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Abstract

Social network data are often constructed by incorporating reports frommultiple individuals. However, it is not
obvious how to reconcile discordant responses from individuals. There may be particular risks with multiply
reported data if people’s responses reflect normative expectations—such as an expectation of balanced,
reciprocal relationships. Here, we propose a probabilistic model that incorporates ties reported by multiple
individuals to estimate the unobserved network structure. In addition to estimating a parameter for each
reporter that is related to their tendency of over- or under-reporting relationships, the model explicitly
incorporates a term for ‘mutuality’, the tendency to report ties in both directions involving the same alter.
Our model’s algorithmic implementation is based on variational inference, which makes it efficient and
scalable to large systems. We apply our model to data from a Nicaraguan community collected with a
roster-based design and 75 Indian villages collected with a name-generator design. We observe strong
evidence of ‘mutuality’ in both datasets, and find that this value varies by relationship type. Consequently,
our model estimates networks with reciprocity values that are substantially different than those resulting
from standard deterministic aggregation approaches, demonstrating the need to consider such issues
when gathering, constructing, and analysing survey-based network data.
Keywords: Social network data, mutuality, reliability, variational inference, latent network, network measurement

1 Introduction

Social network analysis has emerged as a fruitful framework for social scientists to represent and
understand social relationships and their consequences (Borgatti et al., 2009). For example, pat-
terns of interaction among people, as well as peoples’ perceptions of their relationships, have
been found to be important for their material wealth (Jackson, 2021), social position and
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welfare (Lin, 2002; Redhead & Power, 2022), and health and well-being (Holt-Lunstad et al.,
2015; Perkins et al., 2015).
While new data sources now allow for the study of digitallymediated interactions (such as social

media, mobile phone records, and other trace data; Eagle et al., 2009; Lazer et al., 2021;
Park et al., 2018), social scientists’ interest in day-to-day interactions and interpersonal relations
are not always amenable to direct observation. Researchers, therefore, continue to rely on surveys
where respondents identify the people with whom they have interactions or social relationships
(Burt, 1984). A variety of approaches exist for eliciting self-reported network ties from respond-
ents.Most common is the ‘name generator’method, where respondents are asked to list the names
of those with whom they have different types of relationships or interactions. Other approaches
require a full roster, where respondents are asked about their relationship(s) with a set of possible
partners (Marsden, 2005; Ross & Redhead, 2022; Warner et al., 1979).
Importantly, survey-based elicitations can be used not only for accounts of concrete interactions or

exchanges, but can also facilitate a representation of respondents’ subjective perceptions of their con-
nections (Freeman, 1992; Krackhardt, 1987). Questions may be framed aroundmore qualitative sen-
timents towards others—such as in friendships—and so do notmerely document concrete interactions
or observed events of exchange. For many substantive research questions, an individual’s imperfect
perception of their social relationshipsmay be as (if notmore) important as observable events of inter-
action or exchange. This has been highlighted by empirical research suggesting that individuals place
considerable weight on their subjective relationships when making important decisions about who to
cooperate with or support (Power, 2017; Redhead & von Rueden, 2021; von Rueden et al., 2019),
and bywork demonstrating that such relationships have strong associations withmany important so-
cial and health-related outcomes (Kristiansen, 2004; Smith & Christakis, 2008).
The applicability of self-reported network data, however, has been subject to enduring debate

within the social networks literature. Particularly when prompts query concrete exchanges or in-
teractions, the quality of such data rests on the reliability of the self-reports that respondents pro-
vide, and numerous empirical studies have highlighted a plethora of potential biases in responses
(Bernard et al., 1984; Killworth & Bernard, 1976). There is evidence that respondents’ recall of
their ties can be low, even over short periods of time (Brewer, 2000). For example, women within
twoWest African communities were only able to accurately recall between 53% and 59% of their
interactions across a 24-hr period prior to surveying (Adams et al., 2006). Alongside this, individ-
ual differences in the ability to recall tiesmay be predicted by relationship type, the number of part-
ners a person has, and the duration of a given relationship (An, 2022; Bell et al., 2007). Both
theoretical studies and empirically observed patterns of nominations suggest that individuals ex-
pressing particular attributes (e.g., high social status or power; Simpson et al., 2011) are more
readily named, regardless of whether a relationship actually exists (Ball & Newman, 2013;
Marin, 2004; Marineau et al., 2018; Redhead et al., Accepted; Shakya et al., 2017). The order
in which questions appear within a survey, and the mode of elicitation, may further influence re-
sponses (Eagle & Proeschold-Bell, 2015; Pustejovsky and Spillane, 2009). That is, respondents
have been shown to become fatigued, and report fewer relationships, when asked several name
generator questions (Yousefi-Nooraie et al., 2019). Responses can also vary between interviewers,
based in part on their attributes and their dynamic with the interviewee (Lungeanu et al., 2021;
Marsden, 2003).
Noting all of these potential biases, one common practice is to obtain multiple reports on any

single tie within a network. For relationships that are understood to be undirected, this is inher-
ently captured with a single name generator question (i.e., both members of a friendship have
the opportunity to report it). Previous research has found mixed results as to the concordance be-
tween respondents about the existence of their social relationships, with agreement in nominations
ranging between 40% and 90% (Adams&Moody, 2007; Marsden, 1990). For relationships that
are understood to be directed, multiple queries are necessary. One common approach is to ‘double
sample’ a relationship, by asking respondents both who they go to for some type of assistance, and
also who comes to them (Nolin, 2008). When combined with complete censusing of individuals,
double sampling provides two perspectives on all relationships within a network, as both the giver
and receiver have an opportunity to name their partner in each prompt. A recent survey of double-
sampled network data has suggested that concordance between reporters is low, with an overall
average of 10% agreement (Ready & Power, 2021).
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Respondents need not be limited to reporting on the relationships in which they are directly in-
volved, butmay also be asked about the relationships between other individuals within the network.
This type of data has been collected through ‘cognitive social structures’ roster designs—where
respondents report on the relationships between all individuals within the network (Krackhardt,
1987; Newcomb, 1961)—though respondent fatigue means that this elicitation technique is some-
what uncommon. When it has been used, it has also shown relatively low levels of concordance be-
tween responses, highlighting that individual differencesmay guide respondents’ perceptions of their
own relationships and the relationships of others (see Brands, 2013, for a review).
Low levels of inter-respondent concordance suggest that while having multiple reports on any re-

lationship certainly provides new information, it does not necessarily resolve the issue of bias in re-
porting. Indeed, new issues may be introduced, if there are, for example, different reporting
propensities for different queries. One key issue for double-sampled data, in particular, may be peo-
ple’s expectation of, or desire for, mutually supportive, balanced relationships (Heider, 1958). The
use of multiple prompts entailed in double sampling may lead to an inflation of apparent reciprocity,
driven primarily by people’s propensity to name the same individuals across both prompts (Ready&
Power, 2021). We use the term ‘mutuality’ here to refer to this apparent inflation of reciprocity.
Overall, the low level of concordance found in multiply reported data raises the question of how
to statistically account for the ambiguity introduced by conflicting reports of the same potential tie.
To examine the individual biases that shape self-reports of ties, and to estimate the effect of mu-

tuality on the core properties of a network, we introduce a new latent network model for directed
ties that is able to combine multiply reported network data, while accounting for the variable ‘re-
liability’ of respondents. Thus, we estimate a latent network, where the probability of an unob-
served tie between two nodes is jointly dependent on the reports of multiple individuals and the
reliability of those individuals. We validate our model by simulating noisy reports from a true net-
work of ties, and then verify that we are able to recover the true generative network and the
individual-level reporter reliability and mutuality parameters. Finally, we evaluate our model us-
ing two empirical datasets that feature double-sampled questions, one based on a ‘name generator’
design and the other based on a roster method design. We conclude by discussing our findings and
outlining possible extensions of the model.

