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Abstract

We use estimates of time preferences to customize incentives for

polio vaccinators in Lahore, Pakistan. We measure time preferences using

intertemporal allocations of effort, and use these estimates to construct

individually-tailored incentives. We evaluate the effect of matching contract

terms to discounting parameters in a subsequent experiment with the same

vaccinators. Our tailored policy is compared to alternatives that either rely

on atheoretic reduced-form relationships for policy guidance or apply the

same policy to all individuals. We find that contracts tailored to individual

discounting outperform this range of policy alternatives.

JEL classification: D1, D3, D90

Keywords: Structural estimation, Out-of-sample prediction, Discounting,

Present Bias
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1. Introduction

The preference parameters governing intertemporal decisions affect a broad

range of outcomes, justifying the considerable theoretical and empirical

investments made to describe the level and shape of discounting.1 An

understanding of intertemporal preference parameters also provides valuable

policy guidance. Indeed, a number of recent policies are motivated by

empirical research on time preferences: commitment savings products, default

retirement allocations, and the Save More Tomorrow retirement savings

program are all partly motivated by the insight that time preferences may be

‘present-biased’ (for discussion and examples see, e.g., Laibson, 1997; Benartzi

and Thaler, 2004; Beshears, Choi, Laibson and Madrian, 2009; Ashraf, Karlan

and Yin, 2006; Blumenstock, Callen and Ghani, 2018).

Policy interventions may be further enhanced by using individualized,

rather than broad, information on time preferences. Differences in

experimental measures of time preferences correlate with differences in a

number of policy-relevant behaviors such as take-up of commitment devices

and credit card borrowing (examples include Chabris, Laibson, Morris,

Schuldt and Taubinsky, 2008b; Meier and Sprenger, 2008, 2012, 2010; Ashraf

1. Central examples of theoretical work include Samuelson (1937); Koopmans (1960);

Laibson (1997) and O’Donoghue and Rabin (2001). Empirical exercises in field and

laboratory settings focusing on parameter estimation include Hausman (1979); Lawrance

(1991); Warner and Pleeter (2001); Cagetti (2003); Laibson, Repetto and Tobacman

(2005); Mahajan, Michel and Tarozzi (2020); Harrison, Lau and Williams (2002); Andreoni

and Sprenger (2012).
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et al., 2006; Dohmen, Falk, Huffman and Sunde, 2006; Castillo, Ferraro,

Jordan and Petrie, 2011).2 These correlations suggest that interventions could

leverage individual information on time preference to tailor unique policies for

each person. The purpose of tailoring policies is to shape real-world behavior.

Therefore, we study the potential to deploy lab protocols for measuring

preferences and structurally tailoring contracts in the field.

This paper studies the promise of theoretically-informed, individually-

tailored policy interventions in a real-world policy setting. Our project

engages government health workers—termed Lady Health Workers (LHWs)—

associated with polio eradication efforts for the Department of Health in

Lahore, Pakistan.3 The function of LHWs is to provide oral polio vaccine

to children during monthly vaccination drives, which usually last two days.

We introduce a monitoring and incentive system to measure intertemporal

preferences via effort choices at work. Closely following the Convex Time

Budget (CTB) design of Andreoni and Sprenger (2012); Augenblick, Niederle

and Sprenger (2015), LHWs are asked to trade off work between the two

2. It should be noted that none of these examples linking structural estimates of time

preference to other behaviors provide an articulated model for what the precise correlation

between the two values should be. Unlike our own efforts, such exercises could be conducted

without appeal to structural estimation.

3. Polio is endemic in Pakistan. Of 350 new worldwide cases in 2014, 297 occurred in

Pakistan, constituting a ‘global public health emergency’ according to the World Health

Organization.Between 95% and 99% of individuals carrying polio are asymptomatic. One

infection is therefore enough to indicate a substantial degree of ambient wild polio virus.

The disease largely affects children under five.
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days of a vaccination drive. Unlike standard laboratory measurements of time

preferences, for empirical realism, each LHW only makes a single CTB choice.

Completion of the allocated work is tied to a bonus of 10 times the standard

LHW daily wage. Under a set of structural assumptions, the distribution of

work allocations identifies the distribution of time preferences accounting for

shocks to the marginal costs of effort. Each LHW’s choice can, in turn, be

linked to an expected level of discounting at the individual level under the

estimated distributions of time preferences and shocks.

We then tailor policy based upon these measured preferences in a

subsequent work decision. The structural, tailored policy we examine attempts

to equalize vaccinations over time by changing relative prices for each LHW.4

We compare this tailored policy to alternatives that span the policy space

on two dimensions: broad vs. tailored and structural vs. atheoretic. A broad

policy is one that is applied uniformly to all individuals, while a tailored

policy is one individualized to each based on some characteristic. In our

setting, a broad policy is one where all vaccinators face the same price for

trading vaccinations off across the two days, while an individualized policy

is one where each vaccinator faces their own price. A structural policy is one

that draws policy guidance from a theoretical model of preferences, while an

4. Our tailored policy was pre-specified prior to conducting the study, and was chosen to

precisely equalize vaccinations in the absence of shocks. Accounting for shocks to marginal

costs in our distributional estimates alters the policy target slightly from equal vaccinations

over time.
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atheoretic policy draws policy guidance from some reduced-form relationship.5

In our setting, we use a model to translate LHWs’ allocations of vaccinations

to an estimate of their preferences. Our structural policy uses information on

measured preferences, while atheoretic policies do not. Our structural, tailored

policy is compared to broad policies which set relative prices to achieve

the same objective based on aggregate values, or the reduced-form price-

sensitivity of effort; and a tailored, but atheoretic policy, which sets relative

prices based on a simple rule of giving higher relative prices to plausibly

more patient individuals. These comparisons are facilitated by an overarching

control group that receives a uniform random price, from which we draw

subsets for comparison purposes.

In a sample of 338 LHWs, we document three principal findings. First,

on aggregate, we estimate effectively no present bias in between-subjects

comparisons. LHWs choosing their work in advance of the first day of

the vaccination drive allocate slightly more of their vaccinations to the

first day of the drive than those allocating on the morning the drive

actually commences, but corresponding estimates of the distribution of time

preferences indicate only a small and insignificant degree of present bias.

Interestingly, when examining within-subjects data, comparing individual

LHWs across drives, our estimates of present bias grow more substantial,

and accord with estimates from prior laboratory studies of present bias in

effort. Second, there is a large degree of heterogeneity in time preferences

5. Though far from an exhaustive labeling of potential policies, this 2-by-2 labeling helps

to organize the comparisons we investigate.
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across subjects and this heterogeneity is markedly more pronounced when

LHWs make immediate choices. This sizable cross-sectional variation also

resonates with prior experimental exercises. Third, and most importantly, our

structural, tailored policy works. Relative to a range of policy alternatives,

our intervention generates behavior around 30% closer to the policy target

of equal allocation. Interestingly, when focusing on conditions where subjects

are asked to make allocations which take effect immediately – that is, when

present bias may be relevant – the tailored policy generates a roughly 50%

improvement.

This paper makes two contributions. First, our exercise uses field behavior

about effort to examine time preferences, reflecting, to our knowledge, the

first attempt to use the Augenblick et al. (2015) methods for measurement

based on an actual real-world work (vaccinations).6 This effort yields some

valuable lessons for future field implementations. While lab experiments have

elicited preferences based on a few hours of effort, participants in our study

make decisions over days’ worth of work. Shocks to the marginal cost of

effort have plausibly greater consequences when allocating several hundred

vaccinations attempts in the field rather than fifty greek transcriptions online

as in Augenblick et al. (2015). We, correspondingly, find an important role for

shocks in our estimations. The volume of work required in our field setting

6. Documenting dynamic inconsistency outside of the laboratory and outside of the

standard experimental domain of time-dated monetary payments is particularly valuable

given recent discussions on the elicitation of present-biased preferences using potentially

fungible monetary payments (Cubitt and Read, 2007; Chabris, Laibson and Schuldt, 2008a;

Andreoni and Sprenger, 2012; Augenblick et al., 2015; Carvalho, Meier and Wang, 2014).
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generates a further difference from lab implementations. While roughly 90%

of Augenblick et al.’s subjects completed all allocated tasks and requirements

of the study and received a $100 completion bonus, fewer of our subjects

completed all their allocated vaccinations. While most LHWs appear to have

made substantial efforts to meet their targets, completing about 75% of the

required vaccinations, only about 50% of our sample successfully completed

all vaccinations, even with a bonus of 10 times the daily LHW wage.7 This

difference between the lab and the field requires us to account for probabilistic

completion and the potential distortionary effects of noncompletion in our

analysis. We develop empirical tools for estimating the distribution of time

preferences from a limited number of CTB choices, accounting for shocks and

probabilistic completion, which may be valuable for researchers conducting

future field efforts in this vein. The consistencies between our findings and

prior lab experimental work helps to support the growing literature which

identifies present bias from CTBs and non-monetary choices in the field (Read

and van Leeuwen, 1998; Sadoff, Samek and Sprenger, 2015; Read, Loewenstein

7. The lack of uniform completion was not a feature of the data we initially expected,

but, in retrospect, is something we could have anticipated. Data from drives prior to

our intervention, which were subject to almost no monitoring or scrutiny, showed that

LHWs almost without exception hit their prescribed targets exactly. We believe these

reports are at least partially driven by the fact that polio is a politicized issue in Pakistan,

with a number of stakeholders and international donors being eager to demonstrate high

numbers of vaccinations. Given our lack of foresight, the functional forms accounting for

probabilistic non-completion were in our study registration. As such, they should be viewed

with appropriate caveats.
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and Kalyanaraman, 1999; Sayman and Onculer, 2009; Kaur, Kremer and

Mullainathan, 2010, 2015; Carvalho et al., 2014).8

Second, we provide the first empirical evidence to date of the value in

structural, tailored policies for intertemporal choice in a field setting (or

otherwise). Given these results, there is clear opportunity to expand the

scope of interventions beyond uniform policy strategies. The policy objective

we consider attempts to implement a smooth allocation over time. In our

setting equalizing vaccine provision is important for the logistics of the

vaccine supply chain. Polio vaccine requires cold storage. Managers therefore

prefer that the amount of vaccine delivered every day meets a consistent and

manageable target. Smoothing is also a natural objective to consider for other

intertemporal decisions but may, of course, not be appropriate in all settings.9

There are many other policy alternatives that could be considered, including

8. These studies include examination of present bias or dynamic inconsistency for food

choices (Read and van Leeuwen, 1998; Sadoff et al., 2015); for highbrow and lowbrow

movie choices (Read et al., 1999); for cafe reward choices (Sayman and Onculer, 2009);

for completing survey items (Carvalho et al., 2014); and for fertilizer purchase decisions

(Duflo, Kremer and Robinson, 2011). For discussion of this literature, see Sprenger (2015).

9. Evidence suggests that consumption of Supplemental Nutritional Assistance Program

(SNAP) benefits may be subject to present bias, leading to declining consumption during

the benefit period (see, e.g., Shapiro, 2005; Hastings and Washington, 2010). Our results

indicate that a tailored policy along the lines implemented here could help smooth benefit

consumption. Such a policy could complement alternatives that have been discussed,

including increasing the frequency of benefit payments (Shapiro, 2005).

7
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the alternative of maximizing total vaccine provision10 Hence, our results

provide a simple proof-of-concept for tailoring to a range of targets.

The paper proceeds as follows: Section 2 presents our experimental

design and corresponding theoretical considerations for estimating time

preferences and tailoring contracts, Section 3 presents results, Section 4

provides robustness tests, and Section 5 concludes.

2. Experimental Design

Our experiment has three components: implementing a high resolution

smartphone monitoring system similar to that described in Callen,

10. One can consider a range of tailoring exercises using interest rate, R, to maximize a

policymaker’s objective function subject to each LHW’s offer curve. If P (w1,i(R), w2,i(R))

is the objective function at LHW allocation (w1,i, w2,i), then under the structural

assumptions and experimental design of this paper the general problem is

maxR P (w∗1,i(R), w∗2,i(R)) s.t

(w∗1,i(R), w∗2,i(R)) = argmin (w1,i)
γ + β1d=1

i δi · (w2,i)
γ s.t.

w1,i +R ·w2,i = V.

Our exercise assumes a Leontief policymaker, P (w1,i, w2,i) = min[w1,i, w2,i]. If, instead,

one assumed a maximizing policymaker, P (w1,i, w2,i) = w1,i + w2,i, then when γ = 2,

the optimal R∗ =
√
β1t=1
i δi(1 + β1d=1

i δi)− β1d=1
i δi. We estimate average values of βiδi

around 0.95, and so R∗ for maximizing vaccinations is roughly 0.4. This was an unrealistic

value for implementation in our setting, but such a policy should be investigated in future

work.
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Gulzar, Hasanain, Khan and Rezaee (2019), eliciting individual discounting

parameters using the Convex Time Budget (CTB) technique (Andreoni and

Sprenger, 2012; Augenblick et al., 2015), and, after assigning tailored contracts

to LHWs, testing whether these tailored contracts outperform comparison

policies.

2.1. Vaccinations, Smartphone Monitoring, and Evaluation of

Monitoring Technology

The Department of Health in Lahore, Pakistan, employs LHWs throughout

the city to conduct polio vaccination drives. Every month there is a vaccination

drive that is at least two days long. Prior to our study, the standard protocol

for vaccination drives was to provide each LHW a fixed target for total

vaccinations over the drive and a map of potential households (called a “micro-

plan”). LHWs received no explicit benefits for reaching targets; they received

a fixed daily wage of 100 rupees (around $1 at contemporary exchange rates).

LHWs mapped their walk with pen and ink, knocking on each compound door,

and vaccinating each child if their parents granted permission. Vaccinating a

child consists of administering a few drops of oral vaccine. As there is no

medical risk of over-vaccination, LHWs are encouraged to vaccinate every

child for whom permission is granted. For each attempted vaccination, LHWs

were asked to mark information related to the attempt (number of children

vaccinated, whether or not all children were available for vaccination, etc.)

in chalk on the compound wall. Appendix Figure A.1 provides an example

of neighborhood micro-plan, Appendix Figure A.2 provides an example of

a vaccination attempt, and Appendix Figure A.3 provides a picture of a
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chalk marking on a compound wall. At the end of each day, LHWs in

each neighborhood convened with their supervisor and self-reported their

vaccination activity for the day (see Appendix Figure A.4 for an example of

the form). In principle, a monitor could verify the claims. In practice, however,

there was virtually no monitoring, and reasons to suspect over-reporting.11

In collaboration with the Department of Health, we designed a

smartphone-based monitoring system. The Department of Health provided a

smartphone equipped with a vaccination monitoring application to all LHWs

in our sample in order to record information related to each vaccination.

For each vaccination attempt, the LHW was asked to take a picture of the

home visited and her current vial of vaccine. An image of the main page of

the application is provided as Figure 1, Panel A. Data from the smartphone

system were aggregated in real-time on a dashboard available to senior health

administrators (see Appendix Figure A.5 for an example of the dashboard).

