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Abstract

Protection against disclosure is a legal and ethical obligation for agencies releasing
microdata files for public use. Consider a microdata sample of size n from a finite population
of size n̄ = n + λn, with λ > 0, such that each sample record contains two disjoint types
of information: identifying categorical information and sensitive information. Any decision
about releasing data is supported by the estimation of measures of disclosure risk, which are
defined as discrete functionals of the number of sample records with a unique combination
of values of identifying variables. The most common measure is arguably the number
τ1 of sample unique records that are population uniques. In this paper, we first study
nonparametric estimation of τ1 under the Poisson abundance model for sample records.
We introduce a class of linear estimators of τ1 that are simple, computationally efficient
and scalable to massive datasets, and we give uniform theoretical guarantees for them. In
particular, we show that they provably estimate τ1 all of the way up to the sampling fraction
(λ + 1)−1 ∝ (logn)−1, with vanishing normalized mean-square error (NMSE) for large n.
We then establish a lower bound for the minimax NMSE for the estimation of τ1, which
allows us to show that: i) (λ+1)−1 ∝ (logn)−1 is the smallest possible sampling fraction for
consistently estimating τ1; ii) estimators’ NMSE is near optimal, in the sense of matching
the minimax lower bound, for large n. This is the main result of our paper, and it provides
a rigorous answer to an open question about the feasibility of nonparametric estimation of
τ1 under the Poisson abundance model and for a sampling fraction (λ+ 1)−1 < 1/2.

1 Introduction

Protection against disclosure is a legal and ethical obligation for agencies releasing microdata files
for public use. Any decision about release requires a careful assessment of the risk of disclosure,
which is supported by the estimation of measures of disclosure risk (Willenborg and de Waal
(2001)). Let consider a microdata sample X(n) = (X1, . . . , Xn) from a finite population of size
n̄ > n and, without loss of generality, assume that each Xi is a record containing two disjoint
types of information for the i-th individual: identifying information and sensitive information.
Identifying information consists of a set of categorical variables which might be matchable to
known units of the population. A risk of disclosure results from the possibility that an intruder
might succeed in identifying a microdata unit through such a matching, and hence be able to
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disclose sensitive information on this unit. To quantify the risk of disclosure, sample records
X(n) are typically cross-classified according to identifying variables. That is, X(n) is partitioned
in Kn ≤ n cells, with Yj(X, n) being the number of Xi’s belonging to cell j, for j = 1, . . . ,Kn,
such that

∑
1≤j≤Kn Yj(X, n) = n; we refer to the number of occurrences Yj(X, n) as the sample

frequency of cell j. Then, a risk of disclosure arises from cells in which both sample frequencies
and population frequencies are small. Of special interest are cells with frequency 1 (singletons
or uniques) since, assuming no errors in the matching process or data sources, for these cells
the match is guaranteed to be correct. This has motivated inferences on measures of disclosure
risk that are suitable functionals of the number of uniques, the most common being the number
τ1 of sample uniques which are also population uniques. We refer to Skinner et al. (1994) for a
comprehensive account on measures of disclosure risk.

In this paper, we first study nonparametric estimation of the discrete functional τ1 under
the Poisson abundance model for sample records. The Poisson abundance model is arguably
the most natural, and weak, assumption to infer τ1 (Bethlehem et al. (1990) and Skinner and
Shlomo (2008)). If n̄ = n+ λn, with λ > 0, the model assumes that: i) the population records
(X1, . . . , Xn+λn) can be ideally extended to a sequence X = (Xi)i≥1, of which X(n) is an
observable subsample; ii) the Xi’s are independent and identically distributed as an unknown
distribution (pj)j≥1, where pj is the probability of the j-th cell in which X may be cross-
classified; iii) the sample size is a Poisson random variable N with mean n, in symbols N ∼
Poiss(n). Then, sample records X(N) = (X1, . . . , XN ) result in KN cells with Yj(X, N) being
the sample frequency of cell j, for j = 1, . . . ,KN , such Yj(X, N) ∼ Poiss(npj), Yj1(X, N) is
independent of Yj2(X, N) for any j1 6= j2, and

∑
1≤j≤KN Yj(X, N) = N . Skinner and Elliot

(2002) first raised the problem of nonparametric estimation of τ1 under the Poisson abundance
model, leaving that as an open problem. In particular, they discussed about the feasibility
of nonparametric estimation of τ1, arguing that it is an intrinsically difficult problem. The
problem shares the well-known difficulties of the classical problem of estimating the number of
unseen species (Good and Toulmin (1956) and Efron and Thisted (1976)). Indeed nonparametric
estimators of τ1 may be “unreasonable” since they are subject to serious upward bias and high
variance for small sampling fractions of the population, i.e. (λ+ 1)−1 < 1/2 or, in other words,
for n smaller than a half of the population n̄.

Under the Poisson abundance model for sample records X(n) from the population (X1, . . . , Xn+λn),
we introduce a class of nonparametric linear estimators of τ1 that are simple, computationally
efficient and scalable to massive datasets. We show that our estimators admit an interpretation
as (smoothed) nonparametric empirical Bayes estimators in the sense of Robbins (1956), and
we prove theoretical guarantees for them that hold uniformly for any distribution (pj)j≥1. In
particular, we show that our estimators provably estimate τ1 all of the way up to the sampling
fraction (λ+ 1)−1 ∝ (log n)−1 of the population, with vanishing normalized mean-square error
(NMSE) as n becomes large. Then, by relying on recent techniques developed in Wu and Yang
(2019) in the context of nonparametric estimation of the support size of discrete distributions,
we establish a lower bound for the minimax NMSE for the estimation of τ1. This result allows us
to show that (λ+ 1)−1 ∝ (log n)−1 is the smallest possible sampling fraction of the population
for consistently estimating τ1, and that the estimators’ NMSE is near optimal, in the sense of
matching the minimax lower bound, for a large sample size n. This is the main result of the
present paper, and it provides a rigorous answer to the question raised by Skinner and Elliot
(2002) about the feasibility of nonparametric estimation of τ1 under the Poisson abundance
model and for a sampling fraction (λ+ 1)−1 < 1/2. Indeed our result shows that nonparametric
estimation of τ1 has uniformly provable guarantees, in terms of vanishing NMSE for large n, if
and only if (λ+ 1)−1 ∝ (log n)−1.

Starting from the seminal work of Bethlehem et al. (1990), in the last three decades a full
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range of parametric and semiparametric approaches, both frequentist and Bayesian, has been
proposed for making inference on τ1. See, e.g., Skinner et al. (1994), Samuels (1998) Reiter
(2005), Rinott and Shlomo (2006), Skinner and Shlomo (2008), Manrique-Vallier and Reiter
(2012), Manrique-Vallier and Reiter (2014), Carota et al. (2015) and Carota et al. (2018). A
common thread of these works has been the enrichment of the classical Poisson abundance
model with stronger modeling assumptions: while early approaches were focused on paramet-
ric Bayesian modeling of the random partition induced by the cross classification of sample
records, recent approaches focused on semiparametric modeling of the associations among iden-
tifying variables, typically by means of complex Bayesian hierarchical latent class models. All
approaches in the literature are shown to empirically estimate τ1, even for relatively small sam-
pling fractions, but without any provable guarantees. The approach we propose in the present
paper may be viewed as the natural nonparametric counterpart of the parametric empirical
Bayes approach, in the sense of Efron and Morris (1973), introduced in Bethlehem et al. (1990)
and further developed in Skinner et al. (1994) and Rinott and Shlomo (2006). Besides being
the first nonparametric approach to the estimation of τ1 under the Poisson abundance model,
our approach stands out for being the first to give theoretical guarantees on the performance of
the proposed class of estimators.

The paper is structured as follows. In Section 2 we introduce a class of nonparametric es-
timators for τ1, and we show that they provably estimate τ1 all of the way up to the sampling
fraction (λ + 1)−1 ∝ (log n)−1, with vanishing NMSE for large sample size n. In Section 3 we
show that (λ + 1)−1 ∝ (log n)−1 is the smallest possible sampling fraction of the population
which guarantees a vanishing NMSE, and that estimators’ NMSE is near optimal for large n.
Section 4 contains a discussion of our results, their interplay with other discrete functional esti-
mation problems, and remaining open challenges. Proofs are deferred to the Appendix, whereas
technical results and numerical illustrations are available as online supplementary material.

2 A nonparametric estimator of τ1

We consider an infinite sequence of observations X, and we assume that X(N) = (X1, . . . , XN )
is the microdata sample of random size N under the Poisson abundance model. We suppose
that X(N) is a subsample of (X1, . . . , XM+N ), where M ∼ Poiss(λn), with λ > 0 and inde-
pendent of N . In the present framework (XN+1, . . . , XN+M ) may be seen as the unobservable
population. When sample records are cross-classified according to identifying variables, the
sample (X1, . . . , XN ) results partitioned in KN ≤ N cells with corresponding sample frequen-
cies (Y1(X, N), . . . , YKN (X, N)) such that

∑
1≤j≤KN Yj(X, N) = N . Hereafter we denote by

Zi(X, N) the number of cells with frequency i, and by Zī(X, N) the number of cells with fre-
quency greater or equal than i, for any index i ≥ 1. We are interested in estimating the number
τ1 of sample uniques which are also population uniques, namely the following discrete functional

τ1(X, N,M) =
∑
j≥1

1{Yj(X,N)=1}1{Yj(X,N+M)=1},

where 1 denotes the indicator function. We recall that the frequency counts, defined as Yj(X, N) =∑
1≤i≤N 1{Xi=j}, are distributed according to a Poisson distribution with parameter npj , where

pj is the unknown probability associated to the j-th cell, that is pj ∈ [0, 1] for j ≥ 1 such that∑
j≥1 pj = 1. We will denote by Y (X, N) := (Y1(X, N), . . .) the whole sequence of the cell’s

frequency counts. We remark that, under the Poisson abundance model, the Yj(X, N)’s are
independent random variables variables and, in addition, Yj(X, N +M)−Yj(X, N) is indepen-
dent of Yj(X, N), for any j ≥ 1: these properties follow from standard statistical arguments.
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When the sample size n is fixed, the independence property of the Yj(X, n)’s falls down and
approximation arguments are required to handle such a situation.

To fix the notation, in the sequel we will write f . g, for two generic functions f and g,
if and only if (iff) there exists a universal constant C > 0 such that f(x) ≤ Cg(x); we will
further write f � g whenever both f . g and g . f are satisfied. Let us denote by P the set
of all possible distributions over the set of natural numbers N, i.e. P := {P =

∑
j≥1 pjδj :

pj ∈ [0, 1], with
∑
j≥1 pj = 1}, where δj denotes the Dirac measure centered at j ∈ N. An

estimator of τ1(X, N,M) is understood to be a measurable function ρ̂1(X(N), N) depending
on the available sample X(N) and the actual size of the observed sample N . We will evaluate
the performance of a generic estimator ρ̂1(X(N), N) of τ1(X, N,M), by its worst–case NMSE,
defined as

Eλ,n(ρ̂1(X(N), N)) := sup
P∈P

E[(ρ̂1(X(N), N)− τ1(X, N,M))2]

n2
, (1)

where E[(ρ̂1(X(N), N) − τ1(X, N,M))2] is the mean squared error (MSE) of ρ̂1 under the
model (P, n, λ), also denoted by MSE[ρ̂1(X(N), N)]. Since MSE[ρ̂1(X(N), N)] does not vanish
as n→ +∞, it is common to evaluate the performance of an estimator for τ1(X, N,M) in terms
of the NMSE (see, e.g., Orlitsky et al. (2016)). The NMSE is indeed the MSE of ρ̂1(X(N), N)
normalized by the maximum value of τ1(X, N,M) (which is exactly n, given N = n), and hence
the performance of ρ̂1(X(N), N) is evaluated in terms of the rate of convergence to 0 of the
NMSE as n→ +∞.

A nonparametric estimator for τ1(X, N,M) may be simply deduced by comparing expecta-
tions. Indeed, under the Poisson abundance model, it easy to see that

E[τ1(X, N,M)] =
∑
i≥0

(−1)iλi(i+ 1)E[Zi+1(X, N)]. (2)

See Appendix A.1 for details on the derivation of identity (2). In particular, according to identity
(2) we can define the following estimator of τ1(X, N,M):

τ̂1(X(N), N) =
∑
i≥0

(−1)i(i+ 1)λiZi+1(X, N). (3)

By construction τ̂1(X(N), N) is an unbiased estimator of E[τ1(X, N,M)], that is E[τ̂1(X(N), N)] =
E[τ1(X, N,M)] =

∑
j≥1 npje

−(λ+1)npj . The estimator τ̂1(X(N), N) admits a natural interpre-
tation as a nonparametric empirical Bayes estimator in the sense of Robbins (1956). More
precisely, τ̂1(X(N), N) is the posterior expectation of E[τ1(X, N,M)] with respect to an un-
known prior distribution on the pi’s that is estimated from the Yj(X, N). See Appendix A.2
for details. This observation makes the estimator (3) the natural nonparametric counterpart of
the parametric empirical Bayes estimator, in the sense of Efron and Morris (1973), introduced
in Bethlehem et al. (1990).

Theorem 1 For any positive reals x and y let bxc denote the integer part of x and let x ∨ y
denote the maximum between x and y. If λ < 1, for any P ∈P and for any n > 0

Var[τ1(X, N,M)− τ̂1(X(N), N)]

≤ Ψ2(λ)E[Z1̄(X, N)]− E[Z1(X, N +M)]

λ+ 1
,

(4)

where in (4) we defined Ψ(λ) = (j∗ + 1)λj
∗

such that j∗ = b(2λ− 1)/(1− λ)c ∨ 0.
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The proof of Theorem 1 is deferred to Appendix A.3. According to Theorem 1, for λ < 1 one
has that Var[τ1(X, N,M) − τ̂1(X(N), N)] . n upon noticing that E[Z1̄(X, N)] ≤ E[N ] = n.
That is, in expectation, τ̂1(X(N), N) approximate τ1(X, N,M) to within n. We formalize these
observations in the next corollary.

Corollary 1 If λ < 1 is fixed then Eλ,n(τ̂1(X(N), N)) ≤W (λ)/n, for any n ≥ 1 and for some
constant W (λ) depending only on λ.

Corollary 1 legitimates τ̂1(X(N), N) as an estimator of τ1(X, N,M) under the assumption
λ < 1. Unfortunately, this assumption is unrealistic in the context of disclosure risk assessment,
where the size λn of the unobserved population is typically much bigger than the size n of
the observed sample. The variance bound in Theorem 1 reveals that the assumption λ < 1
is necessary to obtain a finite estimate of the variance. This variance issue of τ̂1(X(N), N) is
determined by the geometrically increasing magnitude of the coefficients (i + 1)(−λ)i. Indeed,
as λ ≥ 1, the estimator τ̂1(X(N), N) grows superlinearly as (i + 1)(−λ)i for the largest i such
that Zi+1(X, N) > 0, thus eventually far exceeding τ1(X, N,M) that grows at most linearly.
Then τ̂1(X(N), N) is useless for λ ≥ 1, thus requiring an adjustment via suitable smoothing
techniques. To fix this issue we follow ideas developed by Good and Toulmin (1956), Efron and
Thisted (1976) and Orlitsky et al. (2016) in the context of the nonparametric estimation of the
number of unseen species. We propose a smoothed version of τ̂1(X(N), N) by truncating the
series (3) at an independent random location L, and then averaging over the distribution of L,
i.e.,

τ̂L1 (X(N), N) = EL

[
L∑
i=1

(−1)i(i+ 1)λiZi+1(X, N)

]
(5)

=
∑
i≥0

(−1)i(i+ 1)λiP(L ≥ i)Zi+1(X, N).

For any λ ≥ 1, as the the index i in (5) increases, the tail probability P[L ≥ j] compensate for
the exponential growth of (i+1)(−λ)i, thereby stabilizing the variance. In the next theorem we
show that for λ ≥ 1 the estimator τ̂L1 (X(N), N) is biased for E[τ1(X, N,M)], and we provide
a bound for the MSE of τ̂1(X(N), N).

Theorem 2 Let τ̂L1 (X(N), N) be the estimator of τ1(X, N,M) defined in (5). If λ ≥ 1 then

E[τ̂L1 (X(N), N)]

= E[τ1(X, N,M)] +
∑
j≥1

e−pjn(λ+1)pjn

∫ λnpj

0

esEL

[
(−s)L

L!

