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Abstract
The problem of algorithmic fairness is typically framed as the problem of finding 
a unique formal criterion that guarantees that a given algorithmic decision-making 
procedure is morally permissible. In this paper, I argue that this is conceptually mis-
guided and that we should replace the problem with two sub-problems. If we exam-
ine how most state-of-the-art machine learning systems work, we notice that there 
are two distinct stages in the decision-making process. First, a prediction of a rel-
evant property is made. Secondly, a decision is taken based (at least partly) on this 
prediction. These two stages have different aims: the prediction is aimed at accuracy, 
while the decision is aimed at allocating a given good in a way that maximizes some 
context-relative utility measure. Correspondingly, two different fairness issues can 
arise. First, predictions could be biased in discriminatory ways. This means that the 
predictions contain systematic errors for a specific group of individuals. Secondly, 
the system’s decisions could result in an allocation of goods that is in tension with 
the principles of distributive justice. These two fairness issues are distinct prob-
lems that require different types of solutions. I here provide a formal framework to 
address both issues and argue that this way of conceptualizing them resolves some 
of the paradoxes present in the discussion of algorithmic fairness.

Keywords Algorithmic fairness · Algorithmic decision-making · Fair machine 
learning · Bias · Discrimination

1 Introduction

In many domains, decision-making is nowadays supported by machine learning 
algorithms. These algorithms generate models that attempt to predict or estimate 
relevant unobserved properties on the basis of historical data. These predictions, in 
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turn, inform the decision-making process. Automating decision-making processes 
in this manner, however, runs the risk of systematizing morally problematic deci-
sion patterns. In particular, when minority groups are the ones who could experi-
ence disproportionate negative consequences of algorithmic decision-making, this 
is cause for concern as it could potentially reinforce existing biases and structural 
inequalities. The recognition of this problem has led to a wide-ranging discussion 
about algorithmic fairness.

Typically, the problem of algorithmic fairness is presented as the problem of 
defining a unique formal criterion that guarantees that a given algorithmic decision-
making procedure is morally permissible. In this paper, we argue that this is concep-
tually misguided and that we should replace the problem thus formulated with two 
more specific sub-problems. An algorithmic decision system can be conceptualized 
as operating in two stages: first, it predicts a relevant property, and second, it recom-
mends a decision based (at least partly) on this prediction. It is important to notice 
that predictions are subject to different normative constraints than decisions. While 
predictions ought to be unbiased with regards to certain protected characteristics, 
decision-making based on these predictions ought to ensure that the resulting alloca-
tion of goods and opportunities is in line with the relevant principles of distributive 
justice. Current approaches to algorithmic fairness have failed to make this distinc-
tion. We here provide a formal framework to address both ethical issues and argue 
that this way of conceptualizing them resolves some of the paradoxes present in the 
discussion of algorithmic fairness.

The paper is organized as follows. In Section 2, we introduce the problem of algo-
rithmic fairness and explain why all of the proposed solutions to it are unsatisfactory. 
In Section 3, we explicate the concept of algorithmic decision systems, and argue for 
a model of algorithmic decision systems which explicitly distinguishes between the 
predictive and the decision component of such systems. In Section 4, we turn to the 
ethical aspects of algorithmic decision-making, first examining the ethics of pub-
lic decision-making more generally, before applying the conclusions of this analysis 
to algorithmic decision systems. In Section 5, we provide a formal framework for 
addressing the sub-problems obtained in the foregoing analysis, which we call the 
problem of predictive fairness and the problem of allocative fairness. In Section 6, 
we demonstrate how this bifurcation of algorithmic fairness problems can help to 
resolve a number of counterarguments to existing criteria of algorithmic fairness. 
Two potential objections are addressed in Section 7.

2  The Problem of Algorithmic Fairness

The topic of algorithmic fairness became known to the wider public when in 2016 
an article was published which analyzed the risk predictions of a tool called COM-
PAS, which is used to support bail and sentencing decisions in some US courts. 
It was shown that the false positive rates of COMPAS’ predictions were much 
higher for African-American than for Caucasian defendants, and that, on the other 
hand, false negative rates were much higher for Caucasian than for African-Amer-
ican defendants (Angwin et  al., 2016). In other words, African-Americans were 
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much more often falsely accused of committing future crimes, while Caucasians 
were much more often falsely deemed innocent. It was concluded that COMPAS 
is racially biased. A discussion ensued about the question of whether disparities in 
error rates do indeed indicate bias, or whether there is a more appropriate criterion 
by which algorithmic decision systems such as COMPAS could be assessed (Flores 
et al., 2016). This marked the beginning of the field of fair machine learning.

While it is rarely made explicit, the problem addressed in much of the litera-
ture on fair machine learning is in fact a demarcation problem. The aim is to pro-
vide a precise criterion that constitutes a necessary and sufficient condition for the 
moral permissibility of an algorithmic decision-making process. This means, a for-
mal criterion that, given a specific state of the world, allows us to rigorously dis-
tinguish algorithmic decision systems that are morally problematic from those that 
are unproblematic. The problem of algorithmic fairness can hence, preliminarily, be 
stated as follows:

The problem of algorithmic fairness For which formal criterion � is it the case 
that the application of algorithmic decision system S in world W is morally permis-
sible if and only if � is satisfied?

Proposals for � abound (see, e.g., Verma & Rubin 2018). Typically, proposals are 
formulated as conditions involving the following variables: the input features �1 that 
are fed into the algorithmic system in order for it to arrive at a decision; the relevant 
protected characteristic A, which typically denotes a trait such as ethnicity, gender, 
or religion; the target variable Y, that is, the relevant property that is being estimated 
by the algorithm, and which is unknown at the time of application; and lastly, the 
outcome C, which denotes the value the algorithm returns after execution.

To illustrate with an example what these variables could stand for, think of a bank 
that uses an algorithmic decision system to determine who to grant a loan to. The 
vector of variables � could here represent a set of variables containing a person’s 
income level ( X1) , credit repayment history ( X2 ), and the like. The variable A could 
represent the applicant’s religion, while Y would most likely stand for whether the 
applicant would pay back their loan. The variable C represents the categories that 
the algorithm can assign to an applicant: creditworthy or not creditworthy.

Table 1 contains brief descriptions of five of the most widely discussed fairness 
criteria. For the sake of simplicity, the criteria are presented as prose descriptions 
instead of mathematical definitions. We will later, where necessary, introduce their 
precise mathematical formalizations. For the moment, however, the prose descrip-
tions should suffice to provide a conceptual exposition of the most important fair-
ness criteria.

Despite the initial plausibility of each of these criteria, they come with a num-
ber of problems. First, none of the criteria seems to adequately capture the moral 

1 Since algorithmic predictions are often based on a large number n of input variables X1, ...,Xn
 , it is 

convenient to use vector notation to denote the input variables and their values. This will be indicated by 
denoting random vectors and their respective values in boldface. Consequently, the input will be denoted 
by the random vector � = (X1, ...,Xn

) , and, accordingly, a particular realization of � by � = (x1, ..., xn) 
(Deisenroth et al., 2020, p. 370). The domain D

�
 of the random vector � is simply the Cartesian product 

D
X1

× ... × D
X
n
 of the respective domains of the individual random variables X1, ...,Xn

.
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permissibility of the application of an algorithmic decision-making process. Often, 
the criteria are motivated by a handful of hypothetical or actual scenarios of algo-
rithmic decision-making for which they give the right verdict, but are not shown 
to generally guarantee the absence of a particular moral wrong. For each criterion, 
forceful counterexamples can be constructed which demonstrate that moral permis-
sibility and the satisfaction of the formal criterion can come apart. A counterexam-
ple can be a clearly permissible case of algorithmic decision-making that fails to 
satisfy the criterion, or a clearly impermissible case that does satisfy it. This means 
that none of the criteria provides both, a necessary and sufficient condition, and, as a 
matter of fact, many provide neither.

Second, the three so-called “statistical criteria”—statistical parity, equalized 
odds, and predictive parity—were shown to be pairwise incompatible when the 
target variable Y is correlated with the protected characteristic A (Kleinberg et al., 
2016; Chouldechova, 2017). This means that, in most realistic scenarios, whenever 
one of the three criteria is satisfied, the other two criteria will be violated. This is an 
unfortunate result for a set of individually plausible fairness criteria.