In order to separate the effects of this smartphone monitoring system from

those of our incentive program discussed next, a sample of vaccinators (157

total between two vaccination drives) were given a smartphone equipped with

11. We attempted to independently audit LHWs by following the trail of chalk markings,

but our enumerators found the process too difficult to produce a reliable audit of houses

visited. We do, however, know the targets associated with each micro-plan prior to our

monitoring intervention and that LHWs almost always reported meeting their targets

exactly. Even with a bonus incentive and smartphone monitoring in place, we find that

LHWs on average achieve only 62% (s.d. = 58%) of the target given by their micro-plans.

LHWs likely would achieve a smaller share of their target in the absence of both monitoring

and financial incentives.
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Panel A: Splash Page Panel B: Slider Bar

Figure 1. Vaccination Monitoring Smartphone App

Notes: The picture is of two screenshots from the smartphone app used by Vaccinators. Panel
A is depicted after partially scrolling down. The top bar in Panel A (white letters) translates

to “polio survey.” The next panel down (blue letters) translates to “Dashboard” (literally
transliterated). The black letters under the top button translate to “new activity”, the letters
under the second button translate to “send activity” and the letters under the lowest button
translate to “set target”. The blue letters in panel B translate to “set target”. The next line

translates to “First day: 133; Second day: 133”. The text next to the box translates to
“finalize target” and the black letters on the bar translate to “set target.”

the application and instructed on its use, but were not given any additional

incentives beyond their daily wage.

2.2. Drive 1: Intertemporal Bonus Contracts and the

Measurement of Preferences

The smartphone monitoring application was equipped with additional

functionality for implementing intertemporal bonus contracts. These contracts

had LHWs set daily work targets in order to receive a substantial bonus. The
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chosen targets provide critical intertemporal preference information that we

use to estimate the distribution of preferences, and, subsequently, to tailor

future contracts.

We worked with the Department of Health to implement these contracts in

two-day drives in September, November and December of 2014. The contracts

required workers to complete a present value total of V = 300 vaccination

attempts in exchange for a fixed bonus of 1000 rupees. LHWs set daily targets,

v1 and v2, corresponding to vaccinations on day 1 and day 2 of the drive,

respectively. If either of the vaccination targets, v1 or v2, were not met, the

1000 rupees would not be received, and the LHW would receive only her

standard wage.

Each LHW was randomly assigned a relative price, R, translating

vaccinations on day 1 to vaccinations on day 2. For each vaccination allocated

to day 2, the number of vaccinations allocated to day 1 would be reduced by

R. Hence, the targets v1 and v2 satisfy the intertemporal budget constraint

v1 +R · v2 = V.

This bonus contract is identical to an experimental device termed a Convex

Time Budget used to investigate time preferences (Andreoni and Sprenger,

2012; Augenblick et al., 2015).12 Intertemporal allocations, (v1, v2), carry

12. We also borrow an additional design element from such studies: minimum allocation

requirements. In order to avoid LHWs allocating all their vaccinations to a single day of

the drive, we placed minimum work requirements of v1 ≥ 12 and v2 ≥ 12. The objective of

minimum allocation requirements is to avoid confounds related to fixed costs. That is, by
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information on the time preferences of each LHW that can be used to estimate

the distribution of time preferences.

2.2.1. Experimental Variation. Our design leverages two sources of

experimental variation. First, each LHW is randomly assigned a single relative

price, R, from the set R ∈ {0.9, 1, 1.1, 1.25}. These values were chosen following

Augenblick et al. (2015). Operationally, experimental variation in R was

implemented by providing each LHW with a slider bar on the introduction

screen of the smartphone application. Figure 1, Panel B depicts the slider

bar with R equal to 1.25. The LHW was asked to pull the slider bar to their

desired allocation (v1, v2) and then submit. The allocation was required to be

submitted before commencing vaccination.

Second, each LHW was randomly assigned to either submit their allocation

in advance of day 1 of the drive or on the morning of day 1. We refer to the

first of these as the ‘Advance’ treatment arm and the second as ‘Immediate’

treatment arm. The assignment to either the Advance or the Immediate group

was cross-randomized with the assignment of R, creating a 2 x 4 design

within our incentive trreatments. Section 2.4 describes the efforts taken to

make everything else besides allocation timing equal between the Advance

and Immediate conditions.

Variation in the timing and interest rate of allocations provides relevant

experimental variation for estimating the distribution of time preferences

requiring LHWs to work on both days of the drive, we avoid confounding extreme patience

or extreme impatience with LHWs simply not wishing to come to work on one of the two

days.
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and evaluating whether the distribution is dynamically consistent. The

distribution of LHW allocations in these conditions is mapped to a

distribution of discounting parameters accounting for the influence of shocks.

Distributional estimates in hand, we calculate an expected discount factor for

each LHW based on their allocation under the estimated distributions of time

preferences and shocks.

2.2.2. Structural Assumptions for Estimating Time Preferences. We make

a number of structural assumptions in order to map from LHW allocations

to discounting parameter distributions. First, we assume a stationary power

cost of effort function c(v) = vγ , where v represents vaccinations performed

on a given day, and γ > 1 captures convex costs of effort. In our pre-specified

analysis plan, we posited γ to be constant across individuals and our tailoring

exercise was conducted under the assumption of γ = 2, quadratic costs. While

the field implementation of intertemporal discounting experiments is likely to

differ substantially from laboratory examples, quadratic costs are close to the

prior laboratory findings for effort (see, e.g., Augenblick et al., 2015). While

the cost function is constant across individuals and over time, we assume below

that individual allocations are subject to random shocks in relative marginal

costs across period, and we estimate the distribution of those shocks. Hence,

in calculating an individual’s expected discount factor we take into account

this potential source of variation in costs.

Second, we assume that individuals discount the future quasi-

hyperbolically (Laibson, 1997; O’Donoghue and Rabin, 1999). For a given

LHW, i, making allocation (v1,i, v2,i) the discounted disutility of effort can be
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written as

vγ1,i + β1d=1
i δi · vγ2,i.

The indicator 1d=1 captures whether the decision is made in advance or

immediately on day 1. The parameters βi and δi summarize individual

discounting. The parameter βi captures the degree of present bias active for

LHWs who make Immediate decisions when 1d=1 = 1. If βi = 1, the vaccinator

adheres to exponential discounting with discount factor δi, while if βi < 1 the

vaccinator exhibits a present bias, being less patient in Immediate relative to

Advance decisions.

Third, we assume that the distribution of one period discount factors is

normal in each condition

δi ∼ N(µδ, σ
2
δ ) if d = 0

βiδi ∼ N(µβδ, σ
2
βδ) if d = 1.

Our objective is to estimate the relevant distributional parameters of the

population: µδ, σ
2
δ in the Advance condition, and µβδ, σ

2
βδ in the Immediate

condition.

Fourth, we assume that LHWs minimize the discounted costs of effort

subject to the intertemporal budget constraint provided by their bonus
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contract. This yields a marginal condition

Rγvγ−1
1,i − β

1d=1
i δiγv

γ−1
2,i = 0. (1)

Note that in the absence of shocks, equation 1 provides a deterministic

mapping from allocation behavior to individual discount factors,

R ∗ (
v1,i

v2,i
)γ−1 = β1d=1

i δi, (2)

which can be used to provide initial guidance on the extent of heterogeneity

in choice.

Fifth, we assume vaccinators’ behavior is not the deterministic function of

their preferences provided in equations 1 and 2. Rather, their optimization is

subject to an additive shock to relative marginal costs in the two periods, εi.

We assume these relative marginal cost shocks to be normal and mean zero,

εi ∼ N(0, σ2
ε).

Minimizing discounted costs subject to the intertemporal budget constraint of

the experiment and adding the relative marginal cost shock yields an adjusted

marginal condition:

γvγ−1
1,i −

β1d=1
i δi
R

γvγ−1
2,i = εi.

13 (3)

13. This approach for structurally estimating time preferences by assuming a marginal

condition is satisfied up to a random shock was introduced in controlled experiments by
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Under the above assumptions, the conditional likelihood of an allocation

(v1,i, v2,i) given β1d=1
i δi is

L(v1,i, v2,i|δi) = ϕ

(
γvγ−1

1,i −
δi
R γv

γ−1
2,i

σε

)
if d = 0

L(v1,i, v2,i|βiδi) = ϕ

(
γvγ−1

1,i −
βiδi
R γvγ−1

2,i

σε

)
if d = 1

where ϕ(·) is the density of the standard normal distribution. Integrating over

the relevant distribution of preference parameters in Advance and Immediate

conditions gives the likelihoods

L(v1,i, v2,i) =

∫
ϕ

(
γvγ−1

1,i −
δi
R γv

γ−1
2,i

σε

)
f(δi)dδi if d = 0 (4)

L(v1,i, v2,i) =

∫
ϕ

(
γvγ−1

1,i −
βiδi
R γvγ−1

2,i

σε

)
g(βiδi)dβiδi if d = 1, (5)

where f(·) and g(·) are the normal densities from which δi and βiδi are

drawn. We deploy the Method of Simulated Likelihood (MSL) with 1000

random Halton draws from the simulated distributions, f(·) and g(·), at each

observation to estimate simulation analogs of equations (4) and (5). Appendix

Andreoni and Sprenger (2012), and has precedents in a body of macroeconomic research

identifying aggregate preferences from consumption data. See, for example, Shapiro (1984);

Zeldes (1989); Lawrance (1991).
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A.1 provides additional detail on the estimation methodology and robustness

of corresponding results.

In our setting, vaccinators receive a bonus of 1000 rupees paid the day

after the drive if they meet both targets v1 and v2.14 Not completing allocated

vaccinations creates a sizable penalty at any given point in time. This design

choice was made to encourage LHWs to forecast that they will complete the

required vaccinations and so allocate them according to their true preferences.

Nonetheless, the total present value of vaccinations, V = 300, is ambitious.

Even with substantial effort, LHWs may not meet their targets, and so may

need to account for the potential for failure when making their allocations. To

incorporate potential failure, we introduce a sixth assumption: LHWs forecast

completing v allocations with probability

p(v) =
1

1 + αv
.

Forecasted non-completion, introduces a wedge in the LHW’s marginal

condition, as they must recognize the marginal impact of an allocation on

failure and loss of the completion bonus. This, in turn, changes the estimation

procedure in two ways: the completion probabilities, p(v1,i) and p(v2,i), are

a component of the total likelihood of an observation, and the component

of the likelihood associated with the marginal condition is adjusted for the

non-completion loss of the bonus. In Appendix A.1 we present the extended

methodology that incorporates probabilistic non-completion in estimation

14. The choice of large bonuses (around 10 times daily wages) followed the design logic

discussed in Augenblick et al. (2015), who implemented a $100 completion bonus.
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and provide additional empirical results. For completeness we present our

distributional results with and without the incorporation of the completion

parameter, α, and find little difference in estimated time preferences.

Our structural exercise links the distributions of behavior in each of

our 8 experimental conditions of R and Advance vs Immediate Choice in

Drive 1 to a heterogeneous distribution of discount factors and a distribution

shocks. Absent heterogeneity in discount factors or shocks, behavior would be

deterministic, and all LHWs in a given condition should provide identical

allocations. Permitting shocks alone, the distributions of behavior would

reflect a constant shock variance, but be displaced in a proportional way

across conditions (e.g., from

ϕ

(
γvγ−1

1,i − δ
Rγv

γ−1
2,i

σε

)

to

ϕ

(
γvγ−1

1,i − δ
R′ γv

γ−1
2,i

σε

)

between R and R′). A substantial role for heterogeneous preferences would

be recovered if this restriction provided a relatively poor fit to the data.

Identifying heterogeneity in preferences in this way may be challenging if

assumptions like a constant distribution for ε are inaccurate. Importantly,

our project is predicated on using the resulting measures to tailor contracts

and predict subsequent Drive 2 allocations. As such, if we mischaracterize

behavior that should be attributable to shocks or other forces as evidence
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of heterogeneous discounting, our exercise should do a notably poor job of

tailoring incentives.

2.2.3. Deriving Individual Expected Discount Factors From Allocation

Behavior. The methodology discussed to here yields estimated distributions

of preference parameters and additive marginal cost shocks N(µ̂δ, σ̂2
δ ),

N( ˆµβδ,
ˆσ2
βδ), and N(0, σ̂2

ε). These distributions in hand, we map back to

expected values of discounting for each individual. We do this by simulating

behavior (allocations of v1,i and v2,i) using the estimated distributions –

N(µ̂δ, σ̂2
δ ), N( ˆµβδ,

ˆσ2
βδ), and N(0, σ̂2

ε) – and then calculating the expected

value of δi or βiδi associated with a given allocation, E[δi|v1,i, v2,i,R] if d = 0

and E[βiδi|v1,i, v2,i,R] if d = 1. Specifically, we take 1 million draws from the

distribution of preference parameters and shocks separately for the Advance

and Immediate Conditions. We then simulate the distribution of allocations

at each value of R ∈ {0.9, 1, 1.1, 1.25}. We construct E[δi|v1,i, v2,i,R] if d = 0

and E[βiδi|v1,i, v2,i,R] if d = 1 as the expected discount factor associated

with simulated allocations within 2.5 tasks of the actual allocation’s value

of v1,i. Such simulation-based methodology for calculating individual level

parameters is analogous to the approach taken for discrete choice models

after MSL estimation (See Train (2009) for examples).

The assumptions required for the calculation of expected discount factors

are potentially quite restrictive. Our research design, which involves tailoring

contracts to discounting, required commitment to specific functional forms

for costs and discounting. Our empirical exercise estimates the distribution of

discounting parameters accounting for shocks to relative marginal costs and
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the probability of non-completion. In sub-section 4.1, we assess the validity of

our assumptions and present further exploratory analysis related to alternative

functional forms.

2.3. Drive 2: Test of Structural, Tailored Contracts

In a second two-day drive, we investigate tailored contracts. All LHWs from

the first drive were invited to participate in a second intertemporal bonus

contract. LHWs were unaware that their previously measured behavior would

be used to potentially inform their subsequent contracts. This sidesteps an

important possibility that LHWs might alter their first drive behavior in order

to receive a more desirable contract in the second drive.

Half of LHWs received an individually-tailored intertemporal bonus

contract,

w1,i +R∗i ·w2,i = V,

where w1,i and w2,i are Drive 2 allocations. The value

R∗i =
R · v1,i

v2,i
(6)

is their individually-tailored interest rate based upon their Drive 1 allocations.

Absent shocks and with perfect completion, when γ = 2 in (1), R · v1,i/v2,i =

βiδi or δi, depending on whether the LHW made an Immediate or Advance

decision in Drive 1.15 Hence, the tailored contract was pre-specified to be

15. Note that this tailoring exercise requires that LHWs remain in either the Immediate

or Advance assignment across drives.
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equal to the LHW’s discount factor under deterministic choice and perfect

completion. Absent shocks and probabilistic completion, setting the relative

price, R∗i , in this way should lead LHWs to allocate an equal number of

vaccinations to each day of the drive, w1,i = w2,i. Accounting for shocks and

probabilistic completion alters this prediction slightly, but the prediction of

roughly equal allocations to each period is maintained. Though LHWs in this

group receive different relative prices, the contract is designed for each of them

to achieve the same objective of smoothing vaccinations through time. Some

LHWs’ allocation behavior in the first drive implied extreme values of R∗i . Our

tailoring exercise focused only on a Tailoring Sample of LHWs with values of

R∗i between 0.75 and 1.5.16 LHWs outside of these bounds were given either

the upper or lower bound accordingly.