]
ds

(6)

and

MSE[τ̂L1 (X(N), N)]

≤ (EL[(L+ 1)λL])2E[Z1̄(X, N)]− E[Z1(X, N +M)]

λ+ 1

+

∑
j≥1

e−pjn(λ+1)pjn

∫ λnpj

0

esEL

[
(−s)L

L!

]
ds

2

.

(7)

The proof of Theorem 2 is in Appendix A.4. Choosing different smoothing distributions for
L yields different estimators for τ1(X, N,M). Following Orlitsky et al. (2016), we consider two
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distributions for L: i) a Poisson distribution with parameter β > 0; ii) a Binomial distribution
with parameter (x0, 2/(λ+ 2)). To choose the parameter β of the Poisson distribution and the
parameter x0 of the Binomial distribution, one should look for β̃ and x̃0 which minimizes the
MSE bound (7). Once the values of β̃ and x̃0 are determined explicitly, we are able to obtain
a “limit of predictability” for τ̂L1 (X(N), N). That is, for some δ > 0 we are able to specify
the maximum value of the sampling fraction λ for which Eλ,n(τ̂L1 (X(N), N)) < δ. This gives a
provable (performance) guarantee for the estimation of τ1(X, N,M) in terms of λ.

Proposition 1 Let L be a Poisson random variable with parameter β. Then

MSE[τ̂L1 (X(N), N)] ≤ e−2βn2 + ne2β(2λ−1). (8)

The right-hand side of (8) in minimized by setting β̃ = log(n/(2λ − 1))/(4λ), for any λ ≥ 1.
Moreover, if L is a Poisson random variable with parameter β̃ then

En,λ(τ̂L1 (X(N), N)) ≤ A(λ)

n1/(2λ)
, (9)

and for any δ ∈ (0, 1)

lim
n→+∞

max
{
λ : En,λ(τ̂L1 (X(N), N)) ≤ δ

}
log(n)

≥ 1

2 log(A/δ)
(10)

where A(λ), is continuous in [1,+∞) with limλ→+∞A(λ) = 1 and A = maxλ≥1A(λ) < +∞.

See Appendix A.5 for the proof of Proposition 1. A result similar to Proposition 1 holds true
when the random variable L is assumed to be distributed according to a Binomial distribution.
This result is stated in the next proposition, and its proof is omitted since it is along lines similar
to the proof of Proposition 1.

Proposition 2 For any positive reals x and y let bxc denote the integer part of x. Let L be a
Binomial random variable with parameter (x0, 2/(λ+ 2)). Then

MSE[τ̂L1 (X(N), N)] ≤ n
(

λ

λ+ 2

)2x0
[

310x0/3 + n

(
λ

2(λ+ 1)

)2
]

(11)

and the choice x̃0 =
⌊
(3/10) log3(nλ2/((λ+ 1)(λ2(310/3 − 1)− 4λ− 4)))

⌋
minimizes the right-

hand side of (11), for any λ ≥ 1. Moreover, if L is a Binomial random variable with parameter
(x̃0, 2/(λ+ 2)) then

En,λ(τ̂L1 (X(N), N)) ≤ C(λ)

n3 log3(1+2/λ)/5
, (12)

and for any δ ∈ (0, 1)

lim
n→+∞

max
{
λ : En,λ(τ̂L1 ) ≤ δ

}
log(n)

≥ 6

5 log(3) log(C/δ)
(13)

where C(λ) is continuous in [1,+∞) with limλ→+∞ C(λ) = 1 and C = maxλ≥1 C(λ).
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3 Optimality of the proposed estimators

In Section 2 we have introduced two different estimators of τ1(X, N,M), and we have provided
guarantees of their performance, as n→ +∞, in terms of the NMSE. We have already remarked
that the case λ ≥ 1 is the most interesting one for estimating the disclosure risk τ1(X, N,M).
Indeed in the context of disclosure risk assessment the fraction of the unobserved sample λ is
usually much larger than 1. Throughout the section we assume that λ ≥ 1 and we prove that the
proposed estimator τ̂L1 (X(N), N) is essentially optimal. More precisely we determine a lower
bound for the best worst–case NMSE, defined as

E (λ, n) := inf
ρ̂1

Eλ,n(ρ̂1(X(N), N)) (14)

where the infimum in the previous definition runs over all possible estimators ρ̂1 of τ1(X, N,M).
We will then see that the determined lower bound essentially matches with the upper bound
(9). In the sequel we refer to E (λ, n) as the (normalized) minimax risk. The theorem provides
us with a lower bound for E (λ, n).

Theorem 3 Assume that lim infn→+∞(1 + λ) > e2. Then, there exists a universal constant
K > 0 such that, for any n sufficiently large, we have that

E (λ, n) ≥ K ·


1 if λ+ 1 > log(n)

1+λ
log(n)

(√
log(n)

n(1+λ)

)e2/(1+λ)

if λ+ 1 ≤ log(n)
(15)

According to Theorem 3, it is clear that the lower bound on the (normalized) minimax risk
goes to zero if λ+ 1 = o(log(n)) and the rate is provided by the following Corollary.

Corollary 2 Assume that 1 + λ > e2. Then there exist universal constants c > 0 and c′ > 0
such that, for any n sufficiently large, we have that

E (λ, n) ≥ c 1

nc′/λ
. (16)

Corollary 2 is a consequence of Theorem 3, indeed, when λ + 1 > log(n) the two lower
bounds in (15) and (16) are constants, whereas if λ + 1 ≤ log(n) it is easy to observe that the
leading term in (15), as n → +∞, is of order 1/nc

′/λ as in (16) for some c′ > 0. One may
easily see that every constant c′ > e2 works in (16). Corollary 2 provides us with a lower bound
for the NMSE of any estimator of the disclosure risk τ1(X, N,M). The lower bound (16) has
an important implication: without imposing any parametric assumption on the model, one can
estimate τ1(X, N,M) with vanishing NMSE all the way up to λ ∝ log n. It is then impossible to
determine an estimator having provable guarantees, in terms of vanishing NMSE, when λ = λ(n)
goes to +∞ much faster than log(n), as a function of n. By the “limit of predictability” (10)
determined for the estimator τ̂L1 (X(N), N), we conclude that the proposed estimator is optimal,
because its “limit of predictability” matches (asymptotically) with its maximum possible value
λ ∝ log(n).

3.1 Guideline for the proof of Theorem 3

We present the main ingredients for the proof of Theorem 3. Hereafter we will write En,λP (resp.

P
n,λ
P ) in order to make explicit the dependence of the expected value (resp. the probability

measure) w.r.t. P , the parameter n of the Poisson random variable N and λ. The proof of
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Theorem 3 relies on the method of the two fuzzy hypotheses (Tsybakov (2009)), which allows to
reduce the proof of Theorem 3 to the problem of finding the best polynomial approximation to
some functions. A similar approach has been recently considered by Wu and Yang (2016, 2019)
in the context of nonparametric estimation of the support size of discrete distributions. Some
steps of the proof of Theorem 3 are similar to that of Wu and Yang (2016), and therefore they
are omitted here, in favor of highlighting only the key differences. For the sake of completeness,
the whole proof is offered in the online supplementary material.

Lemma 1 and Lemma 2 below are used in the proof of Theorem 3, and they constitutes the
essential difference between the proof of Theorem 3 and the proof of the minimax lower bound
in the work of Wu and Yang (2016). Lemma 1 and Lemma 2 are proved in Appendix B.1 and
Appendix B.2, respectively.

Lemma 1 The following identity holds true

E (λ, n) = inf
ρ̂

sup
P∈P

n−2E
n,λ
P [(τ1(X, N,M)− ρ̂(Y (X, N)))2],

where the infinimum in the previous equation is understood to be taken with respect to all mea-
surable maps ρ̂ : NN → R.

Remark that the definition of the minimax risk in (14) allows for estimators depending on
the whole sample X(N), while τ1(X, N,M) depends only on the frequencies Y (X, N + M)
and Y (X, N). Thus, in view of Lemma 1, there should be no gain of information in using
estimators depending on X(N) over estimators depending only on the frequencies Y (X, N).
Investigation of the proof of Lemma 1 shows that for all estimators τ̂1, the estimator ρ̂ obtained
by symmetrizing τ̂1 and taking the expectation conditional on Y (X, N) has always risk smaller
or equal than τ̂1. This may be viewed as a form of Rao-Blackwellisation of τ̂1, where Y (X, N)
acts as a sufficient statistics for τ1, in the sense that ρ̂ never depends on the distribution of X1.

Besides being of self-interest for the reasons previously invoked, Lemma 1 crucially makes
the proof of Theorem 3 easier by remarking that (X, k) 7→ Y (X, k) is nicely distributed under
the Poisson model. The Lemma 1 constitutes the starting point of the proof of Theorem 3.
The rest of the proof consists on applying the reduction scheme of Wu and Yang (2019) Wu
and Yang (2016) to the expression in Lemma 1. The major difference with the aforementioned
paper is that we have to find the best, uniform on some interval, polynomial approximation of
the map x 7→ exp(−2Bx) for arbitrary B > 0 instead of the map x 7→ log(x) considered in Wu
and Yang (2016).

To be more precise, for a, b ∈ R, we let C[a, b] denote the space of continuous functions on
[a, b], and for any L ∈ Z+ we let PL[a, b] ⊂ C[a, b] denote the space of polynomials of degree
no more than L on [a, b]. For any f ∈ C[a, b], the best polynomial (of degree at most L)
approximation to f is defined as

EL(f, [a, b]) := inf{sup{|f(x)− q(x)| : x ∈ [a, b]} : q ∈ PL[a, b]}. (17)

Then, our main result on the best, uniform on some interval, polynomial approximation of the
of the map x 7→ exp(−2Bx), is stated in the following lemma, proved in Appendix B.2. The
rate of approximation is given in term of the function ϕ : R+ → R+ such that

ϕ(x) := 1−
√

1 + x2 + x arcsinh(x). (18)

1We want to emphasize that τ1 is not a parameter of the model, and thus the notion of a sufficient statistics
is here ambiguous.
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Lemma 2 Let ξ > 1 and gξ : [ξ−1, 1] → R+ be such that gξ(x) := exp{−2Bξx} with Bξ =
(ξ/2)(1 + O(ξ−1)) as ξ → ∞. Then, for every ζ > 0, there exist constants K, ξ0 > 0 such that
for all ξ > ξ0 and all 0 < L ≤ ζξ,

EL(gξ, [ξ
−1, 1]) ≥ K ·

{
1 if 0 < L ≤

√
ξ/2,

√
ξ
L exp

{
− ξ

2ϕ
(

2L
ξ

)}
if
√
ξ/2 < L < ζξ.

It is worth discussing how the previous result can be of interest beyond its use in this paper.
Approximation theory usually focuses on the regime L/ξ →∞, where the error of approximation
is known to be super-exponential in L. This regime is omitted here since it is a classical result
and we only need the regime L/ξ → γ for some constant γ ≥ 0 in the proof of Theorem 3.
Approximation in the latter regime is much more difficult, as emphasized by Lemma 2, and was
not studied before to the best of our knowledge.

The proof of Lemma 2 uses the well-known duality between best polynomial approxima-
tion and best trigonometric polynomial approximation. Using the orthogonality of trigono-
metric polynomials, we are able to reduce the problem into finding a good lower bound on
maxK∈NKe

−CIL+4K(C), where Ik are the modified Bessel function of the first kind (see (Olver
et al., 2010, pg. 248)), and C ≈ ξ/2. Then, the most delicate and final step consist on es-
tablishing the double asymptotic of Ik(C) as k → ∞ and C → ∞, with the constraint that√
C ≤ k . C.

Finally, we note that the lower bound in Lemma 2 is essentially sharp, i.e., up to determining
the value of the constantK. The matching upper-bound is derived in the supplementary material
by analyzing the rate of convergence of Chebychev polynomials approximation of increasing
orders2.

4 Discussion

Skinner and Elliot (2002) first raised the problem of nonparametric estimation of τ1 under the
Poisson abundance model for sample records, and they left that as an open problem in the
field of disclosure risk assessment. In this paper we first considered the problem of Skinner
and Elliot (2002), and we presented a rigorous solution to it. In particular, we introduced a
class of nonparametric estimators of τ1, and we gave uniform theoretical guarantees for them.
Firstly, we showed that our estimators provably estimate τ1 all of the way up to the sampling
fraction (λ + 1)−1 ∝ (log n)−1, with vanishing NMSE as n becomes large. Secondly, and most
importantly, we proved that: i) (λ+ 1)−1 ∝ (log n)−1 is the smallest possible sampling fraction
of the population for consistently estimating τ1; ii) estimators’ NMSE is near optimal, in the
sense of matching the minimax lower bound, for large n. Besides being the first study on
nonparametric inference for τ1 under the Poisson abundance model, our work is the first to
provide theoretical guarantees on the estimation of τ1. Indeed, despite the large number of
contributions to the estimation of τ1, all of them proposed parametric and semiparametric
approaches that empirically estimate τ1, but without provable guarantees. In particular, to be
best of our knowledge, none of the contributions considers a rigorous study on the interplay
between the estimation of τ1 and λ.

The problem of estimating τ1 belongs to a broad class of discrete functional estimation prob-
lems, commonly known as species sampling problems. Consider a population of individuals
(Xi)i≥1 belonging to different “species” (Sj)j≥1 with unknown proportions (pj)j≥1. Given an
initial observable samples of size n from the population, species sampling problems refer to

2The upper-bound is given for completeness, but it is not needed for the purpose of establishing the minimax
lower bound.
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the estimation of features of the population or features of λn additional unobservable samples.
Recent noteworthy works on species sampling problems are concerned with the estimation of
the following discrete functionals: support size (e.g., Valiant and Valiant (2013) and Wu and
Yang (2019)); entropy (e.g., Jiao et al. (2015) and Wu and Yang (2016)); missing mass (e.g.,
Ohannessian and Dahleh (2012), Mossel and Ohannessian (2019) and Ben-Hamou et al. (2017));
number of unseen species (e.g. Efron and Thisted (1976) and Orlitsky et al. (2016)). Interest
in these quantities first appeared in ecology, and it has grown in the recent years driven by
challenging applications in biosciences, physical sciences, machine learning, engineering, theo-
retical computer science, information theory, etc. Our study on τ1 contributes to these recent
literature, by studying a new discrete functional of interest in the context of disclosure risk
assessment.

While τ1 is known to be the most common measure of disclosure risk (Bethlehem et al.
(1990) and Skinner et al. (1994)), one might consider alternative measures by broadening the
definition of “uniqueness”. For instance, Fienberg and Makov (1998) considered a measure of
disclosure risk defined in terms of the number of cells with frequency less or equal than 2. In
general, one may consider

τrN ,rM (X, N,M) =
∑
j≥1

1{Yj(X,N)≤rN}1{Yj(X,N+M)≤rM},

namely the number of cells with sample frequency less or equal than rN which have population
frequency less or equal than rM . A nonparametric estimator of τrN ,rM and an upper bound for
the corresponding NMSE can be derived along lines similar to those applied in this paper for
τ1. Regarding a lower bound on the NMSE, however, things get more challenging. Technically,
the main difference would be in the approximation theory involved. Instead of finding the best
(uniform) polynomial approximation to x 7→ exp{−Bx} on some interval, we would have to
find the best polynomial approximation to x 7→ q(x) exp{−Bx} where q is some polynomial.
As we are concerned with lower bounds, this turns out to be a much more challenging problem.
The interest in τrN ,rM is not only motivated in context of disclosure risk assessment, but also in
the broad area of biosciences. Indeed, the discrete functional τ0,rM corresponds to the number
of unseen rare species in additional unobservable samples, which is a natural refinement of
the number of unseen species considered in Orlitsky et al. (2016). Work on these problems is
ongoing.

A Nonparametric estimators of the disclosure risk: proofs

For the sake of simplifying notations, throughout this section we write τ1 instead of τ1(X, N,M),
τ̂1 instead of τ̂1(X(N), N), and τ̂L1 instead of τ̂L1 (X(N), N).

