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ABSTRACT 10 

 11 
The risks of climate change are enormous, threatening the lives and livelihoods of millions to 12 

billions. The economic consequences of many of the complex risks associated with climate change 13 

cannot, however, currently be quantified. We argue that these unquantified, poorly understood, 14 

and often deeply uncertain risks can and should be included in economic evaluations and decision-15 

making processes. We present an overview of these unquantified risks and an ontology of them 16 

founded on the reasons behind their lack of robust evaluation. These consist of risks missing due 17 

to (a) delays in sharing knowledge and expertise across disciplines, (b) spatial and temporal 18 

variations of climate impacts, (c) feedbacks and interactions between risks,  (d) deep uncertainty 19 

in our knowledge, and (e) currently unidentified risks. We highlight collaboration needs within 20 

and between the natural and social science communities to address these gaps. We also provide an 21 

approach for integrating assessments or speculations of these risks in a way which accounts for 22 

interdependencies, avoids double counting and makes assumptions clear. Multiple paths exist for 23 

engaging with these missing risks, with both model-based quantification and non-model-based 24 

qualitative assessments playing crucial roles. 25 

 26 
 27 
1 Introduction 28 

There is overwhelming evidence that the risks and impacts from rising concentrations of 29 



greenhouse gases in the atmosphere are very significant, will impact nearly every aspect of human 30 

life and the environment, and could ultimately prove to be devastating. An apparent incongruity 31 

exists between the pervasiveness of anticipated physical changes and the relatively modest total 32 

losses often estimated in economic evaluations1,2. Part of the explanation for this mismatch comes 33 

from “missing risks”: the risks that are not currently included in economic evaluations because of 34 

their uncertainty, our limited understanding of them, or because existing economic models do not 35 

capture them in sufficient detail. 36 

The interplay within and between different physical and social systems plays a crucial role in 37 

defining when and where impacts will manifest themselves and these interactions are often only 38 

poorly understood. This leads to large and growing uncertainty estimates and a wide range of 39 

incompletely understood and underestimated risks3. For example, the potential for climate change 40 

impacts to drive social discontent, dislocation and relocation, and instability and conflict, are all 41 

deeply uncertain, but potentially crippling. 42 

Excluding these risks from economic assessments is equivalent to placing a probability of zero 43 

upon their occurrence. This, clearly, is not the case. Similarly, the common practice of engaging 44 

only with the expected levels of impacts and reporting central confidence bounds can undermine 45 

the ability of decision-makers to engage with the actual range of risks. The overall consequence is 46 

an underestimation of the total risks of climate change. This paper aims to identify, classify, and 47 

suggest ways to engage with some of the most significant risks that are not currently captured by 48 

socioeconomic evaluations of climate change, from both a natural and social perspective. As an 49 

example of how this can be achieved we present a demonstration of how diverse impact estimates 50 

or assumptions can be coherently combined. 51 

 52 
2 Background 53 

Economic evaluations of the risks of climate change are a crucial input into policy-making and 54 

long-term planning processes for businesses and communities. Various studies have projected the 55 

costs of climate impacts (damages) across multiple sectors4,5, while Integrated Assessment Models 56 

(IAMs)1 produce global estimates of the social cost of carbon (SCC)6. Such assessments generally 57 

                                                      
1 Throughout the paper, we use the term IAM to refer to both Benefit-Cost IAMs (BC-IAMs), as the tools 
incorporating damages as standard, and Detailed Process IAMs (DP-IAMs), which traditionally focus on cost-



intend to go far beyond financial risks and involve “non-market” effects, such as losses to 58 

ecosystems and broader human well-being. 59 

The aim in quantifying climate risks is usually to produce probability distributions for possible 60 

impacts in quantities such as meters of sea-level rise, decreased biodiversity indices, people 61 

affected by certain types of event, or percent losses to GDP. Anthropogenic climate change, 62 

however, takes the climate/social system into a regime never before experienced, and consequently 63 

robust, reliable probabilities are rarely a possibility7–9. Nevertheless, even scientifically founded 64 

rough estimates of such distributions are valuable for illuminating the characteristics of the 65 

integrated complexities of the economic impacts of climate change. Indeed, even where no credible 66 

quantifications exist we might still be able to set plausible limits. 67 

The distributions of climate change impacts produced by economic models are often taken as 68 

probability distributions, but in practice they suffer from deep uncertainties7,10. Consequently, 69 

while models play a part in supporting policy, model outputs are insufficient to facilitate effective 70 

engagement with many risks and it is important to consider risks associated with climate change 71 

even when no quantifications exist or deep uncertainties abound. 72 

The full range of risks from climate change is currently missing from economic evaluations. 73 

There are two broad reasons for this. First, a considerable time delay exists between understanding 74 

of physical risks, economic understanding of the implications of those risks and their nonlinear 75 

social feedbacks, and incorporation of this understanding into economic models and analyses. 76 

Second, high levels of uncertainty and incomplete understanding of physical processes can drive 77 

scientists to be conservative in reporting them, or drive them to focus on central estimates. 78 

It is helpful to distinguish five kinds of uncertainty which factor into economic impact 79 

uncertainty (box 1, visualized in Figure 1). The first derives from uncertainty about future 80 

socioeconomic policy scenarios (UC1). This scenario uncertainty will not be an important part of 81 

our discussion because we are concerned with informing policy choices which generally involves 82 

a comparison of different socioeconomic and policy scenarios. The second kind refers to the 83 

parameters which describe the processes of the climate and social systems (UC2), such as climate 84 

sensitivity, elasticity of marginal utility of consumption, rate of ice loss from the Greenland and 85 

                                                      
effectiveness analysis of mitigation strategies, but are increasingly developed to integrate impact estimates. 