The other half of LHWs were given a random intertemporal bonus

contract,

w1,i + R̃i ·w2,i = V,

where R̃i was drawn from a random uniform distribution U [0.75, 1.5]. The

bounds on the distribution of R̃i were determined to match the bounds on

R∗i , while the choice of a random uniform control—rather than a single value

of R̃i or some alternative distribution—was chosen to provide flexible scope

for constructing a range of comparison policies by drawing subsets of LHWs

16. Of our sample of 338 LHWs, 57 exhibit Rv1,i/v2,i outside of this range. The Tailoring

Sample consists of the remaining 281 LHWs. One LHW, out of 281 does, not report

vaccination activity via mobile phone in Drive 2.
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assigned to the R̃i condition. Relevant subgroups that we draw from this group

of LHWs are: 1) structural, broad: those with values of R̃i close to the average

value of R∗i ; 2) atheoretic, broad: those with values of R̃i that are close to the

optimal value for achieving w1,i = w2,i implied by a reduced form exercise; 3)

atheoretic, tailored: those with values of R̃i that are generally increasing in

patience but not required to be linear as in the structurally tailored policy,

R∗i = R · v1,i/v2,i. These comparisons span the policy space of being either

atheoretic vs. structural and tailored vs. broad. Comparison is also provided

for the full group of LHWs who received random bonus contracts.

Random assignment to structural tailoring in Drive 2 is stratified on

the measure of absolute distance to equal allocations |(v1,i/v2,i)− 1|, based

on allocations from Drive 1.17 This measure of distance to equal provision

also serves as our eventual outcome measure when analyzing the effect of

assignment to structural tailoring in Drive 2. Stratifying assignment on key

outcomes of interest is standard practice in the field experimental literature

(Bruhn and McKenzie, 2009), as it generally increases precision in estimating

treatment effects.

2.4. Design Details

Our experiment is divided into two drives. The first drive took place November

10-11, 2014 with training on November 7. The second drive took place

December 8-9, 2014 with training on December 5. These drives are denoted

17. Specifically, subjects are divided into terciles by this measure, with a roughly even

number in each bin being assigned to the tailoring and to the control condition.
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Drive 1 and Drive 2 and are used for measuring preference, and tailoring

contracts, respectively. We had actually anticipated beginning our field study

in September, 2014. However, as noted below, a disruption to the mobile

network prevented us from measuring the preferences for all LHWs in this

drive. We call this failed drive Drive 0, and leverage the data that was collected

for within-subjects panel analysis.

2.4.1. Training and Allocation Decisions. On November 7, all LHWs

participating in Drive 1 received two hours of training at one of three

locations in central Lahore on using the monitoring features of the smartphone

application and the process by which allocations were made. Both Advance

and Immediate LHWs were given identical training. At the end of the training,

LHWs assigned to Advance decision were asked to select their allocations by

using the page on their smartphone application. Assistance was available from

training staff for those who required it. LHWs assigned to the Immediate

condition were told they would select their allocations using their smartphone

application on Monday morning before beginning work. A hotline number was

provided if assistance was required for those in the Immediate condition. The

training activities on December 5, for the December 8-9 drive were identical.

However, because LHWs had previously been trained on the smartphone

application, this portion of the training was conducted as a refresher.

2.4.2. Experimental Timeline. Drive 0, Failed Drive, September 26-30,

2014: We had hoped to begin our study on Friday, September 26th, 2014

with a training session. 336 LHWs had been recruited, were randomized into

treatments, and trained. Advance allocation decisions were collected from half
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of the subjects on Friday, September 26th. On Monday, September 29th, when

we attempted to collect immediate allocation decisions, there was a disruption

in the mobile network that prevented 82 of 168 Immediate decision LHWs

from submitting their allocations. This caused us to abandon this drive for

the purposes of measuring preferences for subsequent tailoring of contracts.

The drive, however, was completed and intertemporal bonuses were paid. For

the 82 individuals who did not make their allocations, we contacted them,

allowed them to continue working, and paid bonuses for all.18 We present

data from Drive 0 in our robustness exercises, but do not use Drive 0 for the

purposes of tailoring contracts. In addition to the 336 LHWs who experienced

intertemporal bonus contracts, Drive 0 also had a separate a sample of 85

LHWs who received a phone but no bonus contract to study the differential

effect of our incentives.

Drive 1, November 7-11, 2014: Of the original 336 bonus contract LHWs

in our failed drive, 57 did not participate in the next drive organized for

November 7 - 11. We recruited replacements with the help of the Department

of Health, identifying a total of 349 LHWs to participate in the intertemporal

bonus program. The entire sample was re-randomized into R and allocation

timing conditions. We again included in our study a sample of 72 vaccinators in

Drive 1 who received a phone but no financial bonus. Training was conducted

18. Appendix Table A.5 checks for balance by failure of the smartphone application in

Drive 0. Only one of the eight comparison of means hypothesis tests reject equality at the

10% level.
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on November 7, and Advance allocation decisions were collected. The drive

began on November 10, and Immediate allocation decisions were collected. 174

LHWs were assigned to the Advance Choice condition and 175 were assigned

to the Immediate Choice condition. Bonuses were paid on November 12. While

all 174 LHWs in the Advance Choice condition provided an allocation decision,

only 164 of 175 in the Immediate Choice condition provided an allocation,

generating a usable sample of 338 allocations in Drive 1. For 232 LHWs, we

have allocation decisions in both the failed drive, Drive 0, and Drive 1, forming

a potentially valuable panel of response. In addition to the 338 LHWs who

experienced intertemporal bonus contracts and provided allocations, Drive 1

also had a separate a sample of 73 LHWs who received a phone but no bonus

contract to study the differential effect of our incentives.

Drive 2, December 5-9, 2014: Of the 338 LHWs who participated in Drive 1

and provided an allocation, 337 again participated in Drive 2. These LHWs

were randomly assigned to be structurally tailored or receive a random price in

their Drive 2 bonus contracts. Importantly, LHWs retained their Advance or

Immediate assignment, such that Drive 2 delivers a 2x2 design for structural

tailoring and allocation timing. This allows us to investigate the effect of

structural tailoring in general, and if the effects depend on whether present

bias may be active.

2.4.3. Sample Details. Table 1 summarizes our sample of LHWs from

Drive 1 and provides tests of experimental balance on observables. Columns

(1) through (4) present the mean and standard deviation of a number
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Table 1. Drive 1 Summary Statistics and Covariate Balance

Intertemporal Bonus Contracts Phone Only p-value
Advance Choice Immediate Choice

Tailored Untailored Tailored Untailored
(1) (2) (3) (4) (5) (6)

Demographics
Gender (Female = 1) 0.989 1.000 0.976 0.978 0.958 0.089

(0.011) (0.000) (0.017) (0.015) (0.024)
Years of Education 10.713 10.459 10.232 10.207 10.528 0.613

(0.300) (0.214) (0.200) (0.245) (0.290)
Number of Children 3.593 3.229 3.438 3.451 3.470 0.803

(0.212) (0.202) (0.191) (0.195) (0.198)
Punjabi (=1) 0.954 0.952 0.938 0.944 0.957 0.984

(0.023) (0.023) (0.027) (0.025) (0.024)

Financial Background
Has a Savings Account (=1) 0.247 0.321 0.268 0.242 0.243 0.773

(0.047) (0.051) (0.049) (0.045) (0.052)
Participated in a ROSCA (=1) 0.388 0.361 0.400 0.391 0.429 0.947

(0.053) (0.053) (0.055) (0.051) (0.060)

Health Work Experience
Years in Health Department 10.826 10.648 10.256 10.319 11.197 0.742

(0.535) (0.509) (0.556) (0.555) (0.546)
Years as Polio Vaccinator 11.041 10.506 10.323 9.647 10.831 0.340

(0.504) (0.504) (0.529) (0.500) (0.530)

Vaccination Data

Drive 1 Behavior:
R·v1,i
v2,i

1.039 1.043 1.045 1.024 0.975

(0.024) (0.029) (0.036) (0.036)

Proportion: 0.75 ≤ R·v1,i
v2,i

≤ 1.5 0.876 0.859 0.783 0.706 0.020

(0.035) (0.038) (0.045) (0.047)
Registered Vaccination Activity 0.809 0.824 0.916 0.815 0.833 0.148

(0.042) (0.042) (0.031) (0.041) (0.044)
Proportion of Targets Completed 0.797 0.811 0.682 0.731 0.119

(0.040) (0.038) (0.047) (0.042)
Total Vaccinations Attempted 254.333 261.143 212.513 233.587 203.367 0.021

(13.506) (14.032) (15.337) (14.810) (15.847)
# Vaccinators 89 85 83 92 72

Notes: Mean and standard error in parentheses from Drive 1 observations in columns (1) through (5). Statistical
significance level of F -test for constant means in column (6). Some calculations use smaller sample than
that reported in final row due to missing information. The proportion of subjects with missing demographic
information for is never greater than 3.5% (8 Vaccinators did not report whether they had participated in a
ROSCA). A ROSCA is an informal Rotating Savings and Credit Association. Some calculations used a smaller
sample size due to missing information.

of demographic characteristics for LHWs assigned to intertemporal bonus

contracts in Drive 1. These values are separated by Advance and Immediate

Choice and whether the LHW was subsequently assigned to be Tailored or

Untailored in Drive 2. Column (5) presents the means and standard deviations

for LHWs that participated in our study (including Drive 0), but did not

receive incentives.19 Column (6) presents a p-value corresponding to joint

tests of equality. Our sample is almost exclusively female, more than 90%

19. 13 LHWs were in the Phone Only group in Drive 0 and re-randomized into the

incentive group in Drive 1. They are included in the Table 1, column (5).
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Punjabi in all treatment arms, and broadly without access to formal savings

accounts. LHWs are generally highly experienced with an average of 10.5 years

of health work experience and 10.4 years of polio work experience. Consistent

with randomization, of the 8 tests performed on demographic balance, only

the test performed on an indicator variable equal to one for female subjects

suggests baseline imbalance.

Table 1 also provides some additional information on vaccination activity

in Drive 1 for each group. Average allocations are roughly equal in Advance

Choice and Immediate Choice, but the Immediate condition exhibits greater

variation in behavior. Correspondingly slightly fewer LHWs in the Immediate

condition exhibit behavior within the bounds 0.75 ≤ (R · v1,i/v2,i) ≤ 1.5. Of

338 LHWs in our Drive 1 incentive conditions, 288 registered activity in their

cell phone application during the drive, while 50 generated no data.20 Table

1 demonstrates slightly more registered activity in the Immediate Choice

condition. This may be due to the fact that LHWs in Immediate Choice

made their allocations in the application on the morning the drive began and

so could be more likely to remember to register their activity. Conditional on

registering vaccination activity, LHWs in our incentive conditions completed

around 75% of their target vaccination attempts, with somewhat greater

completion rates in the Advance condition.21 As noted in section 2.2.2, we

20. Appendix Table A.9 suggests that this data is unrelated to experimental variation in

R, but that LHWs in the Advance condition are slightly more likely to have not registered

activity.

21. Completion rates are calculated as 1/2(min(Completed1,i/v1,i, 1) +

min(Completed2,i/v2,i, 1)). Appendix Figure A.6 presents the histogram of average
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account for forecasted non-completion in our empirical approach to estimating

the distributions of discount factors and in subsection 4.1 we explore the

determinants of target completion. Conditional on registering vaccination

activity, LHWs in our incentive conditions attempted an average of around

235 vaccinations in Drive 1. LHWs assigned to the Phone Only condition

without incentives completed only around 203 vaccinations. In subsection 4.4

we further explore the separate question of differential effects of incentives

relative to monitoring alone for increasing vaccinations.

3. Results

Our project has two phases. The first phase measures intertemporal

preferences. The second phase evaluates the effects of structural, tailored

contracts. These results of these two phases are presented in the next two

subsections. A third subsection provides additional analyses and robustness

tests.

completion percentages across subjects, showing a bimodal distribution of success and

failure. In Appendix Table A.9, we examine the determinants of completion with linear

probability models and an indicator for completion, Complete(= 1), as dependent variable.

Within the Advance and Immediate groups we find no discernible relationship between R

and completion. However, individuals assigned to Immediate choice are significantly less

likely to satisfactorily complete their allocated vaccinations. This evidence may have a

present-biased interpretation. If subjects in the Immediate condition postpone more work

due to present bias, they may be subsequently unable to satisfactorily complete said work.
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3.1. Drive 1: Individual Behavior and Distributions of

Intertemporal Preferences

Each LHW in Drive 1 provides a single allocation, (v1,i, v2,i), at their randomly

assigned value of R and Advance versus Immediate Choice assignment. To

provide a comparable value of these allocations across conditions, Figure 2,

Panel A plots the distribution of Rv1,i/v2,i separately for the 174 LHWs in

the Advance condition and 164 LHWs in the Immediate condition. Figure

2, Panel A also provides indicators for how our Drive 2 Tailoring Sample is

constructed. In total 57 LHWs with values of Rv1,i/v2,i outside of the region

[0.75, 1.5] are excluded from the Tailoring Sample, while the remaining 281

are the focus of our Drive 2 analysis.

Absent shocks to marginal costs and probabilistic non-completion, the

quantity Rv1,i/v2,i would be equivalent to each LHW’s one period discount

factor. Two features of Figure 2, Panel A warrant attention. First, the median

value of Rv1,i/v2,i in the Advance condition is 1.02, while the median in the

immediate condition is 1. LHWs allocate slightly fewer vaccination attempts

to day 1 of the drive when making immediate allocations, but this difference

in medians is not statistically significant, Pearson’s χ2 = 1.18, (p = 0.28).

Second, LHWs in both conditions exhibit substantial variation in allocation

behavior. The 25th-75th percentiles of Rv1,i/v2,i range from [0.88− 1.18] in

the Advance condition, and from [0.84 − 1.21] in the Immediate condition.

While this wide variation is suggestive of heterogeneous time preferences,

preferences are unlikely to be the sole source of heterogeneity. Given that in

the absence of shocks Rv1,i/v2,i identifies an individual discount factor, this
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Figure 2. Individual Behavior and Expected Discount Factors

Notes: Panel A reports individual allocation behavior, Rv1,i/v2,i, vaccinators in Advance and
Immediate conditions for Full Sample of 338 vaccinators. Dashed red lines correspond to the
boundaries Rv1,i/v2,i = 0.75 and Rv1,i/v2,i = 1.5 which define the Tailoring Sample. Panel B
presents the mapping between individual behavior and expected discount factors in Advance
and Immediate conditions based on the structural models estimated in columns (3) and (6) of
Table 2. Dashed red lines correspond to the boundaries Rv1,i/v2,i = 0.75 and Rv1,i/v2,i = 1.5
which define the Tailoring Sample. Panel C presents the expected discount factors in Advance
and Immediate condition specifically for the Tailoring Sample of 281 vaccinators in Drive 1.

would imply daily discount factors well beyond empirical rates of interest.

A plausible additional driver of these individual differences is shocks to the

marginal costs of vaccination.