A.1 Details for the determination of the estimator (2)

First observe that, according to the definition of τ1, we can write the following identities

E[Zi(X, N)] =
∑
j≥1

P(Yj(X, N) = i) =
∑
j≥1

e−npj
(npj)

i

i!
. (A.1)

Then E[τ1] =
∑
j≥1P(Yj(X, N) = 1)P(Yj(X, N+M)−Yj(X, N) = 0) =

∑
j≥1 npje

−npje−λnpj ,

and by a direct application of Taylor series expansion of the exponential function e−λnpj , for

10



any j ≥ 1, we can write the following expression

E[τ1] =
∑
i≥0

(−1)iλi

i!

∑
j≥1

(npj)
i+1e−npj =

∑
i≥0

(−1)iλi(i+ 1)E[Zi+1(X, N)],

where the last equality follows from a direct application of the identity displayed in (A.1).

A.2 Empirical Bayes approach to determine (3)

The estimator τ̂1 admits a natural interpretation as a nonparametric empirical Bayes esti-
mator in the sense of Robbins (1956), i.e., it is the posterior expectation of E[τ1] with re-
spect to an empirical nonparametric prior distribution on the unknown pj ’s. Specifically, note

that E[τ1] =
∑+∞
j=1 e

−(λ+1)npjnpj , and assume that the pj ’s are independent and distributed
according to the empirical cumulative distribution function G(p) of pi1 , . . . , pik , correspond-
ing to the k distinct cells arising from the cross classification of the initial sample, namely
G(p) := k−1

∑
1≤t≤k 1{pit≤p}. Consider a cell j containing x individuals out of the initial

sample of size N , where x ≥ 0, then from Equation (9) of Robbins (1956)

ϕn(x) :=

∫
e−(λ+1)npnpe−np (np)x

x! G(dp)∫
e−np (np)x

x! G(dp)
(A.2)

is the Bayes estimator of the quantity e−(λ+1)npjnpj appearing E[τ1], for a cell j which contains
x individuals out of the initial sample of size N . Now, rewrite ϕn(x) as

ϕn(x) =

∫
e−(λ+1)npnpe−np (np)x

x! G(dp)∫
e−np (np)x

x! G(dp)

=

∑
i≥0

(−(λ+1))i

i!x! (x+ i+ 1)!
∫ (np)x+i+1

(x+i+1)! e
−npG(dp)∫

e−np (np)x

x! G(dp)

=

∑
i≥0

(−(λ+1))i

i!x! (x+ i+ 1)!E[Zx+i+1(X, N)]

E[Zx(X, N)]
.

Then the nonparametric Bayes estimator of E[τ1] is obtained summing up over all the possi-
ble cross classification of the observed cells, where we replace E[Zx(X, N)] by their empirical
counterparts Zx(X, N). Specifically, we can write the following

τ̂1 =
∑
x≥0

Zx(X, N)

∑
i≥0

(−(λ+1))i

i!x! (x+ i+ 1)!Zx+i+1(X, N)

Zx(X, N)

=
∑
i≥0

(i+ 1)Zi+1(X, N)

i∑
x=0

i!

(i− x)!x!
(−(λ+ 1))i−x

=
∑
i≥0

(−1)iλi(i+ 1)Zi+1(X, N),

which coincides with the estimator (3) obtained by means of the identity displayed in (3).
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A.3 Proof of Theorem 1

Because of the independence of the random variables {Yj(X, N)}j≥1, we may write the variance

Var(τ1 − τ̂1) as follows

Var(τ1 − τ̂1)

=
∑
j≥1

Var

∑
i≥0

(−1)i(i+ 1)λi1{Yj(X,N)=i+1} − 1{Yj(X,N)=1}1{Yj(X,N+M)=1}


=
∑
j≥1

E

∑
i≥0

(−1)i(i+ 1)λi1{Yj(X,N)=i+1} − 1{Yj(X,N)=1}1{Yj(X,N+M)=1}

2

=
∑
j≥1

E

∑
i≥1

ai1{Yj(X,N)=i+1} + 1{Yj(X,N)=1}
(
a0 − 1{Yj(X,N+M)=1}

)2

,

where we have defined ai := (−1)i(i+ 1)λi. Now, observe that the events {(Yj(X, N) = i)}i≥1

are all disjoint, hence the variance Var(τ1 − τ̂1) may be rewritten as

∑
j≥1

E

∑
i≥1

a2
i1{Yj(X,N)=i+1} + 1{Yj(X,N)=1}

(
a0 − 1{Yj(X,N+M)=1}

)2
=
∑
j≥1

E

∑
i≥0

a2
i1{Yj(X,N)=i+1} − 1{Yj(X,N)=1}1{Yj(X,N+M)=1}


observing that a0 = 1. Thus, simple calculations show that we can bound Var(τ1 − τ̂1) as

Var(τ1 − τ̂1) ≤ max
j≥0
|aj |2E[Z1̄(X, N)]−

∑
j≥1

e−n(λ+1)pjnpj

= max
i≥0
|ai|2E[Z1̄(X, N)]− 1

λ+ 1
E[Z1(X, N +M)]. (A.3)

It remains to show that the ai’s have a maximum for λ < 1, which is attained when i = i∗ :=
b(2λ− 1)/(1− λ)c ∨ 0. Hence the thesis follows by (A.3), since maxi≥0 |ai| = Ψ(λ).

A.4 Proof of Theorem 2

First we focus on the determination of the bound (6), concerning the bias. Remember the
definition of both τ̂L1 and τ1 to write

E[τ̂L1 − τ1] = −E

∑
i≥0

(−1)i(i+ 1)λiP(L ≤ i− 1)Zi+1(X, N)


where we have observed that non–smoothed estimator τ̂1 is unbiased. It is now easy to see that

E[τ̂L1 − τ1] = −E

∑
i≥0

(−1)i(i+ 1)λiP(L ≤ i− 1)Zi+1(X, N)


12



= −E

∑
i≥1

(−1)i(i+ 1)λiP(L ≤ i− 1)
∑
j≥1

1{Yj(X,N)=i+1}


= −

∑
i≥1

∑
j≥1

(−1)i(i+ 1)λiP(L ≤ i− 1)P(Yj(X, N) = i+ 1)

= −
∑
i≥1

∑
j≥1

(−1)i(i+ 1)λiP(L ≤ i− 1)e−npj
(npj)

i+1

(i+ 1)!

= −
∑
j≥1

e−npjnpj
∑
i≥1

(−1)i
(λnpj)

i

i!
P(L ≤ i− 1). (A.4)

Now we focus on the evaluation of the sum with respect to i. If we set y := λnpj then

∑
i≥1

(−y)i

i!
P(L ≤ i− 1) =

+∞∑
i=1

(−y)i

i!

i−1∑
k=0

P(L = k) =

+∞∑
k=0

P(L = k)

+∞∑
i=k+1

(−y)i

i!

and remembering the definition of the incomplete gamma function we obtain that

∑
i≥1

(−1)i
yi

i!
P(L ≤ i− 1) =

+∞∑
k=0

P(L = k)
e−y

k!

∫ −y
0

τke−τdτ

= −
+∞∑
k=0

P(L = k)
e−y

k!

∫ y

0

(−s)kesds

= −e−y
∫ y

0

esEL

[
(−s)L

L!

]
ds.

Putting the previous expression in (A.4) and observing that y = λnpj , (6) immediately follows.
Now, in order to bound the variance of the difference between τ1 and its estimator τ̂L1 , recall
that {Yj(X, N)}j≥1 are independent. Then,

Var(τ̂L1 − τ1) = Var

∑
i≥0

(−1)i(i+ 1)λiZi+1(X, N)P(L ≥ i)

−
+∞∑
j=1

1{Yj(X,N)=1}1{Yj(X,N+M)=1}


=

+∞∑
j=1

Var
(+∞∑
i=0

(−1)i(i+ 1)λiP(L ≥ i)1{Yj(X,N)=i+1}

− 1{Yj(X,N)=1}1{Yj(X,N+M)=1}

)
=

+∞∑
j=1

Var

(
+∞∑
i=0

ai1{Yj(X,N)=i+1} − 1{Yj(X,N)=1}1{Yj(X,N+M)=1}

)
,

having defined ai := (−1)i(i+ 1)λiP(L ≥ i) for any i ≥ 0. Therefore, we can write

Var(τ̂L1 − τ1)
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≤
+∞∑
j=1

E

(+∞∑
i=0

ai1{Yj(X,N)=i+1} − 1{Yj(X,N)=1}1{Yj(X,N+M)=1}

)2


=

+∞∑
j=1

E

[
+∞∑
i=1

a2
i1{Yj(X,N)=i+1} + 1{Yj(X,N)=1}(a0 − 1{Yj(X,N+M)=1})

2

]

where we have used the incompatibility of the events {(Yj(X, N) = i)} for different values of j.
We can proceed with the upper bound for the variance as follows

Var(τ̂L1 − τ1)

=

+∞∑
j=1

E

[
+∞∑
i=0

a2
i1{Yj(X,N)=i+1} − 1{Yj(X,N)=1}1{Yj(X,N+M)=1}

]

≤ max
i≥0
|ai|2E[Z1̄(X, N)]−

+∞∑
j=1

E
[
1{Yj(X,N)=1}1{Yj(X,N+M)=1}

]
= max

i≥0
|ai|2E[Z1̄(X, N)]−

+∞∑
j=1

e−λnpje−npjnpj

= max
i≥0
|ai|2E[Z1̄(X, N)]− 1

λ+ 1
E[Z1(X, N +M)]. (A.5)

Now, let observe that we can estimate the maximum value of the |ai|’s as follows

max
i≥0
|ai| = max

i≥0
(i+ 1)λiP(L ≥ i) = max

i≥0
(i+ 1)λi

+∞∑
k=i

P(L = k)

≤ max
i≥0

+∞∑
k=i

(i+ 1)λiP(L = k) ≤
+∞∑
k=0

(k + 1)λkP(L = k)

= EL[(L+ 1)λL].

Replacing maxi≥0 |ai| with EL[(L+ 1)λL] in (A.5), the upper bound of Var(τ̂L1 − τ1) becomes

Var(τ̂L1 − τ1) ≤ (EL[(L+ 1)λL])2E[Z1̄(X, N)]− E[Z1(X, N +M)]

λ+ 1
.

The proof is completed by putting together the previous upper bound for the variance and the
one for the bias (6), from which the bound on the MSE (7) easily follows.

A.5 Proof of Proposition 1

To prove (8) we use Theorem 2, bounding the two terms appearing in (7) separately. In order
toobtain an estimate of first term on the right-hand side of (7), we note that for any y > 0 the
following holds

−e−y
∫ y

0

esEL

[
(−s)L

L!

]
ds = −e−y

∫ y

0

es
+∞∑
k=0

e−β
βk

k!

(−s)k

k!
ds

= −e−y−β
∫ y

0

es
+∞∑
k=0

(βs)k(−1)k

Γ(k + 1)k!
ds

14



Recall that the Bessel polynomial (see Olver et al. (2010)) is defined as J0(z) :=
∑+∞
k=0

(−1)kz2k

22kΓ(k+1)k!
,

and that |J0(z)| ≤ 1. Therefore, we obtain the following inequality∣∣∣∣−e−y ∫ y

0

esEL

[
(−s)L

L!

]
ds

∣∣∣∣ ≤ e−(y+β)

∫ y

0

es|J0(2
√
sβ)|ds ≤ e−β(1− e−y).,

which may be applied to bound the first term on the right-hand side of (7), with y = λnpj .
Precisely, ∣∣∣∣∣∣

∑
j≥1

e−pjn(λ+1)pjn

∫ λnpj

0

esEL

[
(−s)L

L!

]
ds

∣∣∣∣∣∣
≤
∑
j≥1

e−npjnpje
−β(1− e−λnpj ) ≤ e−β

+∞∑
j=1

e−npjnpj

= e−βE[Z1(X, N)] ≤ e−βE[N ] = e−βn.

(A.6)

In order to upper bound the other term on the right-hand side of (7), we observe that

EL[(L+ 1)λL] =

+∞∑
k=0

e−β
βk

k!
λk(k + 1) = e−β

(
+∞∑
k=1

(βλ)k

(k − 1)!
+

+∞∑
k=0

(βλ)k

k!

)
= e−β(eβλ + βλeβλ) = eβ(λ−1)(1 + βλ),

hence we get

(EL[(L+ 1)λL])2E[Z1̄(X, N)]− 1

λ+ 1
E[Z1(X, N +M)]

≤ ne2β(λ−1)(1 + βλ)2.

(A.7)

Using (A.6) and (A.7), one can now estimate the MSE (7) in the Poisson case and (8) follows.
Because of (8) the NMSE can be bounded from above by

En,λ(τ̂L1 ) ≤ e−2β +
e2β(λ−1)(1 + βλ)2

n

using the exponential inequality 1 + x ≤ ex we get

En,λ(τ̂L1 ) ≤ e−2β +
e2β(2λ−1)

n
. (A.8)

It is easy to show that the right-hand side of (A.8) is minimized when β equals 1
4λ log

(
n

2λ−1

)
.

Therefore, it is easy to observe that the inequality (A.8) becomes

En,λ(τ̂L1 ) ≤ 1

n1/(2λ)
· 2λ

(2λ− 1)1−1/(2λ)
(A.9)

hence the second bound (9) follows provided that A(λ) := 2λ
(2λ−1)1−1/(2λ) . Now we can prove the

“limit of predictability” in the Poisson case, indeed thanks to (9) we have

En,λ(τ̂L1 ) ≤ A

n1/(2λ)
,
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besides observe that
A

n1/(2λ)
≤ δ

is satisfied if and only if λ ≤ log(n)
2 log(A/δ) =: λ∗. As a consequence the maximum value of λ for

which the inequality En,λ(τ̂L1 ) ≤ δ is satisfied, is bigger or equal than λ∗, i.e.,

max
{
λ : En,λ(τ̂L1 ) ≤ δ

}
≥ log(n)

2 log(A/δ)
.

Then the thesis follows by taking the limit of the previous inequality as n→ +∞.

B Proofs related to the lower bound

B.1 Proof of Lemma 1

First, it is obvious that

E (λ, n) ≤ inf
ρ̂

sup
P∈P

n−2E
n,λ
P [(τ1(X, N,M)− ρ̂(Y (X, N)))2].

We now prove that the previous is indeed an inequality by deriving a lower bound that matches.
Let n > 0 be fixed. By definition, for every ε > 0 there exists an estimator ρ̂1 such that

E (λ, n) ≥ sup
P∈P

n−2E
n,λ
P [(τ1(X, N,M)− ρ̂1(X(N), N))2]− ε

= sup
P∈P

n−2E
n,λ
P [En,λP [(τ1(X, N,M)

− ρ̂1(X(N), N))2 | Y (X, N),Y (X, N +M)]]− ε

≥ sup
P∈P

n−2E
n,λ
P [(τ1(X, N,M)− En,λP [ρ̂1(X(N), N) | Y (X, N)])2]− ε (B.1)

where the last line follows by Jensen’s inequality and by observing that

E
n,λ
P [τ1(X, N,M) | Y (X, N),Y (X, N +M)] = τ1(X, N,M), and,

E
n,λ
P [ρ̂1(X(N), N) | Y (X, N),Y (X, N +M)] = E

n,λ
P [ρ̂1(X(N), N) | Y (X, N)].

To see that the last equation is true, remark that Y (X, N + M) − Y (X, N) is independent
of Y (X, N) and depends only on (XN+1, . . . , XN+M ). Now we claim that ρ̂1 can be chosen
such that for any k ∈ Z+ and any permutation σk(X(k)) of the data, it holds ρ̂1(X(k), k) =
ρ̂1(σk(X(k)), k). We delay the proof of the claim to later. Now assume the claim is true. Given
k and Y (X, k), we can construct the functional

G(Y (X, k), k) := ( 1, . . . , 1︸ ︷︷ ︸
×Y1(X,k)

, 2, . . . , 2︸ ︷︷ ︸
×Y2(X,k)

, . . . ).

