v = 1.
(c) follows from (2)(b).

(3) (a) follows from (2)(b).
(b) follows from (2)(c).

�

Proposition 3.2. Let A be a function algebra that is generated by units. Suppose
that A contains the indicator functions of all subsets of X. Let Λ be a linear
functional such that Λ(u) �= 0 for all u ∈ U(A) and Λ(1) = 1. If Λ(I{x0}) �= 0
for some x0 ∈ X, then Λ = px0 . Hence Λ(Ix) = 0 for all x �= x0 in X.

Proof. Suppose that Λ(I{x0}) �= 0 for some x0 ∈ X. Since Λ(I{x0}) = 1
by Lemma 3.1(2)(a), we obtain by Lemma 3.1 (3) (b) for every f ∈ A:
Λ(f)Λ(I{x0}) = Λ(f I{x0}) = Λ(f(x0)I{x0}) = f(x0)Λ(I{x0}) = f(x0) =
px0(f). �

Remark 3.3. If a function algebra A on a set X contains the indicators of all
subsets of X, then we may use definition by cases to obtain a function in A.

More precisely, given a partition of X into n disjoint subsets S1, . . . , Sn,
and functions f1, · · · , fn in A, then the function f =

∑n
i=1 fiISi

belongs to A.
�



   26 Page 12 of 19 M. Roitman and A. Sasane Results Math

Proposition 3.4. Let A be a function algebra over a subfield F of C. Assume
that A contains all the bounded functions in F

X . Then every element of A is
a sum of two units.

Proof. Let f ∈ A. We define two functions g and h in F
X as follows:

g(x) =

{

f(x) + 3 if |f(x)| ≤ 2
f(x) − 1 if |f(x| > 2

h(x) =

{

1
f(x)+3 if |f(x)| ≤ 2

1
f(x)−1 if |f(x)| > 2

We have g ∈ A by Remark 3.3, and h ∈ A since h is a bounded function. Also
gh = IX , so g is invertible. We have f = (f − g) + g, and f − g is invertible
since 1

f−g is bounded. Hence f is a sum of two units in A. �
Corollary 3.5. Let A be a function algebra over a subfield F of C. Assume that
if f ∈ A, g ∈ F

X , and |g| ≤ |f |, then g ∈ A. Then A contains all the bounded
functions in F

X , so every element of A is a sum of two units.

Proof. Let g be a bounded function in F
X . Let n be a positive integer such

that |g(x)| ≤ n for all x ∈ X. Thus |g| ≤ nIX , implying that g ∈ A. By
Proposition 3.4, every element of A is a sum of two units in A. �
Remark 3.6. In the setting of the next Proposition 3.7, the ideal L is the set
generated by the indicators of all finite subsets of X. Thus L consists of all
functions t ∈ A such that t(x) = 0 for all x ∈ X, except finitely many elements,
that is, the set t−1(0) is cofinite in X.

Proposition 3.7. Let A ⊆ F
X be a function algebra that contains the indicators

of all singletons of X, and let L be the ideal of A generated by these indicators.
Then
(1) A is a GKŻ algebra ⇔ A/L is a GKŻ algebra (Here A/L is the zero

algebra when L = A).
(2) If there exists in A an element f such that f − λIX is invertible modulo

L for every scalar λ ∈ F, then the only linear functionals Λ on A such
that Λ(u) �= 0 for all u ∈ U(A) and Λ(1) = 1, are the projections px for
x ∈ X. Thus A is a GKŻ algebra.

Proof. (1) By Proposition 3.2, the only linear functionals Λ on A such that
Λ(u) �= 0 for all u ∈ U(A), Λ(1) = 1, and Λ(L) �= (0) are the projections
px for x ∈ X. Hence, A is a GKŻ algebra ⇔ A/L is a GKŻ algebra.

(2) By assumption, the spectrum of f +L in A/L ie empty, so A/L is a GKŻ
algebra by Remark 2.23. By (1), A is a GKŻ algebra.