The structural exercise developed in section 2.2.2 links the distributions of

behavior presented in Figure 2, Panel A to distributions of time preferences

accounting for both shocks and probabilistic completion. Table 2 provides the

implementations of this methodology for subjects in Drive 1. Columns (1)

through (3) of Table 2 presents the distributional discounting estimates for

LHWs in the Advance Choice condition, N(µδ, σ
2
δ ). In column (1), we set

ln(σδ) = −10 such that there is effectively zero heterogeneity in preferences,
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and estimate a homogeneous value µδ = 0.954 (0.016) and a substantial role

for shocks to relative marginal costs, ln(σε) = 4.155 (0.054). In column (2),

we permit heterogeneity in discount factors and estimate µδ = 0.965 (0.022)

and ln(σδ) = −2.449 (0.587), implying a standard deviation of δ of 0.09. This

specification identifies a slightly smaller role for shocks to relative marginal

costs. However, heterogeneous preferences provides only a minor improvement

in the estimated likelihood relative to the homogeneous model, suggesting that

many LHWs have values of δi close to the aggregate value. Columns (4) and

(5) of Table 2 repeat this analysis for all subjects in the Immediate Choice

condition. Absent heterogeneity we obtain µβδ = 0.895 (0.024) and σε =

4.529 (0.055). Incorporating heterogeneity, we estimate µβδ = 0.959 (0.029)

and σβδ = −1.526 (0.164), implying a standard deviation of βiδi of 0.22,

more than twice as large as that of δi alone. In the Immediate Choice

condition, heterogeneous preferences provides a substantial improvement in

the estimated likelihood relative to the homogeneous model.

The differential discounting estimates between the Advance and

Immediate conditions are suggestive of limited present bias in discounting:

µδ/µβδ = 0.938 and 0.992 without and with accounting for heterogeneous

preferences, respectively. Moreover, the estimated distribution of preferences

in the Immediate condition suggests a greater degree of heterogeneity, perhaps

reflecting that it incorporates two dimensions of individual difference, both δ

and β. Table 2 identifies the distributions of discount factors using only the

between-subject variation in R and Advance vs. Immediate choice of Drive 1.

In subsection 4.3, we reconduct the analysis making using of our failed Drive

0 data, and the corresponding within-subject variation of LHWs transitioning
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between conditions across drives. These estimates show a quantitatively larger

degree of present bias, µδ/µβδ ≈ 0.90 and continue to demonstrate substantial

heterogeneity in discounting.

Table 2. Distributional Estimates

Advance Choice Immediate Choice
(1) (2) (3) (4) (5) (6)

Discounting Parameters:
µδ 0.954 0.966 0.966

(0.016) (0.022) (0.022)
ln(σδ) -10 -2.449 -2.450

(-) (0.587) (0.582)

µβδ 0.895 0.959 0.959
(0.024) (0.029) (0.029)

ln(σβδ) -10 -1.526 -1.527
(-) (0.164) (0.163)

Completion Parameter:
α 0.001 0.003

(0.000) (0.000)

Shock Parameter:
ln(σε) 4.155 4.067 4.067 4.529 4.146 4.146

(0.054) (0.120) (0.118) (0.055) (0.148) (0.147)

# Vaccinators Allocation Obs. 174 174 174 164 164 164
# Cell Phone Completion Obs. - - 142 - - 146
Log-Likelihood -969.78 -969.40 -1057.98 -975.41 -967.05 -1068.03

Notes: Parameters from maximum simulated likelihood estimation for Drive 1 allocations and
completion data where noted. Allocation data provided by Full Sample of 338 vaccinators.
Estimates in column (1) assume ln(σδ) = −10 such that there is zero heterogeneity in preferences.
Completion data provided by 288 vaccinators. Standard errors in parentheses.

Of the 338 LHWs in Drive 1, 288 registered activity in their cell phone

application during the drive. The cellular network in Lahore is known to

have some coverage gaps, and so we consider a subject to have successfully

completed their work if they registered activity and completed an average

of 90% or more of their required tasks on each day of the drive. By

this measure, one-hundred seventy-four LHWs successfully completed their

Drive 1 allocations. Columns (3) and (6) of Table 2 conduct estimates

accounting for probabilistic completion using the completion data from the

288 subjects with registered cell-phone activity. Missing completion data is
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given a likelihood contribution of zero. Accounting for probabilistic completion

has little influence on the estimated discounting distributions in both the

Advanced and Immediate conditions, and we estimate a completion parameter

of α = 0.001− 0.003. In Appendix A.1, we provide additional analyses related

to probabilistic completion, demonstrating the robustness of these results to

altered assumptions on the utility impact of forecasted non-completion and

different sample pools.

The distributional estimates of Table 2, columns (3) and (6) facilitate

the simulation exercise described in section 2.2.3 for calculating each LHW’s

expected discount factor: δi for LHWs in the Advance condition, and βiδi

for LHWs in the Immediate condition. For each value of R we simulate 1

million allocations under the assumed distributions for preferences and shocks

accounting for probabilistic completion estimated in Table 2, columns (3)

and (6). For each LHW, we assign a value of δi or βiδi as the expected

value of corresponding simulated discount factors that yield allocations

within 2.5 vaccinations of the LHWs allocation, (v1,i, v2,i). That is, we

calculate the posteriors E[δi|v1,i, v2,i,R] and E[βiδi|v1,i, v2,i,R] using the

simulated distributions of behavior. Figure 2, Panel B provides the mapping

in Advance and Immediate conditions from behavior, Rv1,i/v2,i, to individual

expected discount factor calculations. In both conditions, the approach

deployed substantially shrinks the degree of individual differences. Extreme

allocations are estimated to be due to shocks, not preferences, and so are

mapped back to more reasonable expected discount factors. Given the greater

heterogeneity in estimated preferences in Immediate Choice, the mapping for

E[βiδi|v1,i, v2,i,R] permits wider variation in calculated expected discount
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factors. Panel B also provides the indicators for how our Drive 2 Tailoring

Sample is constructed, eliminating those 57 LHWs with values of Rv1,i/v2,i

outside of the region [0.75, 1.5] and discounting estimates outside of the

corresponding bounds for E[δi|v1,i, v2,i,R] and E[βiδi|v1,i, v2,i,R].

Figure 2, Panel C focuses on the 281 LHWs in the Tailoring

Sample and provides the the obtained distributions of E[δi|v1,i, v2,i,R] and

E[βiδi|v1,i, v2,i,R]. The median value of E[δi|v1,i, v2,i,R] in the Advance

condition is 0.976, while the median value of E[βiδi|v1,i, v2,i,R] in the

Immediate condition is 0.991. The 25th-75th percentiles of expected discount

factors range from [0.960− 0.991] in the Advance condition, and from [0.925−

1.055] in the Immediate condition, echoing the substantial heterogeneity in

reduced form behavior. The LHWs in the Tailoring Sample are focus of our

evaluation of structural tailored contracts in the next section.

3.2. Drive 2: Evaluating Structural, Tailored Contracts

Individual expected discount factors from Drive 1 in hand, we evaluate

contracts tailored to individual discounting parameters. Of the 338 LHWs who

participated in Drive 1, 281 provided allocations that were within our Tailoring

Sample, 0.75 ≤ (Rv1,i/v2,i) ≤ 1.5, and 280 participated in Drive 2.22 Within

this Tailoring Sample, 142 LHWs were assigned a value of R∗i = Rv1,i/v2,i,

22. LHWs with allocations outside of these bounds were allowed to participate in Drive

2 and were either assigned R̃i ∈ U [0.75, 1.5] if they were in the untailored control group

(31 subjects) or assigned Ri = 0.75 or Ri = 1.5 if they were in the tailored group and

had R∗i < 0.75 (15 subjects) or R∗i > 1.5 (11 subjects). See subsection 4.2.2 for analysis of

these observations.
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which should induce approximately equal allocation of vaccinations through

time, w1,i = w2,i. The remaining 138 LHWs provide the basis for the different

comparison policies that we consider, and were assigned a uniform random

price R̃i ∈ U [0.75, 1.5].23

Structurally tailored LHWs who received R∗i = Rv1,i/v2,i have an average

values of |(w1,i/w2,i) − 1| = 0.14 (0.02), while those who received R̃i ∈

U [0.75, 1.5] have an average value of 0.61 (0.31), t278 = 1.53, (p = 0.13).

The presence of a few extreme outliers skews the central measures of the

data somewhat. Trimming the top and bottom 1% of the sample of Drive

2 allocations, mean distance for the tailored group is 0.10 (0.01), while

the mean distance for the untailored control group is 0.15 (0.02), t265 =

3.07, (p = 0.002).24 We focus our analysis on this trimmed sample, but

provide results corresponding to the full sample in Appendix Table A.6 and

also report results using the same specifications but winsorizing the sample

at the top and bottom percentile in Appendix Table A.7. Figure 3, Panel A

presents the distributions of distances from equal allocation, |(w1,i/w2,i)− 1|

for the trimmed sample. Tailored LHWs provide systematically lower distance

measures than untailored LHWs.

23. As noted in section 2.3, assignment to the tailored or the untailored group was

conducted via stratified randomization with strata based upon the tercile of differences

from equal provision of effort in Drive 1.

24. This trimming eliminates 13 total observations, 7 from tailored group, and 6 from

the untailored group.
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Figure 3. Realized and Predicted Distances

Notes: Panel A presents the realized distance to the policy target, |(w1,i/w2,i)− 1| in Drive 2
for 267 Tailored and Untailored vaccinators in the Tailoring Sample. Thirteen of 280 Tailoring
Sample vaccinators with extreme Drive 2 allocations are excluded. Panel B presents the
predicted distances for these same vaccinators in the Tailored and Untailored conditions.
Predictions generated by simulating allocations for each LHW associated with their Drive 2
assigned interest rate and new shock realizations.

Table 3 provides corresponding regression. We find that tailoring reduces

distance to equal provision by around 5%-age points. Recall that LHWs

assigned to Advance Choice in Drive 1 remain in Advance Choice in Drive

2, while those assigned to Immediate Choice remain in Immediate Choice.

In the even columns of Table 3, we examine differential effects across

these two groups. One might expect larger distance measures in Immediate

conditions (and hence greater benefits to structural tailoring) if LHWs were

present-biased. This is what is observed. Immediate Choice is associated with
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significantly larger distance measures and structural tailoring in Immediate

Choice significantly reduces these distances. Structural tailoring in Immediate

Choice reduces distance from equal provision by around one-half. Note

that the effect size is similar to the effect of moving a comparison LHW

from Advance to Immediate choice. That is, structural tailoring effectively

eliminates present bias in allocations.

Figure 3, Panel B presents the corresponding distributions of expected

allocations in the tailored treatment group and in the untailored controls.

To calculate these distributions we simulate new allocations of w1,i and

w2,i for each LHW at their Drive 2 assigned value of R̃i or R∗i and new

potential shock realizations. Specifically, we take the Drive 1 window of

simulated allocations used to calculate each LHW’s expected discount factor,

and for every simulant in the window we re-simulate behavior with the new

interest rate and a new shock realization. We then construct the average

simulated allocation and the corresponding simulated average distance to

equal allocations ̂|(w1,i/w2,i)− 1|. The distance to equal allocations should,

indeed, be substantially higher for those individuals receiving a random

value of R̃i ∈ U [0.75, 1.5] compared to those with structural tailored values,

R∗i = Rv1,i/v2,i

3.2.1. Alternative Counterfactuals for Structural Tailored Contracts. In

Drive 2 of our study, the group receiving a uniform random interest rate,

R̃i, provides the counterfactual for evaluating the effect of our intervention.

While this is one reasonable counterfactual to consider, a stricter evaluation

of structural tailored interventions is possible. We can draw subsets from our
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random control group to approximate counterfactuals that are atheoretic,

broad, or both. Comparison of our treatment group to these various controls

allows us to evaluate the source of any potential benefits of the structural,

tailored policy relative to alternative policy approaches. Table 3 provides

additional analysis considering the following three policy alternatives:

1. Structural, Broad Policy: This corresponds to a case where the

policymaker knows workers’ discount factors, but can offer only

one interest rate to all workers. Absent shocks and probabilistic

noncompletion, the quantity Rv1,i/v2,i identifies individual discount

factors. In the Tailoring Sample, the average value of Rv1,i/v2,i for Drive

1 is 1.041 for the Advanced condition and 1.019 for the Immediate

condition. These correspond to the broad values of R̃ required to

approximately equalize allocations in a similar manner as our structural

tailored policy, but without each individual getting a unique interest rate.

To approximate this broad, structural policy we select the 54 individuals

from the condition who received R̃i ∈ U [0.75, 1.5] within one standard

deviation of these prices. Appendix Figure A.8, Panel A indicates the

exact assignments for this subgroup. The relative prices implied by the

aggregate model are structural, informed by preferences in Drive 1 in the

same manner as our treatment group, but not tailored to each individual.

Table 3, Columns (3) and (4) repeat the analysis of columns (1) and

(2), but using this alternative control group. We find that our structural,

tailored policy induces allocations that are directionally closer to equality
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than this structural, broad alternative, but the effect is not statistically

significant.

2. Atheoretic, Broad Policy:

To develop an atheoretic broad policy, we first estimate the reduced-

form relationship between Drive 1 allocations and the experimentally

varied parameters R and d = 0 or d = 1. Appendix Table A.8 provides

regression coefficients indicating the sensitivity of the allocation v1 to R

and whether the decision is immediate. The reduced-form relationship

estimated for the Tailoring Sample in Drive 1 is v1 = 216.33 − 3.00 ×

1d=1 − 66.67 × R. In order to equate w1 = w2 under the constraint

w1 + Rw2 = 300, one requires (1 + R)w1 − 300 = 0. Substituting in

for the reduced-form relationship, one obtains f(R) = (1 + R)(216.33−

3.00× 1d=1 − 66.67×R)− 300 = 0. Note that f(R) is quadratic in R. In

Advance Choice, it obtains the value of zero at R = 1.05 and R = 1.19.

In Immediate Choice, f(R) does not achieve the value zero, but has

a maximum value of f(R) = −6.01 at R = 1.10. To approximate this

broad atheoretic policy, we select the 54 individuals from the subsample

who received R̃i ∈ U [0.75, 1.5] within one standard deviation of R = 1.1.

Appendix Figure A.8, Panel B indicates the exact assignments for this

subgroup. The relative prices implied in this case are atheoretic, informed

only by the estimated reduced-form sensitivities, and not tailored to each

individual. Table 3, Columns (5) and (6) repeat the analysis of columns

(1) and (2), but using this alternative control group. We find that our

structural, tailored policy induces allocations closer to equality than this

atheoretic broad alternative.
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3. Atheoretic, Tailored Policy: From the subsample who received R̃i ∈

U [0.75, 1.5], random assignment generates a match between the random

price received, R̃i, and Drive 1 allocation behavior. Even without

structural guidance on the correct value of R to achieve equal allocations,

random assignment will at times assign higher values of R̃i to individuals

with higher values of Rv1,iv2,i. These assignments give higher prices to

more patient LHWs, but do not require that the relationship between

prices and patience be linear as in the structural, tailored policy, which

gives R∗i = Rv1,i/v2,i. For each LHW who received a random price in

Drive 2, we count the percent of LHWs who were more patient in Drive

1 but received a lower value of R̃i. From the subsample who received

R̃i ∈ U [0.75, 1.5], we select the 49 LHWs for whom this number is less

than or equal to 10%, being effectively in order with at least 90% of the

sample. Appendix Figure A.8, Panel C indicates the exact assignments for

this subgroup. The relative prices implied in this case are atheoretic —

loosely related to patience, but not designed to achieve a specific objective

beyond giving more patient LHWs higher prices — and tailored to each

individual. Table 3, Columns (7) and (8) repeat the analysis of columns

(1) and (2), but using this alternative control group. We find that our

structural, tailored policy induces allocations closer to equality than this

atheoretic, tailored alternative.