Third, some of the criteria are constraints on individual algorithmic decisions 
(fairness through awareness, counterfactual fairness), while others are constraints 
on the population-level patterns of decision outcomes (statistical parity, equalized 
odds, predictive parity). This raises the question whether the moral wrongs inherent 
in certain algorithmic decision procedures are constituted at the individual or at the 
collective level, and if on both, how they relate to each other.

These three problems cast doubt on the possibility of solving the problem of 
algorithmic fairness as formulated above. A potential candidate for � would have 
to (1) guarantee that whenever the application of a given algorithmic decision sys-
tem in a given context is wrongful, � is violated, and vice versa, that whenever the 

Table 1  Five of the most popular fairness criteria

Fairness criterion Description

Statistical parity Algorithmic decisions are fair if the probability of 
receiving outcome c ∈ D

C
 is equal across all pro-

tected groups a
i
∈ D

A
.

Equalized odds (Hardt et al., 2016) Algorithmic decisions are fair if the probability of 
receiving outcome c ∈ D

C
 conditional on being in 

class y ∈ D
Y
 is equal across all protected groups 

a
i
∈ D

A
.

Predictive parity (Cleary, 1966) Algorithmic decisions are fair if the probability of 
being in class y ∈ D

Y
 conditional on receiving 

outcome c ∈ D
C
 is equal across all protected groups 

a
i
∈ D

A
.

Fairness through awareness (Dwork et al., 2012) Algorithmic decisions are fair if any two individu-
als i and j with similar input features �(�), �(�) ∈ D

�
 

receive similar outcomes c(i), c(j) ∈ D
C
.

Counterfactual fairness (Kusner et al., 2017) Algorithmic decisions are fair if for each decision it is 
the case that the outcome c ∈ D

C
 would have been 

the same had the protected characteristic a
i
∈ D

A
 of 

the individual been different.
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application is permissible, � is satisfied; (2) be grounded in a moral theory that 
explains away the mutual incompatibility of statistical parity, equalized odds, and 
predictive parity, by specifying the conditions under which the more fundamental 
fairness criterion � implies statistical parity, equalized odds, or predictive parity, 
respectively, and showing that under given conditions, it implies at most one of the 
three; and (3) said theory either shows that, fundamentally, the objects of algorith-
mic fairness are individuals, or that they are groups, and explains away intuitions to 
the contrary. Altogether, this is much to ask of a single fairness criterion.

It seems that the best explanation for the occurrence of the three problems is that 
in fact there are different types of moral wrongs that can occur in a given application 
of an algorithmic decision system, even though the unified use of the term algorith-
mic fairness misleadingly suggests the opposite. This, in turn, implies that different 
moral norms are relevant to algorithmic decision-making.

The apparent inability to specify universally applicable necessary and sufficient 
conditions for the absence of moral wrongs in algorithmic decision-making suggests 
that whether a given moral norm applies might depend on factors outside the mere 
specification of how the algorithm moves from input data to the resulting output. It 
might, first, depend on which aspect of the algorithmic decision-making process one 
is concerned with, and, second, on contextual factors that have a moral bearing on a 
given decision. This would mean that it is impossible to define a single, universally 
applying formal criterion of algorithmic fairness.

Now, if one accepts this explanation, this calls for a principled way of fine-grain-
ing the problem of algorithmic fairness, such that for each aspect of algorithmic 
decision-making that is bound to different normative constraints, we separately look 
for a (possibly context-relative) formal fairness criterion. This will be the task for 
the remainder of the paper.

3  Algorithmic Decision Systems

We begin by specifying what we take algorithmic decision systems to be. This will, 
first, help identify what the relevant normative questions about such systems are, 
and, secondly, delimit the scope of application of our framework. While these days 
algorithms are used in a variety of different ways, we are here concerned with one 
specific, but commonly used type of algorithmic system: a system, deployed in the 
public or semi-public sphere, that recommends or autonomously takes decisions 
affecting individuals, where these decisions are made on the basis of predictions 
from available information about these individuals.

Algorithmic decision systems of this sort are becoming increasingly popular in 
areas such as credit lending, criminal justice, hiring, and fraud detection. Return-
ing to the example from the previous section, a bank could, for instance, use such a 
system to make a decision about whether and at what conditions to offer a loan to a 
loan applicant. The decision would (at least partly) be based on a prediction about 
the probability that the applicant would, if granted, default on the loan. To generate 
the prediction, the system might, as mentioned above, take as input data informa-
tion about the applicant’s repayment history, education, and employment (see Lee & 
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Floridi 2020). Many algorithmic decision systems deployed in other fields work in a 
similar fashion.

Before outlining our model of algorithmic decision systems, it is necessary to 
highlight an important conceptual distinction. In the discussion of algorithmic fair-
ness it is rarely acknowledged that there is a morally relevant difference between 
algorithmic predictions and algorithmic decisions. Even though some authors 
explicitly distinguish between predictions and decisions (see, e.g., Hedden 2021, 
Kleinberg et  al., 2018, Corbett-Davies & Goel 2018), the terms are, especially 
with regard to their moral aspects, often used interchangeably2. A plausible expla-
nation for this is that algorithmic decisions are, as a matter of fact, almost always 
closely tied to predictions, so that one might conclude that there is no need to dis-
tinguish between them. This is, however, a misguided line of reasoning. A predic-
tion—broadly understood as inference of an unknown proposition from a body of 
evidence—and a decision—understood as a choice of an act from a set of alterna-
tives—differ in which properties can meaningfully be applied to each. While we 
can, for instance, speak of the accuracy of a prediction, it would be a category mis-
take to speak of the accuracy of a decision. By the same token, we can speak of the 
expected utility of a decision, but it would be a category mistake to speak of the 
expected utility of a prediction. The same, I contend, is true for moral properties. 
Consequently, we need to apply a model of algorithmic decision systems that is sen-
sitive to this distinction in order to consistently discuss ethical aspects of algorith-
mic decision-making.

Algorithmic decision systems, according to the model proposed here, have two 
components (see Figure 1): a predictive model and a decision function. The predic-
tive model takes the feature values � as input, and, given a vector of learned param-
eters � , outputs a probability assignment to the prediction ŷ . The decision function, 

Fig. 1  Schematic model of an algorithmic decision system

2 This is, for instance, evidenced by the following quotes: “It is always possible to construct a trivial pre-
dictor satisfying equalized odds by making decisions independent of X, A, and R” (Hardt et al., 2016, p. 
6), “If we think of the decision as a binary prediction of the outcome, then b00 and b11 are the values of 
true negatives and true positives, respectively.” (Corbett-Davies 2018, p. 7), “we use the following nota-
tions: [...] d: predicted decision (category) for the individual (here, predicted credit score for an appli-
cant—good or bad)” (Verma & Rubin 2018, p. 2), and Kusner et al. (2017), who first write “predictor 
Ŷ  is counterfactually fair if (...)” (p. 3) but then “while Ŷ  is the actual decision of giving the loan” (p. 5).
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on the other hand, takes this probability assignment f̂
�
(�) as an input (and possibly 

the input values � as well, as the dashed arrow indicates), and, given a cardinal util-
ity function u over different possible outcomes, determines a decision o. This can be 
made mathematically precise. Let � be a random vector (with domain D

�
 ) of input 

variables, Ŷ  a random variable (with domain DŶ ) representing predictions of a target 
variable Y, and O a non-empty set of decision options. We can then define the notion 
of an algorithmic decision system as follows:

Definition 1 (Algorithmic decision system) An algorithmic decision system is an 
ordered pair S = (f̂

�
, du) , consisting of a predictive model f̂

�
∶ � → [0, 1] , where 

f̂
�
(�) is interpreted as the conditional probability of ŷ given � , and a decision func-

tion du ∶ [0, 1] × D
�
→ O , where du(f̂�(�), �) is interpreted as the decision option 

assigned to the combination of prediction f̂
�
(�) and input �.

A few remarks are in order. The predictive model is defined as a function from 
the input features � to a real number in the interval [0, 1]. The output of the function 
represents an estimation of how likely it is that feature values � make the prediction 
ŷ true, and it coincides with the conditional probability of the prediction ŷ given 
input features � . The reason for introducing a new function symbol f̂  is to highlight 
that we consider the predictive model to be a function of � for fixed ŷ . This is con-
ceptually distinct from a probability function P

�
(ŷ ∣ �) , which is a function of ŷ for 

fixed � . This definition of a predictive model is conceptually in line with common 
practice in machine learning, where models are typically conceptualized as func-
tions of the input vector together with a quantification of the uncertainty of a given 
prediction (see Deisenroth et  al., 2020, Ch. 8.2). On our definition, the predictive 
model encompasses simple models, such as logistic regression, but also more com-
plex ones, such as deep neural networks (see Goodfellow et al., 2016, p. 174).