1.1 Related work
In the social sciences, simple deterministic rules are often used to aggregate multiple reports on
what should nominally be the same relationship (Krackhardt, 1987; Lee & Butts, 2018). When
data are collected via double sampling, for example, it is sometimes assumed that if one party for-
gets to report a relationship when asked (e.g., when they are asked who they give advice to), the
other party may report that tie (e.g., when they are asked who they receive advice from).With such
an expectation, the union of the two name generators is typically used (e.g., Nolin, 2010; Ready&
Power, 2018). Alternatively, it could be assumed that relationships are only salient when they are
mutually recognized; under such an expectation, the intersection of the two name generators
would be preferred (e.g., Krackhardt & Kilduff, 1990). These aggregation rules rely on simple
but strong expectations and presume consistency in how reporters respond to these questions.
This, paired with the fact that the statistical tools used most frequently in the social sciences
(e.g., exponential random graph models; Robins et al., 2007) assume that reported ties are a
‘true’ representation of a given network, can potentially lead to serious misrepresentations in
the social relations of interest in a given study.
Several statistical methods have been proposed to resolve discordant reports for social network

analysis (Butts, 2003; Holland et al., 1983; Kenny & La Voie, 1984; Killworth & Bernard, 1976;
Redhead et al., Accepted; Sewell, 2019; Sosa & Rodríguez, 2021). Similar methods have also been
introduced in other fields, like systems engineering (Amini et al., 2004), the biological sciences
(D’haeseleer & Church, 2004; Hobson et al., 2021; Sprinzak et al., 2003), and physics (Newman,
2018b). Recently, for example, social scientists have attempted to tackle the problem of concordance
by computing a ‘credibility score’ for every individual within a network, and determining whether a
given tie exists based on each reporter’s assigned credibility (An & Schramski, 2015).
Considering this broad literature, we focus on methods most similar to our own, namely ap-

proaches that rely on an explicit generative model for reports that provide only imperfect
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information about a true network of ties. For cognitive social structure data, in which each person
reports on ties between every pair of people in the network, both Sewell (2019) and Sosa and
Rodríguez (2021) have introduced models that aggregate network tie information across all re-
porters and simultaneously estimate error parameters for each reporter. The model proposed by
Butts (2003) is more similar to our work in that it accommodates fewer reports on each tie and
assumes the existence of a true underlying network. More recently, Redhead et al. (Accepted)
introduce a latent network model for double-sampled data, which simultaneously estimates a
true underlying network of directed ties and error parameters for each reporter, and directly incor-
porates mutuality. Our contribution involves an improvedmodel for a latent network that accom-
modates any number of reporters, allows directed ties, and incorporates mutuality explicitly into
the generative model of reports.
Our proposed model also requires a new estimation algorithm, which is an additional contribu-

tion of our work. This is because previous generative models for multiply reported data can be writ-
ten as a finite mixture (Titterington et al., 1985) of probability distributions. For example, the
probability distribution for a present tie could be different than the probability distribution for an
absent tie. Finite mixture models can often be estimated with efficient algorithms, such as
expectation-maximization, and have been used in network research where data come from unreli-
able reporters (Butts, 2003) or feature a significant amount of missingness (Peixoto, 2018). The
unique formulation of ourmodel requires an infinitemixturemodel approach and standardmethods
cannot be easily applied. Therefore, we propose a generative model for latent networks that simul-
taneously handles multiply reported ties and weighted reports, while allowing individuals to vary in
reliability. To estimate our model, we introduce an efficient variational inference algorithm.

2 The model

Consider the problem of collecting a network of ties between individuals. These ties could, for in-
stance, represent relationships commonly studied in the social sciences—such as loaningmoney, giving
advice, or sharing food. This can be done by querying a set ofM reporters about the existence of ties.
The real network is not observed; responses of the reporters are the only observed data at our disposal.
We assume that the unobserved network is correlatedwith these responses.Mathematically, we define
this as anN ×N-dimensional adjacency matrix, Y , where entries Yij ∈ {0, 1, . . . } indicate the weight
of the tie i � j. For each tie type, the observed data is anN ×N ×M-dimensional tensor,X, with en-
tries Xijm containing reports by respondent m about the tie i � j.
We assume that each respondent can, in principle, report on any tie within the network. The

exact rule of how reporters respond may change with the application, but may be flexibly repre-
sented by a binary mask, R, of entries Rijm. We set Rijm = 1 whenever a reporter, m, is surveyed
about the possible existence of a tie from node i to node j, and set the entry to 0 otherwise. In scen-
arios where a network has been double-sampled—e.g., where the same reporter responds about
giving and receiving social support—every tie type is sampled twice (for each reporter), once for
each direction of the interaction. These binary masks are convenient in the inference procedure
as they remove the contributions of nonreporters.
As an example, m can nominate who she gives advice to (giving) and who she receives advice

from (receiving). In this case,m ∈ i, j
{ }

, andwe distinguish the direction of the reported data using
the notationXijm to indicate i to j flows andXjim to indicate j to i flows. While we gave an example
for ties of type advice, the model applies for any type of directed tie. To keep the model flexible, we
model weighted ties with positive and discrete weights, so that Xijm ∈ 0, 1, . . .{ }. This also in-
cludes the binary case, when Xijm captures only whether a tie exists or not.
One of the main objectives of our model is to estimate the structure of a latent network, Y, from