�
Remark 3.8. Here is an alternative proof of Proposition 3.7 using Proposition
2.24.
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By Proposition 3.7, it is enough to show that if f ∈ A and f is a unit
modulo L, then there exists f0 ∈ U(A) such that f − f0 ∈ L. By assumption,
there exists g ∈ A such that fg = 1 + t for some t ∈ L. Define for x ∈ X:

f0(x) =

{

f(x) if t(x) = 0 (that is, if f(x)(g(x) = 1)
1 if otherwise

Define g0 similarly. Clearly, f0g0 = IX , and if t(x) = 0 for some x ∈ X, then
(f − f0)(x) = 0, so by Remark 3.6, f − f0 ∈ L, as required. �

Corollary 3.9. If the set X is finite, then a subspace of F
X that contains the

indicators of all singletons of X is equal to F
X . Hence, by Proposition 3.7, F

n

is a GKŻ algebra for all positive integers n.

Let F be a subfield of C. A function f ∈ F
X is called discrete if the set

f(X) is discrete in C, and the sets f−1(λ) are finite for all λ ∈ C.

Remark 3.10. If F
X contains a discrete function, then |X| = ℵ0. On the other

hand, if X = {xn (n ∈ N)}, where the elements xn are distinct, and f ∈ F
X ,

then f is discrete if and only if limn→∞ |f(xn)| = ∞.

Theorem 3.11. Let A ⊆ F
X be a unit generated function algebra over a field

F contained in C. Assume that A contains the indicators of all subsets of X,
and a discrete function f . Then the only linear functionals Λ on A such that
Λ(u) �= 0 for all u ∈ U(A) and Λ(1) = 1, are the projections px for x ∈ X.
Thus A is a GKŻ algebra.

Proof. By Proposition 3.7 and in the same notation, it is enough to show that
f − λ1 is invertible modulo L for all λ ∈ F. Define the function fλ : X → C as
follows:

fλ(x) =

{

1 if f(x) = λIX

f(x) − λIX if f(x) �= λIX

Since f is discrete, f(x) = λIX just for finitely many x’s. Hence

(f(x) − λIX) − fλ ∈ L.

Since the function fλ is discrete, there exists m = |min fλ(X)|, and m >
0, implying that | 1

fλ
(x)| ≤ 1

m , so 1
fλ

∈ A, and fλ is invertible in A. Since
f(x) − λIX ≡ fλ (mod L), we infer that f(x) − λIX is invertible modulo L as
required. �

Corollary 3.12. Let A ⊆ F
X be a function algebra over a subfield F of C. As-

sume that A contains all the bounded functions in F
X , and a discrete function

f . Then every element of A is a sum of two units, the only linear functionals
Λ on A such that Λ(u) �= 0 for all u ∈ U(A) and Λ(1) = 1, are projections.
Thus A is a GKŻ algebra.
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Proof. A contains the indicators of all subsets of X since the indicators are
bounded functions. By Proposition 3.4, every element of A is a sum of two
units. We conclude the proof by Theorem 3.11. �
Corollary 3.13. Let A ⊆ F

X be a function algebra over a subfield F of C.
Assume that if f ∈ A, g ∈ F

X , and |g| ≤ |f |, then f ∈ A, and that A contains
a discrete function. Then every element of A is a sum of two units, A contains
all the bounded functions in F

X , and the only linear functionals Λ on A such
that Λ(u) �= 0 for all u ∈ U(A) and Λ(1) = 1, are the projections px for x ∈ X.
Thus A is a GKŻ algebra.

Proof. By Corollary 3.5, A contains all bounded functions. We conclude the
proof by Corollary 3.12. �
Corollary 3.14. Let H be a set of functions in [2,∞)X satisfying the following
conditions:
(1) For each h1, h2 ∈ H there exists h ∈ H such that for all x ∈ X, h1(x) +

h2(x) ≤ h(x).
(2) For each h1, h2 ∈ H there exists t ∈ H such that for all x ∈ X, h1(x)h2(x)

≤ t(x).
Let A = {f ∈ F

X | ∃h ∈ H such that ∀x ∈ X, |f(x)| ≤ h(x)}. We have:
(a) A is a unital F-subalgebra of F

X containing H.
(b) Every element of A is a sum of two units.
(c) If A contains a discrete function, then the only linear functionals Λ on A

such that Λ(u) �= 0 for all u ∈ U(A) and Λ(1) = 1, are projections. Thus
A is a GKŻ algebra.