Antarctic ice sheets, the potential increased mortality related to heat etc. Model uncertainty (UC3) 86 

arises from differences in how the structure of the problem is approached by different experts and 87 

modeling centers and the choice of computational and statistical parameters available for tuning. 88 

Even small differences in models could produce large differences in outcomes over time11 (a 89 

proposed Hawkmoth effect analogous to the Butterfly effect). 90 

[Box 1 about here.] 91 

Trajectory uncertainty (UC4) describes the intrinsic, aleatoric, uncertainty in what the future 92 

trajectory will actually be. In deterministic models such as GCMs, it arises from their nonlinear 93 

dynamical behavior and is referred to as “initial condition uncertainty”7. Although IAMs typically 94 

do not have this form of chaotic variability, the socioeconomic system they represent is similarly 95 

nonlinear and variable, and trajectory uncertainty can be explored within them using stochastic 96 

representations12–14. 97 

Finally, model inadequacy (UC5) refers to the known and unknown limitations in our models: 98 

their incomplete representation of processes which could significantly influence the outcome in 99 

the real world system they are designed to represent. Acknowledging model assumptions and 100 

inadequacies is particularly important where quantitative models are aimed at informing policy 101 

decisions, and increasing model coverage and complexity often will not increase its relevance and 102 

accuracy15. 103 

While epistemologically distinct, parameter, model, and trajectory uncertainty (UC 2-4) can 104 

be combined in impact evaluations, since they are functionally similar for decision-makers. 105 

Scientists, however, engage with them quite differently. Of these, parameter uncertainty is the 106 

most susceptible to reduction through data collection and empirical studies, although this can be a 107 

slow process. Scientific progress may increase or decrease model uncertainty. The sensitivity 108 

behind trajectory uncertainty derives from both the finest details of the starting conditions16 and 109 

their large scale, generic features17. The former is irreducible but the latter is, at least potentially, 110 

reducible through further research and better observations7. We argue that risk evaluations should 111 

incorporate UC 2-4, alongside descriptions of model limitations (UC5) to describe our combined 112 

uncertainty around final outcomes. 113 

[Figure 1 about here.] 114 

Decision-makers are often adept at handling uncertainty and could use information on both 115 



low-probability/high-damage outcomes and unknown-probability/high-damage outcomes. 116 

Consider, for instance, the sixth IPCC report which allows for up to 10% probability that climate 117 

sensitivity is outside the 2-5 degree range, with much of this probability reflecting the deep 118 

uncertainty in the upper tail of the probability distribution18,19. The associated risk of high levels 119 

of warming is significantly higher than acceptable risk levels in public health (e.g. 1 in 10,00020) 120 

and indeed uncertainty in the tail probabilities have been shown to have orders of magnitude 121 

impact on economic assessments of future welfare and therefore on the value of emissions 122 

reductions21. Even the possibility of a runaway greenhouse effect due to anthropogenic climate 123 

change cannot be entirely ruled out22. Typically decision-making has multiple objectives, and 124 

harmful, low-probability outcomes can play a significant role. It is therefore important for 125 

decision-makers to be aware of harmful processes, even if their likelihood is unknown. For 126 

example, there is little basis for knowing whether climate impacts on GDP growth rates23 will 127 

continue into the future, but if they do, the result would be devastating. Furthermore, risks are 128 

sometimes excluded when they are not fully understood or where there is considerable variation 129 

in estimates (e.g., health risks24). If only those risks considered “likely” (above 66% probability) 130 

in the IPCC reports are accounted for, a large portion of potential impacts would be erroneously 131 

given a 0% probability. Some of these risks are incredibly complex, with impacts cascading across 132 

multiple sectors and involving considerable path-dependence (e.g. biodiversity or ecosystem 133 

losses). Most are fraught with “deep uncertainty”, with scientists disagreeing on the basis for 134 

providing reliable estimates (e.g. the potential for climate-driven conflict25). These challenges are 135 

not, however,  insurmountable barriers to their inclusion in policy-making or economic valuations. 136 

There are opportunities to use imprecise probabilities, formal possibilistic approaches and informal 137 

possibilistic approaches26 such as “Tales of the Future”, which encapsulate physically realistic and 138 

plausible futures focused on the aspects of the system of concern27,28.139 



 140 
3 Ontology of missing risks 141 

Here we distinguish between five categories of currently missing risks and suggest potential 142 

solutions on how to start integrating them into current and future studies. The categories below are 143 

based on the reasons behind their exclusions, and these reasons provide insight into how they can 144 

be engaged with in the near future. 145 

 146 
3.1 Missing biophysical impacts  147 

One group of missing risks arises from the calibration of the IAMs, which are often decades 148 

out of date29. This is true of several risks now considered to have high probability at current and 149 

future levels of warming, such as the collapse of the AMOC by 2300 (assessed as likely as not)30 150 

and abrupt permafrost melt by 2100 (assessed as high probability)31, also see SI figure 1. The 151 

pathway from improved understanding of a climate phenomenon to its valuation in economic 152 

models can be long. It often requires that the understanding of relevant climate drivers reaches a 153 

point where the science is available beyond the climate science community, for instance through 154 

media like IPCC reports. As part of this process biophysical modeling is often required to translate 155 

climate risks into physical impacts; economists need to develop an understanding of the response 156 

of social systems to the physical impact, and a welfare valuation of these responses; and the risk 157 

then needs to be incorporated into IAMs, computable general equilibrium models (CGE), or other 158 

comprehensive analyses. This requires close collaboration between multiple disciplines32,33. 159 