the reported data,X. Note that the term ‘latent network model’ is also used for models predicting
network ties that incorporate latent variables to account for tie dependence implicitly (e.g., latent
spacemodels; Hoff et al., 2002). In contrast, we aremodelling networks whose ties are unobserved
or latent.We adopt a probabilistic approachwherewe assume thatX depends onY in a potentially
noisy way. This means that we infer a probability distribution over possible generative structures
compatible with the reported ties. We assume conditional independence between the entries ofX,
given Y, and the model’s parameters. This is a common assumption made in network models (e.g.,
Newman, 2018b; Peixoto, 2018; Young et al., 2021), and makes estimation of the model more
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tractable. Typical exceptions where this assumption may not hold are scenarios where an upper
limit is set on the maximum number of nominations a reporter can make—e.g., when respondents
are asked:Who are your five closest friends?. In these scenarios, there is a (weak) negative correl-
ation between nominations, because the likelihood of future nominations is reduced each time a
nomination is made by a respondent, simply because the respondent is strictly limited to an arbi-
trary, finite set of nominations (Hoff et al., 2013). While this is important to note, solving this
problem is beyond the scope of the current manuscript.
A further core objective for our model is to estimate the reliability of reporters. Reporters may

under-report (i.e., neglect to report a tie, when it does exist) or over-report (i.e., report a tie, when
it does not exist), and we account for these biased reports by assigning a ‘reliability’ parameter, θm,
to each reporterm. For ease of interpretability, we think of this parameter as a positive number taking
higher values when the reporter exaggerates their reports and lower values when they under-report.
Finally, we incorporate the intuition that reporters tend to nominate the same people for both

directions of a relationship, Xijm and Xjim. We term this pattern ‘mutuality’, to keep the concept
distinct from the standard concept of dyadic reciprocity (henceforth termed reciprocity) in the true
unobserved network Y. Bringing all of these modelling consideration together, we posit that the
expected value of the data can be given as

E
[
Xijm|Yij = k

]
= θmλk + ηXjim, (1)

where η ≥ 0 is the mutuality parameter. Mutuality enters the model as an additive and positive
contribution to the expected number of reported ties. This measures the possible increasing weight
of a directed tie, given that we observe the same tie in the opposite direction, as reported by the
same reporter. The parameter λk is a positive real value that needs to be inferred, which regulates
the contribution of Y in determining X. Note that the index k here refers to the positive and dis-
crete value posited for Yij. In case of binary entries, k ∈ 0, 1{ }, but in this work, we assume more
generally k ∈ 0, 1, . . .{ }.
From this, we note how, for a given value of λk > 0, reporters with high θm tend to nominate

more individuals, while reporters with smaller values tend to nominate fewer individuals. In con-
trast, a θm = 1 indicates a neutral contribution (neither over-reporting nor under-reporting), hence
we can interpret it as representing an unbiased reporter. Regardless of the reporter’s ‘reliability’,
the existence of a tieXjim in one direction increases the expected value ofXijm in the opposite dir-
ection, when η > 0. This also implies that it may not be possible to identify the reliability of report-
ers that report a high percentage of ties in both directions, and in networks with high values of η. In
these cases, in fact, the presence of a reported tie can be determinedwith a high likelihood based on
the tie reported in the opposite direction.
To form a likelihood for the observed data that can accommodate various network and

report structures—in particular, directed andweighted networks—wewrite the conditional distri-
bution:

P(Xijm |Xjim, Yij = k, λk, θm, η) =
(θmλk + ηXjim)

Xijm

Xijm!
e−(θmλk+ηXjim). (2)

Note that this choice of a Poisson distribution leads to an expected value forXijm as in equation
(1). Furthermore, the positivity of the parameters makes this expression valid without the need
of a link function. From this conditional, one can specify a two-point joint likelihood of
(Xijm, Xjim) by suitably defining the marginal distribution P(Xjim |Yji = k, λk, θm, η). While
there exist choices resulting in a consistent joint likelihood (see Section S1.3 for details), these
may not result in simple, efficient closed-form updates of the parameters. Hence, we assume a
pseudo-likelihood approximation (Besag, 1974) for the two-point likelihood, as done in
Safdari et al. (2021)

P(Xijm, Xjim |Yij = k, Yji = q, λk, λq, θm, η)

≈ P(Xijm |Xjim, Yij = k, λk, θm, η) × P(Xjim |Xijm, Yji = q, λq, θm, η). (3)
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The model can be applied to any tie type encoded in the input data X, and it will output the
reliability of a reporter for that tie type. One can potentially generalize this to a multi-layer
framework by considering a unique θm for each reporter, regardless of tie type. This would
then introduce a coupling between the reported X for various tie types, potentially increasing
the complexity of the model. Alternatively, one could consider a different θm for each tie type.
If these different types of reliability are considered independent from each other, then our
model could be readily generalized to include these distinctions, without need for further extra
coupling, but only additional distinct priors. This is essentially equivalent to running our mod-
el on each layer (i.e., tie type) individually, as we do in our numerical experiments on real data
below.
Potentially, one could also include a different θm depending on the directionality of the ties—i.e.,

a θ�m for ties sent and a θ�m for ties received—capturing situations where reporters could over-
report in one direction and under-report in another one. This would modify equation (3) to con-
tain one of these two parameters inside the corresponding conditional distribution. If θ�m and θ�m
are thought to be independent, so that their priors factorize, then this would lead to a straightfor-
ward generalization of the algorithm.
We assume that there are no contributions to the likelihood ofXwhen a reporter is censored—

i.e., whenm is not given the chance to report on the tie i � j. In empirical applications, this could
arise, for example, when a survey design only asks about ties directly involving the reporter.
In addition to specifying the likelihood as in equation (2), we adopt a Bayesian approach and

assume priors for the parameters and the unobserved Y. To maximize the flexibility of our model,
we allow for positive and discrete values of Y by using a categorical prior

P(Yij = k; pij) = pij,k, (4)

where pij is the parameter of the categorical prior distribution, and
∑

k pij,k = 1. The sum runs over
the possible positive and discrete values of Yij. The resulting model can thus accommodate, for ex-
ample, a binary networkY andweighted reportsX, as the likelihood in equation (3) is valid for any
number of values that Y can take. We then consider Gamma priors for the remaining parameters,
as they are defined for positive real numbers, and are conjugate with the Poisson distribution,
which makes calculations convenient.

3 Inference

Because of the possibility of mutuality in nominations, we do not have a closed-form joint distri-
bution for (Xijm, Xjim), hence we consider the conditional distribution

P
({
Xijm

}
m|
{
Xjim

}
m, Yij, λ,

{
θm

}
m, η

)
=
∏
m

P(Xijm |Xjim, Yij, λ, θm, η)

=
∏
k

P(Yij = k)
∏
m

P(Xijm |Xjim, Yij = k, λk, θm, η)

[ ]Yij,k

. (5)

By using a pseudo-likelihood approximation as in Safdari et al. (2021), the full posterior can be
written as

P(Y, λ, θ, η |X) ∝ P(X |Y, λ, θ, η)P(Y)P(λ)P(θ)P(η)
=
∏
i,j

P
({
Xijm

}
m|
{
Xjim

}
m, Yij, λ,

{
θm

}
m, η

)
P(Yij; pij)∏

k

P(λk; ak, bk)
∏
m

P(θm; αm, βm)P(η; c, d)

(6)