The decision function du(⋅) is defined in analogy to choice functions in deci-
sion and game theory (see, e.g., Bradley 2017,  p. 247; Sen 1971,  p.2, Suzumura 
2009, pp. 20ff). It differs, however, in that the set of available decision options O 
is held fixed, as we assume that a given algorithmic decision system will only be 
applied to one specific type of decision situation. Generally, the decision function 
is a function of the probabilistic prediction f̂

�
(�) , and possibly further information 

encoded in the input vector � . The output is a decision option o from the set of avail-
able decision options O. The decision function can embody principles such as maxi-
mize expected utility or the maximin rule, relative to a fixed cardinal utility function 
u which assigns numerical utilities to outcomes. As is standard in decision theory, 
outcomes are defined as combinations of a given decision option o, input values � , 
and a value y of the target variable (the latter two representing mutually exclusive 
and jointly exhaustive possible states of the world).

To illustrate this with our previous example, imagine an algorithmic system for 
lending decisions. The system will proceed as follows: it will take as input data on 
the applicant’s income ( x1 ) and their repayment history ( x2 ), on the basis of which 
the predictive model estimates how probable it is the applicant defaults on the loan. 
On the basis of this probabilistic prediction f̂

�
(�) , the decision function then outputs 
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a decision, namely whether to grant the applicant the loan or not. Obviously, this is 
an unrealistically simplified model for making lending decisions but it helps clarify 
the concept of an algorithmic decision system.

More formally, the set of input variables � = {X1,X2} contains the two variables 
X1 (income in thousands of dollars), and X2 (repayment history), with respective 
domains

• DX1
= ℕ,

• DX2
= {0, 1, 2} , where 0 stands for “No late payments”, 1 for “Some late pay-

ments”, and 2 for “Many late payments”

Assume that the predictive model is a logistic regression model, which estimates the 
probability that a given applicant will default on their loan according to the follow-
ing equation3:

Now imagine an applicant, Alice (A), who earns $35, 000 annually, and who 
never had any late payments in her repayment history. That is, her input values are 
x
(A)

1
= 35 and x(A)

2
= 0 . We can hence calculate her probability of defaulting on the 

loan according to the predictive model as follows:

According to the predictive model, Alice has a 14.8% probability of defaulting. In 
the next step, this prediction is used to inform the decision on whether to grant Alice 
a loan. To this end, we have to specify the decision function du(⋅) . We will assume 
that there is only one type of loan in terms of credit amount and conditions. The set 
of decision options O hence contains exactly two possible decisions: to reject an 
applicant (“Reject”), or to grant them a loan (“Grant”). The decision function could 
then look as follows:

Recall that by the definition of algorithmic decision systems, the first argument of 
the decision function is the output of the predictive model, that is, p = f̂

�
(�) . This 

means a loan is granted if the applicant has less than 30% probability of default-
ing. Since in our example, Alice’s estimated probability of defaulting is 14.8% , the 
decision function’s output is “Grant”. To sum it up, the algorithmic decision system 
would make the decision to grant her a loan, based on the information that she earns 
$35, 000 per year and that she has no late payments in her repayment history.

(1)f̂
�
(�) = S(−0.05x1 + 1.5x2)

(2)f̂
�
(⟨35, 0⟩) = S(−0.05 ∗ 35 + 1.5 ∗ 0) = 0.148

(3)du(p, �) =

{
Reject if p ≥ 0.3

Grant if p < 0.3

3 The function S(⋅) stands for the logistic function. This detail is of no importance to the subsequent 
arguments in this paper, and only serves the purpose of illustration.
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The model introduced in this section is an idealized representation of algorithmic 
decision systems intended to be general enough to subsume most of the impactful 
systems that are used in the public and semi-public sphere, and yet specific enough 
to allow for a sufficiently deep analysis that does justice to the complexity of the 
ethical questions we attempt to address. We will now turn to the ethical questions 
that arise when a system of the above form is applied to make decisions about 
individuals.

4  Ethical Aspects of Algorithmic Decision‑Making

In order to examine the relevant ethical aspects of algorithmic decision-making, it 
will be useful to take a step back and think about the ethical aspects of public deci-
sion-making more generally. We will use the term public decision in a relatively 
loose sense, denoting two different types of decisions. First, any act or policy imple-
mented by a public body, such as central and local governments, courts, or police 
departments, which allocates certain benefits or incurs certain harms on individual 
persons. Secondly, acts by private actors that involve access to goods which can rea-
sonably be expected to be regulated by the government, such as education, housing, 
employment, or transport. For the purposes of this analysis, we can disregard the 
difference between the two.

There are two ethical concerns about decisions in the public sphere, which per-
sist even if we assume that the decisions are taken without objectionable intentions. 
First, the decisions might be based on biased beliefs4, which can result in discrimi-
natory decisions. Secondly, the decisions might produce unjust distributions of ben-
efits and burdens among different groups in society5. While discrimination is closely 
connected to distributive injustice, it is important to distinguish between the two 
concepts.

A few words are in order about the normative commitments made in this article. 
The aim of this article is to provide a framework that is compatible with many dif-
ferent moral theories. Hence, we try to only make minimal normative commitments. 
We do, however, make a few commitments about concepts relevant to moral theory, 
namely the (non-normative) aspects of what discrimination is, and the (non-norma-
tive) aspects of what distributive justice is. Yet, this leaves open under which cir-
cumstances discrimination is wrongful, and what constitutes an unjust distribution 
of goods. When more specific moral theories are considered, this is done in order to 
illustrate our argument with examples. Where this is the case, this is made explicit.

Discrimination can broadly be understood as wrongfully disadvantaging some-
one because they belong to a certain salient social group (see, e.g., Moreau 2010 

4 Note that the term bias is here used in the sense of cognitive bias (as opposed to behavioral or emo-
tional bias), and refers to a systematic error in forming propositional attitudes.
5 This is sometimes (e.g. in legal texts) called indirect discrimination, even though, as some have argued 
(see, e.g., Eidelson 2015, Ch. 1.2), this is a misleading use of the term discrimination. For this reason, 
we will give preference to the term distributive injustice.
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Eidelson 2015; Lippert-Rasmussen 2014). The property of belonging to such a 
group is what we call a protected characteristic, the group constituted by this shared 
property a protected group. Whether an individual is treated disadvantageously is 
determined relative to some other (actual or hypothetical) individual, who is not a 
member of that group, and who is, by some standard, suitable for comparison. When 
a decision-maker takes an individual’s social group membership as a reason for 
intentionally treating them in a disadvantageous way, we speak of direct discrimina-
tion. However, not all forms of discrimination require an intention to discriminate. 
When rules and policies are set up in a way such that, despite the absence of any 
intentions to this effect, being a member of the group results in experiencing cer-
tain disadvantages, we speak of structural discrimination. Under which conditions 
exactly disadvantageous treatment of the above form is wrong, and why it is when 
it is, is widely debated (see, e.g., Alexander 1992; Eidelson 2015). We will here not 
take a stance on this issue.

Unintentional discrimination can come about when decisions are informed by 
beliefs that are defective in particular ways (see, e.g., Eidelson 2015; Ch. 5, Lippert-
Rasmussen 2014, p. 41 ff). This is the case when beliefs are biased, either in that 
they are inferred from inaccurate generalizations about the properties or behaviors of 
individuals who belong to a specific social group (i.e. stereotyping), or in that they 
are grounded in, for instance, a decision-maker’s emotional reaction to members of 
a specific group, rather than in adequate evidence (i.e. prejudice). When decisions in 
the public sphere are taken, it is hence obligatory to ensure that beliefs that inform 
the decision at hand are arrived at in an appropriate way.

On the other hand, we can say that a decision contributes to creating or amplify-
ing distributive injustice, when the decisions, which typically allocate certain ben-
efits or burdens, do so in a way that disrespects the distributive principle relevant in 
a given context. A strict egalitarian principle, for instance, would require that certain 
goods6 be distributed equally among different groups, while an equality of opportu-
nity principle would require that economic and educational opportunities be equally 
distributed among those with the same level of talent and diligence. It is plausible to 
think that different goods ought to be distributed according to different distributive 
principles. Which principle applies to the distribution of a given good depends on 
the social meaning attributed to the good in question (see, e.g., Walzer 1983).