The analysis to this point indicates two key findings. First, heterogeneity

in discounting is observed in both Advance and Immediate Choice, with

substantially greater heterogeneity when present bias is implicated. This
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Table 3. The Effect of Tailoring Intertemporal Incentives

Dependent variable: |w1,i

w2,i
− 1|

Policy Comparison Group Random Structural, Atheoretic, Atheoretic,
Price Broad Broad Tailored

(1) (2) (3) (4) (5) (6) (7) (8)

Structural Tailored (=1) -0.049*** -0.014 -0.034 -0.021 -0.051** -0.010 -0.054* -0.014
(0.018) (0.019) (0.021) (0.024) (0.025) (0.022) (0.029) (0.023)

Immediate Choice 0.117*** 0.082* 0.137*** 0.169***
(0.035) (0.044) (0.051) (0.062)

Structural Tailored x Immediate -0.084** -0.045 -0.102* -0.132**
(0.040) (0.047) (0.055) (0.064)

Constant 0.022 -0.004 0.202*** 0.185** 0.168** 0.143** 0.083 0.032
(0.058) (0.057) (0.071) (0.073) (0.065) (0.063) (0.066) (0.066)

Stratum FEs Yes Yes Yes Yes Yes Yes Yes Yes
Exclude 99th and 1st Percentiles Yes Yes Yes Yes Yes Yes Yes Yes

Drive 2 R∗i or R̃i Yes Yes Yes Yes Yes Yes Yes Yes
R-Squared 0.082 0.154 0.076 0.122 0.114 0.194 0.085 0.193

Mean in Untailored Contract 0.153 0.153 0.129 0.129 0.145 0.145 0.148 0.148
Mean in Untailored Advance 0.098 0.103 0.088 0.091
Mean in Untailored Immediated 0.222 0.177 0.223 0.265
# Vaccinators 267 267 191 191 194 194 184 184
# Comparison Vaccinators 132 132 56 56 59 59 49 49

Notes: Table reports the effect of structural, tailored policy relative to alternatives on realized distance to the policy target,
|(w1,i/w2,i)− 1| in Drive 2 for 267 Tailored and Untailored vaccinators in the Tailoring Sample. Thirteen of 280 Tailoring Sample
vaccinators with extreme Drive 2 allocations are excluded. Ordinary least squares regressions. Heteroskedasticity robust White
standard errors reported in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.

highlights the potential for policy interventions tailored to individual

preferences. Second, structural, tailored contracts work. Those LHWs given

a tailored price equal to their previously measured expected discount factor

provide smoother service than a set of alternatives that span the policy space

of structural vs. atheoretic and broad vs. tailored. In the following section, we

explore robustness and provide a set of additional examinations.

4. Robustness Tests and Additional Exercises

4.1. Evaluating Model Assumptions

As in any structural exercise, a number of assumptions are required to infer

discounting parameters from LHW allocation behavior. Four assumptions are
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relevant for the present discussion, which we discuss below.

Stationarity of Deterministic Costs: We assume the deterministic portion

of marginal costs is the same for day 1 and day 2 of each drive. If sooner

costs are forecasted to be more severe than later costs, LHWs may appear

disproportionately impatient, while if later costs are forecasted to be more

severe, they may appear disproportionately patient. Further, if perceived

costliness of vaccinations changes from Advance to Immediate choice, present

bias is conflated with non-stationarity.

Importantly, our monitoring technology provides time-stamps and geo-

stamps for vaccination activity. Time stamps are recorded for every

vaccination attempt, while geo-stamps are collected approximately every 10

vaccination attempts. This may provide independent means for assessing the

costliness of tasks from time use. For each LHW, we identify the median time

lapse between vaccination attempts and the median distance covered per 30

minute window each day.25 Of our 338 LHWs, measures for median time lapse

between vaccination attempts are available for 277 on either Day 1 or Day 2

25. We focus only on the distance traveled and time taken for vaccinations between

8 am and 6pm each day. The distribution of time taken and distance traveled carried

some extreme outliers for some subjects. As such, we felt the median was an appropriate

summary statistic. Though we had expected to receive geo-stamp data approximately every

10 vaccination attempts, when the monitoring data arrived we noted substantial variance

in the number of vaccinations with common geo-stamps and sequences of geo-stamps which

‘bounced’ back and forth between geographic coordinates. In order to not overstate subject

movements, we opted to take average coordinates within a 15 minute window and calculate

direct-line distance between window-average coordinates as our measures of distance.
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and for 228 LHWs on both days of Drive 1.26 Of our 338 LHWs, measures

for median distance traveled every 15 minutes are available for 274 on either

Day 1 or Day 2 and for 226 LHWs on both days of Drive 1.27

LHWs take around 3.4 minutes between vaccination attempts and walk

around 0.06 miles per 15 minutes on Day 1. Focusing on individuals with

measures on both days of the drive, we find that time taken and distance

traveled are uncorrelated both with Advance choice and with allocation behav-

ior within condition. Time and distance are also uncorrelated with Advance

choice and allocation behavior on Day 2 of the drive. Further, differences

in time taken or distance walked are statistically indistinguishable from zero,

uncorrelated with allocation timing, and uncorrelated with allocation behavior

26. 265 LHWs have Day 1 lapse data while 240 have Day 2 lapse data. Of the 73 LHWs

with missing Day 1 data, 68 completed either zero or one vaccination on Day 1 such that

time lapse between vaccination attempts is not calculable. The remaining 5 conducted

vaccinations but did not have phones that interacted with the server to report time use. Of

the 98 LHWs with missing Day 2 data, 92 of them completed either zero or one vaccination

on Day 2 and the remaining 6 did not have phones that interacted with the server to report

time use. Those LHWs who completed vaccinations but did not have interaction with the

server had their vaccination records pulled manually from their phones after the drive.

27. 257 LHWs have Day 1 distance data while 240 have Day 2 distance data. Of the 81

LHWs with missing Day 1 data, 75 completed four or fewer vaccination attempts on Day

1 such that distance traveled between 15 minute windows is not calculable. The remaining

6 conducted vaccinations but either did not have phones that interacted with the server

to report location or had faulty Global Position Systems (GPS) in their phones. Of the 98

LHWs with missing Day 2 data, 96 of them completed four or fewer vaccination attempts

on Day 2 and the remaining 2 did not have phones that interacted with the server to report

location or had faulty GPS.
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within condition. These data indicate stability in required average effort per

vaccination which is unrelated to assignment to Advance or Immediate choice,

and that changes in efficacy are unrelated to measured preferences. This

suggests that perceived changes in costs likely do not drive our measures

of discounting.28 These results are all presented in Appendix Table A.10.

Identical Cost Functions: Our calculation of expected discount factors

assumes identical quadratic cost functions with additive cost shocks. Though

these assumptions allow for straightforward estimation and calculation of time

preferences, any violation would lead us to confound differences in patience

across individuals or across Advance/Immediate timing with differences in

costs. One natural view would be to assume that individuals do not discount

at all, δ = 1 and β = 1 and allocations are deterministic, such that allocations

identify only the shape of the cost function. In this case, when R = 1, all

LHWs, regardless of allocation timing, should exhibit v1,i = v2,i = 150 for all

values of γ.29 Examining the Drive 0 and Drive 1 data, we find that for 163

LHWs who were assigned R = 1, the mean allocation is v1 = 140.84 (s.d. =

24.76).30 Though the median allocation is indeed 150, responses range widely

with 5th-95th percentiles of response being 103 to 160. If heterogeneity in

28. Ultimately, such stationarity is likely to be expected given that LHWs are already

well-versed in vaccination procedures, have an average of 10.5 years of experience as LHWs,

and received a half day’s training on the vaccination monitoring application.

29. This is because the Euler equation reduces to (v1,i/v2,i)
γ = R = 1, which implies

v1,i/v2,i = 1.

30. 42 of 163 LHWs allocated exactly v1,i = v2,i = 150.
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costs alone were driving response, and discounting and shocks were not key

features of the data, one would not expect to see this extent of variation

in response when R = 1. Further, given random assignment to allocation

timing, heterogeneity in costs alone does not easily rationalize the difference

in discounting distributions between Advance and Immediate conditions.

Only Failure, No Shirking: Our structural exercise assumes individuals know

their likelihood to succeed and should work only some minimal amount if their

target is not attainable. Appendix Figure A.6 demonstrates the plausibility

of this assumption with a bimodal pattern of almost complete success and

almost complete failure. Another possibility is that subjects find an alternate

way to renege on their contracts by shirking and still receiving pay. Not all

vaccination attempts are equally challenging. In Appendix Figure A.7 we plot

for each half-hour of Drive 1 the total number of attempted vaccinations along

with the probability of successful vaccination and the probability that no child

was reported as present. Reporting that no child was present is likely to be less

time consuming than a successful vaccination and easier to falsify. The vast

majority of vaccination activity occurs before 3:00pm, there exists no sharp

uptick in activity as days end, and we find evidence that LHWs’ proportion

of successful or failed vaccination attempts remains largely steady throughout

the workday. This suggests that allocated vaccination attempts are conducted

with due diligence.

No Biases in Choice: Our study assumes that the allocation environment itself

induces no biases in choice such that LHW allocations are directly informative
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of preferences. A substantial literature in experimental economics suggests

that aspects of the decision environment may deeply influence measures of

preferences (for recent examples, see Harrison, Lau, Rutstrom and Sullivan,

2005; Beauchamp, Benjamin, Chabris and Laibson, 2015). One common

view is that subjects are biased towards the middle of a choice set. In our

environment, this could involve subjects opting for either equal allocations of

v1,i = v2,i, or choosing an allocation in the middle of their budget constraint,

v1,i = Rv2,i. Only 31 of 338 LHWs (9%) exhibit v1,i = v2,i in Drive 1. Taking

a less conservative measure of v2,i − 2.5 ≤ v1,i ≤ v2,i + 2.5, we find that still

only 58 of 338 LHWs (17%) are within 5 vaccinations of v1,i = v2,i.
31 Only 35

of 338 LHWs (10.3%) exhibit v1,i = Rv2,i. Taking a less conservative measure

of Rv2,i − 2.5 ≤ v1,i ≤ Rv2,i + 2.5, we find that 83 of 338 LHWs (25%) are

within 5 vaccinations of v1,i = Rv2,i.
32 Taken together, this suggests that

biases towards the middle of the budget constraint or towards equal allocation

are unlikely to be driving substantial portions of allocation behavior.

4.2. Tailoring Robustness Tests

Our Drive 2 data show that LHWs who are given bonus contracts with an

interest rate linked to their expected discount factors provide significantly

smoother service than a number of policy comparison groups. Here we examine

31. As an even less conservative measure, 145 of 338 (43%) satisfy v2,i − 10 ≤ v1,i ≤

v2,i + 10.

32. As an even less conservative measure, 137 of 338 (40.5%) satsify Rv2,i − 10 ≤ v1,i ≤

Rv2,i + 10.
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robustness of this result to alternative measures for smoothness in service

provision and alternative measures for tailoring. We also provide an analysis

of tailoring by completion.

4.2.1. Alternative Measures for Smooth Provision. Our analysis measures

the distance to equal provision using the metric |(w1,i/w2,i) − 1|. In Table

A.11, we reconduct the analysis of Table 3, using five alternate measures

for smoothness. Panel A presents the Euclidean distance to the 45 degree

line, |w1,i − w2,i|/
√

2. Panel B presents the Euclidean distance normalized

by the total number of vaccinations allocated, |w1,i − w2,i|/
√

2(w1,i + w2,i).

Panel C presents the number of sooner vaccinations that would need to be

reallocated to reach the 45 degree line, |w1,i − 300/(1 +R)|. Panel D presents

probit regressions for needing to reallocate more than 10 vaccinations, |w1,i −

300/(1 +R)| > 10. And finally, Panel E presents the value, min[w1,i, w2,i].

Across all specifications, the main conclusions are reproduced. However, the

results with respect to additional structural tailoring benefits in Immediate

Choice fall, at times, outside the range of statistical significance. These

alternative measures of smooth provision indicate that our results are not

an artifact of how one measures the outcome of interest.

4.2.2. Alternative Sample Restrictions and Treatment Measures. Our

exercise focuses on LHWs with Rv1,i/v2,i between 0.75 and 1.5. Of 338

LHWs in Drive 1, 280 satisfied this requirement and participated in Drive

2. Those LHWs who were assigned to be tailored, but exhibited behavior

that fell outside of these bounds behavior were given either R∗i = 0.75 or 1.5

depending on which boundary they crossed. For such individuals, structural
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tailoring is not a binary treatment, but rather a continuous difference between

their expected discount factor and the exogenously given value of R∗i = 0.75

or 1.5. Indeed, for all LHWs in the untailored group, treatment is also a

continuous measure. In columns (1) and (2) of Table A.12, we reconduct the

analysis of Table 3, columns (1) and (2) using as the measure of treatment the

absolute difference between each LHW’s value ofRv1,i/v2,i in Drive 1 and their

assigned value of R in Drive 2, which we label Structural Tailoring Intensity.

Structural Tailoring Intensity takes value zero for all tailored LHWs in the

Tailoring Sample and is a positive number for all others. Hence, larger values

of intensity should be associated with greater distances to equal provision.

The main results of Table 3 are reproduced with in the Tailoring Sample;

the closer the connection between patience and the assigned value of R,

the smoother is provision. In columns (3) and (4) of Table A.12, we include

those LHWs in the Boundary Sample. Including these observations does not

alter the conclusions; however, it should be noted that treatment is no longer

orthogonal to individual preferences as extremely patient and impatient LHWs

will receive larger intensity measures on average. Using the indicator for

‘Structurally Tailored’ would not be an appropriate solution to this problem

as tailored LHWs with extreme patience or impatience may actually receive

relative prices that are further from their policy-optimal values than those

in the untailored condition. In columns (5) and (6) of Table A.12, we include

both the Boundary Sample and those LHWs with extreme Drive 2 allocations.

As in our other analyses including outliers, we find similar directional effects

but very wide confidence intervals.
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4.2.3. Tailoring and Completion. Our analysis of probabilistic completion

evaluates completion through the lens of a model and attempts to assess

the trade-off between marginal completion probabilities and discounted

marginal costs. Though this analysis seems both tractable and yields valuable

predictive insights, an alternative interpretation for non-completion exists. If

the outcome of failure rather than its probability is perfectly forecasted by

the LHW, there is no incentive to respond truthfully. As such, the targets

set in Drive 1, and our corresponding inference on time preferences, would be

systematically inaccurate for individuals expecting to fail. In effect, successful

LHWs are allocating according to equation (2), while unsuccessful LHWs

are providing only noisy response. Under this assumption, we should be

dramatically less able to predict allocation behavior for LHWs who fail in

Drive 1.

Table A.13 repeats the analysis of Table 3, columns (1) and (2) separately

for LHWs who completed and failed to complete their Drive 1 targets. Similar

magnitude effects are observed for both sets of LHWs, with structural tailoring

serving to reduce distance from the equal provision by around one third.

Focusing only on the completing subjects, we would reach effectively the same

conclusion as our initial analysis.