Proof. (a) By item (1), we obtain inductively that for every f ∈ A and every
integer n ≥ 1, we have |nf | ≤ h for some h ∈ H, so λf ∈ A for all λ ∈ F. It is
now easy to complete the proof of (a). We conclude the proof using Corollary
3.5. �

For an application of Corollary 3.14 to distribution algebras see §4.1.

4. The GKŻ Property for Algebras of Distributions

As usual, D(R) is the space of test functions (compact supported complex-
valued infinitely differentiable functions on R), and D′(R) is the space of dis-
tributions on R. We study three subspaces of D′(R) that are algebras with
convolution as multiplication.

4.1. Algebra of Periodic Distributions

For background on periodic distributions and its Fourier series theory, we refer
the reader to [20, p. 527-529]. For v ∈ R, the translation operator Sv : D′(R) →
D′(R), is given by

〈Svt, ϕ〉 = 〈t, ϕ(· + v)〉 for all ϕ ∈ D(R), and for all t ∈ D′(R).
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A distribution t ∈ D′(R) is called periodic with period v ∈ R \ {0} if Svt = t.
We define D′

v(R) to be the set of the periodic distributions with period v. As
is well known, D′

v(R) is a complex algebra with convolution as multiplication.
Moreover, using Fourier transforms, one obtains that D′

v(R) is isomorphic as
a complex algebra to the algebra S ′(Z) of all complex-valued maps on Z of at
most polynomial growth, that is,

S ′(Z) :=
{

a : Z → C

∣

∣

∣

∃ an integer k ≥ 1 such that
∀n ∈ Z, |a(n)| ≤ (2 + |n|)k

}

.

Since S ′(Z) is a function algebra satisfying the assumptions of Theorem 3.14,
by letting H to be the set of all functions h : Z → [2,∞) of the form h(n) =
(2 + |n|)k for all integers n, where k ≥ 1 is an integer, we obtain

Proposition 4.1. All the linear functionals on the complex function algebra S ′

not vanishing on units and preserving unity, are projections. Hence the algebra
D′

v(R) of periodic distributions with period v ∈ R \ {0} satisfies the GKŻ
property.

4.2. The Algebra Cδ0 + D′
+(R)

Let D′
+(R) denote the set of all distributions t ∈ D′(R) having their distri-

butional support supp t contained in the half line (0,∞). Then D′
+(R) is an

algebra without unity, with convolution as multiplication. Let δ0 denote the
Dirac distribution supported at 0 ∈ R. Clearly, A := Cδ0 + D′

+(R) is a unital
subalgebra of D′(R), and A is isomorphic to the unitisation of D′

+(R).

Proposition 4.2. The unique linear functional on A not vanishing on units
and preserving unity, is the functional induced by the canonical homomor-
phism A → A/D′

+(R) = C. Hence the algebra Cδ0 + D′
+(R) satisfies the GKŻ

property.

Proof. Since A is a subalgebra of the topological algebra D′
+(R), by Proposi-

tion 2.26, it is enough to prove that limn→∞ a∗n = 0 for all a ∈ A. This follows
from that supp (s∗n) ⊆ nsupp s for all positive integers n, and so, for any test
function ϕ ∈ D(R), (supp (s∗n)) ∩ (supp ϕ) �= ∅ for only finitely many n ∈ N.

�
4.3. The Algebra E ′(R)
Let E ′(R) denote the space of all distributions t ∈ D′(R) that have compact
support. Thus E ′(R) is an algebra with convolution as multiplication.

The Dirac distribution with support equal to {a}, where a ∈ R, will be
denoted by δa. We let G = {δa | a ∈ R}. Thus G is a group isomorphic to
(R,+) by the map R → G (a → δa).