We can hence say that whether a decision is to count as discriminatory is, at least 
in part, determined by procedural aspects of how the decision came about. Distribu-
tive injustice, in contrast, refers only to the resulting distribution of goods. To make 
this distinction more tangible, consider the following two scenarios. In both, we 
assume that a company is looking to hire a suitable employee. In the first scenario, 
we assume that in order to decide between two applicants, the employer estimates 
how much profit an applicant would generate for the company, were they employed. 
One applicant is female, has a relevant degree from a renowned university, and has 

6 For the sake of brevity, we use the term good to denote any material object or service that is assumed 
to have a (positive or negative) utility to individual persons. This includes what is sometimes called eco-
nomic bads (see, e.g., Varian 2006, p. 41)
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a track record of prestigious jobs which evidence her willingness to work hard. The 
other applicant is male, has no university degree, and has an employment record 
of rather unimpressive jobs. In estimating their profitability, the employer consid-
ers the first applicant’s gender to be a point against employing her, as the employer 
thinks that women are generally not capable of hard work. Nonetheless, due to the 
male applicant’s lack of relevant education and work experience, the female appli-
cant is estimated to be slightly more profitable for the company and is hence offered 
the job. In this scenario, the employer’s decision is informed by a false stereotypi-
cal belief about women, which, according to many theories of discrimination (see, 
e.g, Halldenius 2017; Eidelson 2015) has to be considered wrongful. This means the 
procedural aspects of the decision-making process are such that they could result in 
a potentially discriminatory decision. Nonetheless, this does in this case not result in 
an unjust distribution of employment opportunities.

To contrast the previous example, consider the second scenario (inspired by 
Eidelson 2015, p. 53). In this scenario, we assume the employer knows that if an 
employee has a parent who has herself been a long-term employee of the company, 
this has a positive effect on the new employee’s productivity, and hence the profit-
ability for the company. Assume this is due to the fact that having a parent who is a 
senior employee facilitates certain things for new employees—it might, for instance, 
allow them to get acquainted with the processes within the company more quickly, 
or to get to know people in important roles at a more personal level, and so on. For 
this reason, the employer prefers, all else being equal, applicants who have a parent 
who has been working for their company. Now assume further that non-Christian 
applicants are less likely to have a parent who has been working in the employer’s 
company—possibly because many of the non-Christian applicants happen to be 
children of recent immigrants. This means that the employer’s hiring policy dispro-
portionately denies non-Christians the opportunity to work for the company, even if 
they are, on average, equally talented and diligent. According to a theory of equality 
of opportunity along the lines of, for instance, Rawls (1971), this would hence con-
stitute a case of distributive injustice against the group of non-Christians, despite the 
fact that the decision is not informed by biased beliefs about non-Christians.

In both scenarios, we can criticize the employer’s decision-making procedure as 
wrongful (given we accept the aforementioned moral theories). However, we do so 
on different grounds. In the first case, we can criticize the decision as being made 
on the basis of a belief that is, in a morally relevant way, defective. We cannot, how-
ever, criticize the outcome of the decision. In the second case, we can criticize the 
decision as producing an unfair distribution of economic opportunities among dif-
ferent social groups. We cannot, however, criticize that the employer’s belief about 
the profitability of potential employees is defective, since, by assumption, the belief 
is true.

Let us now transfer the above analysis to algorithmic decision systems. When 
algorithmic decision systems are deployed in order to make or recommend decisions 
in the public sphere, they are bound to the same normative constraints as public 
decisions taken by human decision-makers. Hence, it is necessary to ensure that they 
do not make decisions on the basis of biased beliefs and that they do not make deci-
sions that allocate goods in a way that violates the relevant distributive principle.
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While algorithmic decision systems do not have beliefs in any literal sense, they 
do possess representations of real-world properties. Those are encoded in the input 
features � , and the estimation of the probability that the unobserved property y is 
present. Consequently, the first normative constraint on algorithmic decision sys-
tems is that the probabilistic estimation of y on the basis of � must not be biased7. 
This, unsurprisingly, is a constraint on the first component of an algorithmic deci-
sion system, the predictive model.

When an algorithmic decision system makes a decision that allocates goods, allo-
cating these goods according to the probabilistic prediction of property y and back-
ground information � must be compatible with the relevant distributive principle. 
This means that, for a given decision, the variable Y has to be chosen such that dis-
tributing a good according to it (possibly together with some of the input variables 
in � ) is permissible in the light of the principle. Think, for instance, of the second 
scenario discussed above. Assume that we accept a Rawlsian equality of opportunity 
principle. This principle demands that everyone with the same talent and diligence 
should have the same chance to be offered a given job. If we accept this principle, 
then in the scenario above, hiring decisions cannot (merely) be based on a predic-
tion of the profitability of an applicant, because profitability is influenced by fac-
tors beyond talent and diligence—namely having a parent who also works for the 
employer’s company. Put differently, in the above case predicted profitability alone 
does not provide a permissible reason for a hiring decision. So, the second norma-
tive constraint on algorithmic decision systems is that a decision must be determined 
on the basis of properties (or predictions thereof) that are permissible for a given 
allocation of goods. This, on the other hand, is a constraint on the second compo-
nent of an algorithmic decision system, the decision function.

We can conclude by summarizing that there are two aspects of algorithmic fair-
ness, which are both necessary but individually insufficient for guaranteeing that the 
application of an algorithmic decision system is morally permissible. Consequently, 
we are confronted with two problems of algorithmic fairness: (1) finding a constraint 
on predictive models that ensures that probabilistic predictions are generated in an 
unbiased way, and (2) finding a constraint on decision functions that ensures that 
decisions about the allocation of a given good are based on information and estima-
tions of adequate properties. These two problems will be made more precise in the 
next section.

7 Note that the notion of a distinction between biased and unbiased beliefs presupposes that there is an 
epistemically accessible ground truth from which beliefs can deviate systematically. This is, in particular 
with regards to concepts such as race or gender, not uncontentious (see, e.g., Malinsky & Bright 2021; 
Hu 2021). The discussion of this issue, though, is beyond the scope of this article.
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5  Two Concepts of Algorithmic Fairness: A Formal Framework

The above analysis suggests a way to replace the problem of algorithmic fairness we 
presented in Section 2 with two separate subproblems. Rather than finding a single 
formal criterion that guarantees that, if satisfied, the application of a given algo-
rithmic decision system is morally permissible, we turn the attention to finding two 
different criteria: one criterion that guarantees the absence of biased predictions, 
and another criterion that guarantees that decisions are made in a way such that no 
unjust distribution of goods results. While it seemed infeasible to find a single crite-
rion that guarantees the intuitive permissibility of algorithmic decision systems, the 
bifurcation of the problem into two sub-problems aligns well with moral theory and 
allows us to explain away seeming contradictions.

Begin with the problem of finding a constraint on an algorithmic decision sys-
tem’s predictive model that guarantees the absence of discriminatory bias. We say 
that predictive models are biased when their predictions exhibit specific patterns of 
errors. In other words, biased predictions deviate from the truth in systematic ways. 
To determine whether a predictive model is biased, it is thus necessary to not only 
take the probabilistic predictions themselves into consideration but moreover what is 
actually the case in (some relevant aspect of) the world. The constraint on the algo-
rithmic decision system must hence be formulated relative to a specification of the 
relevant aspects of the world. How informationally rich this specification needs to be 
depends on how exactly one defines the notion of bias. In order to make the present 
framework compatible with as many different approaches as possible, we will here 
not take a stance on which technical notion of bias is to be chosen. To provide two 
examples, however, note that the world could simply be specified as the set of all the 
(relevant) true propositions8, or as a causal model which not only specifies what is 
true, but which also represents mechanisms and processes active in the world9. We 
can now formulate the first subproblem as follows:

The problem of predictive fairness. For which formal criterion � is it the case 
that the predictive model f̂

�
(⋅) is unbiased if and only if f̂

�
(⋅) satisfies � relative to 

world W and protected characteristic A?
Next, consider the problem of allocative algorithmic fairness. The task here is to 

find a constraint that ensures that the distribution of goods resulting from the appli-
cation of the algorithmic decision system is in line with the relevant distributive 
principle. More technically speaking, this means that we want to constrain which 
properties are allowed or need to be correlated with receiving the specific good. 
For example, a strict gender parity principle would require that there be no corre-
lation between an individual’s gender and receiving the good in question. Applied 
to, say, a hiring context, this would ensure that the proportion of female applicants 
offered a job is equal to the overall proportion of female applicants. An equality of 

8 Examples of criteria that take into account whether certain propositions are true are equalized odds and 
group-wise calibration
9 Examples of criteria for the absence of bias that take the relevant causal mechanisms into account are 
counterfactual fairness and no-proxy discrimination (Kilbertus et al., 2017)



668 F. Beigang 

1 3

opportunity principle, on the other hand, would require that receiving the good be 
perfectly correlated with talent and diligence, even if this means that receiving the 
good is to some degree correlated with a protected characteristic. Applied to the hir-
ing example, equality of opportunity would ensure that the applicants which score 
the highest on features such as education, professional experience, or performance 
on relevant tests, are the ones who are offered the job.