The physical impacts and population exposure for a large number of relevant risks have already 160 

been quantified (see SI table 1). In some cases, a translation from impacts into welfare or monetary 161 

damages is readily available and these can be readily incorporated into evaluations. In other cases, 162 

readily-available valuations are unavailable (e.g., biodiversity loss, natural disasters) or resilience 163 

and general equilibrium effects are first-order concerns (e.g, water stress, migration). In this case, 164 

considerable work is needed to translate biophysical risks into economic ones. Examples of recent 165 

developments that are not captured in economic assessments include exposure of populations to 166 

natural disasters34,35, the latest process-based impact-model intercomparisons across multiple 167 

sectors36, and new statistical models of health, productivity, agriculture, and energy37. These 168 

impact estimates represent substantial developments beyond existing representations of these risks 169 



in the IAMs38,39. 170 

There are several possible causes for this gap, including: the disagreements within the impact 171 

community over the scale of impacts; a culture in economics that does not encourage large-team 172 

collaboration; and to some extent limited funding available for economic model development. The 173 

process for including these risks in the near future must confront multiple challenges. Economic 174 

damage assessments need damage functions which reflect the widest possible range of credible 175 

responses: recent advances in empirical damage estimates37 go in the right direction but face the 176 

challenges of both connecting short-term weather-related impacts to long-term climate ones, and 177 

incorporating the endogeneity of adaptation. One approach to this problem is being pioneered at 178 

the Climate Impact Lab, and tries to address both problems. To account for adaptation, they use 179 

observed variation in temperature sensitivity40. To support incorporating these results into 180 

economic models as functions of climate rather than weather, they estimate impacts under 181 

downscaled projected weather and then index these uncertain impacts to expected climate, which 182 

allows them to be emulated in models that do not have daily weather or disaggregated sectors41. 183 

Parallel work at the Potsdam Institute for Climate Impact Research (PIK) develops channel-184 

specific damage functions using process-models for use in economic models (e.g., 42). However, 185 

integration of this new work into economic analyses requires that issues of valuation, equilibrium 186 

adjustments, and double-counting are resolved, which requires an interdisciplinary approach43. 187 

The ability to incorporate many risks into economic evaluations is being undermined by 188 

difficulties in bridging the climate science, economics, and modeling cultures. Examples include 189 

climate tipping points, conflict and migration, and topics from climate justice. Natural scientists 190 

and economic modelers struggle to find a common language to discuss the possible consequences 191 

of climate change. Bridging these gaps requires the repeated, collaboration-focused convening of 192 

researchers engaged in all aspects of the problem. 193 

 194 
3.2 Spatial and temporal extremes 195 

The spatial and demographic variations in impacts has emerged as one of the central features 196 

of economic damages: poor and socio-economic vulnerable groups in many regions are the most  197 

exposed to risks5,43. IAMs often represent the world in highly aggregated terms, describing only 198 

global results (e.g., DICE) or across multi-national regions (e.g., PAGE, FUND and RICE) and 199 



for representative agents. Although these variations can be parameterized in damage functions44 200 

or elasticity parameters45, doing so hides the underlying source and consequences of climate risk. 201 

Temporal extremes are also likely to play a significant role. While impacts of climate change 202 

result from the long-term evolution of temperature changes and sea-level rise, many will manifest 203 

as extreme shocks: heat-waves, storms, droughts. While projections of many natural disasters are 204 

available35,46, they are not represented in IAMs and reported metrics typically hide the role of 205 

variability4. See examples of risks arising from spatial and temporal extremes in SI D. 206 

It is a conceptual challenge to integrate the small spatial and temporal scales relevant for 207 

extreme events or the effects on different income groups and related distributional effects into the 208 

integrated assessment models operating on large world regions and long timescales. Spatially 209 

detailed research requires simulations and data often only available for few countries. New 210 

research examining the complexity of systems and potential impacts of climate change responses 211 

at scales ranging from individual households to national policy and global governance can help in 212 

this regard.  213 

Traditionally, the highly aggregated approach of Benefit-Cost IAMs has supported their use in 214 

identifying climate policies that maximize global welfare, by relying on intertemporal 215 

optimization. Economic assessments of scenarios, however, do not require optimization, and 216 

higher resolution economic risk assessments have been produced for the United States and 217 

Europe33, the consequences of tipping points47, and country-level scale information using 218 

empirical damage estimates48. Improvements in stochastic optimization techniques also provide a 219 

pathway to increasing resolution while studying optimal mitigation49. 220 

A way to better engage with these features is to improve how heterogeneity, variability, and 221 

uncertainty are approached generally. We propose that there is an emerging way forward for 222 

combining parameter, model, and trajectory uncertainty, while considering model inadequacy, at 223 

high spatial and temporal resolution. First, impact models should be driven by downscaled inputs 224 

available at a monthly or higher frequency, over multi-decadal periods. This captures the 225 

interaction between the dynamic uncertainty represented by both natural variability of the climate 226 

system and climate change. Parameter uncertainty within the impact models should be represented 227 

by probability distributions over parameter values, simulated using Monte Carlos across multiple 228 

downscaled GCMs and multiple impact models, ideally drawing from initial-condition ensembles. 229 



It is in addition important to improve how uncertainty is communicated to policy-makers. 230 