= : L(λ, θ, η, Y) (7)

where the proportionality results from the omission of an intractable normalization that does not
depend on the parameters. To estimate the model, we use variational inference with a mean-field
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variational family (Blei et al., 2017), which yields an approximate posterior distribution for the
network and parameters. The algorithmic updates needed to find the best approximation to the
posterior distribution follow a coordinate ascent routine, iteratively finding the best marginal pos-
terior distribution of each parameter while holding the others fixed. We call the resulting algo-
rithm VIMuRe, for Variational Inference for Multiply Reported data. The model is efficient, as
it exploits the sparsity of the dataset. Specifically, the numerical implementation has a computa-
tional complexity that scales linearly with the number of nonzero entries of R, the reporters’
mask, typically a sparse quantity. As a comparison, techniques based on sampling (e.g., HMC)
can take an order of magnitude longer to run (see Blei et al., 2017), depending on the underlying
complexity of the model. As the output results depend on the random initial configuration of the
parameters, we run the algorithm several times and then consider the realization that resulted in
the best ELBO value, as usually done in variational inference. This makes the output robust
against initial values, as we expect a decreasing sensitivity to them for increasing Nrealisations. In
our experiments, we found that alreadyNrealisations = 5 was a reasonable value to guarantee robust
results. Pseudo-code for the algorithm is shown in Algorithm 1; see Section S1.1 for further details.

4 Simulation experiments

To validate our model, and study its performance in different regimes, we simulate synthetic data
that reproduce our analysis scenarios—multiply reported network data that depend on a latent
adjacency matrix—using the model itself. In detail, we first generate the network Y either with
a flexible version of a mixed-membership stochastic block model (MULTITENSOR, De Bacco
et al., 2017), a degree-corrected stochastic block model (DC-SBM, Karrer & Newman, 2011),
or a probabilistic model with reciprocity (CRep, Safdari et al., 2021). We then generate the ob-
served X given fixed reliability, mutuality, the generated network and the contribution of λ, col-
lectively denoted by Θ = (Y, θ, λ, η). We follow the approach described in Safdari et al. (2021),
and for each reporter m we draw a pair (Xijm, Xjim) consistently with the joint P(Xijm, Xjim|Θ)
in a two-step sampling routine, where we first generate one of the two reported ties and
then the second one given the first, see Sections S1.2 and S1.3 for details.
In the simulations, we examine our ability to recover: (i) the underlying network, Y, and (ii) the

individual reliabilities, θm. First, we generate synthetic networks reproducing three different scen-
arios. Two of these scenarios are extreme cases, where a fraction of reporters (θratio) are tagged to
be either over-reporters, or under-reporters, while all the others are reliable—i.e., they have
θm = 1, and theirX entries are deterministically generated. In doing this, we document model per-
formance in difficult cases, where the proportion of unreliable reporters is high. The third scenario,
is more realistic. In this setting, we have both over- and under-reporters, as we draw θm from a
Gamma distribution, providing a broad range of values. We vary the difference between λ1 and
λ0, such that the smaller this difference becomes, the noisier the problem gets, and thus the harder
the inference tasks. Secondly, we investigate the ability of our model in recovering structural prop-
erties of the latent network Y—e.g., reciprocity, density, and communities—in other sets of syn-
thetic networks.
In all experiments, we fit two versions of the model: a version with mutuality (VIMuReT) and a

version without (VIMuReF). To provide a point of comparison, we also compute two baselines
estimates of Y: (i) the union, in which a tie exists if at least one reporter reports that tie, and (ii)
the intersection, in which all the reporters of a tie have to agree for the tie to exist. These two com-
monly used baselines represent the most and least inclusive approaches to integrating multiply re-
ported data, and so provide reasonable comparisons for VIMuRe.

4.1 Results
We use the F1-score—i.e., the harmonic mean of precision (fraction of inferred ties that actually ex-
ist) and recall (fraction of existing ties found by the method) measures—to assess the ability of our
model to recover Y, which is binary in our experiments. This choice is chiefly motivated by the fact
that we have unbalanced data (since many fewer ties than possible tend to exist in empirical net-
works), that the F1 score is widely understood, and that our inferences based on F1 scores are quali-
tatively identical to those based on the Matthews correlation coefficient (Chicco & Jurman, 2020).
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For readers more familiar with the latter, we include Matthews correlation coefficient results in
Supplementary Materials.
In the two extreme scenarios, where there are only over- or under-reporters, our model recovers

the unobserved network, Y, better than approaches that take the union or intersection of the re-
ported ties in X. The performance of our model is also more robust as the number of unreliable
reporters and/or mutuality increases, see Figure 1. In particular, our model with mutuality
(VIMuReT) has a higher performance for high values of η, which is also a harder regime, as the
performance of all methods decreases in this range. In general, the performance of the baselines
decrease as the number of over- or under-reporters grows. For example, the union baseline esti-
mates relationships that do not exist in the true network, when there are several over-reporters.
Conversely, the intersection baseline underestimates the amount of ties, when a high fraction of
individuals under-report. Our model overcomes these biases by accounting for reporters’

Algorithm 1: VIMuRe.

Input: Data X, Model L, Variational family q.

Initialize the variational parameters γ, ϕ, ρ, ν to the priors with a small random offset.

while change in ELBO is above a threshold do

For end each pair of nodes such that Xijm > 0, update the multinomials:

ẑ1mk ∝ exp Ψ(γshapem ) − log γratem + Ψ(ϕshapek ) − log ϕratek

{ }
ẑ2ijm ∝ exp Ψ(νshape) − log νrate + logXjim

{ }
=Xjim exp Ψ(νshape) − log νrate

{ }
where the proportionality is such that ẑ1mk + ẑ2ijm = 1.

For each reporter, update the reliability parameters:

γshapem = αm +
∑
i,j,k

Rijm ρij,k Xijm ẑ1mk

γratem = βm +
∑
i,j,k

Rijm ρij,k
ϕshapek

ϕratek

.

For each possible value k of Yij, update the parameters:

ϕshapek = ak +
∑
i,j,m

Rijm ρij,k Xijm ẑ1mk

ϕratek = bk +
∑
i,j,m

Rijm ρij,k
γshapem

γratem

and:

ρij,k ∝ exp logpij,k +
∑
m

Rijm Xijm ẑ1mkEq(λk) log λk
[ ]( )

−
ϕshapek

ϕratek

∑
m

Rijm
γshapem

γratem

{ }
.