As argued above, we assume that how a good ought to be distributed depends on 
the type of good in question. In order to define a formal framework for determining 
whether a decision function produces unfair allocations of a given good G, we hence 
have to specify two sets of properties. The first, �G , denotes the set of properties for 
which it is impermissible to be correlated with the decision outcome du . The second, 
�G , denotes the set of properties for which it is obligatory that they be correlated 
with the decision outcome du . Since an impermissible property cannot be obligatory, 
we assume that the set of impermissible properties and the set of obligatory proper-
ties are disjoint, i.e. �G ∩�G = � . We can now formulate the second subproblem of 
algorithmic fairness as follows10:

The problem of allocative fairness. For which pair of property sets (�G,�G) is 
it the case that the decision function du(⋅) is allocatively fair with regards to a given 
good G if and only if, under the assumption of perfectly accurate predictions, the 
outcomes of du(⋅) are sufficiently correlated with all variables Vi ∈ �G , and are suf-
ficiently uncorrelated with all variables Vj ∈ �G?

In order to operationalize any concrete definition of allocative fairness, we need 
to make precise what we mean by saying that two variables are sufficiently (un)cor-
related. One natural way to do this would be to define two variables to be sufficiently 
correlated whenever the absolute value of some correlation coefficient, such as Pear-
son’s correlation coefficient (see, e.g., Lee Rodgers & Nicewander 1988), is above a 
certain threshold. Conversely, we could define two variables to be sufficiently uncor-
related whenever the absolute value of their correlation coefficient is below a certain 
threshold. There are, however, many different ways in which these notions could be 
explicated, and we will here leave the question open which is the most adequate.

Note that we always evaluate predictive and allocative fairness relative to a 
specific protected characteristic. This means we decide on the protected charac-
teristic relative to which we want to evaluate a given algorithmic decision system 

10 Note that for full generality, we would need to adjust how we frame the problem of allocative fairness 
in two respects. First, we would need to frame it in terms of partial/conditional correlations, rather than 
unconditional correlations. This would mean that �

G
 and �

G
 would contain tuples of properties rather 

than individual properties. This would allow us to express conditional requirements, for instance, that it 
is impermissible that the decision outcome d

u
 is correlated with V

i
 given U

i
 . Formally, this requirement 

would be expressed by stating that (V
i
,U

i
) ∈ �

G
 . While it would still hold that the two sets of tuples are 

disjoint, it would be possible that variables appear in tuples in both, �
G

 and �
G

 . It would thus be possible 
to define allocative fairness conditions in terms of even complex interactions between variables. Sec-
ondly, while in the present framework, correlation is defined as a binary property—either two variables 
are sufficiently correlated or not—we would need to allow the framework to capture different degrees of 
correlation for different variables. For the sake of conceptual clarity, however, and due to the fact that 
most distributive principles can be expressed in the framework presented here, we restrict the discussion 
to unconditional single-threshold correlations.



669

1 3

On the Advantages of Distinguishing Between Predictive and…

beforehand, and then check whether the chosen criteria of predictive and alloca-
tive fairness hold for this specific characteristic. The framework presented here is 
agnostic about what counts as a protected characteristic and how to choose which 
protected characteristics are of special importance in a given situation. These are 
complex questions of their own, in particular in light of the fact that sometimes 
we care about intersectional characteristics, like for instance being a woman of a 
particular ethnicity. While the present framework cannot provide answers to these 
questions, it is general enough to be compatible with different theories about pro-
tected characteristics.

Let us now illustrate the distinction between the two problems with two hypo-
thetical examples. As a first example, consider an algorithmic decision system 
that estimates how probable it is that a given, previously criminal individual, will 
commit another crime within some specified time frame in the future. On the 
basis of this prediction, the system then recommends whether to subject the indi-
vidual to increased monitoring measures.

In this example, we assume that the only input the predictive model of the 
algorithmic decision system takes is information about which neighborhood 
a given individual lives in. We can further assume that it is known that there 
is a correlation between living in a given neighborhood and exhibiting criminal 
behavior, so that this choice of input data has, at least at first glance, some plau-
sibility. The predictive model assigns a 0.2 probability of criminal behavior if the 
individual lives in neighborhood 1, and 0.8 probability if the individual lives in 
neighborhood 2. The decision function of the system is equally simple: it outputs 
the decision to increase monitoring (“✓ ”) of an individual whenever the predic-
tion is greater than 0.7, and the decision to stay with a regular level of monitoring 
(“× ”) otherwise. While this is certainly an unrealistically simplistic algorithmic 
decision system, its simplicity allows us to focus on those aspects that we aim to 
illustrate without getting caught up in technical details.

Table 2 contains information on eight fictitious individuals for whom predictions 
of criminal behavior were generated. In particular, we have information on each 
individual’s ethnicity, which is the protected characteristic relative to which we will 
assess the fairness of the system; on the neighborhood an individual lives in, which 

Table 2  This table contains 
information on the protected 
characteristic (Ethnicity), 
the input variable (Area), 
the “ground truth” of the 
target value (Crime), and 
the predictions and decision 
recommendations of the 
algorithmic decision system

Ethnicity Area Crime ADS

f̂
�
(⋅) d

u
(⋅)

White 1 No 0.2 ✗
White 1 No 0.2 ✗
White 1 Yes 0.2 ✗
White 2 Yes 0.8 ✓
Non-white 1 No 0.2 ✗
Non-white 2 Yes 0.8 ✓
Non-white 2 Yes 0.8 ✓
Non-white 2 No 0.8 ✓
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is the (only) input feature to the predictive model in this example; and on whether 
an individual actually exhibited criminal behavior, which is the target variable for 
which the predictive model estimates a probability. Note that, from the perspective 
of the predictive model, the value of the target variable is not known. Additionally, 
the table describes the probabilistic prediction f̂

�
(⋅) of the algorithmic decision sys-

tem and the decision output generated by the decision function du(⋅)
In order to assess whether the algorithmic decision system is fair according to our 

proposed framework, we have to fill in the variables in the two fairness schemata to 
obtain concrete fairness criteria. Begin with predictive fairness. The protected char-
acteristic relative to which we evaluate whether the predictive model is biased is eth-
nicity (denoted by variable A). The relevant aspect of the world W, relative to which 
we check whether the predictions make systematic errors, is whether an individual 
does in fact commit a crime (denoted by variable Y). As the criterion that ensures 
that the predictive model is not biased with regards to ethnicity, we choose equalized 
odds (Hardt et  al., 2016). This means we require that the average predicted prob-
ability that an individual will not commit a crime, given she does in fact commit a 
crime (and, likewise, the average predicted probability that an individual will com-
mit a crime, given that she does not, in fact, commit a crime) be equal among white 
and non-white individuals. These metrics can be considered the analogs of the false 
positive and the false negative rates for probabilistic predictions. Hence, we substi-
tute � in the schema with the condition that for all ŷ ∈ DŶ , y ∈ DY , and a1, a2 ∈ DA:

Having specified a concrete predictive fairness criterion, we can now assess whether 
the predictive model is biased. A quick look at the data set in Table 2 shows that 
of the four white individuals, two turned out to commit criminal offenses (rows 3 

(4)P(Ŷ = ŷ ∣ Y = y,A = a1) = P(Ŷ = ŷ ∣ Y = y,A = a2)

Fig. 2  Average probabilistic pre-
dictions of a criminal behavior, 
b absence of criminal behavior 
among individuals who actu-
ally go on to commit a crime, 
c criminal behavior among 
individuals who actually do not 
go on to commit a crime
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and 4), as did two of the four non-white individuals (rows 6 and 7). This means the 
prevalence of criminal behavior is equal among the two groups according to our 
data. If, however, we look at the summary statistics of the predictive model f̂

�
(⋅) , we 

can see that on average, the non-white individuals received a probabilistic predic-
tion of crime above 0.6, while the white individuals received on average predictions 
below 0.4 (Figure 2(i)). More specifically, we note that the average predicted prob-
ability of absence of criminal behavior among those who did in fact commit a crime 
is much higher for white individuals than for non-white individuals (Figure 2(ii)). At 
the same time, the average predicted probability of criminal behavior among those 
who do in fact not commit a crime is much higher for non-white individuals than 
for white individuals (Figure 2(iii)). Intuitively speaking, this means that for white 
individuals it is much more probable to be deemed innocent while actually going on 
to commit a crime, whereas for non-white individuals it is much more probable to 
be deemed criminal while actually being innocent. This clearly violates the fairness 
criterion specified above—the predictive model is biased on our definition.