When presenting model-based information we recommend separating variability from uncertainty 231 

i.e. the 1-in-100 chance outcome for an impact conditioned on a model, alongside how that number 232 

varies between models. Finally, model inadequacy needs to be stated clearly, and unmodeled risks 233 

represented (e.g., with ember plots). 234 

 235 
3.3 Feedback risks and interactions 236 

Feedback processes are ubiquitous within and among the climate, environment and economic 237 

systems. Critical and sometimes overlooked risks arise from the complex interplay of climate 238 

change and variability, demographic shifts, economic insecurity, and political processes (see SI 239 

E). Physical risks are not independent of each other and climate change can act as a catalyst and 240 

stressor that accelerates and exacerbates conditions leading to cascading effects in the climate 241 

system and societal tipping points (see figure 2 and SI F). Feedback processes are often the source 242 

of heavy tailed distributions and are therefore closely linked to black swan events (see 3.4). 243 

However these interactions are often missing from analyses and thus represent a source of missing 244 

risks. 245 

The complexity of feedback systems has slowed the process of both understanding them and 246 

modeling them. Compound, sequential, concurrent extremes would lead to lower thresholds (for a 247 

single driver) for substantial impacts as well as deeper impacts when two drivers align50. The 248 

overall lack of representation for this type of secondary effect leads to an underestimation of risk. 249 

There is a need for new assessment and risk management frameworks that better incorporate 250 

uncertainty and complex, cascading risks, including systems approaches built upon interacting 251 

sectors, actors, geophysical hazards, scenarios, and story-lines. Approaches that utilize agent-252 

based modeling and CGEs are now being developed, but more effort is needed to understand their 253 

potential contribution in a climate change context.. 254 

An important class of feedback risks is tipping points51. Climate, ecological, and social tipping 255 

points are transitory states of a feedback process beyond which a new basin of attraction will drive 256 

further system change, resulting in a qualitatively different and self-reinforcing regime. A wide 257 

variety of tipping points have been incorporated into analyses for individual papers, but 258 

representing the full collection has been a challenge47. 259 



One barrier to research on tipping points and climatic extremes being incorporated into 260 

economic evaluations is that they are not well represented in GCMs, and their associated 261 

downscaled products. Social scientists look to natural scientists to provide probabilities, time 262 

evolutions, and gridded projections to support their work. This is not always possible. Ensuring 263 

that climate scientists provide results in a form that is both robustly justifiable and can be readily 264 

incorporated into economic analysis requires bringing together the two disciplines.265 

  [Figure 2 about here.] 266 
 267 

3.4 Deep uncertainty 268 

Deep uncertainty describes processes for which robust probability distributions do not exist. 269 

For many impacts, one or more steps in the estimation of hazards, exposure, vulnerability, and 270 

welfare suffers from deep uncertainty, in terms of, for instance, the extent of their impacts and 271 

their spatio-temporal probability or frequency (see SI G). In some cases, the appropriate metrics 272 

for quantification are unclear. Yet, they can (and should) still be factored into risk assessment and 273 

planning. 274 

One class of impacts suffering from deep uncertainty is black swan events, characterized by 275 

their extreme nature and long-lasting consequences52. Statistically, black swan events are 276 

outcomes from the tails of heavy-tailed distributions, which are common in natural and human 277 

systems51,53–55. These events are difficult to predict, because they are so far outside of what we 278 

normally observe and often arise from interlinked instabilities. Because they depend upon and 279 

trigger changes throughout their systems, each black swan event can dramatically alter exposure 280 

to risks and force the need for developing new decision contexts.  As advancing climate change 281 

places new stresses on climate and social systems, outcomes beyond the extremes observed within 282 

the historical record are increasingly possible. The high frequency of previously-considered 283 

“highly improbable” events requires their consideration in climate change evaluations. Some 284 

examples include technological breakthroughs (unforeseen dramatic efficiency gains, 285 

consequences of the new green revolution, etc.); governance and geopolitical reorganization 286 

(conflict, trade blocs, etc.); new climate regimes (unforeseen ocean circulation or ecosystem 287 

changes, etc.); funding mechanisms (green development bank, subsidies to tip the balance toward 288 

renewables, etc.); and disease outbreaks (COVID-19, Ebola, etc.). 289 



Some of these deep uncertainties and black swan events can be explored through scenarios. 290 

Scenarios as a combination of broad narratives and quantitative projections based on models have 291 

been employed in climate science in the past56. It is important that climate narratives represent 292 

sequential and concurrent events across multiple regions and sectors of the global economy. The 293 

currently used Shared Socio-economic Pathways (SSPs) cover a range of socioeconomic futures, 294 

but these scenarios do not necessarily capture disruptive deviations from the past57. To truly assess 295 

deep uncertainty, the diversity and robustness of scenarios needs to receive more attention58. 296 

Computational techniques like cross-impact balances can be used to systematically explore large 297 

numbers of scenarios and the coverage of scenarios space. Alternatively, the vulnerability of a 298 

(policy) strategy to disruptions can be studied. A number of projects have built upon a storyline 299 

approach27,28,59–61. New speculative storylines can begin an iterative process whereby global and 300 

regional modeling exercises and storyline refinements can offer new insights. 301 

Note that assessments of model uncertainty in multi-model intercomparisons and perturbed 302 

physics/parameter studies can not provide robust probabilities due to the shared features across 303 

models, their limited exploration of possibilities, and the conceptual lack of any basis for defining 304 

the shape of “model space” across which probabilities must be built7. Nevertheless, the uncertainty 305 

derived from such ensembles represents a starting point for consideration of deep uncertainty. 306 

Example applications include model evaluation with historical data and developing multi-sector, 307 

multi-model projections62–64. 308 

A similar process of reflection on deep uncertainties should be initiated with IAMs (and other 309 

models capturing impacts) and the economic damage integration process in general. Although 310 