4.3. Repeated Measurement and Estimation of Present Bias

In Drive 1, when relying on between-subject differences in behavior, aggregate

presents bias appears limited. Given the wide heterogeneity in behavior in

both Advance and Immediate Choice, one may fail to identify present bias

due to sampling variation even if it exists. Indeed, most studies of present
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bias and dynamic inconsistency are conducted as within-subject exercises with

more choices, potentially because of such wide heterogeneity.

Fortunately, our failed Drive 0 and the corresponding re-randomization

in Drive 1 allows us to identify present bias using both more data and

within-subject variation for LHWs who changed from Advance to Immediate

choice (or vice versa) across drives. Appendix Table A.3, re-estimates the

specifications of Table 2, columns (2) and (5) using both Drive 0 and Drive 1

behavior, drawing from 622 choices made by 390 LHWs in either Drive 0 or

Drive 1. We find mean estimates µδ = 0.970 (0.019) and µβδ = 0.889 (0.027),

indicating a present bias of β = 0.916. When focusing only within subject

variation by estimating on the 126 LHWs who transition from Advance to

Immediate choice across drives, we estimate µδ = 0.982 (0.029) and µβδ =

0.886 (0.039), indicating an average present bias of β = 0.902. These values

are closely consistent with recent laboratory work eliciting time preferences

over effort (Augenblick et al., 2015; Augenblick and Rabin, 2015). Figure 4,

plots expected present bias for the panel of 125 of 126 LHWs who transition

from Advance to Immediate choice across drives vice versa.33 We find a median

estimate of present bias of E[βiδi|·]/E[δi|·] = 0.943, and a mean estimate of

0.919 (s.d. = 0.143). As in laboratory work identifying present bias within-

subject from longitudinal designs (Augenblick et al., 2015; Augenblick and

Rabin, 2015), these individual estimates of present bias can be provided only

for the selection of LHWs who provided allocations in both drives. Of the

33. One LHW provided an extreme observation in one of the drives for which our

simulation exercise yielded zero simulants in the relevant window of allocations.
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Figure 4. Within-Vaccinator Present Bias

Notes: Figure presents within-vaccinator measures of present bias for 125 vaccinators who
transitioned from Advance to Immediate conditions across Drive 0 and 1. Measure of present
bias calculated as the ratio of conditional expected discount factors given behavior in the two
drives, E[βiδi|·]/E[δi|·]. Median value presented as dashed red line.

254 LHWs who successfully provided an allocation in Drive 0, 232 provide an

allocation in Drive 1. This level of attrition over time compares favorably to

that of (Augenblick et al., 2015; Augenblick and Rabin, 2015).

4.4. Monitoring Without Incentives

We include in our study a sample of 85 LHWs in Drive 0 and 72 LHWs

in Drive 1 who received a phone but no financial bonus. Importantly, we

can measure the number of vaccination attempts for LHWs who were and
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were not assigned to received an additional financial incentive. Of the 157

LHWs who received a smartphone monitoring device, but no financial bonus

in Drives 0 or 1, 134 register any vaccination information. We combine these

134 observations with 573 observations from Drives 0 and 1 from our incentive

treatments who register vaccination information. Table A.4 reports the impact

of providing financial incentives and monitoring relative to monitoring alone.

Without incentives, LHWs register 182 vaccination attempts over each two

day drive. With incentives, this quantity grows to 218 in Drives 0 and 1.

This large increase in total vaccinations reflects the impact of the substantial

completion bonus provided in our incentive treatments. Additionally Table

A.4 examines whether within Drive 2, being assigned to the tailored or

untailored group influences total recorded vaccinations. Of the 267 LHWs

noted in Table 3, 225 registered vaccination information in Drive 2. For these

LHWs tailoring is associated with an insignificant reduction of about 5% in

the total number of vaccinations recorded. As our tailoring policy was not

designed to increase total vaccinations, but rather to equalize vaccinations

over time, such limited effects should be expected. Hence, incentives increase

vaccination attempts above monitoring alone, while tailoring for equalization

of vaccinations provides no further increase.

5. Conclusion

This paper examines the potential for policy interventions to be tailored to

individual time preferences. We couch this question in an effort to customize
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contracts for 337 vaccination workers who spend two days each month

attempting to deliver polio vaccines in the neighborhoods of Lahore, Pakistan.

We monitor workers’ efforts using a smartphone application developed

especially for our project, and elicit preferences using a Convex Time Budget

design (Andreoni and Sprenger, 2012; Augenblick et al., 2015). Workers in

an Advance condition allocate vaccinations over a two day drive prior to

the beginning of the drive, while workers in an Immediate condition state

their allocations at the beginning of the first day. Each worker also faces

a randomized relative price for converting vaccinations across days. Worker

behavior in this drive is used to identify individual time preferences. In a

subsequent drive, we tailor contract terms to individual time preferences

for half of the workers. This is done by choosing a relative price designed

to encourage equal provision of effort over the two days of the drive. The

other half of workers is given a random uniform price. We contrast our

structural, tailored policy with three alternatives drawn from the random

uniform condition that span the policy space in two dimensions: atheoretic

vs. structural and broad vs. tailored.

Our findings are encouraging. Those workers who receive structural,

tailored contract terms are substantially closer to the policy objective than

the alternate policies considered. Using individual discounting parameter

estimates to form a new incentive contract does indeed have the predicted

effect on allocation behavior. To date, little research makes use of such

predictive value of discounting estimates. Our results show not only that

estimates are predictive, but also that useful parameter estimates are

identifiable from a very limited number of experimental choices. This suggests
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that the substantial effort of articulating and estimating models in this domain

has been well-invested. Policymakers should be encouraged by these findings

to consider such tailored interventions. In the domain of intertemporal choice,

the specific intervention we consider may be of interest for policymakers

wishing to achieve smoothness in allocation behavior or consumption over

time.

This paper also speaks to a recent discussion on the external validity

of randomized control trials. Developing structural models through which

to interpret experimental treatment effects potentially provides a means for

generalizing results to other settings (Acemoglu, 2010; Banerjee, Chassang

and Snowberg, 2016).34 In our setting, translating from our reduced form

experimental treatment effects to a structural model of choice requires a set of

potentially strong (and implausible) assumptions.35 Nonetheless, the findings

of predictive validity in this case suggests there is indeed potential for using

structure as a means of increasing the external validity of results obtained

from a single sample.

Separately, our results link to the growing literature on the personnel

economics of the state (Ashraf, Bandiera and Lee, 2015; Bertrand, Burgess,

Chawla and Xu, 2016; Finan, Olken and Pande, Forthcoming; Dal Bó, Finan

34. Attanasio and Meghir (2012), Duflo, Hanna and Ryan (2012), and Duflo, Greenstone,

Pande and Ryan (2016) provide examples in development of using experiments to estimate

key policy parameters.

35. Banerjee et al. (2016) discuss how the plausibility of such identifying assumptions

might limit external validity.
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and Rossi, 2013; Deseranno, 2016; Callen et al., 2019). Within this literature,

there is interest in understanding whether heterogeneity in competencies and

in motivation of state actors is linked to meaningful differences in state

performance or service provsion (Ashraf et al., 2015; Dal Bó et al., 2013;

Deseranno, 2016; Callen et al., 2019). We take the additional step of asking

not only whether this heterogeneity matters for outcomes, but also whether

it can be acknowledged and reflected in the design of individual incentives.

There are a number of clear limitations to our study which should be

addressed by future research. First, our study sidesteps the critical issue

of incentive compatibility by not informing subjects of the possibility that

their initial behavior would potentially be subsequently used to inform their

own contract terms. The mechanism design problem of eliciting preferences

and tailoring on said preferences with complete information will be critical

if one wishes to implement such contracts repeatedly in the field. Second,

future research should seek to gain more precise estimates of preferences.

Our exercise requires restrictive assumptions that could be relaxed in the

presence of more data. If our results point to a lower bound in the promise

of structural, tailored contracts, it is important to know how much more can

be achieved. Third, alternative policy objectives and contract types should

be investigated to ensure robustness of the identified predictive validity. Our

findings have natural extensions to piece rate contracts, multi-period settings,

and alternative policy targets that are worthy of study. Notable contributions

in this vein include the recent work of Bai, Handel, Miguel and Rao (2019)

and Aggarwal, Dizon-Ross and Zucker (2019).
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Appendix: Appendix

A.1. Empirical Methodology

We make a number of structural assumptions in order to map from LHW

allocations to discounting parameter distributions:

� First, we assume a stationary cost of effort function c(v) = vγ , where v

represents vaccinations performed on a given day, and γ > 1 captures

convex costs of effort. In our pre-specified analysis plan, we posited γ to

be constant across individuals and our tailoring exercise was conducted

under the assumption of γ = 2, quadratic costs.

� Second, we assume that individuals discount the future quasi-

hyperbolically such that for a given LHW, i, making allocation (v1,i, v2,i)

the discounted disutility of effort can be written as

vγ1,i + β1d=1
i δi · vγ2,i.

The indicator 1d=1 captures whether the decision is made in advance or

immediately on day 1.

� Third, we assume that the distribution of one period discount factors is

normal in each condition

δi ∼ N(µδ, σ
2
δ ) if d = 0

βiδi ∼ N(µβδ, σ
2
βδ) if d = 1.
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� Fourth, we assume that LHWs minimize the discounted costs of effort

subject to the intertemporal budget constraint provided by their bonus

contract.

� Fifth, we assume vaccinators’ behavior is not the deterministic function of

their preferences provided in equations 1 and 2. Rather, their optimization

is subject to an additive individual random shock to marginal costs, εi.

We assume these random cost shocks to be normal and mean zero,

εi ∼ N(0, σ2
ε).

Minimizing discounted costs subject to the intertemporal budget

constraint of the experiment and marginal cost shock yields a shock-

adjusted marginal condition:

γvγ−1
1,i −

β1d=1
i δi
R

γvγ−1
2,i = εi.

� Sixth, we assume that despite our large bonus payments LHWs may not

forecast completing all of their target vaccinations. Consider a LHW with

probability p(v1,i, v2,i) of successfully completing her allocated targets.

Hence, the expected disutility of effort is

p(v1,i, v2,i)[v
γ
1,i + β1d=1

i δi · vγ2,i] + (1− p(v1,i, v2,i))[v
n
1,i
γ + β1d=1

i δi · vn2,i
γ ],

where (vn1,i, v
n
2,i) are expected work to be completed on days one and two

when not able to complete the contract. Similarly, the expected bonus
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utility is

p(v1,i, v2,i)δ
2u(1000) + (1− p(v1,i, v2,i))δ

2u(0),

for a 1000 rupee bonus paid following the second day of the drive. For

simplicity, we normalize the net utility under non-completion, δ2
i u(0) −

vn1,i
γ −β1d=1

i δi · vn2,i
γ , to be zero (e.g., no work and no additional earnings).

Under this assumption, allocations are delivered by the constrained

optimization problem

maxv1,i,v2,ip(v1,i, v2,i)[δ
2
i u(1000)− vγ1,i − β

1d=1
i δi · vγ2,i]

s.t. v1,i +Rv2,i = V.

The corresponding shock-adjusted marginal condition,

γvγ−1
1,i −

β1d=1
i δi
R

γvγ−1
2,i −

 ∂p(v1,i,v2,i)
∂v1,i

− 1
R
∂p(v1,i,v2,i)

∂v2,i

p(v1,i, v2,i)

 [δ2
i u(1000)− vγ1,i − β

1d=1
i δi · vγ2,i] = εi

highlights a central tradeoff between discounted marginal costs and

marginal completion probabilities. If the probability of success is

independent of choice

∂p(v1,i, v2,i)

∂v1,i
,
∂p(v1,i, v2,i)

∂v2,i
= 0
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the likelihood formulation without adjusting for completion provided in

the main text is maintained. Otherwise, probabilistic completion can

create a wedge, influencing choice and estimates.

The challenge created by probabilistic completion can be overcome

with additional assumptions of functional form and internal consistency.

Provided a functional form for p(v1,i, v2,i), we assume LHWs know the

correct mapping,

p(v1,i, v2,i) = p∗(v1,i, v2,i),

where p∗(v1,i, v2,i) is the true completion probability induced by a given

allocation (v1,i, v2,i). The researcher observes either success or failure as

draws from the distribution p∗(v1,i, v2,i).
36 To provide a functional form

for p(v1,i, v2,i), we assume that the probability of completing a target of

v on day 1 or 2 is

p1(v) = p2(v) =
1

1 + αv
,

with α homogeneous in the population. Provided α > 0, this completion

function assumes that success is assured at v = 0 and diminishes as v

increases. As such p(v1,i, v2,i) = 1
1+αv1,i

1
1+αv2,i

.

36. Hence, the function p(v1,i, v2,i), known to the LHW, can be recovered from choice

and observed success. It is as if p(v1,i, v2,i) represents the physical possibility of achieving

a given allocation. Given that we assume all LHWs know this mapping, we assume away

failures of rational expectations such as believing one can achieve with higher probability

than the truth. Intuitively, as in DellaVigna and Malmendier (2006) such misguided beliefs

about efficacy would carry quite similar predictions to those of present-biased preferences.
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Under this form of probabilistic completion two conditions obtain:

γvγ−1
1,i −

β1d=1
i δi
R

γvγ−1
2,i −

(
−α

(1 + αv1,i)
− 1

R

−α
(1 + αv2,i)

)
[δ2
i u(1000)− vγ1,i − β

1d=1
i δi · vγ2 ] = εi,

1

1 + αv1,i

1

1 + αv2,i
= 1p∗(v1,i,v2,i),

where 1p∗(v1,i,v2,i) is an indicator for whether the LHW completed their

targets, a draw from the correct mapping.

In effect, imposing internal consistency on completion rates allows

the researcher to quantify the wedge induced by considering marginal

completion probabilities. It is important to note that without quality

data on actual completion, the exercise would be effectively impossible;

highlighting the value of our implemented monitoring technology.

Naturally, the estimates may be sensitive to the imposed functional form

of p(v1,i, v2,i). In Appendix Table A.1, we reconduct the analysis of Table

2, columns (3) and (6) with an alternate functional form, p(v1, v2) =

1/(1 + α′(v2
1 + v2

2)). This functional form carries the property that success

probabilities are declining with the volume of work as long as α′ > 0. Very

limited differences are observed in the estimates of discounting across this

functional forms and the one used in the main text.

An additional issue generated by probabilistic completion is the

presence of monetary utility, u(1000). This value partially pins down the

magnitude of the wedge created by marginal completion probabilities.

Indeed the net utility of completion, [δ2
i u(1000)− vγ1,i− β

1d=1
i δi · vγ2,i], can



69

be set to any number with suitable definition of u(1000). Of course, for

allocations to carry any information, an obvious participation constraint

needs to be satisfied,

[δ2
i u(1000)− vγ1,i − β

1d=1
i δi · vγ2,i] ≥ δ

2
i u(0)− vn1,i

γ − β1d=1
i δi · vn2,i

γ = 0.37

To understand how slack this constraint was, we asked our LHWs survey

questions attempting to identify the minimum bonus they would require

to participate in the program again. Of 330 respondents, 329 said they

would participate again for the same 1000 rupees bonus while only 42

said they would participate again if the bonus were 900 rupees. Of course,

such responses can be difficult to interpret given a lack of incentives,

but one view is that the value [δ2
i u(1000) − vγ1,i − β

1d=1
i δi · vγ2,i] may

be only slightly higher than the normalized non-participation value of

zero. When assessing probabilistic completion in the main text we set

[δ2
i u(1000) − vγ1,i − β1d=1

i δi · vγ2,i] = 100. In Appendix Table A.2, we

reconduct the analysis of Table 2, columns (3) and (6) assuming this

net utility equal to 1000 or to 10000. Only small changes in the estimates

are observed.