Since ρ̂1 is invariant under permutations of the data, we have for any P ∈P,

E
n,λ
P [ρ̂1(X(N), N) | Y (X, N)]

= E
n,λ
P

[
E
n,λ
P [ρ̂1(X(N), N) | Y (X, N), N ] | Y (X, N)

]
= E

n,λ
P

[
E
n,λ
P [ρ̂1(G(Y (X, N), N), N) | Y (X, N), N ] | Y (X, N)

]
= E

n,λ
P [ρ̂1(G(Y (X, N), N), N) | Y (X, N)]

= ρ̂1(G(Y (X, N), N), N).
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The last line follows because N =
∑
j≥1 Yj(X, N), and hence N is completely determined by

Y (X, N). Therefore, we have proved that the conditional expected value of ρ̂1(X(N), N), given
Y (X, N) does not depend on P . Thus, (B.1) implies,

E (λ, n) ≥ sup
P∈P

n−2E
n,λ
P [(τ1(X, N,M)− ρ̂1(G(Y (X, N), N), N))2]− ε

≥ inf
ρ̂

sup
P∈P

n−2E
n,λ
P [(τ1(X, N,M)− ρ̂(Y (X, N)))2]− ε.

Since the previous is true for all ε > 0, the conclusion follows.

We now prove the claim we have used in the previous argument, i.e. that ρ̂1 can be cho-
sen such for any k ∈ Z+ and any permutation σk(X(k)) of the data, it holds ρ̂1(X(k), k) =
ρ̂1(σk(X(k)), k). When k = 0, then the claim is trivial, hence we assume without loss of gener-
ality that k ≥ 1. We will prove that for any estimator ρ̂1, there is a symmetric estimator t̂1 with
a risk no more than the risk of ρ̂1. Let ρ̂1 be arbitrary. Construct t̂1 such that for any k ∈ N

t̂1(X(k), k) :=
1

|{σk}|
∑
{σk}

ρ̂1(σk(X(k)), k).

Clearly t̂1 has the desired invariance property under permutations. Moreover, by Jensen’s
inequality,

E
n,λ
P [(τ1(X, N,M)− t̂1(X(N), N))2]

= E
n,λ
P

[
E
n,λ
P

[( 1

|{σN}|
∑
{σN}

(τ1(X, N,M)− ρ̂1(σN (X(N)), N)
)2

| N
]]

≤ En,λP
[
E
n,λ
P

[ 1

|{σN}|
∑
{σN}

(τ1(X, N,M)− ρ̂1(σN (X(N)), N))2 | N
]]

Now remark that for all (k, k′) ∈ Z2
+ the map X 7→ τ1(X, k, k′) is invariant under any

permutations of the k first entries of X. Moreover, X is an i.i.d. vector, then the last display
implies that

E
n,λ
P [(τ1(X, N,M)− t̂1(X(N), N))2]

≤ En,λP
[
E
n,λ
P

[ 1

|{σN}|
∑
{σN}

(τ1(X, N,M)− ρ̂1(X(N), N))2 | N
]]

= E
n,λ
P [(τ1(X, N,M)− ρ̂1(X(N), N))2].

The conclusion follows by taking the supremum over P ∈P both sides of the last display.

B.2 Proof of Lemma 2

In the whole proof, we drop the subscripts ξ whenever it is convenient.
Let σ : [−1, 1] → [ξ−1, 1] be such that σ(x) := (1 − ξ−1)(x + 1)/2 + ξ−1. Notice that σ is

bijective. By translating and rescaling, we claim that EL(g, [ξ−1, 1]) = EL(g ◦σ, [−1, 1]). To see
that this is true, remark that for all p ∈ PL[−1, 1] we have ‖g ◦ σ − p‖∞ = ‖g − p ◦ σ−1‖∞ ≥
EL(g, [ξ−1, 1]). This shows that EL(g ◦ σ, [−1, 1]) ≥ EL(g, [ξ−1, 1]). The same steps using σ−1

show that EL(g ◦ σ, [−1, 1]) ≤ EL(g, [ξ−1, 1]). Hence EL(g, [ξ−1, 1]) = EL(g ◦ σ, [−1, 1]).
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For the sake of simplicity, we let C := B(1 − ξ−1) and γC : [−1, 1] → R+ is defined by
γC(x) = exp{−C(x + 1)}. From the discussion in the previous paragraph, we have indeed
reduced the problem to finding EL(γC , [−1, 1]). This is because

EL(g, [ξ−1, 1]) = EL(g ◦ σ, [−1, 1]) = exp{−2Bξ−1}EL(γC , [−1, 1])

= e(1 + o(1))EL(γC , [−1, 1]).

To find a lower bound on EL(γC , [−1, 1]), we will exploit the well-known relationship be-
tween uniform approximation on the interval by polynomials and uniform approximation of
periodic even functions by trigonometric polynomials. We write CE[−1, 1] the space of continu-
ous and even functions on [−1, 1], and for any L ∈ Z+ we let TPL[−1, 1] denote the set of even
trigonometric polynomials of degree at most L, i.e. TPL[−1, 1] is{

T ∈ CE[−1, 1] : T (x) =
∑L
k=0 ak cos(πkx), ak ∈ R, x ∈ [−1, 1]

}
.

We furthermore define the periodization operator P : C[−1, 1] → CE[−1, 1] such that Pf(θ) =
f(cos(πθ)) for all f ∈ C[−1, 1] and all θ ∈ [−1, 1]. Then, it is well-known (see for instance the
Theorem 14.8.1 in Davidson and Donsig (2009(@)) that

EL(γC , [−1, 1]) = inf{‖PγC − T‖∞ : T ∈ TPL[−1, 1]}. (B.2)

We will now bound the right-hand side of (B.2) by a technique inspired from Newman and
Rivlin (1976), which works as well for our setting. For any K ∈ N, we define the trigonometric
polynomial TK : [−1, 1]→ C such that

TK(θ) := eiπ(L+1)θ
{K−1∑
k=0

ei2πkθ
}2

.

Then, by orthogonality of the trigonometric polynomials, we have that∫ −1

−1

|TK(θ)|dθ =

K−1∑
j=0

K−1∑
k=0

∫ 1

−1

ei2π(j−k)θ dθ = 2K. (B.3)

By definition, for every ε > 0 we can find a Q ∈ TPL[−1, 1] such that ‖PγC − Q‖∞ ≤
EL(γC , [−1, 1]) + ε. Choose such Q, and remark that (B.3) implies,∣∣∣ ∫ 1

−1

(PγC(θ)−Q(θ))TK(θ) dθ
∣∣∣ ≤ ‖PγC −Q‖∞ ∫ 1

−1

|TK(θ)|dθ

≤ 2K{EL(γC , [−1, 1]) + ε}.

On the other hand remark that Q is a trigonometric polynomial of degree at most L, while TK
is a trigonometric polynomial of degree strictly greater than L. Therefore Q is orthogonal to
TK . Moreover, the last display is true for all ε > 0 and for all K ∈ N, thus it must be the case
that

EL(γC , [−1, 1]) ≥ max
K∈N

1

2K

∣∣∣ ∫ 1

−1

PγC(θ)TK(θ) dθ
∣∣∣. (B.4)

Interestingly, we can compute the previous integral. Namely,∫ 1

−1

PγC(θ)TK(θ) dθ =

K−1∑
j=0

K−1∑
k=0

∫ 1

−1

γC(cos(πθ))eiπθ(L+1+2j+2k) dθ

18



= 2(−1)L+1
K−1∑
j=0

K−1∑
k=0

e−CIL+1+2j+2k(C),

where Iν(z) := 1
π

∫ π
0
ez cos(t) cos(νt)dt is the modified Bessel function (see (Olver et al., 2010,

pg. 248)); in particular (Olver et al., 2010, formula 10.32.3). More precisely, from the above
considerations and the fact that the modified Bessel functions are non–negative, we deduce that

∣∣∣ ∫ 1

−1

PγC(θ)TK(θ) dθ
∣∣∣ = 2

K−1∑
j=0

K−1∑
k=0

e−CIL+1+2j+2k(C).

Soni (1965) proved that Ik+1(z) ≤ Ik(z) for all k ∈ N and all z > 0. Hence, we obtain from the
last display and (B.4) the bound

EL(γC , [−1, 1]) ≥ max
K∈N

Ke−CIL+4K(C). (B.5)

In the next lemma, We obtain a bound on the modified Bessel function z 7→ Ik(z) which
remains tighter than the classical bound derived in Luke (1972) when z ≥ k. The proof of the
lemma is to be found in Section B.3.

Lemma B.1 Assume k ∈ N and assume that C > 8
√

1 + (k/C)2. Then,

e−CIk(C) >
exp{−Cϕ(k/C)}

2e4(1 + (k/C)2)1/4
√
C
.

For α, β ∈ R to be chosen accordingly, we define K∗ := α
√
C if L <

√
C, or K∗ := βC/L if

L ≥
√
C. In view of (B.5), it is clear that EL(γC , [−1, 1]) ≥ K∗e

−CIL+4K∗(C). Consider now
the case where L <

√
C, then

0 ≤ L+ 4K∗
C

=
L+ α

√
C

C
<
α+ 1√
C
.

Thus, Cϕ((L + 4K∗)/C) = O(1) as C → ∞, (L + 4K∗)/C → 0 as C → ∞, and C >
8
√

1 + (L+ 4K∗)2/C2 when C gets large enough. We then obtain from Lemma B.1 that in
this case,

EL(γC , [−1, 1]) >
α
√
C(1 + o(1)) exp{−Cϕ((L+ 4K∗)/C)}

2e2
√
C

& 1,

at least for C large enough. We now consider the case L ≥
√
C. In this case, we have,

0 ≤ L+ 4K∗
C

=
L+ βC/L

C
=
L

C
+
β

L
≤ L

C
+

β√
C
.

Because by assumption there is a constant ζ > 0 such that L ≤ ζC, then (L+4K∗)/C ≤ ζ+o(1)
as C → ∞, and thus we have C > 8

√
1 + (L+ 4K∗)2/C2 when C is large enough. Then, we

can apply Lemma B.1 to find that as C →∞,

EL(γC , [−1, 1]) >
(βC/L)(1 + o(1)) exp{−Cϕ((L+ 4K∗)/C)}

4e2
√
C(1 + (L/C)2)1/4

&

√
C

L2
exp

{
− Cϕ

(L
C

+
β

L

)}
,
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at least for C large enough. Further, it can be seen that |ϕ′(x)| ≤ |x| (see for instance Sec-
tion S6.3 in the supplementary material). Then, by Taylor expansion,

ϕ
(L
C

+
β

L

)
≤ ϕ

(L
C

)
+
(L
C

+
β

L

)β
L
,

and thus, Cϕ(L/C + β/L) ≤ Cϕ(L/C) + β(1 + Cβ/L2) ≤ Cϕ(L/C) + β(1 + β). It follows,

EL(γC , [−1, 1]) &

√
C

L2
exp

{
− Cϕ

(L
C

)}
.

With similar arguments, Cϕ(L/C) = (ξ/2)ϕ(2L/ξ) +O(1) as ξ →∞.

B.3 Proof of Lemma B.1

The proof relies on the well known series representation of the modified Bessel function (see
(Olver et al., 2010, formula 10.25.2)), namely we have whenever k ∈ N,

Ik(z) =

∞∑
p=0

1

p!(p+ k)!

(z
2

)2p+k

. (B.6)

Conveniently, all the terms in the summation are non-negative, which we will exploit to get our
lower bound. By Stirling’s formula, when k ≥ 1, for any p ≥ 0

(p+ k)! ≤ e
√

(p+ k) exp{−(p+ k) + (p+ k) log(p+ k)},

and for any p ≥ 1, we have p! ≤ e√p exp{−p+ p log p}. For convenience, let define the functions
φz,k : R∗+ → R+, such that for any x, z ∈ R∗+ and any k ∈ N,

φz,k(x) := −z + 2x+ k − x log x− (x+ k) log(x+ k) + (2x+ k) log(z/2).

Hence, because each term in the series expansion of (B.6) is non-negative, we get the estimate,

e−zIk(z) ≥ e−z
∑
p≥1

1

p!(p+ k)!

(z
2

)2p+k

≥ 1

e2

∑
p≥1

exp{φz,k(p)}√
p(p+ k)

. (B.7)

Notice that,

φ′z,k(x) = − log(x)− log(x+ k) + 2 log(z/2), φ′′z,k(x) = − 1

x
− 1

x+ k
.

Thus, φz,k admits a unique non-negative extremum at x0 solution to x0(x0 + k) = z2/4, that is,

x0 =
−k +

√
k2 + z2

2
, and, φ′′z,k(x0) = −4

z

√
1 + (k/z)2 < 0.

Henceforth x0 is indeed the unique maximum of the function φz,k on R+. We let p0 smallest
integer larger than x0. Then p0 ≥ 1 and we have, by Taylor expansion that for any p ≥ p0 there
is a p̄ ∈ (x0, p)

φz,k(p) = φz,k(x0) + φ′z,k(x0)(p− x0) +
1

2
φ′′z,k(p̄)(p− x0)2

= φz,k(x0) +
1

2
φ′′z,k(p̄)(p− x0)2.
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Remark that, because p̄ ≥ x0,

φ′′z,k(p̄) = −1

p̄
− 1

p̄+ k
≥ − 1

x0
− 1

x0 + k
= −4

z

√
1 + (k/z)2.

Then, for any p ≥ p0,

φz,k(p) ≥ φz,k(x0) +
1

2
φ′′z,k(x0)(p− x0)2 = φz,k(x0)−

2
√

1 + (k/z)2

b
(p− x0)2.

Therefore,

e−zIk(z) ≥ exp{φz,k(x0)}
e2

∑
p≥p0

exp{φ′′z,k(x0)(p− x0)2/2}√
p(p+ k)

.

Let p1 be the largest integer such that −φ′′z,k(x0)(p1 − x0)2 ≤ 2. Remark that whenever z >

2(1 + (k/z)2)1/2, we have p1 ≥ x0 + 1, which is always the case in the conditions of the lemma.
Because the summand is the previous is monotonically decreasing for p ≥ p0, we get the bound,

e−zIk(z) ≥ exp{φz,k(x0)}
e4

(p1 − p0)√
p1(p1 + k)

≥ exp{φz,k(x0)}
e4

(p1 − x0)− 1√
p1(p1 + k)

.

But, by the definition of p1, we have that p1 + 1− x0 >
√

2/(−φ′′z,k(x0)). Therefore, whenever

z > 8(1 + (k/z)2)1/2, by the definition of φ′′z,k(x0),

e−zIk(z) ≥ exp{φz,k(x0)}

e4
√
−φ′′z,k(x0)p1(p1 + k)

{√
2− 2

√
−φ′′z,k(x0)

}

≥
√

2 exp{φz,k(x0)}

2e4
√
−φ′′z,k(x0)p1(p1 + k)

.

Also,

p1(p1 + k) = x0(x0 + k) + (p2
1 − x2

0) + (p1 − x0)k

= x0(x0 + k) + (p1 − x0)(p1 + x0 + k)

= x0(x0 + k) + (p1 − x0)2 + (p1 − x0)(2x0 + k).

But we have that x0(x0 + k) = z2/4, (p1 − x0)2 ≤ −2/φ′′z,k(x0), and 2x0 + k = z
√

1 + (k/z)2.
Thus,

p1(p1 + k) ≤ z2

4
+

2

−φ′′z,k(x0)
+

√
2(1 + (k/z)2)

−φ′′z,k(x0)
z

=
z2

4
+

z

2
√

1 + (k/z)2
+
z3/2

√
2

[1 + (k/z)2]1/4

=
z2

4

{
1 +

z−1/2[1 + (k/z)2]1/4√
2

+
z−1

2
√

1 + (k/z)2

}
.

Therefore, whenever z > 8(1 + (k/z)2)1/2,

p1(p1 + k) ≤ z2

4

{
1 +

1

4
+

1

16

}
≤ 21

64
z2 <

z2

2
.
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Hence,

e−zIk(z) >
exp{φz,k(x0)}

e4
√
−φ′′z,k(x0)z

=
exp{φz,k(x0)}

2e4(1 + (k/z)2)1/4
√
z
.

After some algebra, we find that

φz,k(x0) = −z + z
√

1 + (k/z)2

− (z/2){−(k/z) +
√

1 + (k/z)2} log{−(k/z) +
√

1 + (k/z)2}

− (z/2){(k/z) +
√

1 + (k/z)2} log{(k/z) +
√

1 + (k/z)2}

= −z + z
√

1 + (k/z)2 − z · (k/z) arcsinh(k/z) = −zϕ(k/z).
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Supplementary material for “Optimal disclosure risk

assessment”

Federico Camerlenghi, Stefano Favaro, Zacharie Naulet, Francesca Panero

S1 Organization of the document

This document is the companion paper to the article Optimal Disclosure Risk Assessment, by
the same authors. It complements the result of the main paper in the following way:

• In Section S2, we give the complete proof of the minimax lower bound given in Theorem 3
of the main document, with all details.