Update the mutuality parameters:

νshape = c +
∑
i,j,k,

ρij,k
∑
m

Rijm Xijmẑ
2
ijm

νrate = d +
∑
i,j,m

Rijm X jim.

end

Output: Variational parameters (γ, ϕ, ρ, ν).
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reliability, and this results in higher and more robust performance. However, when θratio becomes
too large, VIMuRe also fails since, as Figure S2 shows, recovering the reporters’ reliability be-
comes harder. That said, the model with mutuality performs better at this task, and fails much
more slowly than the model without mutuality, especially when η is large. To assess robustness
in recovering Y as the number of reporters varies, we run further experiments keeping the same
settings as above for N = 300 and varying M ∈ [25, 300]. For this simulation, we fixed
θratio = 0.50, thus capturing the most challenging case explored in the original simulations in
Figure 1. We find that while performance decreases as the number of reporters decreases, as ex-
pected, VIMuReT captures the ground truth of Y better than baseline implementations across dif-
ferent M, as shown in Figure S4.
Performance differences are more nuanced when we consider the more realistic experiment,

which features a broad range of reporter reliabilities. F1-scores are lower than in the previous ex-
periments, in general, and recovering the ground truth is particularly challenging when the differ-
ence between the mean number of reports of a tie being present and not, λ1 − λ0, is lower, see
Figure 2. Intuitively, as the difference λ1 − λ0 decreases, both the zero and nonzero inputs of Y
tend tomake the same contribution in determiningX; thus, it becomesmore difficult to distinguish
true ties on the basis of reports. These experiments also further confirm what we observed in the
previous experiments, that the hardest regime features the highest mutuality. A higher η means
that a reporter will tend to nominate the same set of people for both giving and receiving questions,
which results inX having less informative information. In these experiments, both versions of our
model and the union baseline perform similarly while the intersection baseline performs much

Figure 1. Estimating underlying network, Y , in synthetic networks with over- or under-reporters. Synthetic
networkswithN = 100 nodes andM = 100 reporters, generatedwith the benchmark generativemodel described in
Sections S1.3 and 4, by varying the fraction θratio of over-reporters (top) or under-reporters (bottom). The two
columns represent networks generated without (left) and with (right) the mutuality effect η. The results are
averages, and standard deviations calculated over ten independent synthetic networks. The accuracy of the
estimate of the underlying network, Y , is measured with the F1-score. This measure ranges from 0 to 1, where 1
indicates perfect matching. See Figure S1 for similar plots based on the Matthews correlation coefficient
and Figures S4 and S5 for additional experiments where M varies.
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more poorly. However, the performance gap decreases as mutuality increases and more ties are
reported. Further studies on the recoverability of the latent network mutuality in synthetic experi-
ments are provided in Section S1.4 and Figure S6.
Once we have an estimate, Ŷ, of the unobserved network, Y, a practitioner would be able to

investigate structural properties in the latent network. To give an example, we will assess the abil-
ity of our model to capture reciprocity on the estimated Ŷ, a foundational feature of many social
relations (Fehr & Gächter, 1998; Molm, 2010). To this end, we convert the posterior probability
distribution ρij,k to a binary unweighted adjacency matrix. Since we considered binary data in our
experiments, and thus k ∈ 0, 1{ }, we can obtain this by applying a threshold to the sub-tensor ρij,k=1,
as it represents the probability distribution of finding a Ŷij = 1 entry. After each run ofVIMuReT , we
apply a range of thresholds tρ ∈ [0.050, 0.075, . . . , 0.725, 0.750] such that we assign Ŷij = 1 when
ρij,k=1 ≥ tp, and keep track of the best t∗ρ , for which reciprocity in the inferred network most closely
matches the reciprocity of the ground truth. In Figure 3, we show that the relationship between this
optimal threshold and the mutuality, ηest, as inferred by VIMuReT, can be approximated by the lin-
ear equation

t∗ρ = 0.33ηest + 0.10. (8)

In fact, in Figure 4, we show that VIMuReT outperforms all other models at this task when the
threshold on ρ was set according to the heuristic proposed above. Reciprocity estimated by the
model was a closer match to the reciprocity of the true unobserved network even in simulations
with high values of mutuality, a scenario where other methods tend to overestimate reciprocity.
Density of the inferred network is also closer to ground truth, when compared with baseline meth-
ods in most scenarios, as can be seen in Figure S7. These results mean that despite the small gap on
the value of F1-score, VIMuReT may be able to provide a good estimate of structural properties of
Y. The values of t∗ρ in equation (8) are valid for the settings considered in the experiments analysed
here and reported in Table S1, which control how synthetic networks are generated. Being a heur-
istic, one can in principle obtain a different formula when simulating data under different assump-
tions (e.g., varying N, M or reciprocity).
As a final test, we also show that VIMuRe allows the underlying community structure of a net-

work to be recovered, even when it is measured noisily. To this end, we use a latent network that
has planted overlapping communities, and generate reports as before. We then estimate the net-
work, and finally recover communities using a probabilistic generative model with latent variables
(De Bacco et al., 2017). Figure 5 shows the result of this experiment, and illustrates that VIMuRe is

Figure 2. Estimating underlying network, Y , in synthetic networks with over- and under-reporters. Synthetic
networkswithN = 100 nodes andM = 100 reporters, generatedwith the benchmark generativemodel described in
Sections S1.3 and 4, by varying the difference between λ0 and λ1. The three columns represent networks generated
with no (left), medium (centre), and high (right) mutuality, η. The results are averages and the standard deviations
over ten independent synthetic networks. The accuracy of the estimate of the underlying network, Y , is measured
with the F1-score. This measure ranges from 0 to 1, where 1 indicates perfect matching. See Figure S3 for similar
plots based on the Matthews correlation coefficient.
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more robust than other approaches across different mutuality values, providing slightly better re-
sults than all other models; the intersection performs the worst. The qualitative example on the
right panel of Figure 5 highlights how VIMuReT infers a partition closer to the ground truth
than those inferred by the other methods, especially when mutuality is higher.
To summarize, our simulation experiments suggest that the use of a generativemodel with latent

variables results in more robust estimates of the true underlying network, Y, in comparison to

Figure 3. Synthetic networks with N = 100 nodes and M = 100 reporters, generated with the benchmark
generativemodel described in Sections S1.3 and 4with λ1 − λ0 = 1.0, and planted reciprocity values around≈ 0.2 on
the ground truth network, Y . The plot shows that the threshold that best captures reciprocity is linearly correlated
with ηest.

Figure 4. Reciprocity recovery from synthetic networkswithN = 100 nodes andM = 100 reporters, generatedwith
the benchmark generative model described in Sections S1.3 and 4 with λ1 − λ0 = 1.0, and planted reciprocity values
around ≈ 0.2 (horizontal dashed line) on the ground truth network, Y . The four sub-plots represent networks
generated with low (top left), medium (top right), to increasingly high (bottom left and right) mutuality effects, η.
The box plots are distributions of the reciprocity in Y , over a sample of one hundred synthetic networks.
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deterministic approaches (such as taking the union or intersection of sub-tensors). Furthermore,
our model yields an estimate of reporter reliabilities, which can provide additional insights about
the data-generating process. In addition, we note that our model performs better than other mod-
els when we include the mutuality parameter, η. In particular, VIMuReT shows better results in
estimating reciprocity than VIMuRe, specifically in cases where people’s propensity to report mu-
tuality in their relationships is high.