IAMs have been intercompared in the past, a concerted intercomparison project would have a 311 

much broader focus on consideration of the implications of what is missing or inadequately 312 

incorporated at present. 313 

 314 
3.5 Unidentified risks 315 

Finally, it is appropriate to recognize a further set of risks completely unidentified in the 316 

academic literature. The coupled global environmental-human system can be disrupted in many 317 

ways that are unexpected or have not been studied. We take for granted many of the ways that the 318 

environment currently supports human needs, and not all of these functions are known, much less 319 



their sensitivity to climate change. Populations may respond to changes in their environments in 320 

unpredictable ways, driving social movements that take on a life of their own. 321 

Because these risks are fully unknown and unquantified, we cannot directly include them in 322 

valuations, but we can still factor unidentified risks into decision making. Approaches exist for 323 

doing so. First, we could consider a precautionary principle, arguing that we might want to 324 

maintain the state with which we have long historical experience, even in the absence of clearly-325 

identified risks. The precautionary principle is already embedded in the Paris Agreement, and 326 

underlies the results of Detailed Process IAM models which identify cost-effective 327 

implementations of given mitigation scenarios6. We can understand the risks we face by comparing 328 

the future world to the range of conditions experienced across instrumental records (e.g., see figure 329 

3)65. The precautionary principle would motivate pairing economic welfare calculations with 330 

planetary boundaries or other deviations from historical ranges66. 331 

Second, there are normative, ethical arguments to maintain the natural state of the planet, out 332 

of a rights-based demand to not subject people to undue risks, for example67,68. The argument is 333 

that economic systems should conform to the values held by their stakeholders and that 334 

comprehensive economic evaluations should therefore account for infringements upon the stated 335 

priorities of each community. 336 

 [Figure 3 about here.] 337 

Third, there are results from complexity science that provide ways to monitor the fingerprints 338 

of risks, even if we do not know their nature69. These can provide early warning signals, and 339 

suggest improving resilience even without clear dangers in sight. 340 

 341 

4 Moving forward 342 

Improving our representation and understanding of the missing risks in economic assessments 343 

of climate change impacts is a long-term goal. It demands greater coordination between the 344 

climate, impact and economic scientific communities, better approaches forgrounding economic 345 

projections in data, systems understanding and the latest climate science, and better representations 346 

of complex, interacting, heterogeneous systems. The different classes of missing risks described 347 

above each require different approaches for moving forward. Furthermore, foundational work is 348 



needed to understand the basis for deriving robust, actionable information when combining different 349 

kinds of information sources to generate comprehensive assessments– we should avoid potentially 350 

misleading, model-sensitive data. 351 

We can distinguish three overlapping stages in this broad agenda. With existing knowledge we 352 

can already offer a better picture of the total risks of climate change by engaging in detailed, 353 

integrative work. This stage depends upon collating existing knowledge, preparing better 354 

narratives, and interpreting results in the context of missing risks. The second stage consists of 355 

work to map out the spaces that current models miss and to analyze where there may be value in 356 

improving existing models or developing better non-model-based approaches. This stage involves 357 

improving scientific inputs into quantitative economic assessments, improving representations of  358 

uncertainty, and engaging in explorations of the potential behavior and model intercomparisons of 359 

IAMs with respect to impact modeling. Finally, there is a long-term agenda, which requires 360 

targeted funding to support intensive engagement across disciplines, new model approaches and 361 

new types of modeling experiments designed to robustly test the sensitivity of policy-relevant 362 

conclusions to the nonlinear consequences of the initial state, structural model error and stochastic 363 

behavior and assumptions. 364 

Finally, some risks have been treated as insignificant because of the long time horizon before 365 

they will be experienced with a measurable effect. Welfare losses in the future are typically 366 

discounted (reduced) in cost-benefit calculations. We will not address discounting in this paper, 367 

but we offer a few comments. First, discounting is inherently an ethical decision, so decision-368 

makers should be careful about applying common conventions from the academic economic 369 

literature and might benefit from greater awareness of the undiscounted stream of damages. 370 

Second, under the risk of negative economic growth, it may not be economically or socially 371 

sensible to discount the future (e.g., under Ramsey discounting70). Third, alternatives to standard 372 

discounting are available (e.g., 71), but best practices are needed. 373 

 374 

4.1 Rapidly quantifying missing risks 375 

Considerable information is available on many of the risks discussed in section 3, but it is not 376 

integrated in a way that can lead to comprehensive quantification. Here, we propose an illustrative 377 



general approach for combining uncertain and qualitative information about an indefinite but 378 

growing collection of risks. The framework highlights the gaps in existing knowledge, and aims 379 

to rapidly lower the barrier to incorporating a large number of currently missing risks. 380 

Conditional on a temperature change of ∆T , we posit that each risk i can be described by an 381 

imprecise and possibly subjective distribution of possible consequences or impacts, xi ∼ fi(∆T ). 382 

For our purposes, we are agnostic about the quantification of xi, so long as the metric is consistent 383 

across all risks: for example, they could be in terms of percent welfare-equivalent GDP lost or 384 

lives negatively affected over the course of each lifespan. Suppose that each distribution embodies 385 

all forms of uncertainty (UC 2-5). 386 

We can distinguish two broad forms of interdependencies between individual risks. First, the 387 

drivers behind the forms of uncertainty can be shared, so that a high impact from one risk is 388 

correlated with a high impact from another. For example, damages due to droughts and wildfires 389 

both depend upon precipitation changes, and are likely to be correlated, even after accounting for 390 

temperature changes. However, this points to the other form of interdependence: double-counting. 391 