• In Section S3, we present an illustration on synthetic data of the estimators introduced in
Section 2. We compare our estimator with various estimators from the existing literature.

• In Section S4, we demonstrate that the lower bound EL(gξ, [ξ
−1, 1]) derived in Lemma 2

of the main document is sharp (up to constants). The proof is constructive and exhibits
that Chebychev polynomials achieve the bound.

• Finally, Sections S5 and S6 contain the proofs of the auxiliary results, respectively for the
minimax lower bound and the tightness of the lower bound on EL(gξ, [ξ

−1, 1]).

S2 Complete proof of the minimax lower bound

This section is devoted to the complete proof of the minimax lower bound stated in the main
document, that is Theorem 3. Unless specified otherwise, the notations and conventions are the
same as in the main document. We recall that the minimax risk is defined as

E (λ, n) := inf
ρ̂1

sup
P∈P

n−2E
n,λ
P [(ρ̂1(X(N), N)− τ1(X, N,M))2], (S1)

where the infinimum is taken over all estimators ρ̂1. To obtain a lower bound on the last display,
we adapt the reduction scheme of Wu and Yang (2019, 2016) which is based on the method of
the two fuzzy hypotheses Tsybakov (2009). More precisely, the proof consists on the following
steps.

Step 1 The very first step is to use Lemma 1 in the main document. We recall that Lemma 1
shows that the infinimum in equation (S1) can be restricted over estimators depending only on
(X(N), N) through Y (X, N). The details for this step are in the main document and omitted
here. We recall the result

E (λ, n) = inf
ρ̂

sup
P∈P

n−2E
n,λ
P [(τ1(X, N,M)− ρ̂(Y (X, N)))2]. (S2)

S1



Step 2 The rhs of equation (S2) does not look like a classical minimax bound because
τ1(X, N,M) is a random variable and not a function of P ∈P (though its distribution is). In
order to reduce the problem to a classical minimax problem, we show that τ1 is sufficiently con-
centrated around its expectation so that τ1(X, N,M) can be traded (asymptotically as n→∞)

for τ̄1(P, n, λ) := E
n,λ
P [τ1(X, N,M)] under the model P . This is made formal in the next propo-

sition, proved in Section S5.1.

Proposition S1. Let YN denote the random variable (X, N) 7→ Y (X, N). Then for any
λ, n > 0 the following is true,

E (λ, n) ≥ 1

2
inf
ρ̂

sup
P∈P

n−2E
n,λ
P [(τ̄1(P, n, λ)− ρ̂(YN ))2]− n−1. (S3)

Remark that we dropped-out the superscript λ in En,λP in Proposition S1 as the argument
in the expectation is independent of M , and thus its distribution depends on λ only through
τ̄1(P, n, λ).

Step 3 The reduction scheme of Wu and Yang (2019, 2016) involves the construction of
(fuzzy) hypotheses that are not probability distributions, but only quasi probability distribu-
tions. Namely, to use their reduction scheme, we need to show that trading P for a suitable
set of quasi probability distributions P ′ in equation (S3) does not affect the bound too much.

For S ∈ N, ξ, δ > 0 to be chosen accordingly at the end of the day, we define P ′ as

P ′ :=
{∑S

k=1 pkδk : pk ∈ [0, ξS−1], |
∑S
k=1 pk − 1| ≤ δ

}
. (S4)

Here and after, under Pn,λP with n > 0 and P ∈P ′, the random variable YN is understood
as a vector of independent Poisson random variables with intensities (np1, . . . , npS , 0, . . . ), with∑S
j=1 pj not necessarily equal to one, and (P, n, λ) 7→ τ̄1(P, n, λ) is extended trivially from P

to P ′ by letting τ̄1(P, n, λ) := n
∑S
j=1 pje

−n(1+λ)pj , P ∈ P ′. Then we have the following
proposition, proved in Section S5.2.

Proposition S2. Let define n′ := (1 + δ)n and let S, ξ, δ as defined previously. Then, E (λ, n)
is bounded from below by

1

4n2
inf
ρ̂

sup
P∈P′

E
n′,λ
P [(τ̄1(P, n, λ)− ρ̂(YN ))2]− 1

n
−
(

1 +
nξ(1 + λ)

S(1− δ)

)2

δ2.

This implies that for any ε > 0, E (λ, n) is bounded from below by

ε2

4
inf
ρ̂

sup
P∈P′

P
n′,λ
P

(
|τ̄1(P, n, λ)− ρ̂(YN )| > nε

)
− 1

n
−
(

1 +
nξ(1 + λ)

S(1− δ)

)2

δ2.

Step 4 The next step involves applying the method of the two fuzzy hypotheses Tsybakov
(2009) to the result of Proposition S2. The next lemma is an adaptation of (Tsybakov, 2009,
Section 2.7.4) to our setting. Its proof is to be found in Section S5.3.

Lemma S1 (Method of the two fuzzy hypotheses). Let M(N) denote the space of all measures

on N, endowed with canonical σ-algebra. Let Q1 =
∑S
j=1 q1,jδj and Q2 =

∑S
j=1 q2,jδj be

independent random variables taking values in M(N). Also let P ′ and ε as defined previously.
Assume that for some 0 < α, β, γ < 1 with 2α + 2β + γ ≤ 1 and with n′ defined as above the
following hold:
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1. P(Q1 /∈P ′) ≤ α and P(Q2 /∈P ′) ≤ α;

2. P(|τ̄1(Qj , n, λ)− E[τ̄1(Qj , n, λ)]| > nε/2) ≤ β for j = 1, 2;

3. E[τ̄1(Q1, n, λ)] ≥ E[τ̄1(Q2, n, λ)] + nε;

4. TV(E[⊗Sj=1Poiss(n′q1,j)], E[⊗Sj=1Poiss(n′q2,j)]) ≤ γ. Here TV(P,Q) is used to denote the
total-variation distance between probability measures P and Q.

Then,

inf
ρ̂

sup
P∈P′

P
n′,λ
P (|τ̄1(P, n, λ)− ρ̂(YN )| > nε) ≥ 1

2

(
1− 2α− 2β − γ

)
.

Step 5 The next step consists on constructing the hypotheses that will be used in conjunction
with Lemma S1 and Proposition S2 to establish the minimax lower bound. The construction
relies on ideas from Wu and Yang (2019, 2016).

For some L ∈ N to be determined later, but satisfying L ≤ K1ξ for some constant K1 > 0,
we let U and V be two random variables taking values in [0, ξS−1] such that E[U ] = E[V ] = S−1

and when n is large enough,

E[Uk] = E[V k] ∀k ∈ {0, . . . , L+ 1},
E[Ue−n(1+λ)U ] ≥ E[V e−n(1+λ)V ] + S−1ε.

The existence of such random variables is guaranteed by Lemma S2 below, proven in Sec-
tion S5.4, for the appropriate choice of S, ξ, L and ε.

Lemma S2. Let L ∈ N and ξ > 0 such that L ≤ K1ξ for some K1 > 0. Let S = dn(1 + λ)e.
Then there exists K2 > 0 (depending only on K1) and two random variables U and V taking
values in [0, ξS−1] such that,

E[Uk] = E[V k] ∀k ∈ {0, . . . , L+ 1},
E[U ] = E[V ] = S−1, Var(U) ≤ ξS−2, Var(V ) ≤ ξS−2,

E[Ue−n(1+λ)U ] ≥ E[V e−n(1+λ)V ] + S−1K2 min
{

1,
√
ξ/L2 exp(−L2/ξ)

}
.

Then we let (U1, . . . , US), respectively (V1, . . . , VS), be an independent vector of i.i.d. copies
of U , respectively V , and we let

Q1 =
S∑
j=1

Ujδj , and, Q2 =
S∑
j=1

Vjδj .

The next proposition establishes conditions under which Q1 and Q2 as defined above meet
the criteria of Lemma S1. The first two items are consequences of Bernstein’s and Hoeffding’s
inequalities (respectively), item 3 is straightforward, and the last item is an immediate corollary
of (Wu and Yang, 2019, Lemma 6). The proof is given in Section S5.5.

Proposition S3. The following items are true.

1. Assume that Var(U) ≤ ξS−2, Var(V ) ≤ ξS−2, and Sδ2 ≥ 2ξ(1 + δ/3) log(2/α). Then
P(Q1 /∈P ′) ≤ α and P(Q2 /∈P ′) ≤ α.

2. Assume that Sε2 ≥ 2ξ log(2/β). Then P(|τ̄1(Q1, n, λ)−E[τ̄1(Q1, n, λ)]| > nε/2) ≤ β. The
same is also true for Q2.

3. E[τ̄1(Q1, n, λ)] ≥ E[τ̄1(Q2, n, λ)] + nε.

4. Assume that 2 log(2)LS ≥ nξ(1 + δ) and γ(2S)L+2(L + 2)! ≥ 4S(nξ(1 + δ))L+2. Then
TV(E[⊗Sj=1Poiss(n′Uj)], E[⊗Sj=1Poiss(n′Vj)]) ≤ γ.
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Step 6 The proof of Theorem 3 follows from combining Propositions S2, S3, and Lemma S1,
by choosing the constants α, β, γ and variables ε, S, ξ, δ, L accordingly. We now make explicit
the choice for these constants and variables.

In the following for any x > 0 the notations dxe stands for the smallest integer greater or
equal than x. Then, for constants c0, c1 > 0 to be determined we choose

S = dn(1 + λ)e, (S5)

δ = c0ε/ξ, (S6)

ξ = (2c1/e) min{(1 + λ) log n, log2 n}. (S7)

For another constant c2 > 0 to be determined, we further define A(λ, n) > 0 to be the solution
to

A(λ, n) logA(λ, n) = c−1
1 + c−1

1

log(1 + λ)− (1/2) log log(n) + log(c2)

log(n)
.

Then we pick (remark that this ensures that L ≤ K1ξ for some K1 > 0, as requested previously),

L =

{
d2c1 log(n)e if 1 + λ > log(n),

dc1A(λ, n) log(n)e if 1 + λ ≤ log(n),
(S8)

and for c3 > 0 to be determined,

ε = c3 ·

1 if 1 + λ > log(n),

1√
log(n)

·
√

2(1+λ)
ec1A(λ,n)2 · n−

ec1A(λ,n)2

2(1+λ) if 1 + λ ≤ log(n).
(S9)

With this choice, we obtain the next proposition, proved in Section S5.6.

Proposition S4. Let α = β = γ = 1/10, and let S, ξ, δ, L, ε as in Equations S5, S6, S7, S8 and
S9. Then,

1. (1 + nξ(1+λ)
S(1−δ) )2δ2 ≤ c20ε2(1 + o(1)) as n→∞;

2. If lim infn
{

1+λ
ec1A(λ,n)2

}
> 1 then there exists n0 > 0 such that for all n ≥ n0 it holds

Sδ2 ≥ 2ξ(1 + δ/3) log(2/α);

3. If lim infn
{

1+λ
ec1A(λ,n)2

}
> 1 then there exists n0 > 0 such that for all n ≥ n0 it holds

Sε2 ≥ 2 log(2/β);

4. For any K2 > 0 the constant c3 > 0 can be chosen such that ε ≤ K2 min{1,
√
ξ/L2 exp(−L2/ξ)};

In conjunction with Lemma S2 this guarantees the existence of U and V used in Step 5.

5. If c2 > 0 is large enough, then there exists n0 > 0 such that for all n ≥ n0 we have
2 log(2)LS ≥ nξ(1 + δ) and γ(2S)L+2(L+ 2)! ≥ 4S(nξ(1 + δ))L+2.

Therefore, as a consequence of Propositions S2, S3 and Lemma S1, when c0, c1, c2, c3 are ap-
propriately chosen, if 1 + λ > ec1A(λ, n)2, and if n gets large enough,

E (λ, n) ≥
( 1

16
− c20 + o(1)

)
ε2.

S4



Step 7 In view of Equation S9, the choice of c1 shall be made cautiously. Indeed, the next
proposition shows that c1 = 1/e is the optimal choice. The result of the next proposition also
allows to get the final expression for the lower bound in E (λ, n), thus finishing the proof of
Theorem 3. The proof of Proposition S5 is to be found in Section S5.7.

Proposition S5. Let c1 = 1/e. Then whenever 1 + λ ≤ log(n) we have A(λ, n) = e + o(1) as
n→∞. Furthermore when 1 + λ ≤ log(n), as n→∞,

c1A(λ, n)2 log(n) ≤ e log(n) + e log
c2(1 + λ)√

log(n)
+ o(1).

S3 Numerical illustrations

We present an illustration on synthetic data of the estimators introduced in Section 2. We also
consider other estimators of τ1 that have been proposed in the literature of disclosure risk assess-
ment: i) two parametric empirical Bayes estimators of τ1 proposed by Bethlehem et al. (1990)
and Skinner et al. (1994); ii) a naive nonparametric estimator of τ1; iii) a Bayesian nonpara-
metric estimator of τ1 proposed by Samuels (1998). A common feature of these estimators, as
well as our class of nonparametric estimators, is that they rely on the Poisson abundance model
for modeling the random partition induced by the cross-classified sample records. More recent
approaches, not considered here, focus on modeling associations among identifying variables by
log-linear models, local smoothing polynomials and hierarchical latent models. E.g., Manrique-
Vallier and Reiter (2012), Manrique-Vallier and Reiter (2014), Carota et al. (2015) and Carota
et al. (2018). In particular, the Bayesian hierarchical semiparametric models of Carota et al.
(2015) and Carota et al. (2018) show a remarkable better performance than models for random
partitions, at the cost of an increasing computational effort for the need of Markov chain Monte
Carlo methods for posterior approximation.

The approach of Bethlehem et al. (1990) is a parametric empirical Bayes approach in the
sense of Efron and Morris (1973). It relies on the following modeling assumption for the cells’
frequencies of the population: Yj(X, n̄) ∼ Poiss(n̄pj), where n̄ is the size of the entire popula-
tion. Bethlehem et al. (1990) also assumed a Gamma prior distribution over the probabilities
associated to each cell, namely pj ∼ Gam(α, β). One should specify the pj ’s under the con-

dition
∑Kn̄
j=1 pj = 1, however, for the sake of simplicity, Bethlehem et al. (1990) assumed that∑Kn̄

j=1E[pj ] = 1, which is tantamount to saying that α = 1/(Kn̄β). Under these modeling as-
sumptions, Bethlehem et al. (1990) proposed an estimator of the expected value of total number
T1(X, n̄) of population uniques, i.e.,

T1(X, n̄) :=

Kn̄∑
j=1

1{Yj(X,n̄)=1}. (S10)

Under the above Poisson-Gamma model, E[T1(X, n̄)] = n̄(1 + n̄β)−(1+α), which depends on the
parameters α and β, with the condition α = 1/(Kβ). Parameters can be easily estimated via
maximum likelihood, as we have done in the subsequent numerical experiments. If Kn̄ is not
available, Bethlehem et al. (1990) suggested to estimate Kn̄ assuming a uniform distribution
over the cells, hence

K̂n̄ =
n̄Kn∑Kn

j=1 1{Yj(X,n)=1}
,

where n is the size of the observed sample and Kn stands for the number of distinct cells
dictated by the sample of size n. If α̂ and β̂ denote the maximum likelihood estimators of α and
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β, respectively, then an estimator of T1(X, n̄) is T̂1 = n̄(1 + n̄β̂)−(1+α̂). Bethlehem et al. (1990)
then suggested a corresponding estimator of τ1 as the sample portion of T̂1. More precisely,
they proposed

τ̂B1 =
n

n̄
T̂1 = n(1 + n̄β̂)−(1+α̂). (S11)

as an estimator of τ1. Skinner et al. (1994) improved the estimator (S11). In particular, still
under the Poisson-Gamma model, they considered directly the problem of estimating τ1. In
particular, they proposed the following estimator

τ̂S1 := Kn

(
1 + n̄β̂

1 + nβ̂

)−(1+α̂)

, (S12)

where the prior parameters α and β can be estimated via maximum likelihood. The estimators
proposed in Section 2, due to their nonparametric empirical Bayes interpretation in the sense of
Robbins (1956), may be considered as the natural nonparametric counterparts of the empirical
Bayes estimator (S12).