5 Analysis of Nicaragua data

We apply our modelling approach to data collected from a horticulturalist community in Nicaragua
(seeKoster, 2018, formore detail on the population andmeasurement instruments). These datawere
collected using a roster-based design, where all adult residents within the community were presented
with a list of all other adult residents, and were asked two questions about relationships related to
social support (i.e.,Who provides tangible support to you at least once per month? andWho do you
provide tangible support at least once per month?). Previous studies have performed separate ana-
lyses on the two questions (Koster, 2018; Simpson, 2022). We examine both questions in a single
model, examining the potential biases that shape the reports of social support.
In this dataset, the reports vary significantly across reporters, with some reporters nominatingmany

ties andothersnominating fewer. It is, therefore, reasonable tohave thepriorsonθm reflect this.Wecan
incorporate this insight by running the inference in two steps, where we first run VIMuRewith aweak
prior that is the same for all reporters,while in a second stepwe runVIMuRewith a prior proportional
to the posterior mean of θm inferred in the first step. This is in line with Empirical Bayes approaches
(Casella, 1985;Morris, 1983; Robbins, 1955) that estimate prior distributions from the data. This ap-
proach allows us to obtain a wider range of reliabilities so that we can better distinguish possible ex-
aggerators than when using the same prior for all reporters.
Applying VIMuRe produces estimates of a network—which is binary and obtained by applying

the optimal threshold in equation (8)—that has properties (e.g., mean degree, reciprocity) that fall
somewhere between the results of taking the union (which returns an incredibly dense network)
and taking the intersection of the double-sampled ties (which returns an extremely sparse net-
work). See Table S2, for a summary. Overall, mutuality was estimated to be ηest = 0.540 and reci-
procity was 0.11.
In contrast to other survey data such as name generators, where survey designmay contribute to

under-reporting, the roster-based designmakes it much easier for respondents tomakemany nom-
inations. In the roster design in Nicaragua, informants reported approximately 25 alters for each
prompt, substantially more than the average of 4 from the constrained name generators used in the

Figure 5. Community structure recovery from synthetic networks with both over- and under-reporters. Synthetic
networkswithN = 300 nodes andM = 300 reporters, generatedwith the benchmark generativemodel described in
Sections S1.3 and 4with λ1 − λ0 = 1.0. The results shown in the left frame are averages and standard deviations over
ten samples of synthetic networks, generated by varying themutuality parameter, η. The accuracy in recovering the
overlapping community structure is measured with the cosine similarity (CS) using the inferred membership
vectors. In the right frame, we plot examples of the partitioning of a synthetic network, generated with η = 0.2. The
‘ground truth’ is the partition used to generate Y , and YGT stands for the partition found by using the true Y . Nodes
colored in white represent isolated nodes.
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study described below in Section 6 (see Table S2 for full network statistics). As can be seen in
Figure 6, however, we nevertheless observe reporters with low θm, who were nominated by several
others, but nominated relatively few themselves (e.g., Nodes 4 and 13). On the opposite extreme,
we see reporters with high θm, who nominated many others, but whose ties are not confirmed by
those alters (e.g., Nodes 3 and 76). In between, we show an example of a reporter (Node 5) with
intermediate value of θm, who nominates several others in a way consistent with the reports of
others. The distribution of reliability for reporters in this dataset can be seen in Figure S8.
Since these data are not explicitly generated with the generative model assumed by VIMuRe, we

run a goodness-of-fit test to ensure that the model is appropriate for the above analysis. To do this,
we use a series of posterior-predictive checks (Gelman et al., 1996, 2013), which compare the
Nicaragua data with synthetic data X̃ generated using the fitted model. The posterior-predictive
distribution is defined as

P(X̃ |X) =
∑
Y

∫∫∫ P(X̃ |Y, λ, θ, η)P(λ, θ, η, Y |X)dλ dθ dη (9)

and one can generate samples from this distribution by first obtaining samples (Y, λ, θ, η) from the
variational approximation to the posterior distribution, and then using these parameters as input
to create new synthetic data, X̃, from the likelihood described in Section 2. A good fitted model
should lead to new synthetic data X̃ that resembles the input X. We run two numerical posterior-
predictive tests to assess the appropriateness of the VIMuRe model: (i) a direct comparison be-
tween the elements of the Nicaragua data X and the distribution of X̃, and (ii) a test checking
whether two samples from the posterior-predictive distribution are typically more, equally, or
less distant from one another than a sample from the posterior-predictive distribution and the
Nicaragua data (Young et al., 2021). The results shown in Figure 7 confirm that the VIMuRemod-
el is appropriate for our analysis.

6 Analysis of social support networks in Karnataka

To further highlight the broad applicability of our modelling approach across elicitation methods,
we apply VIMuRe to a dataset of social support networks collected from 75 villages in the Indian
state of Karnataka (Banerjee et al., 2013). As part of a larger project, a series of name generators
were asked of most of the adult members of a subset of households in each village (overall, about
46% of all households were surveyed). The name generators included questions about four
double-sampled relationships: who people give advice to or receive advice from (Advice), who
people would borrow from or lend a small amount of money to (Money), who people go to or re-
ceive as visitors (Visit), and who people would borrow kerosene and rice from or lend kerosene
and rice to (Household Items – ‘HH Items’ in the plots). In the past, these data have been studied
by aggregating responses from multiple household respondents and taking the union of the
double-sampled questions (Banerjee et al., 2013; Jackson et al., 2012).
Our results suggest that the reciprocity values in these networks are in fact lower than what

would be obtained by simpler approaches, as shown in Figure 8, generally, and illustrated for
one specific village and tie type in Figure 9. While we do not have ground truth values in this

Figure 6. Example of individual reliabilities. Pie plots show six different configurations for the reported ties (two per
each direction of a tie): ties confirmed by both reporters (conf ‘give to’, conf ‘get from’); ties reported by m but not
confirmed by others (not conf ‘give to’ (alter), not conf ‘get from’ (alter)); ties reported by others but not by m (not
conf ‘give to’ (ego), not conf ‘get from’ (ego)). Each plot is a different reporter; their estimated reliability θ̂ is printed
on top. Each slice of the pie is one tie reported in one the six possible ways, represented by the colours. In this
example, we consider reporters from the Nicaragua dataset.
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case, we note that these numbers are similar to those obtained on the synthetic networks in our
experiments shown in Figure 4. In particular, they mimic the situation with high mutuality, where
the union and intersection significantly overestimate the reciprocity on Y, whereas VIMuRe iden-
tifies the correct range of values. These results suggest that reciprocity will likely be overestimated
in double-sampled network data, when the reports have highmutuality. Of the four tie types in the
data from Karnataka, the estimations made by VIMuRe suggest that the ‘Advice’ layer has the
lowest reciprocity values on average (0.39 ± 0.07), with ‘Money’ (0.43 ± 0.08), ‘Visit’
(0.47 ± 0.07), and ‘Household items’ (0.48 ± 0.08) layers exhibiting higher reciprocity.
Note, too, that our estimates for mutuality (ηest) follow a similar pattern, with the lowest esti-