If the same area is at risk from both droughts and wildfires, damages from one may already be 392 

accounted for in the estimation of damages from the other. 393 

We address these both using a copula approach, which simplifies the representation of these 394 

interdependencies, and is detailed in SI A. This simple framework decomposes the problem of 395 

understanding the total missing risks into a series of discrete and cumulative steps: 396 

1. Identifying a common metric for measuring risks. 397 
 398 
2. Estimating or otherwise generating a probability distribution representing losses from each 399 

risk.  400 

3. Determining the correlation of uncertainty between pairs of risks. 401 
 402 
4. Determining the degree of double-counting between pairs of risks. 403 
 404 
Furthermore, additional risks can be incorporated without revisiting existing estimates, 405 

allowing the process of including more missing risks to occur in a distributed fashion. The 406 

estimates used for steps 2, 3, and 4 may be subjective and will certainly involve deep uncertainty 407 

but they allow us to better understand risks and their interactions under various assumptions. 408 



As an illustrative application of this framework, we combine estimates for a range of risks 409 

from recent literature, including natural disasters, ecosystem impacts, conflict, migration,  sea-410 

level rise, heat and cold mortality, and economic growth impacts (see SI table 1). As a consistent 411 

metric across all risks, we describe the number of lives disrupted, in terms of the population in 412 

2010, at various levels of warming. As such, the results presented here do not provide a complete 413 

path to incorporating these risks in economic assessments, since welfare losses are not quantified. 414 

We show these risks and their combined effects in figure 4. The greatest risks, in terms of 415 

central estimates for populations affected, are multisector energy risks (46% at 2 �C, 85% at 4 �C) 416 

and relative conflict risk (32% at 2 �C, 75% at 4 �C). However, heatwaves, productivity, and water 417 

stress all have tail risks (95% quantile) of greater than a quarter of the global population being 418 

affected. These risks can also be combined into a smooth functional form, potentially applicable 419 

in IAM-style models (see figure 4b). If the common metric wereeconomic damages (e.g. loss of 420 

GDP), the results couldbe used in IAMs in the form of a damage function. 421 

  [Figure 4 about here.] 422 

Here, we have only discussed the negative impacts incident upon populations, but there are 423 

entangled positive impacts as well. Some of these are direct, such as increases in economic growth 424 

in some sectors and lives saved by milder cold winters. In addition, adaptation and migration can 425 

significantly reduce the overall risks. 426 

Understanding the risk of 2, 3, and 4 �C global mean surface temperature anomalies requires 427 

not just a reporting of the existing risks that models provide, but also the incorporation of new 428 

classes of risks as well as the potential for disruptive unknown risks that could dramatically alter 429 

the context of future societal systems and anthropogenic climate change risks. It is hoped that 430 

recognition of these “missing risks” will improve the overall level of accounting for consequences 431 

associated with climate change under crediblewarming scenarios. 432 
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 453 

Figure captions 454 

Figure 1. Compounding uncertainty in climate risks estimation. The process for 455 
developing risk estimates depends upon several stages of analysis, with uncertainty compounding 456 
across stages. Distributions are shown for an illustrative projection of changes to death rates in 457 
New Delhi (using data from 40). Uncertainty in emission scenarios and their associated baseline 458 
socioeconomics, contributes to uncertainty in climate changes, local hazards, impacts, and 459 
economic damages (including costs of adaptation). Since climate risks can then affect emissions 460 
(e.g., populations after death tolls), there are also feedbacks between these processes further 461 
increasing uncertainty. 462 

Figure 2. Stylized channels by which risks can interact and compound. Arrows in red 463 
show channels of interaction. Cascading tipping points refers to the increased probability of one 464 
tipping point because of the triggering of another72. Cascading disasters can occur as natural 465 
disasters heighten the risk of other disasters (e.g., droughts causing wildfire). With multiple 466 
stressors, as climate stresses proliferate, the resilience and adaptive capacity of populations can 467 
be sapped50. As with the climate system, cascading social changes can emerge, such as migration 468 
increasing the risk of conflict51. As populations adapt and develop, this will produce simultaneous 469 
exposure/sensitivity changes, which may increase risks (e.g., if populations further concentrate 470 
on coasts or along rivers). 471 

Figure 3. Hazards shifting outside of their historical range. (a) Hazard that most 472 
exceeds the distribution from recent (1980 - 2009) history, measured with a z-score from 9 GCMs 473 



in WorldClim73 in 2050 under SSP3-7.0, amongst high logged precipitation in the wettest month, 474 
low logged annual precipitation, coefficient of variation of precipitation, minimum temperature of 475 
the coldest month, maximum temperature of the warmest month. Significance is determined by 476 
bootstrapping the 95% confidence interval, and determined to be at a z-score of 0.98. (b) As 477 
above, showing the distribution across the global population of the z-scores. 478 

 479 
Figure 4. Distributions of projected population at risk. (a) Each panel shows the distribution 480 

of the portion of the global population that could be impacted by a risk or a combination of risks. 481 
These represent some of the major missing risks discussed in the text. Each distribution is based 482 
on a single study, and the collection of missing risks is not comprehensive. The dashed lines 483 
represent the 99th percentile of the distributions. Specifics on how calculations are done and 484 
population impacts are determined are described in SI Bthe appendix. (b) Smooth spline 485 
representation of the combined population affected across all risks shown in panel (a). Spline is fit 486 
to each Monte Carlo drawn value at 2, 3, and 4 °C, and constrained to a value and slope of 0 and 487 
a GMST change of 0 °C and to be weakly monotonic after 4 °C. Shaded region shows the 1 - 99th 488 
percentile. 489 

 490 
Boxes 491 
 492 

Box 1: Types of within-process uncertainty. 