Besides parametric estimators of τ1, we also consider two nonparametric estimators. A naive
nonparametric estimator of τ1 relies on the intuition that a natural estimator of τ1 is the sampling
fraction, with respect to the population, of the number of sample uniques. This estimator was
first discussed in Bethlehem et al. (1990) and Skinner et al. (1994), and it is defined as follows

τ̂N
1 := Z1(X, n)

n

n̄
. (S13)

Samuels (1998) exploits Bayesian nonparametric ideas, and in particular a Dirichlet process
prior (Ferguson (1973)) on the pj ’s to derive a smoothed version of the naive estimator (S13).
In particular, Samuels (1998) suggested the following estimator

τ̂D
1 := Z1(X, n)

n+ ϑ− 1

n̄+ ϑ− 1
, (S14)

where ϑ is the concentration parameter of the Dirichlet process prior. It is well-known (see, e.g.
Ferguson (1973)) that the maximum likelihood estimator of ϑ can be obtained by solving, with
respect to ϑ, the equation Kn =

∑
1≤j≤n−1 ϑ/(ϑ+ j).

We study the behavior of the Normalized Mean Squared Error (NMSE), with respect to the
sampling fraction (1 + λ)−1, for the collection of estimators of τ1 introduced before. In order to
do that, we generate a collection of synthetic tables with C cells, where C = 3 · 106 in all our
experiments. The population size is fixed to n̄ = 106, and we evaluate the NMSE for different
values of the sample size n = n̄(λ + 1)−1. The true probabilities (pj)j≥1 of cells are generated
according to different types of distributions: the Zipf distribution, i.e., pj ∝ j−s for some s > 0,
the uniform distribution over the total number of cells and the uniform Dirichlet distribution.
Each Figure corresponds to a different choice of the distribution over the cells’ probabilities:
the Zipf distribution with respective parameter s = 0.6, 0.8, 1 (Figures S1–S3), the uniform
distribution (Figure S4), the uniform Dirichlet distribution with respective parameter β = 0.5, 1
(Figures S5–S6). Each figure shows how the NMSE varies as a function of the sampling fraction
(1+λ)−1 for different estimators: i) the nonparametric estimator with Binomial smoothing τ̂Lb1 ,

see Proposition 2; ii) the nonparametric estimator with Poisson smoothing τ̂
Lp
1 , see Proposition

1; iii) the naive nonparametric estimator τ̂N
1 ; iv) the Bayesian nonparametric estimator τ̂D

1 ; v)
the parametric empirical Bayes estimator τ̂B1 ; vi) the parametric empirical Bayes estimator τ̂S1 .
All experiments are averaged over 100 iterations and the empirical bands represent one standard
deviation from the mean of the corresponding estimates.
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The sampling fractions considered in our simulation study are above the limiting threshold
(log n)−1. Within this range of sampling fractions, we do not observe a clear behavior for the
performance of the estimators. It is apparent that in most of the simulated scenarios our es-
timator outperforms as the sampling fraction (1 + λ)−1 increases from the limiting threshold
(log n)−1. From Figure S5, the Bayesian nonparametric estimator τ̂D

1 provides the smallest
NMSE; this behaviour is not surprising since data are drawn from a Dirichlet distribution. In

Figures S1–S3, better performances are achieved by the estimators τ̂Lb1 and τ̂
Lp
1 . We further

observe that the choice of the smoothing distribution L for τ̂L1 , i.e. the Binomial smoothing
or the Poisson smoothing, is crucial with respect to the performance of the corresponding es-
timators. In all the simulated scenarios the Binomial smoothing displays a better performance
than the Poisson smoothing. Finally in Table S1, we report the estimates of τ1 (with empirical
confidence bands) when (λ + 1)−1 = 1/5 for all the choices of the cells’ probabilities, from the
left to right: the Zipf distribution with parameter s = 0.6, 0.8, 1, the uniform distribution, the
uniform Dirichlet distribution with parameter β = 0.5, 1. All experiments are averaged over 100
iterations and the empirical intervals represent one standard deviation from the mean of the
corresponding estimates. From Table S1, we can deduce similar considerations as before.

Figure S1: The normalized mean squared error as a function of the sampling fraction (1 +
λ)−1 when the distribution of the cell’s probabilities is a Zipf with parameter s = 0.6. Each
curve corresponds to a different estimator of τ1: i) the nonparametric estimator with Binomial

smoothing τ̂Lb1 ; ii) the nonparametric estimator with Poisson smoothing τ̂
Lp
1 ; iii) the naive

nonparametric estimator τ̂N
1 ; iv) the Bayesian nonparametric estimator τ̂D

1 ; v) the parametric
empirical Bayes estimator τ̂B1 ; vi) the parametric empirical Bayes estimator τ̂S1 . The shaded
bands corresponds to one standard deviation.
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Figure S2: The normalized mean squared error as a function of the sampling fraction (1 +
λ)−1 when the distribution of the cell’s probabilities is a Zipf with parameter s = 0.8. Each
curve corresponds to a different estimator of τ1: i) the nonparametric estimator with Binomial

smoothing τ̂Lb1 ; ii) the nonparametric estimator with Poisson smoothing τ̂
Lp
1 ; iii) the naive

nonparametric estimator τ̂N
1 ; iv) the Bayesian nonparametric estimator τ̂D

1 ; v) the parametric
empirical Bayes estimator τ̂B1 ; vi) the parametric empirical Bayes estimator τ̂S1 . The shaded
bands corresponds to one standard deviation.

S4 Tightness of the approximation lower bound

We show that a suitable Chebychev polynomial approximation of the exponential function
achieves (up to a multiplicative constant) the lower bound of Lemma 2 in the main document.

In view of Section B.2 in the main document, letting γC : [−1, 1] → R such that γC(x) :=
e−C(x+1), it is enough to find a sequence of polynomial (qL)L≥1 such that qL has degree at most
L and for a constant K > 0,

L ≤
√
C =⇒ sup

x∈[−1,1]

|γC(x)− qL(x)| ≤ K, (S15)

and,
√
C ≤ L ≤ ζC =⇒ sup

x∈[−1,1]

|γC(x)− qL(x)| ≤ K L√
C
e−Cϕ(L/C), (S16)

at least when C is large enough, and with ϕ defined in Equation (18) in the main document.
If L ≤

√
C, then we pick qL(x) = 0 identically, so that the equation (S15) is trivially satisfied

with any K ≥ 1, because |γC(x)| ≤ 1. Thus it suffices to establish (S16). For any k ≥ 0, we let
Tk : [−1, 1] → R the k-th order Chebychev polynomial, defined uniquely through the equality
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Figure S3: The normalized mean squared error as a function of the sampling fraction (1 +
λ)−1 when the distribution of the cell’s probabilities is a Zipf with parameter s = 1.0. Each
curve corresponds to a different estimator of τ1: i) the nonparametric estimator with Binomial

smoothing τ̂Lb1 ; ii) the nonparametric estimator with Poisson smoothing τ̂
Lp
1 ; iii) the naive

nonparametric estimator τ̂N
1 ; iv) the Bayesian nonparametric estimator τ̂D

1 ; v) the parametric
empirical Bayes estimator τ̂B1 ; vi) the parametric empirical Bayes estimator τ̂S1 . The shaded
bands corresponds to one standard deviation.

Tk(cos(θ)) = cos(kθ), for all θ ∈ [−π, π]. Then, we choose,

qL(x) :=

L∑
k=0

ak(C) · Tk(x), ak(C) :=

∫ 1

−1

e−C(x+1)Tk(x)√
1− x2

dx. (S17)

We collect in the next Lemma several facts about the polynomial qL and its coefficients
ak(C) which will be used to derive the rate of approximation of qL to γC , in the uniform norm.

Lemma S3. The following items are true.

1. ak(C) = π(−1)ke−CIk(C) for all k ≥ 0, where Ik is the modified Bessel function of the
first kind (see (Olver et al., 2010, pg. 248)).

2. The series q∞ :=
∑∞
k=0 ak(C)Tk converges uniformly in [−1, 1], and q∞(x) = γC(x) for

all x ∈ [−1, 1].

3. For all D > 0 there exists B0 > 0 such that for all B ≥ B0 and for all k ≥ max{BC, 2} ,
we have the bound |ak(C)| ≤ e−Dk.
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Figure S4: The normalized mean squared error as a function of the sampling fraction (1 + λ)−1

when the cell’s probabilities are uniform distributed. Each curve corresponds to a different
estimator of τ1: i) the nonparametric estimator with Binomial smoothing τ̂Lb1 ; ii) the nonpara-

metric estimator with Poisson smoothing τ̂
Lp
1 ; iii) the naive nonparametric estimator τ̂N

1 ; iv)
the Bayesian nonparametric estimator τ̂D

1 ; v) the parametric empirical Bayes estimator τ̂B1 ; vi)
the parametric empirical Bayes estimator τ̂S1 . The shaded bands corresponds to one standard
deviation.

4. For all B > 0 there exists C0 > 0 such that for all C > C0, for all
√
C ≤ L < k ≤ BC,

we have the bound

|ak(C)| ≤
√

2π · exp{−Cϕ(k/C)}√
C

.

Using the results of the previous lemma, we obtain the following corollary on the error of
the best uniform polynomial approximation to γC on [−1, 1], written EL(γC , [−1, 1]).

Corollary S1. For all ζ > 0 there exists C0 > 0 such that for all C > C0 and for all
√
C ≤

L ≤ ζC

EL(γC , [−1, 1]) ≤
√

4π(1 + ζ2) ·
√
C

L
e−Cϕ(L/C).

Furthermore, the polynomial qL defined in (S17) achieves the previous upper bound; and in view
of [...] in the main document, this bound is the best possible, up to a multiplicative constant.

S5 Remaining proofs for the minimax lower bound

This section gather all the proofs of the propositions and lemma stated in Section S2.
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Figure S5: The normalized mean squared error as a function of the sampling fraction (1 + λ)−1

when the distribution of the cell’s probabilities is a uniform Dirichlet distribution with respective
parameter β = 0.5. Each curve corresponds to a different estimator of τ1: i) the nonparametric
estimator with Binomial smoothing τ̂Lb1 ; ii) the nonparametric estimator with Poisson smoothing

τ̂
Lp
1 ; iii) the naive nonparametric estimator τ̂N

1 ; iv) the Bayesian nonparametric estimator τ̂D
1 ;

v) the parametric empirical Bayes estimator τ̂B1 ; vi) the parametric empirical Bayes estimator
τ̂S1 . The shaded bands corresponds to one standard deviation.

S5.1 Proof of Proposition S1

Using Jensen’s inequality we deduce that

E (λ, n) = inf
ρ̂

sup
P∈P

n−2E
n,λ
P [En,λP [(τ1(X, N,M)− ρ̂(Y (X, N)))2 | Y (X, N)]]

≥ inf
ρ̂

sup
P∈P

n−2E
n,λ
P [(En,λP [τ1(X, N,M) | Y (X, N)]− ρ̂(Y (X, N)))2].

Note that there is no explicit dependency on X and M anymore in the last display, but only
on the random variable (X, N) 7→ Y (X, N) which, under P , is distributed as an infinite vector
of independent Poisson random variables with parameters (np1, np2, . . . ). Besides observe also
that N =

∑
j≥1 Yj(X, N). Let define

τ̃1(YN , P, n, λ) := E
n,λ
P [τ1(X, N,M) | Y (X, N)]

=
∑
j≥1

1{Yj(X,N)=1}E
n,λ
P [1{Yj(X,N+M)−Yj(X,N)=0} | Y (X, N)].
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Figure S6: The normalized mean squared error as a function of the sampling fraction (1 + λ)−1

when the distribution of the cell’s probabilities is a uniform Dirichlet distribution with respective
parameter β = 1.0. Each curve corresponds to a different estimator of τ1: i) the nonparametric
estimator with Binomial smoothing τ̂Lb1 ; ii) the nonparametric estimator with Poisson smoothing

τ̂
Lp
1 ; iii) the naive nonparametric estimator τ̂N

1 ; iv) the Bayesian nonparametric estimator τ̂D
1 ;

v) the parametric empirical Bayes estimator τ̂B1 ; vi) the parametric empirical Bayes estimator
τ̂S1 . The shaded bands corresponds to one standard deviation.

Remark that (Yj(X, N+M)−Yj(X, N) : j ∈ N) is independent of Y (X, N) and is a collection
of independent Poisson random variables with intensities (λnpj : j ∈ N). Henceforth, we get

τ̃1(YN , P, n, λ) =
∑
j≥1

e−λnpj1{Yj(X,N)=1}, (S18)

and besides, since we abusively let YN denote the random variable (X, N) 7→ Y (X, N),

E (λ, n) ≥ inf
ρ̂

sup
P∈P

n−2E
n,λ
P [(τ̃1(YN , P, n, λ)− ρ̂(YN ))2]. (S19)

We now trade τ̃1(YN , P, n, λ) for its expectation whowh we define as τ̄1(P, n, λ) := E
n,λ
P [τ1(X, N,M)].

Recall that under P the vector YN is distributed as independent Poisson with parameters
(np1, np2, . . . ). Hence,

τ̄1(P, n, λ) =
∑
j≥1

e−λnpjEn,λP [1{Yj(X,N)=1}] = n
∑
j≥1

pje
−(1+λ)npj .

Similarly, for any P ∈P,
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Zipf 0.6 Zipf 0.8 Zipf 1

True τ1 112780 82254 42397

τ̂Lb1 116533 ∈ (115361, 117704) 84478 ∈ (83041, 85916) 43370 ∈ (41980, 44760)

τ̂
Lp
1 124242 ∈ (123380, 125104) 89443 ∈ (88195, 90690) 45307 ∈ (44188, 46427)

τ̂N
1 32623 ∈ (32580, 32666) 24436 ∈ (24386, 24485) 12593 ∈ (12555, 12630)

τ̂D
1 88030 ∈ (87699, 88362) 40983 ∈ (40833, 41133) 14740 ∈ (14688, 14792)

τ̂B1 64587 ∈ (64525, 64650) 41815 ∈ (41714, 41915) 14362 ∈ (14312, 14412)

τ̂S1 71651 ∈ (71543, 71759) 42022 ∈ (41900, 42145) 13738 ∈ (13690, 13787)

Uniform Dirichlet 0.5 Dirichlet 1

True τ1 143375 92849 112468

τ̂Lb1 149823 ∈ (149127, 150520) 95806 ∈ (94658, 96955) 117449 ∈ (116465, 118433)

τ̂
Lp
1 157967 ∈ (157408, 158526) 108040 ∈ (107174, 108907) 128879 ∈ (128150, 129607)

τ̂N
1 37424 ∈ (37392, 37457) 33133 ∈ (33086, 33181) 35147 ∈ (35110, 35184)

τ̂D
1 149121 ∈ (148619, 149623) 98586 ∈ (98178, 98993) 118696 ∈ (118285, 119106)

τ̂B1 71141 ∈ (71110, 71172) 66620 ∈ (66568, 66672) 68820 ∈ (68782, 68858)

τ̂S1 84631 ∈ (84565, 84697) 75504 ∈ (75404, 75604) 79853 ∈ (79776, 79930)

Table S1: Estimation of τ1 for several simulated scenarios, when the size of the population is n̄ =
106 and (λ+ 1)−1 = 1/5. Each column corresponds to a different choice of the distribution over
the cells’ probabilities. The first line displays the true value of τ1, while the other rows contain
the estimates and the empirical bands based on one standard deviation. All the experiments
are averaged over 100 iterations.

E
n,λ
P [(τ̃1(YN , P, n, λ)− τ̄1(P, n, λ))2]

=
∑
j≥1

npje
−(1+2λ)npj

{
1− npje−npj

}
≤ n. (S20)

Thus from (S19) and Young’s inequality, we find that

E (λ, n) ≥ 1

2n2
inf
ρ̂

sup
P∈P

E
n,λ
P [(τ̄1(P, n, λ)− ρ̂(YN ))2]

− 1

n2
E
n,λ
P [(τ̃1(YN , P, n, λ)− τ̄1(P, n, λ))2].