mates for ‘Advice’, and the highest for ‘Visit’ and ‘Household Items’. These estimates broadly align
with theory: reciprocity—and the expectation for reciprocity, as represented by themutuality term
—is higher in those relationships that are understood to be more balanced and mutually support-
ive (i.e., visiting one another’s homes, and borrowing/lending basic household items, like rice and
kerosene), and lower in those relationships that are potentially seen as hierarchical and imbal-
anced (receiving/giving advice, and borrowing/lending money).
We next investigate how reporter ‘reliabilities’ are distributed in these networks. Since the mu-

tuality in these graphs is high (nest ≥ 0.4), it is very common that reporters repeat the same names
across the different name generators. Therefore, it is expected that individual ‘reliability’ terms
will play a smaller role in determining the reported social network. Recalling equation (1), this
means that the value of θm will be small for reporters with a high rate of repeat nominations—
that is, the proportion of alters reported by an ego on the ‘give to’ question that gets repeated
on the ‘gets from’ question. In the Karnataka dataset, 26% (Advice) to 52% (Household Items)
of reporters have an individual rate of repeated nominations of 100%. In such cases, small values
of θm should not be interpreted as indicating under-reporting, as a small θm in this case is just a
signal of a high mutuality. The vast majority of reporters (99.49%) with a small θm (θm < 0.1)
in the Karnataka networks have an individual rate of repeat nominations of 100%, regardless
of the tie type.
For all four tie types, we observe that reporters tend to under-report relationships, even after

having accounted for those individuals who have low θm for the reasons discussed above (see
Figure S9). This is consistent with prior literature (e.g., Butts, 2003) that suggests that reporters

(a) (b)

Figure 7. Example goodness-of-fit analysis for the Nicaragua dataset. (a) Number of ties declared by each reporter
(squares) across the double-sampled social support question, compared with the average predicted number of
reported ties (circles). Error bars correspond to standard deviations computed with n = 500 samples from the
posterior distribution. (b) Scatter plot showing a model-model (D(X̃ , X̃ )) versus model-data (D(X , X̃ )) comparison.
Each dot corresponds to one posterior-predictive sample and illustrates the distance between this sample and the
Nicaragua data on the horizontal axis (model-data), and another random posterior-predictive sample on the vertical
axis (model-model). Themodel can be deemed appropriate when these two distances are similar—i.e., if the scatter
plot is a point-cloud centred on or close to the diagonal (Young et al., 2021).We selected the Hamming distanceD as
the test statistics, defined as the number of pairs of entries (Xijm, X̃ ijm) in disagreement between two datasets.
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are reasonably accurate when reporting ties, but quite inaccurate when reporting nonties. This ef-
fect may be partially induced by the way the questionnaire was formulated, as there were only four
entries available for nominating alters. This causes under-reporting to be much more likely, and
substantially limits the number of reported tie configurations that can be observed in this system.
Indeed, we note a negative correlation between θm and the in-degree of ties reported by others in-
volvingm (see Figure S11). In particular, reporters nominated bymany others (some bymore than
20 people) could only nominate up to four among these; such reporters will necessarily have low
values for θm.
We do not observe any strong differences in the distribution of reliability across the four tie

types (see Figure S9). We assess whether reporters are consistent in their reliabilities across the
tie types by examining the pairwise distances using theWassertein distance (ametric formeasuring
distances between two distributions; Givens & Shortt, 1984) between each set of tie types (see
Figure S10). We see some telling patterns by looking at the consistency of ‘Advice’ with the other
tie types: while reporters are most consistent between the ‘Advice’ and ‘Money’ networks, they are
least consistent between the ‘Advice’ and ‘Household Items’ or ‘Visit’ networks.

7 Discussion and conclusions

Self-report network data are an important resource for social scientists, but they are also suscep-
tible to several types of reporter bias. Identifying the possible biases that structure self-reports of
social relationships remains an essential and open area of research for social network analysis.
Failure to identify and account for such reporting biases may lead researchers to draw incorrect
inferences (Redhead et al., Accepted). But how should social scientists go about investigating
and treating reporting bias in measurements of social networks? We provide a novel statistical so-
lution to—and theoretical and empirical evidence of—this problem, with particular focus on two

Figure 8. Reciprocity on Karnataka networks. The box plots show the distribution over the 75 networks of the
reciprocity measured on the inferred Ŷ . Each column is a different tie type, as written on the figure title.

(a) (b) (c)

Figure 9. Example of networks estimated by baseline methods and VIMuRe for one Karnataka village (tie type
‘Visit’). (a) Union (recip. = 0.93), (b) intersection (recip. = 0.88), and (c) VIMuRe (recip. = 0.49).
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forms of bias. First, we investigate and adjust for the general propensity of reporting balanced, re-
ciprocal relationships (i.e., mutuality). Second, we provide amethod of accounting for individuals’
unique potential to misrepresent or misreport their relationships during reports. Both of these
forms of bias have the potential to add substantial ‘noise’ to empirical representations of social
networks, but the extent to which this is present and problematic has not yet been well established.
While previous work has explored individual propensities to misreport their ties (e.g., Butts, 2003;
Newman, 2018a; Young et al., 2021), there has been limited formal analysis of the impact that
‘mutuality’ has on network inference (but see, Redhead et al., Accepted).
We have focused our attention on cases where multiple reporters are able to provide informa-

tion on any given relationship. In particular, we have considered ‘double-sampled’ relationships,
where respondents are asked about their role both as giver and as receiver—a common technique
that is used in social support network surveys. We have introduced a probabilistic modelling
framework, VIMuRe, that provides a principled solution to these issues and aims to more appro-
priately capture the data generating process associated with name generator designs. VIMuRe
takes as input potentially biased, imperfect survey responses and uses these to estimate a ‘true’ la-
tent network, as well as parameters governing individual biases and relationship-specific tenden-
cies towards mutuality. The model estimates both a ground-truth,Y, and θwhich, in certain cases,
can be interpreted as a reporter’s reliability (conditional on some level of mutuality).
The model that we have introduced here strongly departs from common approaches for dealing

with double-sampled network data in the social sciences, in which researchers simply take the
union or the intersection of nominations. Our approach also departs from existing network recon-
struction methods and advances a framework that is maximally flexible. To our knowledge, exist-
ing network reconstruction methods (e.g., Butts, 2003; Newman, 2018a; Young et al., 2021) that
are applicable to social networks focus on the single-sampled case—with the exception of Redhead
et al. (Accepted), which is applicable only to double-sampled networks.While we have highlighted
double-sampled network data here, our framework can be readily used for many reporting sam-
pling schemes. A tie within a network could be reported on by any number of reporters, up to and
including a full ‘cognitive social structure’ design (Krackhardt, 1987), where each respondent re-
ports on all other ties in the network. Alongside this, the model remains computationally efficient
given the use of variational inference, as opposed to aMonte Carlo approach. Our model can flex-
ibly handle social network datasets of any realistic size, and can scale to large systems of tens of
thousands of nodes by exploiting the sparsity of typical network datasets.
Results from our simulation experiments highlight that mutuality dramatically impacts inferred