For the sake of completeness, in the next Proposition 4.3, we reproduce
the characterization of units in E ′ and its proof from [15]:

Proposition 4.3. [15, Proposition 4.2] U(E ′(R)) = C
•H (a direct product of

two groups).
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Proof. Clearly, C
•H ⊆ U(E ′(R)). For the converse inclusion, suppose that t

is invertible in E ′(R). Then there exists a distribution s ∈ E ′(R) such that
t ∗ s = δ0. By the theorem on supports [7, Theorem 4.3.3, p.107], we have

c.h.supp(t ∗ s) = c.h.supp(t) + c.h.supp(s),

where, for a distribution a ∈ E ′(R), the notation c.h.supp(a) is used for the
closed convex hull of supp a, that is, the intersection of all closed convex sets
containing supp a. So we obtain

{0} = c.h.supp(δ0) = c.h.supp(t ∗ s) = c.h.supp(t) + c.h.supp(s),

from which it follows that c.h.supp(t) = {a} and c.h.supp(s) = {−a} for some
a ∈ R. But then also supp t = {a} and supp s = {−a}. As distributions with
support in a point p are linear combinations of δp and its derivatives δ

(n)
p [20,

Theorem 24.6, p.266], t and s have the form

t =
N

∑

n=0

tnδ(n)
a , and s =

M
∑

m=0

smδ
(m)
−a ,

for some integers N,M ≥ 0 and tn, sm ∈ C (0 ≤ n ≤ N , 0 ≤ m ≤ M).
Then t ∗ s = δ0 implies that N = M = 0 and t0s0 = 1, since for each a ∈ R,
the elements δ

(n)
c , where c ∈ {0,−a, a} and n ≥ 1 is an integer, are linearly

independent over C (if a = 0, then c = 0). It follows that t0 �= 0. Thus we have
that t = t0δa ∈ {cδp : p ∈ R, 0 �= c ∈ C}. This completes the proof. �

Proposition 4.4. E ′(R) is not a GKŻ algebra.

Proof. Using Proposition 4.3, we see that the distributions in span(U(E ′(R)))
have finite support, so span(U(E ′(R))) is properly contained in E ′(R). Since
the distributions δa (a ∈ R) are linearly independent over C, it follows that the
algebra span(U(E ′(R))) is isomorphic to the group ring C[G]. From Corollary
2.10 it follows that E ′(R) is not a GKŻ algebra. �

We can prove directly that E ′(R) is not a GKŻ algebra.
Let ϕ be a function in C∞(R), and let Λ = Λϕ : E ′(R) → C be the

functional Λ(t) = 〈t, ϕ〉 for all t ∈ E ′(R). We have for all a ∈ R: Λ(δa) = ϕ(a).
For all a, b ∈ R: Λ(δa) · Λ(δb) = Λ(δa+b) = a + b, and Λ(δa)Λ(δ(b)) = ϕ(ab).
Hence we have:
(1) Λ preserves units if and only if ϕ(a) �= 0 for all a ∈ R.
(2) Λ(δ0) = 1 if and only if ϕ(0) = 1.
(3) Λ(uv) = Λ(u)(v) for all u, v ∈ U(E ′(R)) if and only if ϕ(a+b) = ϕ(a)ϕ(b)

for all a, b ∈ R.
The only continuous functions ϕ with range contained in R satisfying the
conditions stated in (2) and (3) above are the functions cx, where c ∈ (0,∞).
Thus the function ϕ(x) = 1+x2 for x ∈ R does not satisfy this conditions, but
it does satisfy the properties in (1) and (2). Hence the corresponding functional
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Λϕ preserves units and the unity, but it is not multiplicative. It follows that
E ′(R) is not a GKŻ algebra.

For every ϕ the linear functional on Λ : E ′(R) → C given by Λ(t) =
〈t, ϕ〉 for all t ∈ E ′(R), is continuous, when E ′(R) is equipped with the weak
dual/weak-∗ topology σ(E ′(R), E(R)); see e.g. [20].
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