That is using (S20),

E (λ, n) ≥ 1

2
inf
ρ̂

sup
P∈P

n−2E
n,λ
P [(τ̄1(P, n, λ)− ρ̂(YN ))2]− n−1.

S5.2 Proof of Proposition S2

For any P ∈P ′ we let P̃ (·) := P (·)/P (N), so that P̃ ∈P is a probability measure. We write

p̃j := pj/P (N), j ∈ {1, . . . , S}. Furthermore we let m(P ) := n
∑S
j=1 pj . Then since YN is a
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vector of independent Poisson random variables, is clear that for any P ∈P ′

E
n,λ

P̃
[(τ̄1(P̃ , n, λ)− ρ̂(YN ))2] = E

m(P ),λ
P [(τ̄1(P̃ , n, λ)− ρ̂(YN ))2]. (S21)

We now choose τ̂ to be an estimator satisfying for some ζ > 0

sup
P∈P′

E
m(P ),λ
P [(τ̄1(P̃ , n, λ)− τ̂(YN ))2]

≤ inf
ρ̂

sup
P∈P′

E
m(P ),λ
P [(τ̄1(P̃ , n, λ)− ρ̂(YN ))2] + ζ.

This is always possible for any ζ > 0. Furthermore remark that m(P ) ≤ (1 + δ)n = n′, so that
m(P )/n′ ≤ 1 always when P ∈P ′. Let P ∈P ′ be fixed, and let W = (W1,W2, . . . ) such that
conditional on YN , the random variables Wj are independent binomial random variables with
parameters (Yj ,m(P )/n′). Then define τ̃(YN ) := E[τ̂(W )] | YN ]. By Jensen’s inequality,

E
n′,λ
P [(τ̄1(P̃ , n, λ)− τ̃(YN ))2] = E

n′,λ
P [(E[τ̄1(P̃ , n, λ)− τ̂(W ) | YN ])2]

≤ En
′,λ
P [E[(τ̄1(P̃ , n, λ)− τ̂(W ))2 | YN ]]

= E
m(P ),λ
P [(τ̄1(P̃ , n, λ)− τ̂(YN ))2]

≤ inf
ρ̂

sup
P∈P′

E
m(P ),λ
P [(τ̄1(P̃ , n, λ)− ρ̂(YN ))2] + ζ.

Taking the supremum over P ∈P ′ on the lhs of the last display, and using that the infinimum
over ρ̂ will be always smaller than the value at τ̃ , we find using (S21) that

inf
ρ̂

sup
P∈P

E
n,λ
P [(τ̄1(P, n, λ)− ρ̂(YN ))2]

= inf
ρ̂

sup
P∈P′

E
n,λ

P̃
[(τ̄1(P̃ , n, λ)− ρ̂(YN ))2]

= inf
ρ̂

sup
P∈P′

E
m(P ),λ
P [(τ̄1(P̃ , n, λ)− ρ̂(YN ))2]

≥ inf
ρ̂

sup
P∈P′

E
n′,λ
P [(τ̄1(P̃ , n, λ)− ρ̂(YN ))2]− ζ.

Since the previous is true for all ζ > 0, we indeed have proven

inf
ρ̂

sup
P∈P

E
n,λ
P [(τ̄1(P, n, λ)− ρ̂(YN ))2]

≥ inf
ρ̂

sup
P∈P′

E
n′,λ
P [(τ̄1(P̃ , n, λ)− ρ̂(YN ))2].

(S22)

To finish the proof of the proposition, we will now show that τ̄1(P̃ , n) in (S22) can be traded
for τ̄1(P, n, λ) at small cost. Remark that by Young’s inequality, for any P ∈P ′ and any ρ̂,

E
n′,λ
P [(τ̄1(P̃ , n, λ)− ρ̂(YN ))2]

≥ 1

2
E
n′,λ
P [(τ̄1(P, n, λ)− ρ̂(YN ))2]− (τ̄1(P, n, λ)− τ̄1(P̃ , n, λ))2, (S23)

with

τ̄1(P, n, λ)− τ̄1(P̃ , n, λ)
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= n

S∑
j=1

(p̃j − pj)e−(1+λ)npj − n
S∑
j=1

p̃je
−(1+λ)npj

{
1− en(1+λ)(pj−p̃j)

}
.

Hence,

|τ̄1(P, n, λ)− τ̄1(P̃ , n, λ)|

≤ n
S∑
j=1

|p̃j − pj |+ n

S∑
j=1

p̃je
−(1+λ)npj |1− en(1+λ)(pj−p̃j)|. (S24)

The first term of the rhs of the last display is easily seen to be bounded by nδ since |pj − p̃j | =
p̃j |
∑S
k=1 pk − 1| ≤ δp̃j for all j = 1, . . . , S. For the second term, we use that 0 ≤ 1 − e−x ≤ x

for all x ≥ 0. Hence, if pj ≤ p̃j we have,

p̃je
−(1+λ)npj |1− en(1+λ)(pj−p̃j)| = p̃je

−(1+λ)npj (1− e−n(1+λ)(p̃j−pj))

≤ n(1 + λ)|p̃j − pj | · p̃j
≤ nδ(1 + λ) · p̃2

j ,

while if pj > p̃j

p̃je
−(1+λ)npj |1− en(1+λ)(pj−p̃j)| = p̃je

−(1+λ)np̃j (1− e−n(1+λ)(pj−p̃j))

≤ n(1 + λ)|p̃j − pj | · p̃j
≤ nδ(1 + λ) · p̃2

j .

Therefore in any cases the second term of the rhs of Equation (S24) is bounded above by

n2δ(1 + λ)
∑S
j=1 p̃

2
j , and thus

|τ̄1(P, n, λ)− τ̄1(P̃ , n, λ)| ≤ nδ + n2δ(1 + λ)

S∑
j=1

p̃2
j ≤

(
1 +

nξ(1 + λ)

S(1− δ)

)
nδ.

This estimate combined with (S22) and (S23) completes the proof for the first inequality of the
proposition. The second inequality simply follows from the first by an application of Markov’s
inequality.

S5.3 Proof of Lemma S1

The proof is a trivial adaptation of the classical Le Cam method with two fuzzy hypotheses, as
also described in Tsybakov (2009).

Let ρ̂ be fixed but arbitrary and let define for convenience the events An(P ; ρ̂) := {YN :
|τ̄1(P, n, λ) − ρ̂(YN )| > nε}. Since the average is always less or equal than the supremum over
P ′, we establish that

sup
P∈P′

P
n′,λ
P (An(P ; ρ̂))

≥ 1

2
E
[
P
n′,λ
Q1

(An(Q1; ρ̂))1P′(Q1)
]

+
1

2
E
[
P
n′,λ
Q2

(An(Q2; ρ̂))1P′(Q2)
]

≥ 1

2
E
[
P
n′,λ
Q1

(An(Q1; ρ̂))
]

+
1

2
E
[
P
n′,λ
Q2

(An(Q2; ρ̂))
]
− α,
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where for the last line we have used the item 1 of the Lemma.
Now let define the events Bn(Qj ; ρ̂) := {YN : |E[τ̄1(Qj , n, λ)]− ρ̂(YN )| > nε/2}, for j = 1, 2.

Under item 2 of the Lemma, it is rapidly obtained from the last display that

sup
P∈P′

P
n′,λ
P (An(P ; ρ̂))

≥ 1

2
E
[
P
n′,λ
Q1

(Bn(Q1; ρ̂))
]

+
1

2
E
[
P
n′,λ
Q2

(Bn(Q2; ρ̂))
]
− α− β

=
1

2
E
[
1− Pn

′,λ
Q1

(Bn(Q1; ρ̂)c) + Pn
′,λ
Q2

(Bn(Q2; ρ̂))
]
− α− β.

But under item 3 of the lemma, we have that Bn(Q1; ρ̂)c ⊆ Bn(Q2; ρ̂). Moreover under Qj , j =
1, 2, YN is a vector of independent Poisson random variables with parameters (n′qj,1, . . . , n

′qj,S , 0, . . . )
and thus by the classical Le Cam’s trick the last equation is bounded by

sup
P∈P′

P
n′,λ
P (An(P ; ρ̂))

≥ 1

2

(
1− TV

(
E[⊗Sj=1Poiss(n′q1,j)], E[⊗Sj=1Poiss(n′q2,j)]

))
− α− β

≥ 1

2

(
1− γ − 2α− 2β

)
,

where the last line follows from the item 4 of the Lemma. Since the rhs of the last display is
independent of ρ̂, the conclusion of the Lemma follows.

S5.4 Proof of Lemma S2

The proof of Lemma S2 follows the guidelines used in the papers Wu and Yang (2019, 2016),
relating the problem of the existence of the random variables to the problem of finding the best
polynomial approximation to some function.

For a, b ∈ R, we let C[a, b] denote the space of continuous functions on [a, b], and for any
L ∈ Z+ we let PL[a, b] ⊂ C[a, b] denote the space of polynomials of degree no more than L on
[a, b]. For any f ∈ C[a, b], the best polynomial (of degree at most L) approximation to f is
defined as

EL(f, [a, b]) := inf{sup{|f(x)− q(x)| : x ∈ [a, b]} : q ∈ PL[a, b]}.

For the sake of simplicity, we define B := n(1 + λ)ξ/(2S). We also define g : [ξ−1, 1]→ R+

such that g(x) := exp{−2Bx}. It is a classical result that for any L ∈ N we can find random
variables X and Y taking values in [ξ−1, 1] and such that

E[Xk] = E[Y k], k = 0, . . . , L,

E[g(X)] = E[g(Y )] + EL(g, [ξ−1, 1]).

The proof of the existence of such random variables can be found for instance in Wu and Yang
(2016, 2019) for a constructive argument, or for instance in Lepski et al. (1999) using the Hahn-
Banach theorem and a duality argument.

We now assume that we have at our disposal the random variables X and Y of the previous
paragraph, and we write PX and PY their distributions. The construction of the random
variables U and V is done using the trick introduced in Wu and Yang (2016, Lemma 4). Namely,
we let U and V having respective distributions on [0, ξS−1]

PU (dx) :=
(
1− E[(ξX)−1]

)
δ0 + (Sx)−1PξX/S(dx),
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PV (dx) :=
(
1− E[(ξY )−1]

)
δ0 + (Sx)−1PξY/S(dx).

Because X,Y ≥ ξ−1 almost-surely, then E[(ξX)−1] ≤ 1 and E[(ξY )−1)] ≤ 1. Indeed from
Wu and Yang (2016, Lemma 4), PU and PV are proper probability distributions on [0, ξS−1]
satisfying

E[U ] = E[V ] = 1/S, E[Uk] = E[V k], k = 0, . . . , L+ 1,

E[U exp{−n(1 + λ)U}] = E[V exp{−n(1 + λ)V }] + S−1EL(g, [ξ−1, 1]).

Furthermore, it is clear that,

E[U2] =
1

S

∫
xPξx/S(dx) =

ξE[X]

S2
≤ ξ

S2
.

Hence Var(U) ≤ ξ/S2. It is obvious that we also have Var(V ) ≤ ξ/S2. Thus, the proof
of the theorem is finished by obtaining a lower bound on the best polynomial approximation
EL(g, [ξ−1, 1]). This is a consequence of the Lemma 2 in the main paper since L ≤ K1ξ,
B = (ξ/2)(1 +O(ξ−1), and also because

ξ

2
ϕ
(2L

ξ

)
≤ ξ

2
· 1

2

(2L

ξ

)2

=
L2

ξ
,

by using the facts about ϕ derived in Section S6.3.

S5.5 Proof of Proposition S3

Here we prove separately all the items stated in Proposition S3.

Proof of item 1. The proof is an immediate consequence of Bernstein’s inequality using that
Var(U) ≤ ξS−2 and 0 ≤ U ≤ ξS−1. Similarly for V .

Proof of item 2. The proof for Q1 and Q2 are identical, thus we only prove the result for Q1.
By definition, we have that

τ̄1(Q1, n, λ) = n

S∑
j=1

Uje
−n(1+λ)Uj .

Whence, τ̄1(Q1, n, λ) is a sum of i.i.d. random variables taking values in [0, nξS−1]. By Hoedffd-
ing’s inequality,

P
(
|τ̄1(Q1, n, λ)− E[τ̄1(Q1, n, λ)]| > nε/2

)
≤ 2 exp

{
− Sε2

2ξ

}
.

The conclusion follows from simple algebraic manipulations.

Proof of item 3. This is immediate by remarking that E[τ̄1(Q1, n, λ)] = nSE[Ue−n(1+λ)U ] and
E[τ̄1(Q2, n, λ)] = nSE[V e−n(1+λ)V ].

Proof of item 4. Since (U1, . . . , US) and (V1, . . . , VS) are independent and i.i.d vectors, we obtain
immediately that

TV(E[⊗Sj=1Poiss(n′Uj)], E[⊗Sj=1Poiss(n′Vj)])
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= STV(E[Poiss(n′U)], E[Poiss(n′V )]). (S25)

Since 0 ≤ U, V ≤ ξS−1 almost-surely, we obtain from (Wu and Yang, 2019, Lemma 6),

TV
(
E[Poiss(n′U)],E[Poiss(n′V )]

)
≤ 1

(L+ 2)!

(n′ξ
2S

)L+2(
2 + 2n

′ξ/(2S)−L + 2n
′ξ/(2 log(2)S)−L

)
.

Recall that n′ = n(1 + δ), thus under the conditions of the proposition we have n′ξ/(2S) ≤
n′ξ/(2 log(2)S) ≤ L, and hence from the last display we obtain that

TV
(
E[Poiss(n′U)],E[Poiss(n′V )]

)
≤ 4

(L+ 2)!

(nξ(1 + δ)

2S

)L+2

. (S26)

Then the conclusion follows by combining Equations (S25) and (S26).

S5.6 Proof of Proposition S4

Here we prove separately all the items stated in Proposition S4.

Proof of item 1. From the definitions of ξ, S and δ, we immediately see that (1 + nξ(1+λ)
S(1−δ) )2δ2 ≤

(1 + ξ
1−δ )2c20ε

2/ξ2 = c20ε
2(1 + o(1)), because ξ → ∞ and ε = O(1) (the latter fact is easier to

see a posteriori).

Proof of items 2 and 3. The case 1 + λ > log(n) is straightforward, thus we focus only on
1+λ ≤ log(n). For the sake of simplicity, we define r :=

√
log(n)/(1 + λ) and y :=

√
ec1A(λ, n),

so that ε =
√

2c3(ry)−1 exp(−r2y2/2). Then from the definitions of S, δ and ξ,

Sδ2 ≥ c20n(1 + λ)
ε2

ξ3
· ξ

& n ·max
{ 1

(1 + λ)2 log3(n)
,

1 + λ

log6(n)

}
ε2 · ξ

& ξ · n ·max
{ 1

(1 + λ)2 log3(n)
,

1 + λ

log6(n)

} 1

(ry)2
e−r

2y2

.

But under the assumption of the Proposition, have lim infn
{ log(n)
r2y2

}
> 1, which entails that for

n large enough Sδ2 ≥ 2ξ(1 + δ/3) log(20). The proof of item 3 is similar.

Proof of item 4. This is an immediate consequence of the definitions of ε, L and ξ.

Proof of item 5, Case 1 + λ ≤ log(n). Note that in this case we have ξ = (2c1/e)(1 + λ) log(n)
and L = dc1A(λ, n) log(n)e. For n large enough such that 0 < δ ≤ e log(2) − 1 (this always
happens, see for instance the remark in the proof of item 1), we have

2 log(2)LS ≥ 2 log(2)c1A(λ, n) log(n) · n(1 + λ)

= nξ · e log(2)A(λ, n)

≥ nξ · e log(2)

≥ nξ(1 + δ),

S18



where the third line follows because λ ≥ 0 and from the definition of A(λ, n) by remarking that
a log a ≥ 0⇒ a ≥ 1.

Further, using that (L + 2)! ≥ L2L!, and because L ≤ K1ξ implies that (1 + δ)L+2 .
(1 + δ)L ≤ eLδ ≤ eK1c1ε . 1, we have

4S

(L+ 2)!

(nξ(1 + δ)

2S

)L+2

.
S

L2

(nξ
2S

)2 1

L!