Next, we have to choose a criterion according to which we can examine whether 
the decision function allocates the good in question in a fair way. The “good” at 
issue is in fact an “economic bad”—a burden that comes with negative utility for the 
individual—namely, to be subjected to an increased level of monitoring. Assume, 
hypothetically, that we take the position that a burden such as increased monitor-
ing should be allocated according to a desert-based principle—in other words, the 
individuals subjected to increased levels of monitoring should be those who deserve 
so due to their inclination towards criminal behavior. In accordance with our formal 
framework, this can be formalized as the requirement that Crime ∈ �Monitoring . This 
means that, assuming that the predictive model generates perfectly accurate predic-
tions, the target variable Crime (that is, whether an individual did actually exhibit 
criminal behavior) ought to be correlated with the outcome of the decision function 
du(⋅) . Apart from this, there are no further constraints.

If the predictions were perfectly accurate, then every individual who will in fact 
go on to commit a crime would have received a predicted probability of 1, and every 
individual who will not would have received a predicted probability of 0. Since the 
decision rule du(⋅) recommends increased monitoring for those individuals who have 
a predicted probability of criminal behavior above 0.7, every criminal would be sub-
jected to increased monitoring, whereas no innocent individual would. Hence, the 
decision outcomes would be perfectly correlated with criminal behavior, and we can 
conclude that the decision function satisfies our criterion of allocative fairness.11

To summarize, the algorithmic decision system in this example produces unfair 
decisions. As our analysis has shown, this is due to a biased predictive model. 
Hence, in this case the predictive model should be adjusted so as to not produce such 
biased predictions. There is, however, no reason to change the decision function.

Let us now turn to the second example. Here, we are considering university 
admission decisions. The predictive model of the algorithmic decision system 

11 We could, for instance, use the Pearson correlation coefficient to measure the degree of correlation. 
As we here have a perfect correlation between criminal behavior and increased monitoring, the coef-
ficient would take the maximum value +1 . This would trivially be considered a sufficiently strong cor-
relation.
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estimates how likely it is that a given individual would be successful at the univer-
sity they apply to, where success will be defined as achieving a grade average above 
a specific threshold. The decision function then recommends an admission decision 
on the basis of this estimation. Similar to the previous example, the predictive model 
f̂
�
(⋅) assigns a predicted probability of university success of 0.8 whenever the indi-

vidual had a high school grade of A or B, and 0.4 whenever the high school grades 
were below that. The decision function du(⋅) recommends the decision to admit an 
individual whenever the predicted probability of success if greater than 0.7 (“✓”). 
Table 3 depicts a fictitious data set with information on whether an individual has 
dyslexia (the protected characteristic in this example), their high school grades (the 
input data), and whether they actually turned out to be successful at university (the 
target variable), and what the algorithmic decision system would have predicted and 
decided for each individual.

Table 3  This table contains 
information on the protected 
characteristic (Dyslexia), the 
input variable (High school 
grades), the “ground truth” of 
the target value (University 
success), and the predictions 
and decision recommendations 
of the algorithmic decision 
system

Dyslexia High school 
grades

University 
success

ADS

f̂
�
(⋅) d

u
(⋅)

No A Yes 0.8 ✓
No B Yes 0.8 ✓
No C No 0.4 ✗
No D No 0.4 ✗
Yes B Yes 0.8 ✓
Yes C No 0.4 ✗
Yes D No 0.4 ✗
Yes E No 0.4 ✗

Fig. 3  Average probabilistic 
predictions of a university suc-
cess, b university failure among 
individuals who would actually 
succeed, c university success 
among individuals who actually 
would actually not succeed at 
university
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Examining Figure 3, we notice that individuals without dyslexia have, on aver-
age, a higher predicted probability of academic success. Yet, the average predicted 
probability of not being successful, given that the student would actually have been 
successful, as well as the average predicted probability of being successful, given 
that the student would actually not succeed, are equal across the two groups. By 
our notion of predictive fairness (equalized odds), the predictive model would hence 
count as fair. Assume, for the sake of argument, that we adopt a normative position 
regarding the distribution of educational opportunities that entails that a learning 
difficulty such as dyslexia should not affect one’s chances of being accepted to a 
university programme. Dyslexic students, on this view, should have the same overall 
admission rate as students without dyslexia. More precisely, the decision outcomes 
should not be correlated with the variable Dyslexia, i.e. Dyslexia ∈ �Admission . This 
allocative fairness criterion is clearly violated by the decision function. Out of four 
students with dyslexia, only one is admitted to the university, as compared to two 
out of the four students without dyslexia. This means, the decision outcomes are not 
statistically independent of the variable Dyslexia12. Moreover, this would still be the 
case if the probabilistic predictions were perfectly certain and accurate.

What these two examples show is that two intuitively unfair algorithmic deci-
sion systems can suffer from fundamentally different flaws, and hence require dif-
ferent approaches to rectify these flaws. In the first example, the predictive model 
is biased against non-white individuals, and consequently, the appropriate response 
to this assessment would be to put effort into increasing the predictive accuracy for 
data points of non-white individuals. Changing the decision function would not 
help in any way, and presumably lead to further unforeseen and undesirable con-
sequences. In contrast, in the second example, the predictive model is not biased 
against dyslexic individuals. Yet, basing decisions solely on the predictions of suc-
cess at a given university creates a distribution of admissions which conflicts with 
our principle of allocative fairness. This, however, calls for a very different approach 
than the first example. Here, increasing predictive accuracy would not help to make 
the system fair. What would potentially help, in contrast, would be to change the 
decision function such that it takes not only an individual’s predicted probability of 
success into account but moreover whether the individual has a learning difficulty. 
A fair decision function could, for instance, implement different cut-off thresholds 
for individuals with dyslexia and for individuals without learning disorder13. This 
would counteract the unequal initial conditions for individuals with dyslexia and 
those without.

12 More precisely speaking, the absolute value of the Pearson correlation coefficient of admission and 
dyslexia is 0.26, while we would expect it to be 0 (or close to 0) in a fair algorithmic decision system.
13 The idea of implementing different cut-off thresholds for different protected groups was explored in 
more detail by Kleinberg et al. (2018)
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6  Explaining Away Counterexamples

In this section, we will discuss to which extent the proposed bifurcation of the prob-
lem of algorithmic fairness into the two sub-problems of predictive and allocative 
fairness allows us to resolve or explain away counterexamples to some widely dis-
cussed criteria of algorithmic fairness.

Recall that by stating that none of the proposed constraints capture the notion of 
moral permissibility adequately, we meant that none of the constraints provides a 
necessary and sufficient condition for the moral permissibility of a given algorith-
mic decision system. More precisely, this means that for each of the criteria, we can 
either show that it is not a necessary condition of moral permissibility, by provid-
ing a counterexample of an algorithmic decision system that is morally permissible, 
but which does not satisfy the constraint in question, or we can show that it is not 
a sufficient condition of moral permissibility, by providing a counterexample of an 
algorithmic decision system that is not morally permissible, but which satisfies the 
constraint. In the case of some proposed fairness criteria, both types of counterex-
amples can be constructed.

While the bifurcation of fairness notions will certainly not be able to completely 
resolve the issue that many fairness constraints face plausible counterexamples, it 
may provide an explanation for why, despite the existence of a multitude of plau-
sible fairness constraints, it seems that it is relatively easy to construct tenacious 
counterexamples for each of them. This is so because the constraints were implic-
itly intended to simultaneously play two distinct and incompatible roles, namely to 
act as a fairness constraint on predictions and as a fairness constraint on decisions. 
As argued above, predictions and decisions are subject to different normative con-
straints. Consequently, applying a fairness constraint that is plausible for predictions 
to decisions, or vice versa, will in most cases conflict with our moral judgment. 
This, in turn, means that we have a simple recipe for constructing counterexamples. 
We only need to figure out whether a given constraint is intuitively plausible for 
predictions or decisions, and then construct an example in which we apply the con-
straint to the other.