Within each process modeled to estimate a risk, aggregate uncertainty derives from various types 
of uncertainty in the assumptions. These are summarized below. 

Source of uncertainty Common representation Example 
(UC1) Scenario uncertainty Representative concentration pathways 

(RCPs), Shared Socioeconomic 
Pathways (SSPs), Shared Policy 
Assumptions (SPAs). 

Business as usual vs. INDC 
commitments vs. transitions necessary 
to limit warming. 

(UC2) Process parameter uncertainty Probability density functions across 
process parameter values. 

The equilibrium climate sensitivity 
(ECS) distribution used in an IAM. 

(UC3) Model uncertainty Results from multiple models or 
perturbed physics explorations. 

Global climate model (GCM) multi-
model and perturbed physics74 
ensembles, ISIMIP impact model75 and 
process-based integrated assessment 
model76 intercomparisons. 

(UC4) Trajectory uncertainty Multiple realizations from a model with 
perturbed initial conditions. 

Multiple model runs produced with 
individual GCMs or nonlinear models. 

(UC5) Model inadequacy7 
(Structural limitations of our models) 

Descriptions of model limitations. The lack of a stratosphere or aspects of 
atmospheric chemistry in GCM climate 
simulations. The lack of time/ 
temperature dependent climate 
sensitivity or types of climate impacts in 
IAMs. 

 493 

References 494 



1. Stern, N. The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross 495 

Underestimation of Risk onto Already Narrow Science Models. J. Econ. Lit. 51, 838–859 (2013). 496 

2. Dellink, R., Lanzi, E. & Chateau, J. The sectoral and regional economic consequences of climate change to 497 

2060. Environ. Resour. Econ. 72, 309–363 (2019). 498 

3. Simpson, N. P. et al. A framework for complex climate change risk assessment. One Earth 4, 489–501 (2021). 499 

4. Houser, T. et al. Economic Risks of Climate Change: An American Prospectus. (Columbia University Press, 500 

2015). 501 

5. Ciscar, J. C. et al. Climate impacts in Europe: Final report of the JRC PESETA III project. 502 

http://publications.jrc.ec.europa.eu/repository/bitstream/JRC112769/kjna29427enn_1.pdf (2018). 503 

6. Weyant, J. Some Contributions of Integrated Assessment Models of Global Climate Change. Review of 504 

Environmental Economics and Policy vol. 11 115–137 (2017). 505 

7. Stainforth, D. A., Allen, M. R., Tredger, E. R. & Smith, L. A. Confidence, uncertainty and decision-support 506 

relevance in climate predictions. Philos. Trans. A Math. Phys. Eng. Sci. 365, 2145–2161 (2007). 507 

8. Frigg, R., Smith, L. A. & Stainforth, D. A. An assessment of the foundational assumptions in high-resolution 508 

climate projections: the case of UKCP09. Synthese 192, 3979–4008 (2015). 509 

9. Smith, L. A. What might we learn from climate forecasts? Proc. Natl. Acad. Sci. U. S. A. (2002). 510 

10. Stainforth, D. A., Downing, T. E., Washington, R., Lopez, A. & New, M. Issues in the interpretation of climate 511 

model ensembles to inform decisions. Philos. Trans. A Math. Phys. Eng. Sci. 365, 2163–2177 (2007). 512 

11. Frigg, R., Bradley, S., Du, H. & Smith, L. A. Laplace’s demon and the adventures of his apprentices. Philos. 513 

Sci. 81, 31–59 (2014). 514 

12. Cai, Y. & Lontzek, T. S. The Social Cost of Carbon with Economic and Climate Risks. J. Polit. Econ. 127, 515 

2684–2734 (2019). 516 

13. Calel, R., Chapman, S. C., Stainforth, D. A. & Watkins, N. W. Temperature variability implies greater 517 

economic damages from climate change. Nat. Commun. 11, 5028 (2020). 518 

14. Kikstra, J. S. et al. The social cost of carbon dioxide under climate-economy feedbacks and temperature 519 

variability. Environ. Res. Lett. 16, 094037 (2021). 520 

15. Saltelli, A. et al. Five ways to ensure that models serve society: a manifesto. Nature 582, 482–484 (2020). 521 

16. Daron, J. D. & Stainforth, D. A. On predicting climate under climate change. Environ. Res. Lett. 8, 034021 522 



(2013). 523 

17. Hawkins, E., Smith, R. S., Gregory, J. M. & Stainforth, D. A. Irreducible uncertainty in near-term climate 524 

projections. Clim. Dyn. 46, 3807–3819 (2016). 525 

18. Masson-Delmotte, V. et al. Climate Change 2021: The Physical Science Basis : Summary for Policymakers. 526 

(Cambridge University Press, 2021). 527 

19. Sherwood, S. C. et al. An Assessment of Earth’s Climate Sensitivity Using Multiple Lines of Evidence. Rev. 528 

Geophys. 58, e2019RG000678 (2020). 529 

20. Fewtrell, L. & Bartram, J. Water quality: guidelines, standards and health: assessment of risk and risk 530 

management for water-related infectious diseases. (2001). 531 

21. Calel, R., Stainforth, D. A. & Dietz, S. Tall tales and fat tails: the science and economics of extreme warming. 532 

Clim. Change 132, 127–141 (2015). 533 

22. Goldblatt, C. & Watson, A. J. The runaway greenhouse: implications for future climate change, geoengineering 534 

and planetary atmospheres. Philosophical Transactions of the Royal Society A: Mathematical, Physical and 535 