(nξ
2S

)L
=

S

L2

(c1 log(n)

e

)2 1

L!

(c1 log(n)

e

)L
.
S log2(n)

L5/2

(c1 log(n)

L

)L
,

where the last line follows from Stirling’s formula. Using the definitions of S . n(1 + λ), L and
A(λ, n), we deduce that

4S

(L+ 2)!

(nξ(1 + δ)

2S

)L+2

.
n(1 + λ)A(λ, n)−c1A(λ,n) log(n)

A(λ, n)5/2 log1/2(n)

=
1

c2A(λ, n)5/2
≤ 1

c2
.

Therefore by choosing c2 > 0 large enough we obtain that γ(2S)L+2(L + 2)! ≥ 4S(nξ(1 +
δ))L+2.

Proof of item 5, Case 1 + λ > log(n). Note that in this case we have ξ = (2c1/e) log2(n) and
L = d2c1 log(n)e. For n large enough such that 0 < δ ≤ 2e log(2)− 1 (this always happens, see
for instance the remark in the proof of item 1), we have

2 log(2)LS ≥ 4c1 log(2)n(1 + λ) log(n)

≥ 4c1 log(n)n log2(n)

= nξ · 2e log(2)

≥ nξ(1 + δ).

Proceeding along similar lines as for the case 1+λ ≤ log(n), it is easily found that as n→∞
we have

4S

(L+ 2)!

(nξ(1 + δ)

2S

)L+2

→ 0,

and hence certainly that γ(2S)L+2(L+ 2)! ≥ 4S(nξ(1 + δ))L+2 when n gets large enough.

S5.7 Proof of Proposition S5

We define the function ϕ : R+ → R such that ϕ(x) = x log(x). When 1 + λ ≤ log(n), it is clear
that A(λ, n) converges to the solution of ϕ(x) = c−1

1 = e, hence A(λ, n) → e, which proves the
first claim.

For the second claim, let define,

∆n := e
log(1 + λ)− (1/2) log log(n) + log(c2)

log(n)
.

For n large enough such that ∆n > −1, it is clear than A(λ, n) ≥ 0. Furthermore, by a Taylor
expansion of ϕ near x = e, we find that there is a x̄ in the line segment between A(λ, n) and e
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such that

ϕ(A(λ, n)) = ϕ(e) + ϕ′(e)(A(λ, n)− e) +
ϕ′′(x̄)

2
(A(λ, n)− e)2

≥ ϕ(e) + ϕ′(e)(A(λ, n)− e),

because ϕ′′(x) = 1/x > 0 whenever x > 0. Since ϕ(A(λ, n)) − ϕ(e) = ∆n, ϕ(e) = e, and
ϕ′(e) = 2, we deduce that for those n large,

0 ≤ A(λ, n) ≤ e+ ∆n/2.

Therefore,

e−1A(λ, n)2 log(n) ≤ e log(n) + ∆n log(n) +
∆2
n log(n)

4e

= e log(n) + e log
c2(1 + λ)√

log(n)
+ o(1).

This concludes the proof.

S6 Proofs related to the upper-bound on the best poly-
nomial approximation

In this section, we give the proofs of the results stated in Section S4, regarding the construction
of a polynomial of degree no more than L achieving the approximation error of the Lemma 2 in
the main document.

S6.1 Proof of Lemma S3

Below we prove the items stated in Lemma S3. The proofs mainly consist on driving the formula
for ak(C) and getting sharp estimates on |ak(C)| for various regimes governed by the ratio k/C.

Proof of item (1). By doing the change of variable x 7→ cos(θ) in the definition of ak(C), and
using that Tk(cos θ) = cos(kθ) we obtain

ak(C) = e−C
∫ 1

−1

e−CxTk(x)√
1− x2

dx

= e−C
∫ π

0

e−C cos θ cos(kθ)dθ

= π(−1)ke−CIk(C),

where we used (Olver et al., 2010, formula 10.32.3).

Proof of item (2). The uniform convergence of the series is an immediate consequence of the
fact that |Tn(x)| ≤ 1 for all x ∈ [−1, 1] and the upper bound estimate on |ak(C)| obtained just
after in item (3).

Proof of item (3). To prove the item, we use the classical bound on the modified Bessel function
obtained by Luke (1972). Indeed, for any k ≥ BC, we have

0 ≤ πe−CIk(C) ≤ π

k!

(C
2

)k
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≤ π√
2πk

(eC
2k

)k
≤
√

π

2k
exp

{
− k log

(2B

e

)}
,

where the first line comes from Luke (1972), and the second line by Stirling’s approximation.
For k ≥ 2 we have π/(2k) ≤ 1. Thus, it is enough to take B0 = e(1+D)/2, which concludes the
proof.

Proof of item (4). We follow a similar path as in the Section B.3 of the main document. Indeed,
we can remark by Stirling’s formula that for any p, k ≥ 0 we have

(p+ k)! ≥
√

2π(p+ k)p+k+1/2e−(p+k), p! ≥
√

2πpp+1/2e−p.

Then, by defining φz,k(x) as in Section B.3 of the main document, we obtain the upper bound,

e−CIk(C) ≤ e−C

k!

(C
2

)k
+
∑
p≥1

1

p!(p+ k)!

(C
2

)2p+k

≤ e−C

k!

(C
2

)k
+

1

2π

∑
p≥1

exp{φC,k(p)}√
p(p+ k)

. (S27)

We consider the first term of the rhs of the previous display. By Stirling’s formula, we have

e−C

k!

(C
2

)k
≤ e−C√

2πk

(eC
2k

)k
=

1√
2πk

exp
{
− C + k log

(eC
2k

)}
=

1√
2πk

exp{φC,k(0)},

where φC,k(0) is defined by extending φC,k at zero by continuity. We remark that,

φC,k(0)− φC,k(x0)

= −2x0 + x0 log x0 − k log k + (x0 + k) log(x0 + k)− 2x0 log
z

2

= −2x0 − k log k + k log(x0 + k) + x0

(
log x0 + log(x0 + k)− 2 log

z

2

)
= −2x0 + k log

(
1 +

x0

k

)
− x0φ

′
C,k(x0)

= −2x0 + k log
(

1 +
x0

k

)
≤ −x0.

It follows,

e−C

k!

(C
2

)k
≤ exp{φC,k(x0)}√

C
·
√

C

2πk
e−x0 =

exp{φC,k(x0)}√
C

· o(1)

as C →∞, by remarking that C/k .
√
C and that k ≤ BC, hence C/k ≥ B−1 and x0 ≥ B′k >

B′
√
C →∞ for a universal constant B′ > 0.

We now consider the second term in the rhs of (S27). We let p0 be the integer defined in
Section B.3 of the main document, that is x0 < p0 ≤ x0 + 1 is integer and φ′z,k(x0) = 0. Recall
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that x0 ≥ B′k > B′
√
C → ∞ for a universal constant B′ > 0. Let G1 > 0 be a constant to be

chosen accordingly later, and let A1 ∈ N be the only integer such that

x0 −G1

√
x0 log(x0)− 1 < A1 ≤ x0 −G1

√
x0 log(x0).

By the previous discussion, we have 1 < A1 < x0 at least for L large enough. Similarly, we let
G2 > 0 a constant to be chosen accordingly, and we let A2 ∈ N be the only integer such that

x0 +G2(1 +
√
x0) log(x0) ≤ A2 < x0 +G2(1 +

√
x0) log(x0) + 1.

Obviously A2 > x0. Then we decompose the sum in the rhs of (S27) as

A1∑
p=1

exp{φC,k(p)}√
p(p+ k)︸ ︷︷ ︸
S1

+

A2∑
p=A1+1

exp{φC,k(p)}√
p(p+ k)︸ ︷︷ ︸

S2

+
∑
p>A2

exp{φC,k(p)}√
p(p+ k)︸ ︷︷ ︸
S3

.

The conclusion of the proof follows by gathering the bounds for S1, S2, and S3, which are derived
in the paragraphs below, and by using that φC,k(x0) = −Cϕ(k/C).

Bound on S1 Let p ∈ [1, A1]. We remark by a Taylor expansion that φC,k(p) = φC,k(x0) +
1
2φ
′′
C,k(p̄)(p − x0)2 for some p̄ ∈ (1, x0). As for Section B.3 of the main document, we see that

φ′′C,k(p̄) ≤ −1/x0. Therefore, remarking that (p − x0)2 ≥ G2
1x0 log(x0) for any 1 ≤ p ≤ A1 (at

least for L large enough),

S1 ≤
exp{φC,k(x0)}√

k

A1∑
p=1

exp
(
− (p− x0)2

2x0

)
≤ exp{φC,k(x0)}√

C
·A1

√
C

k
x
−G2

1/2
0

=
exp{φC,k(x0)}√

C
· o(1),

where the last line follows by choosing G1 large enough, because A1 ≤ x0, C/k .
√
C, and

x0 ≥ B′
√
C →∞.

Bound on S2 Let A1 < p ≤ A2. Then, |p − x0| = O
(√
x0 log(x0)

)
as C → ∞. Further, it is

easily seen that, as C →∞,

sup
x∈[A1,A2]

|φ′′′C,k(x)| = sup
x∈[A1,A2]

( 1

x2
+

1

(x+ k)2

)
≤ 2 sup

x∈[A1,A2]

1

x2

=
2(1 + o(1))

x2
0

.

Therefore, by Taylor expansion, and as C →∞,

φC,k(p) = φC,k(x0) +
1

2
φ′′(x0)(p− x0)2 +O

(x3/2
0 log3(x0)

x2
0

)
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= φC,k(x0) +
1

2
φ′′(x0)(p− x0)2 + o(1).

It follows,

S2 ≤ (1 + o(1)) · exp{φC,k(x0)}√
A1(A1 + k)

A2∑
p=A1+1

exp
(1

2
φ′′(x0)(p− x0)2

)
≤ (1 + o(1)) · exp{φC,k(x0)}√

x0(x0 + k)

∞∑
p=−∞

exp
(1

2
φ′′(x0)p2

)
≤ (1 + o(1)) · exp{φC,k(x0)}√

x0(x0 + k)

{
1 + 2

∞∑
p=1

exp
(1

2
φ′′(x0)p2

)}
≤ (1 + o(1)) · exp{φC,k(x0)}√

x0(x0 + k)

{
1 + 2

∫ ∞
0

exp
(1

2
φ′′(x0)t2

)
dt
}

≤ (1 + o(1)) · exp{φC,k(x0)}√
x0(x0 + k)

{
1 +

√
2π

−φ′′C,k(x0)

}
.

It is proven in the Section B.3 of the main document that x0(x0 + k) = C2/4 and −φ′′C,k(x0) =

(4/C)
√

1 + (k/C)2. It follows, as C →∞,

S2 ≤
√

2π(1 + o(1))
exp{φC,k(x0)}

√
C ·
(
1 + (k/C)2

)1/4
≤
√

2π(1 + o(1))
exp{φC,k(x0)}√

C
.

Bound on S3 Let p > A2. Remark that for L large enough we also have p > x0 +
√
x0.

Then, by performing two Taylor expansions, we find that there is x̄ ∈ (x0, x0 +
√
x0) and

p̄ ∈ (x0 +
√
x0, p) such that

φC,k(p) = φC,k(x0 +
√
x0) + φ′C,k(p̄)(p− x0 −

√
x0)

= φC,k(x0) +
1

2
φ′′C,k(x̄)x0 + φ′C,k(p̄)(p− x0 −

√
x0)

≤ φC,k(x0) + φ′C,k(p̄)(p− x0 −
√
x0),

where the last line follows because φ′′C,k(x̄) < 0. By the results of Section B.3 of the main
document, we can also see that

φ′C,k(p̄) = φC,k(x0)− log
p̄

x0
− log

p̄+ k

x0 + k

= − log
p̄

x0
− log

p̄+ k

x0 + k

≤ − log
p̄

x0

≤ − log
(

1 +
1
√
x0

)
≤ − 1

1 +
√
x0
.
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Hence because p > x0 +
√
x0,

φC,k(p) ≤ φC,k(x0)−
p− x0 −

√
x0

1 +
√
x0

.

It follows,

S3 ≤
exp{φC,k(x0)}√

x0(x0 + k)

∑
p>A2

exp
(
−
p− x0 −

√
x0

1 +
√
x0

)
≤ e · exp{φC,k(x0)}√

x0(x0 + k)
· x−G2

0 ·
∑
p≥0

exp
(
− p

1 +
√
x0

)
=
e · exp{φC,k(x0)}√

x0(x0 + k)
· x−G2

0 · (1 +
√
x0).

It is shown in Section B.3 of the main document that x0(x0 +k) = C2/4. Therefore, for C →∞
and G2 sufficiently large,

S3 =
exp{φC,k(x0)}√

C
· o(1).

S6.2 Proof of Corollary S1

By item (2) of Lemma S3, we obtain immediately that

EL(γC , [−1, 1]) ≤ sup
x∈[−1,1]

|qL(x)− γC(x)| ≤
∑
k>L

|ak(C)|. (S28)

We let L′ be the largest integer smaller than BC, for B > 0 large enough. Then, by the item (3)
of Lemma S3, for any D > 0 we can choose B0 such that for all B > B0,∑

k>L′

|ak(C)| ≤
∑
k>L′

e−Dk ≤ e−DBC

eD − 1
.

By taking B,D sufficiently large, the contribution of the previous display in the rhs of (S28)
is negligible. It remains to bound the sum from L + 1 to L′ (note that for B large enough, we
have L′ > L). By the item item (4) of Lemma S3, we obtain that

L′∑
k=L+1

|ak(C)| ≤
√

2π

L′∑
k=L+1

exp{−Cϕ(k/C)}√
C

≤
√

2π

∫ ∞
L

exp{−Cϕ(x/C)}√
C

dx

=
√

2πC

∫ ∞
L/C

exp{−Cϕ(x)}dx,

where the second line follows because ϕ is monotone increasing on (L,∞), because ϕ′ > 0 (see
for instance Section S6.3). Interestingly, the function ϕ′ is also monotone increasing (L/C,∞),
because ϕ′′ > 0 (see again Section S6.3). Hence, u ≥ L/C ⇔ ϕ′(u) ≥ ϕ′(L/C), and by Markov’s
inequality,

L′∑
k=L+1

|ak(C)| ≤
√

2π

C

∫ ∞
L/C

Cϕ′(u) exp{−Cϕ(u)}
ϕ′(L/C)

du
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=
√

2π · exp{−Cϕ(L/C)}
ϕ′(L/C) ·

√
C

.

Now we remark that by a Taylor expansion we have u ∈ (0, L/C), that is u ∈ (0, ζ), such that
ϕ′(L/C) = ϕ′(0) + ϕ′′(u) · L/C = ϕ′′(u) · L/C. In view of Section S6.3, we deduce that

ϕ′(L/C) ≥ 1√
1 + ζ2

· L
C
,

and thus,
L′∑

k=L+1

|ak(C)| ≤
√

2π(1 + ζ2) ·
√
C

L
e−Cϕ(L/C).

S6.3 Some results about the function ϕ

In this section, we collect some facts about the function ϕ : R+ → R+ defined in (18) of the
main document. It is convenient to rewrite ϕ as

ϕ(x) := 1−
√

1 + x2 +
1

2
(−x+

√
1 + x2) log(−x+

√
1 + x2)

+
1

2
(x+

√
1 + x2) log(x+

√
1 + x2).

Then,

ϕ′(x) = − (−x+
√

1 + x2) log(−x+
√

1 + x2)

2
√

1 + x2
+

(x+
√

1 + x2) log(x+
√

1 + x2)

2
√

1 + x2
,

ϕ′′(x) =
1

(1 + x2)1/2
, ϕ′′′(x) = − x

(1 + x2)3/2
.

By a Taylor expansion of ϕ near 0, we find that there is a y ∈ (0, x) such that

ϕ(x) = ϕ(0) + ϕ′(0)x+
1

2
ϕ′′(0)x2 +

1

6
ϕ′′′(y)x3 ≤ x2

2
,

because ϕ(0) = ϕ′(0) = 0 and ϕ′′′(y) ≤ 0 for all y ≥ 0 by the computations above. Similarly,
there is y ∈ (0, x) such that,

|ϕ′(x)| ≤ |ϕ′(0)|+ |ϕ′′(y)||x| ≤ |x|.
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