A second potential explanation can be made with regard to allocative fairness. 
As argued above, allocative algorithmic fairness constraints should be indexed by 
goods, since for different goods different distributive principles hold. This means 
that an allocative fairness constraint that is plausible for an algorithmic decision 
system that allocates one good might not be plausible for an algorithmic decision 
system that allocates a different good. So, a second recipe for constructing coun-
terexamples to fairness constraints is to apply an allocative fairness constraint to an 
algorithmic decision system that is used for a good that is subject to a different dis-
tributive principle than the one corresponding to the fairness constraint.

So, our claim is that if the scope of a given fairness constraint is restricted accord-
ing to the bifurcation of fairness problems proposed above, many counterexamples 
will lose their argumentative force. It would be tedious to check for every alleged 
counterexample whether the above pair of explanations can in fact rebut it, and it 
would be impossible to show more generally that we can do so for every conceivable 
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counterexample. To illustrate the point, however, we can look at a number of promi-
nent counterexamples in order to see whether the explanations are any good.

Let us first consider the fairness criterion statistical parity, which requires that 
the members of different protected groups be equally likely to receive a certain algo-
rithmic outcome, or, in other words, that the algorithmic outcome ought to be sta-
tistically independent of the protected characteristic. Statistical parity was criticized 
as a formal algorithmic fairness criterion in a number of ways. Hardt et al. (2016), 
for instance, argue that statistical parity is too strict a requirement for fairness. Their 
argument is based on the observation that whenever there is a correlation between 
the target variable and the protected characteristic, a perfect predictor, that is, a pre-
dictive model which predicts the target variable with perfect accuracy, will not sat-
isfy statistical parity. If one assumes that perfectly accurate predictions are always 
morally permissible, it follows that statistical parity is not a necessary condition 
for fairness. The example they mention to illustrate this argument is credit lending. 
Imagine a predictive model which predicts with perfect accuracy whether an appli-
cant will default on a loan or not. It would not be reasonable, Hardt et al. contend, 
to consider this model discriminatory and hence unfair, even if the proportion of 
positive predictions were slightly different for loan applicants of different ethnicities.

Another counterexample was put forward by Corbett-Davies et  al. (2017), who 
argue that applying statistical parity to decision-making in an area such as criminal 
justice is not morally optimal. In their example, which is based on the COMPAS 
data set14, statistical parity is applied to an algorithmic decision system for pretrial 
release decisions, that is, for decisions as to whether to detain or release a defend-
ant for the time leading up to the trial. Corbett-Davies et  al. compare two differ-
ent decision functions: one that maximizes expected social utility without any fair-
ness constraints, and one that maximizes expected social utility subject to statistical 
parity with regard to ethnicity. In this scenario, it is assumed that positive utility is 
assigned to detaining defendants who would otherwise commit violent crimes, while 
negative utility is assigned to the social and economic costs incurred through deten-
tion. It can be shown that in this specific case a decision function that satisfies statis-
tical parity yields a lower expected overall utility: such a function can be expected to 
lead to a higher number of violent crimes committed by released defendants as well 
as a higher rate of detentions of individuals who would not have committed violent 
crimes had they been released. If we assume, as Corbett-Davies et al. seem to do, 
that in the domain of criminal justice the expected social utility of a decision has a 
bearing on its moral evaluation, it follows that ensuring statistical parity alone is not 
sufficient for the moral permissibility of an algorithmic decision system.

We can make sense of these two counterexamples with our conceptual distinction 
between predictive and allocative algorithmic fairness. Statistical parity clearly only 
makes sense as an allocative fairness criterion. It only takes into account whether 
the protected characteristic is correlated with the algorithmic outcome. This would 
not be plausible for a constraint on predictions. As argued above, we have to check 
whether predictions deviate from the truth in systematic ways in order to determine 

14 The data set can be found here: https://github.com/propublica/compas-analysis
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whether they are biased. To do so, we obviously have to take information about the 
relevant aspect of the world (that is, at least the individual truth values of the tar-
get variable) into account. Statistical parity does not do this—it merely considers 
whether outcomes are uniformly distributed across protected groups. It is hence mis-
guided to interpret statistical parity as a criterion of predictive fairness. But this is 
exactly what Hardt et al. did: they argued against statistical parity on grounds that it 
possibly prohibits the perfect predictor. This, however, is wrong—statistical parity 
can at best constrain how to move from perfectly accurate predictions to decisions. 
So, the first counterexample loses its force when viewed through the lens of our con-
ceptual distinction.

In order to address the second counterexample, we have to keep in mind that cri-
teria of allocative fairness are indexed by goods. Statistical parity can be represented 
as the pair of property sets (�G,�G) = ({A}, �) . This means that for a certain class 
of goods G, it is impermissible that the decision outcomes are correlated with the 
protected characteristic A, but that there are no requirements as to which variables 
the outcomes must be correlated with. So, the counterexample of Corbett-Davies 
et al. cannot be taken as an argument against statistical parity per se, but at best as an 
argument that, if statistical parity is interpreted as an allocative fairness criterion for 
a certain class of goods, legal punishment does not fall into this category of goods.

Let us now consider an alleged counterexample to equalized odds. Recall that 
equalized odds is the fairness criterion that requires that the probability of a predic-
tion of some target variable, given the actual value of the target variable, be equal 
for all protected groups. This is a generalization of the requirement that the false 
positive and false negative rates of the algorithmic decision system be equal for all 
protected groups. An example of a context in which equalized odds can plausibly 
be applied is criminal sentencing. The criterion was, for example, used to evaluate 
whether algorithmic assignments of risk scores, measuring a defendant’s risk of vio-
lent reoffence, are biased in discriminatory ways. The intuition behind this criterion 
is that if one protected group has a higher false positive rate15 than another, meaning 
that it is more likely for members of one group to actually be innocent and yet be 
deemed to be at high risk of violent reoffence by the algorithm, this reflects a dis-
criminatory bias on part of the model underlying the algorithm.

Gölz et al. (2019) argue against applying equalized odds as a criterion of algo-
rithmic fairness on grounds that under some circumstances, equalized odds conflicts 
with certain game-theoretic axioms of fair division. Most strikingly, they contend, 
equalized odds is largely incompatible with a principle called population monoto-
nicity. This principle states that when a finite amount of goods is to be distributed 
among a number of individuals, removing one individual (for instance because 
the individual decides not to be interested in the goods to be allocated anymore) 
should not negatively affect the allocation of goods to the remaining individuals. 
This means any individual who would previously have received the good in ques-
tion should, after the removal of the other individual, still receive the good. Gölz 

15 A higher false negative rate, on the other hand, reflects a reverse bias: it means that it is more likely to 
actually be a violent reoffender and yet be deemed to be at low risk of reoffending.



677

1 3

On the Advantages of Distinguishing Between Predictive and…

et al. put forward an example along the following lines: imagine a number of student 
loans can be given out to applicants of a given university. Assume further that the 
algorithmic decision system which recommends whether to grant a loan to a student 
or not satisfies equalized odds. That is, for each protected group it is the case that 
of those students in that group who are in fact capable of paying back their loan, an 
equal proportion is granted a loan. Analogously, for each protected group, of those 
students in that group who would in fact default on the loan, an equal proportion are 
denied the loan. Now, if a student from one group, who was granted a loan and is in 
fact capable of paying it back, decides to reject the loan—maybe because the student 
decided to attend a different university -, this might require withdrawing the initially 
granted offer of a loan from students of the other protected groups in order to restore 
equalized odds. It is counterintuitive to think that this would be morally permissible, 
let alone morally required. In other words, it seems that this shows that equalized 
odds is not a necessary condition for moral permissibility.

Whether this argument goes through, however, depends on how equalized odds 
is interpreted. One could interpret it as an allocative fairness criterion: among those 
that fall into something designated as the positive class (in this case, this might be 
the class of students who possess adequate qualifications and are from suitable eco-
nomic circumstances), the probability of a positive or negative prediction ought to 
be the same. (Analogously, this ought to be the case for the negative class as well.) 
Nonetheless, it seems that the more plausible interpretation in this example is to 
take equalized odds as a criterion of predictive fairness. Moreover, this seems to be 
in line with the general conception of the criterion. Many articles discussing equal-
ized odds understand it as requiring equal false positive and false negative rates for 
different protected groups (see, e.g., Moritz et  al., 2016; Hedden 2021). The very 
notion of a true or false positive, however, can not be meaningfully applied to deci-
sion settings. Predictions can turn out to be true or false (or, in the probabilistic case, 
accurate), but decisions can not.