levels of reciprocity. Our results complement previous empirical and theoretical studies (e.g.,
Ready & Power, 2021; Redhead et al., Accepted), and show that the simple deterministic ap-
proach of taking the union or intersection of nominations leads to biased estimates of reciprocity.
Given this, we propose a simple heuristic that is based solely on the mutuality value inferred by the
model, that can be used to select the most appropriate point-estimates from an estimated posterior
distribution of Y. Findings from our simulation experiments suggest that our approach results in
networks that are somewhere between those produced by the union and the intersection.
Generally, our approach results in lower levels of reciprocity than deterministic aggregation, be-
cause we are appropriately accounting for mutuality.
The importance of considering the core questions of (bias in) network representation—and the

utility of VIMuRe—are most clearly demonstrated with our analyses of the empirical data from
Karnataka (Banerjee et al., 2013) and Nicaragua (Koster, 2018). These datasets result from two
very different elicitation approaches, which carry with them different potential risks for bias.
The data from Karnataka provide a case where a standard name generator approach was used
on a partial sample of the network, and where an upper bound of four was placed on the number
of ties that could be reported. This design likely increases the chances that ties are under-reported.
In contrast, the data from Nicaragua were collected using a full roster-based design on the entire
sample. This approachmay inflate the chances that ties are over-reported. In both empirical exam-
ples, the prospect of mutuality is salient, as reporters were asked about their roles as givers and
receivers in direct succession, and there was no randomization of question order. The results of
our empirical applications indicate the importance of mutuality in patterning reports within
double-sampled designs. In Karnataka, mutuality values range from ∼0.4 to ∼0.7, and in
Nicaragua they are ∼0.6. These mutuality values complement the findings from our simulation
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experiments, which show that when mutuality is high, taking either the union or the intersection
will result in inflated reciprocity values (despite treating discordant responses in very different
ways).
Our findings highlight that mutuality is indeed high across a range of different relationship

types, and thus the consequences of using these standard deterministic aggregation methods are
obvious: a clear disparity between the resulting aggregated networks and the ‘true’ underlying net-
work. The acuteness of this issue depends on the particular tie type, as we can see in the varying
levels of mutuality in the Karnataka data (where mutuality is lowest for relationships that may be
seen as less balanced). VIMuRe provides a promising way forward here, as it is able to measure
and account for mutuality across different sampling regimes.
The empirical examples that we present further elucidate the varying ‘reliabilities’ of reporters—

over and above the general propensity to report mutually supportive, reciprocal ties. Importantly,
the contrasting results found between the two sets of empirical data reveal general issues with sam-
pling and elicitation, about which practitioners need to be cognisant. The roster-based design used
to collect the network data in Nicaragua, resulted in an average of 25 nominations for each
prompt. In contrast, given the upper limit of four ties that could be reported in the Karnataka de-
sign, the average number of nominations was much lower (around two to three nominations for
each prompt) for the various relationship types (see Table S2). Compounding this issue is the par-
tial sampling procedure implemented in Karnataka. The partial sample included ∼46% of the
households and ∼25% of residents (including children) within the sampled villages. Our findings
suggest that when many nominations are of people who were not themselves reporters, there are
considerable constraints on the ability to assess reliability. Moreover, our findings suggest that in-
dividuals who were named by many others are likely to be seen as ‘unreliable’ (see Figure S10), in
part because these individuals were constrained in their ability to namemore than four individuals.
Generally speaking, greater coverage of the network and prompts that facilitate collection of
more-complete nomination sets will permit more precise estimation of individual ‘reliabilities’
and, thus, more accurate network reconstruction.
Several directions are possible for future improvements to VIMuRe. Our model specifies condi-

tional probabilities, and thus relies on pseudo-likelihood estimation for inferring the parameters.
A fruitful avenue for future research is to improve this approximation by characterizing a full joint
distribution of a pair of ties (Contisciani et al., 2022). Doing thismay potentially solve the problem
of identifying a θm for samples with highmutuality and, most importantly, increase the accuracy of
estimating posterior distributions for Y. However, any improvement may come at the price of los-
ing analytical tractability, or requiring less flexible approaches.We have focused here on capturing
reciprocity, but this does not provide any guarantees of recovering automatically other network
properties involving higher-order motifs, such as transitivity or triadic closure (see Table S2).
How to adapt our model to include them is open for future research.
Alongside this, there are several other possibilities for future extensions of the VIMuRe frame-

work that we have introduced here. First, VIMuRe takes as input a set of reported ties and we as-
sumed that this is the only information known. However, if practitioners have access to additional
information—such as covariates on nodes—this information could be incorporated into the mod-
el. Covariates could also be incorporated into models predicting reliabilities θ, and those reliabil-
ities could vary for senders and receivers as well. For instance, one can consider a suitable prior for
the reliabilities θm that is based upon a given covariate. It would also be straightforward to extend
our model by incorporating more informative priors about the ground-truth network, Y (e.g., if
the network had a known block structure). Second, many social networks are fundamentally
multi-level, with nodes being nested within higher-order units (e.g., households, businesses, or
schools; Lazega & Snijders, 2015). Formulating an approach to flexibly incorporate multi-level
networks further remains an open and important area for extending the VIMuRe framework.
Finally, our focus has been on cases where social networks are static. Investigating how to effect-
ively adapt our model for networks evolving over time is an open avenue for future work.
In sum, there are potentially strong biases in self-reported social network data. However, the

nature of multiply reported data as containing multiple sources of information about a single
underlying relationship permits the application of statistical procedures that can account for
such biases. VIMuRe attempts to do this by explicitly modelling mutuality—the tendency of re-
porters to nominate the same individuals for both directions of a tie—and estimating a reporting
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accuracy parameter, θm, for each reporter. Model estimation is performed using variational infer-
ence, leading to a fast algorithmic implementation that is scalable to large system sizes. Our study
of the datasets from Karnataka and Nicaragua establishes that there is indeed important variation
in reporters’ ‘reliability’, and that people’s reports seem to be driven in part by their normative ex-
pectation of relationships as balanced and reciprocal.We observe this high ‘mutuality’ despite very
different data elicitation approaches, and see that it varies based on the type of relationship being
elicited. These findings demonstrate the value of employing a tool such as VIMuRe, as it can not
only give crucial insights into how social relationships are understood by individuals, but can also
provide a way to account for these individual and collective biases and arrive at a more appropri-
ate representation of the network of interest. To facilitate its usage by practitioners, we provide an
open source implementation of the code online.
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