Under the above assumptions, the conditional likelihood of an allocation

(v1,i, v2,i) and completion, ci ∈ {0, 1} given β1d=1
i δi and α is given by one of

37. Otherwise the LHW would want to set v1,i, v2,i to increase the probability of non-

completion.
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the following under the different conditions.

If d = 0, ci = 1

L(v1,i, v2,i, ci|δi, α) = ( 1
1+αv1,i

1
1+αv2,i

)ϕ

γvγ−1
1,i −

δi
R
γvγ−1

2,i −
(

−α
(1+αv1,i)

− 1
R

−α
(1+αv2,i)

)
[100]

σε

 ,

If d = 0, ci = 0

L(v1,i, v2,i, ci|δi, α) = (1− 1
1+αv1,i

1
1+αv2,i

)ϕ

γvγ−1
1,i −

δi
R
γvγ−1

2,i −
(

−α
(1+αv1,i)

− 1
R

−α
(1+αv2,i)

)
[100]

σε

 ,

If d = 0, ci = .

L(v1,i, v2,i, ci|δi, α) = ϕ

γvγ−1
1,i −

δi
R
γvγ−1

2,i −
(

−α
(1+αv1,i)

− 1
R

−α
(1+αv2,i)

)
[100]

σε

 ,

If d = 1, ci = 1

L(v1,i, v2,i, ci|βδi, α) = ( 1
1+αv1,i

1
1+αv2,i

)ϕ

γvγ−1
1,i −

βδi
R
γvγ−1

2,i −
(

−α
(1+αv1,i)

− 1
R

−α
(1+αv2,i)

)
[100]

σε

 ,

If d = 1, ci = 0

L(v1,i, v2,i, ci|βδi, α) = (1− 1
1+αv1,i

1
1+αv2,i

)ϕ

γvγ−1
1,i −

βδi
R
γvγ−1

2,i −
(

−α
(1+αv1,i)

− 1
R

−α
(1+αv2,i)

)
[100]

σε

 ,

If d = 1, ci = .

L(v1,i, v2,i, ci|βδi, α) = ϕ

γvγ−1
1,i −

βδi
R
γvγ−1

2,i −
(

−α
(1+αv1,i)

− 1
R

−α
(1+αv2,i)

)
[100]

σε

 ,

where ϕ(·) is the density of the standard normal distribution. Integrating over

the relevant distribution of preference parameters in Advance and Immediate
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conditions gives the likelihoods

L(v1,i, v2,i, ci) =

∫
L(v1,i, v2,i, ci|δi, α)f(δi)dδi if d = 0 (A.1)

L(v1,i, v2,i, ci) =

∫
L(v1,i, v2,i, ci|βδi, α)g(βiδi)dβiδi if d = 1, (A.2)

where f(·) and g(·) are the normal densities from which δi and βiδi are

drawn. We deploy the Method of Simulated Likelihood (MSL) with 1000

random Halton draws from the simulated distributions, f(·) and g(·), at each

observation to estimate simulation analogs of equations (7) and (8). The

average simulated likelihood over the 1000 draws is logged to arrived at a

log simulated average likelihood, which is then maximized using the BFGS

algorithm in Stata. The code for this estimator is provided below:
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Page 1 of 1

working msl 3 12/3/21, 4:43 PM

149   capture program drop moment_ml4
150   program define moment_ml4
151   * specifiy the arguments for the program
152   args lnf dbar dsd lnsd alpha 
153   * declare temporary variables
154   tempvar td1 td2 R  s mu1 mu2 sim_f sim_avef d  g
155   quietly {
156   * initialize the data 
157   generate double `td1' = $ML_y1
158   generate double `td2' = $ML_y2
159   generate double `R' = $ML_y3
160   generate double `s' = $ML_y4
161   
162   * initiate simulation average likelihood
163   generate double `sim_avef' = 0
164   
165   * set seed equivalent to prior seed
166   set seed 10101
167   
168   * simulate likelihood at each draw of beta
169   forvalues drawnum = 1/1000 {
170   
171   *draw delta
172   generate double `d' = `dbar'  + exp(`dsd')*invnormal(draws1_`drawnum') 
173   
174   *establish gamma
175   generate double `g' = 2
176   
177   * moment 1
178    generate double `mu1' =  ( ///
179   (`g'*`td1'^(`g'-1)- (1/`R')*(`d')*`g'*`td2'^(`g'-1)) ///
180   - ///
181   (  ///
182   (((-`alpha'*((1+(`alpha'*`td1'))^(-1))))*(Vval)) ///
183   -  ///
184   (((-`alpha'*((1+(`alpha'*`td2'))^(-1)))/(`R'))*(Vval)) ///
185   ) ///
186   ) 
187   
188   * moment 2 
189   generate double `mu2' = (1/(1 + `alpha'*`td1'))*(1/(1 + `alpha'*`td2'))
190   
191   *simulated likelihood 
192   gen `sim_f' = . 
193   replace `sim_f' = normalden(`mu1', 0,  exp(`lnsd'))*`mu2' if `s'==1
194   replace `sim_f' = normalden(`mu1', 0,  exp(`lnsd'))*(1-`mu2') if `s'==0
195   replace `sim_f' = normalden(`mu1', 0,  exp(`lnsd'))*1 if `s'==-1
196   
197   *update average simulated likelihood
198   replace `sim_avef' = `sim_avef' + (`sim_f'/1000) 
199   
200   * drop out values
201   drop `d' `g' `mu1' `mu2' `sim_f' 
202   
203   }
204   
205   * Establish log simulated likelihood
206   replace `lnf' = ln(`sim_avef')
207   
208    }
209    
210   end 
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A.2. Appendix Figures
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Figure A.1. Map Given to Vaccinators to Plan Route
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Figure A.2. Picture of a Door-to-Door Vaccination During a Drive
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Figure A.6. Individual Completion Rates

Notes: Figure reports individual average completion rates in Drive 1 for 288 vaccinators who
registered any vaccination activity . The individual average completion rate is calculated as

1/2(min(Completed1,i/v1,i, 1) +min(Completed2,i/v2,i, 1)).
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Figure A.7. Drive 1 Vaccination Activity

Notes: Figure reports Drive 1 vaccination attempts for 288 vaccinators who registered
vaccination activity. The solid light grey circles are the share of all vaccination attempts that
reflect a successful vaccination during the indicated hour. The hollow dark black circles are the
share of all vaccination attempts that report no children being available during the attempt.
These quantities are compared against the left axis. The dotted line indicates the total number
of vaccination attempts for all Vaccinators in the sample. This quantity is compared against
the right axis.
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Figure A.8. Exact Assignment of Comparison Policies

Notes: Figure presents the exact assignments of 280 vaccinators in the Tailoring Sample to
four policy comparison groups: Structural, Broad; Atheoretic, Broad; Atheoretic, Tailored;

and Random Price.
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A.3. Appendix Tables

Table A.1. Robustness to Changing Completion Function

p(v1,i, v2,i) = 1
1+α′(v21,i+v

2
2,i)

Advance Choice Immediate Choice
(1) (2)

Discounting Parameters:
µδ 0.966

(0.022)
ln(σδ) -2.449

(0.584)

µβδ 0.959
(0.029)

ln(σβδ) -1.526
(0.164)

Completion Parameter:
α′ 0.00001 0.00002

(0.000) (0.000)

Shock Parameter:
ln(σε) 4.068 4.147

(0.119) (0.148)

# Vaccinators 174 164
# Cell Phone Completion Obs. 142 146
Log-Likelihood -1057.87 -1067.45

Notes: Parameters from maximum simulated likelihood estimation for Drive
1 allocations and completion data where noted. Allocation data provided
by Full Sample of 338 vaccinators. Completion data provided by 288
vaccinators. Standard errors in parentheses.
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Table A.2. Robustness to Changing Completion Utility

Advance Immediate

[δ2i u(1000)− vγ1,i − β
1d=1
i δi · vγ2,i] : 1000 10000 1000 10000

(1) (2) (3) (4)

Discounting Parameters:
µδ 0.966 0.967

(0.022) (0.022)
ln(σδ) -2.454 -2.496

(0.589) (0.660)

µβδ 0.959 0.962
(0.029) (0.029)

ln(σβδ) -1.528 -1.545
(0.164) (0.167)

Completion Parameter:
α 0.001 0.001 0.003 0.003

(0.000) (0.000) (0.000) (0.001)

Shock Parameter:
ln(σε) 4.069 4.088 4.148 4.164

(0.119) (0.118) (0.147) (0.144)

# Vaccinators 174 174 164 164
# Cell Phone Completion Obs. 142 142 146 146
Log-Likelihood -1058.16 -1059.94 -1068.07 -1068.54

Notes: Parameters from maximum simulated likelihood estimation for Drive 1
allocations and completion data where noted. Allocation data provided by Full
Sample of 338 vaccinators. Completion data provided by 288 vaccinators. Standard
errors in parentheses.
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Table A.3. Panel Distributional Estimates

Advance Choice Immediate Choice
(1) (2) (3) (4) (5) (6)

Discounting Parameters:
µδ 0.970 0.958 0.982

(0.019) (0.020) (0.029)
ln(σδ) -1.649 -2.538 -2.141

(0.108) (0.655) (0.420)

µβδ 0.889 0.910 0.886
(0.027) (0.030) (0.039)

ln(σβδ) -1.354 -1.443 -1.475
(0.090) (0.110) (0.139)

Shock Parameter:
ln(σε) 4.052 4.210 4.149 4.488 4.502 4.581

(0.101) (0.089) (0.131) (0.071) (0.076) (0.088)

Drive 0 Included Yes Yes Yes Yes Yes Yes
Drive 1 Included Yes Yes Yes Yes Yes Yes
Only Panel Vaccinators No Yes Yes No Yes Yes
Only Changed Timing No No Yes No No Yes
# Vaccinators 340 254 126 282 210 126
Log-Likelihood -1968.35 -1444.11 -717.30 -1747.04 -1293.67 -782.22

Notes: Parameters from maximum simulated likelihood estimation for Drive 0 and Drive
1 allocations. Allocation data from 622 vaccinator-observations over the two drives. 232
vaccinators participated in both Drive 0 and Drive 1, and 126 participated in both drives
and transitioned from Advance to Immediate conditions across drives. Standard errors in
parentheses. Standard errors in parentheses.
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Table A.4. Impacts of Financial Incentives and Tailoring on Total Vaccination
Attempts

Dependent Variable: Total Vaccinations Attempted During Two-Day Drive

(1) (2) (3) (4) (5) (6)
Incentive Group (=1) 36.195*** 33.224*** 30.709** 33.452** - -

(11.384) (10.559) (13.662) (16.690) - -
Structural Tailored (=1) -12.455 -6.664

(14.144) (18.254)
Immediate Choice 10.433

(20.529)
Structural Tailored x Immediate -13.664

(28.589)
Constant 181.851*** 184.259*** 164.535*** 205.843*** 215.550*** 212.958***

(10.200) (9.422) (11.884) (15.130) (43.341) (43.237)

R-squared 0.01 0.18 0.20 0.21 0.15 0.15
Union Council Fixed Effects No Yes Yes Yes Yes Yes
Stratum Fixed Effects No No No No Yes Yes
Exclude 99th and 1st Percentiles No No No No Yes Yes
Vaccination Drives Zero and One Zero and One Zero One Two Two
Mean in Phone Only Group 181.85 181.85 164.41 203.37 N/A N/A
# Vaccinators 434 434 354 353 225 225
# Observations 707 707 354 353 225 225

Notes: Table reports the effect of offering incentives on the total number of vaccinations attempted relative to the group

which carried a smartphone but was not offered incentives. Columns 1 and 2 combine data from Drives 0 and 1. Column 3

reports the estimates for Drive 0 alone and column 4 reports the estimates for Drive 1 alone. Columns 4 and 5 report estimates

from Drive 2 alone. Column 5 and 6 focus on the same subgroup as Table 3, excluding the 1st and 99th percentile of Drive 2

allocations, and similarly control for the stratum fixed effects and the Drive 2 value of R∗i or R̃i. Standard errors clustered at

the participant level reported in parentheses in columns 1 and 2 and robust standard errors reported in parentheses in columns

3 through 6. Level of significance: *p < 0.1, **p < 0.05, ***p < 0.01.
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Table A.5. No Allocation Provided in Drive 0

Allocation Provided No Allocation Provided p-value
(1) (2) (3)

Gender (Female = 1) 0.965 1.000 0.082
(0.020) (0.000)

Years of Education 10.294 10.146 0.608
(0.220) (0.185)

Number of Children 3.268 3.388 0.695
(0.239) (0.188)

Punjabi (=1) 0.952 0.975 0.440
(0.023) (0.018)

Has a Savings Account (=1) 0.317 0.305 0.867
(0.052) (0.051)

Participated in a Rosca (=1) 0.446 0.378 0.380
(0.055) (0.054)

Years in Health Department 10.135 10.886 0.337
(0.554) (0.547)

Years as Polio Vaccinator 9.994 10.531 0.467
(0.538) (0.502)

# Vaccinators 86 82

Notes: Table tests whether the failure of the smartphone app during Drive 0 for LHWs in
the Immediate condition was systematic. Standard errors reported in parentheses. Column 3
reports a p-value corresponding to the null that the mean in the Did Not Fail group is equal
to the Failed group.