Under this interpretation of equalized odds, this counterexample, too, can be 
explained away using the bifurcation of fairness problems. While the cited axiom 
of fair division, population monotonicity, is concerned with the fair allocation of 
goods, equalized odds can here plausibly be interpreted as a criterion of predic-
tive rather than allocative fairness. Since equalized odds is a criterion of which one 
parameter takes into account what is actually the case in the world (by considering 
the truth value of the target variable Y), it nicely fits the schema of the problem of 
predictive fairness.

The counterintuitive consequence of the example arises only under the assump-
tion that equalized odds here acts as a fairness constraint on decisions to allocate 
goods. When applying a predictive model to determine whether a student would pay 
back their loan, equalized odds can be used to ensure that predictions are not biased. 
The predictions then act as an input to the decision function in order to determine 
whom to grant a loan. If one of the students who is initially granted a loan rejects the 
offer, this has an effect on the distribution of loans, but not on the predictions made 
by the predictive model. So, it does not affect whether the predictive model satisfies 
equalized odds or not. Once again, the counterexample potentially only emerged due 
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to a failure to distinguish between normative constraints on predictions on the one 
hand and normative constraints on the allocation of goods on the other.

These three examples should suffice to show that the conceptual distinction 
between predictive fairness and allocative fairness can help to rebut many of the 
arguments put forward against specific notions of algorithmic fairness. Many of the 
counterexamples arise simply because the scope of the proposed fairness criteria is 
not appropriately delineated. The above examples should count as evidence for the 
claim that at least part of the difficulty of defining adequate criteria of algorithmic 
fairness can be explained by the inappropriate framing of the problem of algorith-
mic fairness as the problem of finding a unique formal criterion for the moral per-
missibility of an algorithmic decision system.

7  Potential Objections

We will now address a number of potential objections to the proposed framework or 
the assumptions on which it is built. The first objection is that the problem of algo-
rithmic fairness was not presented in an adequate form. The second objection is that 
one central premise, namely that we can clearly distinguish predictions from deci-
sions, is false. Let us discuss both potential objections in turn.

7.1  Misrepresentation of the Problem of Algorithmic Fairness

One could argue that the way the problem of algorithmic fairness is presented in this 
paper—namely as an attempt to find a single formal criterion that is a necessary and 
sufficient condition for the moral permissibility of an algorithmic decision system—
does not correspond to the reality of what researchers in the field of algorithmic 
fairness are actually doing. Instead of trying to find a single formal criterion that 
provides a necessary and sufficient condition for fairness, they aim to identify indi-
vidually necessary conditions of moral permissibility, with the greater goal of being 
able to find the list of all those individually necessary conditions which are jointly 
sufficient for the moral permissibility of algorithmic decision systems. Formally rep-
resented, we could say that on this alternative view, researchers are trying to find 
some �i , such that � ≡ �1 ∧ ... ∧ �n , with i ∈ 1, ..., n.

The first thing to be said about this is that, clearly, many of the seminal papers 
in the field of algorithmic fairness can be understood to have the aim to formulate a 
definition of fairness16. Giving a definition typically means providing necessary and 
sufficient conditions. But granted that indeed most authors’ goal is to provide only 
necessary conditions for fairness, would this invalidate the argument made in this 
paper?

The central point this paper is trying to establish is that when considering criteria 
of algorithmic fairness, be they intended as necessary and sufficient, or as necessary 

16 See, e.g., Dwork et al., (2012, p. 2), who speak about “our definition of fairness”, or Kusner et al., 
(2017, p. 16), who speak about giving a “causal definition of fairness”.
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conditions only, one has to take into account whether these criteria are reasonable 
constraints on the predictive model or on the decision function. This determines 
whether in evaluating the algorithmic decision system, we take the output to be the 
prediction ŷ or the decision option o. Given an algorithmic decision system and 
a criterion of algorithmic fairness, we might come to different conclusions about 
whether it satisfies the criterion depending on whether we take ŷ or o to be the rel-
evant output. The aim of proposing a framework for distinguishing between predic-
tive and allocative fairness criteria is to eliminate this kind of ambiguity.

While the assumption that the problem of algorithmic fairness is the search for 
a single formal necessary and sufficient condition of moral permissibility provides 
a motivation for the present project, the value of the proposed framework does not 
hinge on this assumption.

7.2  The Distinction Between Predictions and Decisions

The argument outlined in this paper builds on the assumption that we can, at least 
in most cases, clearly distinguish between predictions—interpreted as forming an 
epistemic attitude towards an unobserved event or property—and a decision—inter-
preted as the choice to pursue one specific course of action. But while in theory the 
distinction can be upheld, there are some arguments to the effect that this distinction 
is less strict. This involves some major philosophical projects such as epistemic util-
ity theory (see, e.g., Pettigrew 2016), or the theory of epistemic democracy (see, 
e.g., List & Goodin 2001; Goodin & Spiekermann 2018). Let us discuss both in 
turn.

The central idea of epistemic utility theory is to apply the mathematical 
machinery of decision theory to the evaluation of epistemic norms. At its foun-
dation sits the assumption that, from an epistemic point of view, all we care 
about is coming to believe true (and only true) propositions. Epistemologists are 
hence concerned with finding norms of belief formation that are optimal with 
regard to this goal. The gist of epistemic utility theory is that the structure of 
the epistemic problem—forming beliefs in a way that is optimal with regard to 
the goal of accuracy—is similar to the problem of practical rationality—taking 
decisions in a way that is optimal with regard to one’s personal preferences or 
values. Since the structure is similar, the methods used to evaluate decision strat-
egies can also be used to evaluate epistemic norms. Nonetheless, epistemic utility 
theory is about norms of rational belief formation, not about rational decision-
making, even though it applies the formal framework of the latter. On our more 
orthodox interpretation of what a decision is, making predictions cannot be seen 
as a species of decision-making, since, as Pettigrew (2016, p. 207) puts it, “we 
don’t choose our doxastic states”. Moreover, adopting a doxastic state does not 
allocate any goods—and this is, at least in the present context, the central type 
of decision from which we wish to distinguish predictions. The project of epis-
temic utility theory, then, does not seem to put into doubt the feasibility of the 
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distinction between predictions and allocative decisions in the context of algo-
rithmic decision-making.

Another philosophical project which seems to blur the lines between decision-
making and belief formation is the theory of epistemic democracy. Here, the cen-
tral notion is that in collective decision-making, there is some fact of the mat-
ter about which choice can be considered to be correct. This, however, has to be 
understood in the following way. For each of the options available to the collec-
tive, it is possible to assign an objective utility. On the basis of this objective util-
ity assignment, we can say that it is true (or false) that a given option is the best 
option available. Choosing the best option can be considered the correct decision, 
choosing any other option an incorrect decision. While this view introduces some 
epistemic aspects into collective decision-making, it would be an overstatement 
to say that the view implies that we cannot clearly distinguish between (purely) 
epistemic practices (like making predictions) and the act of making a decision to 
allocate some good.

Now, even if one were to concede that we can understand belief formation as a 
species of decision-making, or that one can call some decisions (in some epistemic 
sense) correct and others incorrect, this would still not necessarily invalidate our 
thesis. The minimal premise needed in order for the argument outlined in this paper 
to work is that in the context of algorithmic decision-making, it is clear when we are 
concerned with predicting an event or a property, and when we are concerned with 
allocating a good. This does not seem to be put into doubt by either of the two pro-
jects described above.

8  Conclusion

We have argued that the way the problem of algorithmic fairness is commonly pre-
sented is misleading and unlikely to be solvable. This, as we have argued, is due to 
the fact that it conflates two different realms of ethical consideration, namely pre-
dictions and decisions. An algorithmic decision system typically makes (or recom-
mends) decisions on the basis of predictions of some variable of interest. Here, two 
distinct morally problematic phenomena can occur: first, the predictions can exhibit 
discriminatory bias, and second, the decisions can lead to unfair distributions of 
goods or opportunities. We have provided a general formal schema that helps to 
diagnose and address each of these two problems—the problem of predictive algo-
rithmic fairness, and the problem of allocative algorithmic fairness—individually. 
We concluded this paper with a demonstration of how this bifurcation of fairness 
criteria enables us to (at least partially) resolve many of the paradoxes that beset the 
original problem of algorithmic fairness.
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