Table A.6. Tailoring Intertemporal Incentives, Untrimmed Tailoring Sample

Dependent variable: |w1,i

w2,i
− 1|

Policy Comparison Group Random Structural, Atheoretic, Atheoretic,
Price Broad Broad Tailored

(1) (2) (3) (4) (5) (6) (7) (8)

Structural Tailored (=1) -0.346 -0.002 -0.428 -0.055 -0.402 -0.031 -0.008 -0.023
(0.234) (0.086) (0.423) (0.053) (0.378) (0.042) (0.030) (0.022)

Immediate Choice 0.866* 1.127 0.989 0.144**
(0.496) (1.007) (0.802) (0.061)

Structural Tailored x Immediate -0.782 -1.011 -0.873 -0.010
(0.532) (1.024) (0.819) (0.074)

Constant -0.244 -0.416 0.434 0.163 0.740 0.558 0.131 0.090
(0.992) (1.009) (0.295) (0.224) (0.608) (0.473) (0.099) (0.099)

Stratum FEs Yes Yes Yes Yes Yes Yes Yes Yes
Exclude 99th and 1st Percentiles Yes Yes Yes Yes Yes Yes Yes Yes

Drive 2 R∗i or R̃i Yes Yes Yes Yes Yes Yes Yes Yes
R-Squared 0.047 0.061 0.033 0.059 0.031 0.053 0.028 0.125

Mean in Untailored Contract 0.612 0.612 0.575 0.575 0.575 0.575 0.143 0.143
Mean in Untailored Advance 0.098 0.103 0.088 0.095
Mean in Untailored Immediated 1.190 1.349 1.167 0.250
# Vaccinators 280 280 200 200 204 204 197 197
# Comparison Vaccinators 138 138 58 58 62 62 55 55

Notes: Table reports the effect of structural, tailored policy relative to alternatives on realized distance to the policy
target, |(w1,i/w2,i)− 1| in Drive 2 for 280 Tailored and Untailored vaccinators in the Tailoring Sample. Ordinary least
squares regressions. Heteroskedasticity robust White standard errors reported in parentheses. *p < 0.1, **p < 0.05,
***p < 0.01.
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Table A.7. Tailoring Intertemporal Incentives, Winsorized Tailoring Sample (1%)

Dependent variable: |w1,i

w2,i
− 1|

Policy Comparison Group Random Structural, Atheoretic, Atheoretic,
Price Broad Broad Tailored

(1) (2) (3) (4) (5) (6) (7) (8)

Structural Tailored (=1) -0.037 -0.013 -0.025 -0.023 -0.044 -0.009 -0.009 -0.023
(0.028) (0.019) (0.035) (0.024) (0.038) (0.023) (0.029) (0.022)

Immediate Choice 0.185*** 0.159** 0.220*** 0.144**
(0.043) (0.069) (0.068) (0.062)

Structural Tailored x Immediate -0.060 -0.031 -0.092 -0.013
(0.058) (0.080) (0.078) (0.073)

Constant 0.004 -0.033 0.236* 0.204 0.198 0.162 0.140 0.099
(0.091) (0.089) (0.127) (0.126) (0.130) (0.126) (0.095) (0.095)

Stratum FEs Yes Yes Yes Yes Yes Yes Yes Yes

Drive 2 R∗i or R̃i Yes Yes Yes Yes Yes Yes Yes Yes
R-Squared 0.063 0.162 0.033 0.123 0.056 0.166 0.032 0.132

Mean in Untailored Contract 0.194 0.194 0.162 0.162 0.188 0.188 0.143 0.143
Mean in Untailored Advance 0.098 0.103 0.088 0.095
Mean in Untailored Immediated 0.302 0.260 0.311 0.250
# Vaccinators 280 280 200 200 204 204 197 197
# Comparison Vaccinators 138 138 58 58 62 62 55 55

Notes: Table reports the effect of structural, tailored policy relative to alternatives on realized distance to the policy
target, |(w1,i/w2,i) − 1| in Drive 2 for 280 Tailored and Untailored vaccinators in the Tailoring Sample. Dependent
variable winsorized at top and bottom 1%. Ordinary least squares regressions. Heteroskedasticity robust White standard
errors reported in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.

Table A.8. Aggregate Drive 1 Behavior

(1) (2)
Full Sample Tailoring Sample

Dependent Variable: v1

Immediate Decision (=1) -2.00* -3.00***
(1.13) (0.91)

Relative Price (R) -54.29*** -66.67***
(4.38) (3.66)

Constant 201.86*** 216.33***
(4.72) (3.93)

Median Advance Choice 146.5 148
# Observations 338 281

Notes: Table reports on the effects of decision timing and
relative price variation on vaccinations allocated to the first day
of the drive. Median regression. Levels of Significance: *p < 0.1,
**p < 0.05, ***p < 0.01.
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Table A.9. Drive 1 Completion

(1) (2)
Dependent Variable: Registered Vaccination Activity Successfully Completed Targets

Immediate Decision (=1) 0.074* -0.097
(0.038) (0.059)

Relative Price (R) -0.071 0.160
(0.157) (0.230)

Constant 0.891*** 0.373
(0.167) (0.247)

Advance Completion Probability 0.816 0.542
# Observations 338 288

Notes: Table reports on the effects of decision timing and relative price variation on registering vaccination
activity and completion in Drive 1. Column (1) based on Full Sample of 338 vaccinators. Column (2)
based on sample of 288 vaccinators who registered vaccination data. Linear probability models with robust
standard errors. Levels of Significance: *p < 0.1, **p < 0.05, ***p < 0.01.

Table A.10. Testing Stationarity of Costs Across Days

Panel A: Time Lapse Between Vaccinations (in minutes)

Dependent variable: Day 1 Med. Time Lapse Day 2 Med. Time Lapse Day 1 - Day 2 Med. Time Lapse
(1) (2) (3) (4) (5) (6) (7) (8)

Advance Choice (=1) 0.519 1.134 1.011 -0.910 -1.161 -0.829 2.295 1.840
(2.492) (1.163) (1.045) (3.164) (3.324) (3.182) (3.527) (3.343)

Rv1,i
v2,i

-3.697 10.004 -13.701

(3.504) (8.247) (9.000)
Constant 3.370* 1.422*** 5.337 4.447* 4.540* -6.053 -3.118 11.390

(1.851) (0.084) (3.708) (2.372) (2.501) (6.558) (2.501) (7.581)

R-Squared 0.000 0.004 0.016 0.000 0.001 0.013 0.002 0.022
# Observations 265 228 228 240 228 228 228 228

Panel B: Distance Walked Between Vaccinations (in Kilometers)

Dependent variable: Day 1 Med. Distance Day 2 Med. Distance Day 1 - Day 2 Med. Distance
(1) (2) (3) (4) (5) (6) (7) (8)

Advance Choice (=1) 0.112 0.146 0.132 -0.148 -0.171 -0.154 0.317 0.286
(0.144) (0.154) (0.139) (0.152) (0.161) (0.144) (0.223) (0.199)

Rv1,i
v2,i

-0.444 0.509 -0.953

(0.466) (0.516) (0.697)
Constant 0.059** 0.038*** 0.507 0.201 0.201 -0.337 -0.164 0.844

(0.026) (0.010) (0.492) (0.151) (0.161) (0.388) (0.162) (0.629)

R-Squared 0.002 0.004 0.014 0.004 0.005 0.020 0.009 0.033
# Observations 257 226 226 240 226 226 226 226

Notes: Table reports on the relationship between decision timing and the one period expected discount factor with two
proxies of the cost of performing a vaccination (the amount of time that lapses between vaccinations and the distance
traveled between vaccinations). Samples drawn from 288 vaccinators who registered vaccination data in Drive 1. Location
and time lapse data not available for all. Heteroskedasticity robust White standard errors reported in parentheses. *p < 0.1,
**p < 0.05, ***p < 0.01.
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Table A.11. Robustness Tests for Tailoring Intertemporal Incentives

Policy Comparison Group Random Structural, Atheoretic, Atheoretic,
Price Broad Broad Tailored

Panel A: Dependent variable
|w1,i−w2,i|√

2

(1) (2) (3) (4) (5) (6) (7) (8)

Structural Tailored (=1) -4.481** -1.868 -4.450 -3.224 -4.852* -1.734 -5.313 -1.511
(2.068) (2.229) (2.779) (3.149) (2.469) (2.571) (3.223) (3.058)

Immediate Choice 10.597*** 8.996 12.325** 17.503**
(3.449) (5.648) (4.868) (7.720)

Structural Tailored x Immediate -6.220 -4.325 -7.933 -12.911
(4.136) (6.117) (5.375) (8.140)

Constant 16.412** 14.128** 32.672*** 30.805*** 26.219*** 24.051*** 21.422*** 16.129**

Panel B: Dependent variable
|w1,i−w2,i|√
2(w1,i+w2,i)

(1) (2) (3) (4) (5) (6) (7) (8)

Structural Tailored (=1) -0.016** -0.007 -0.016* -0.011 -0.018** -0.006 -0.019* -0.005
(0.007) (0.008) (0.009) (0.011) (0.009) (0.009) (0.011) (0.010)

Immediate Choice 0.037*** 0.031 0.044** 0.059**
(0.012) (0.019) (0.017) (0.024)

Structural Tailored x Immediate -0.023* -0.017 -0.030 -0.045*
(0.014) (0.021) (0.019) (0.026)

Constant 0.033 0.025 0.089*** 0.083** 0.070*** 0.062** 0.052** 0.034

Panel C: Dependent variable |w1,i − 300
1+R |

(1) (2) (3) (4) (5) (6) (7) (8)

Structural Tailored (=1) -3.445** -1.405 -3.353* -2.401 -3.856** -1.452 -3.942* -1.121
(1.459) (1.591) (1.976) (2.238) (1.825) (1.891) (2.294) (2.135)

Immediate Choice 7.844*** 6.473 9.095** 12.664**
(2.509) (4.095) (3.636) (5.287)

Structural Tailored x Immediate -4.850 -3.277 -6.092 -9.512*
(2.974) (4.402) (3.970) (5.582)

Constant 7.571 5.871 19.468*** 18.107** 15.291*** 13.666*** 11.378** 7.539

Panel D: Dependent variable |w1,i − 300
1+R | > 10

(1) (2) (3) (4) (5) (6) (7) (8)

Structural Tailored (=1) 0.206 0.146 0.119 0.198 0.245 0.175 0.137 0.021
(0.168) (0.234) (0.219) (0.292) (0.212) (0.302) (0.242) (0.313)

Immediate Choice -0.573** -0.346 -0.640* -0.866**
(0.238) (0.390) (0.362) (0.415)

Structural Tailored x Immediate 0.144 -0.107 0.188 0.409
(0.340) (0.456) (0.438) (0.487)

Constant 1.530*** 1.705*** 0.134 0.201 0.617 0.720 0.950 1.253**

Panel E: Dependent variable min[w1,i, w2,i]

(1) (2) (3) (4) (5) (6) (7) (8)

Structural Tailored (=1) 2.540* 0.843 4.057** 3.079 4.404** 2.179 2.711 0.263
(1.416) (1.567) (1.966) (2.228) (1.766) (1.885) (2.187) (2.178)

Immediate Choice -6.815*** -6.221 -8.383** -11.173**
(2.332) (4.106) (3.513) (5.149)

Structural Tailored x Immediate 4.037 3.299 5.639 8.292
(2.806) (4.406) (3.844) (5.451)

Constant 208.758*** 210.228*** 200.751*** 202.074*** 204.405*** 205.905*** 208.831*** 212.213***
(4.541) (4.433) (6.759) (6.971) (5.357) (5.228) (5.476) (5.306)

Stratum FEs Yes Yes Yes Yes Yes Yes Yes Yes
Exclude 99th and 1st Percentiles Yes Yes Yes Yes Yes Yes Yes Yes

Drive 2 R∗i or R̃i Yes Yes Yes Yes Yes Yes Yes Yes

# Vaccinators 267 267 191 191 194 194 184 184
# Comparison Vaccinators 132 132 56 56 59 59 49 49

Notes: Table reports the effect of structural, tailored policy relative to alternatives on realized distance to a range of policy targets in Drive 2 for
267 Tailored and Untailored vaccinators in the Tailoring Sample. Thirteen of 280 Tailoring Sample vaccinators with extreme Drive 2 allocations
are excluded. Ordinary least squares regressions. Heteroskedasticity robust White standard errors reported in parentheses. *p < 0.1, **p < 0.05,
***p < 0.01.
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Table A.12. Structural Tailoring Intensity

Dependent variable: |w1,i

w2,i
− 1|

(1) (2) (3) (4) (5) (6)

Structural Tailoring Intensity 0.110* 0.089 0.124* 0.025 0.874 -0.353
(0.063) (0.076) (0.065) (0.054) (0.745) (0.361)

Immediate Choice 0.068*** 0.064** 0.069
(0.022) (0.025) (0.215)

Structural Tailoring Intensity x Immediate 0.057 0.154 2.087
(0.131) (0.114) (1.841)

Constant -0.009 -0.018 0.044 0.016 -0.448 -0.451
(0.058) (0.058) (0.065) (0.063) (0.727) (0.632)

# Vaccinators 267 267 320 320 337 337

Include Boundary Sample No No Yes Yes Yes Yes
Stratum FEs Yes Yes Yes Yes Yes Yes
Exclude 99th and 1st Percentiles Yes Yes Yes Yes No No
Drive 2 R Yes Yes Yes Yes Yes Yes

Notes: Table reports the effect of structural tailoring intensity on realized distance to the policy target,
|(w1,i/w2,i)− 1| in Drive 2. Individuals in the Tailoring Sample who are tailored have intensity measures
equal to zero and all others are calculated as the absolute distance between their assigned Drive 2 R and their

value of
Rv1,i
v2,i

in Drive 1. Column 1 provides results for 267 of 280 LHWs in the Tailoring Sample, excluding

13 LHWs with extreme Drive 2 allocations. Column 2 includes the Boundary Sample and provides results for
320 of 337 LHWs, excluding 17 LHWs with extreme Drive 2 allocations. Column 4 includes the Boundary
Sample and provides results for all 337 LHWs. Ordinary least squares regressions. Heteroskedasticity robust
White standard errors reported in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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Table A.13. Structural Tailoring and Completion

Dependent variable: |w1,i

w2,i
− 1|

Policy Comparison Group Random Structural, Atheoretic, Atheoretic,
Price Broad Broad Tailored

Panel A: Completed Drive 1

(1) (2) (3) (4) (5) (6) (7) (8)

Structural Tailored (=1) -0.042* -0.004 -0.030 -0.009 -0.012 0.011 -0.107** -0.051
(0.024) (0.025) (0.029) (0.031) (0.024) (0.023) (0.049) (0.037)

Immediate Choice 0.119*** 0.116* 0.111** 0.160*
(0.045) (0.062) (0.050) (0.089)

Structural Tailored x Immediate -0.096* -0.079 -0.076 -0.135
(0.051) (0.067) (0.054) (0.094)

Constant -0.051 -0.077 0.217* 0.190 0.110 0.091 -0.043 -0.088
(0.088) (0.090) (0.119) (0.122) (0.084) (0.076) (0.097) (0.111)

# Vaccinators 142 142 98 98 101 101 93 93

Panel B: Failed Drive 1

(1) (2) (3) (4) (5) (6) (7) (8)

Structural Tailored (=1) -0.053 -0.009 0.004 -0.009 -0.085 -0.027 -0.007 0.049
(0.039) (0.042) (0.035) (0.056) (0.068) (0.071) (0.049) (0.044)

Immediate Choice 0.098 -0.013 0.127 0.209*
(0.070) (0.072) (0.128) (0.110)

Structural Tailored x Immediate -0.086 0.023 -0.106 -0.201*
(0.075) (0.078) (0.125) (0.116)

Constant 0.028 0.016 0.116 0.119 0.199 0.186 0.114 0.093
(0.098) (0.092) (0.101) (0.103) (0.149) (0.138) (0.096) (0.086)

# Vaccinators 87 87 65 65 66 66 63 63

Stratum FEs Yes Yes Yes Yes Yes Yes Yes Yes
Exclude 99th and 1st Percentiles Yes Yes Yes Yes Yes Yes Yes Yes

Drive 2 R∗i or R̃i Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Table reports the effect of structural, tailored policy relative to alternatives on realized distance to the policy
target, |(w1,i/w2,i)− 1| in Drive 2 for 229 vaccinators in the Tailoring Sample who also registered cell-phone vaccination
activity. Separate estimates provided for those who succeeded or failied to hit their Drive 1 targets. Thirteen of
280 Tailoring Sample vaccinators with extreme Drive 2 allocations are excluded and an additional 38 vaccinators
without registered vaccination activity are excluded. Ordinary least squares regressions. Heteroskedasticity robust White
standard errors reported in parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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