Engineering Sciences vol. 370 4197–4216 (2012). 536 

23. Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. 537 

Nature 527, 235–239 (2015). 538 

24. Rocklöv, J., Huber, V., Bowen, K. & Paul, R. Taking globally consistent health impact projections to the next 539 

level. Lancet Planet Health 5, e487–e493 (2021). 540 

25. Koubi. Climate change and conflict. Annu. Rev. Polit. Sci. (Palo Alto) (2019). 541 

26. Katzav, J. et al. On the appropriate and inappropriate uses of probability distributions in climate projections and 542 

some alternatives. Clim. Change 169, (2021). 543 

27. Hazeleger, W. et al. Tales of future weather. Nat. Clim. Chang. 5, 107–113 (2015). 544 

28. Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. Math. 545 

Phys. Eng. Sci. 475, 20190013 (2019). 546 

29. Rising, J. A., Taylor, C., Ives, M. C. & Ward, R. E. T. Challenges and innovations in the economic evaluation 547 

of the risks of climate change. Ecol. Econ. 197, 107437 (2022). 548 

30. Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R. Golledge, M. 549 

Hemer, R.E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I.S. Nurhati, L. Ruiz, J.-B. Sallée, A.B.A. 550 



Slangen, and Y. Yu. Ocean, Cryosphere and Sea Level Change. in Climate Change 2021: The Physical Science 551 

Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on 552 

Climate Change (ed. Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. 553 

Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. 554 

Waterfield, O. Yelekçi, R. Yu, and B. Zhou) 1211–1362 (Cambridge University Press, 2021). 555 

31. da Cunha P. M. Cox A. V. Eliseev S. Henson M. Ishii S. Jaccard C. Koven A. Lohila P. K. Patra S. Piao J. 556 

Rogelj S. Syampungani S. Zaehle and K. Zickfeld, C. J. G. P. M. S. M. M. H. C. L. C. Global Carbon and other 557 

Biogeochemical Cycles and Feedbacks. in Climate Change 2021: The Physical Science Basis. Contribution of 558 

Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (ed. 559 

Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, 560 

M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. 561 

Yu, and B. Zhou) 673–816 (Cambridge University Press, 2021). 562 

32. Diaz, D. & Moore, F. Quantifying the economic risks of climate change. Nat. Clim. Chang. 7, 774–782 (2017). 563 

33. Ciscar, J.-C., Rising, J., Kopp, R. E. & Feyen, L. Assessing future climate change impacts in the EU and the 564 

USA: insights and lessons from two continental-scale projects. Environ. Res. Lett. 14, 084010 (2019). 565 

34. Byers, E. et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. 566 

Environ. Res. Lett. 13, 055012 (2018). 567 

35. Lange, S. et al. Projecting exposure to extreme climate impact events across six event categories and three 568 

spatial scales. Earths Future 8, (2020). 569 

36. Rosenzweig, C. et al. Assessing inter-sectoral climate change risks: the role of ISIMIP. Environ. Res. Lett. 12, 570 

010301 (2017). 571 

37. Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016). 572 

38. Huber, V., Ibarreta, D. & Frieler, K. Cold- and heat-related mortality: a cautionary note on current damage 573 

functions with net benefits from climate change. Clim. Change 142, 407–418 (2017). 574 

39. Moore, F. C., Baldos, U., Hertel, T. & Diaz, D. New science of climate change impacts on agriculture implies 575 

higher social cost of carbon. Nat. Commun. 8, 1607 (2017). 576 

40. Carleton, T. A. et al. Valuing the Global Mortality Consequences of Climate Change Accounting for 577 

Adaptation Costs and Benefits. (2020) doi:10.3386/w27599. 578 



41. Hsiang, S. et al. Estimating economic damage from climate change in the United States. Science 356, 1362–579 

1369 (2017). 580 

42. Geiger, T., Frieler, K. & Levermann, A. High-income does not protect against hurricane losses. Environ. Res. 581 

Lett. 11, 084012 (2016). 582 

43. Piontek, F. et al. Integrated perspective on translating biophysical to economic impacts of climate change. Nat. 583 

Clim. Chang. 11, 563–572 (2021). 584 

44. Anthoff, D. & Emmerling, J. Inequality and the Social Cost of Carbon. Journal of the Association of 585 

Environmental and Resource Economists 6, 243–273 (2019). 586 

45. Dennig, F., Budolfson, M. B., Fleurbaey, M., Siebert, A. & Socolow, R. H. Inequality, climate impacts on the 587 

future poor, and carbon prices. Proceedings of the National Academy of Sciences vol. 112 15827–15832 588 

(2015). 589 

46. Dottori, F. et al. Increased human and economic losses from river flooding with anthropogenic warming. Nat. 590 

Clim. Chang. 8, 781–786 (2018). 591 

47. Dietz, S., Rising, J., Stoerk, T. & Wagner, G. Economic impacts of tipping points in the climate system. 592 

Proceedings of the National Academy of Sciences vol. 118 (2021). 593 

48. Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Chang. 8, 594 

895–900 (2018). 595 

49. Ikefuji, M., Laeven, R. J. A., Magnus, J. R. & Muris, C. Expected utility and catastrophic risk in a stochastic 596 

economy–climate model. Journal of Econometrics vol. 214 110–129 (2020). 597 

50. Olsson, L. et al. Livelihoods and poverty. https://nmbu.brage.unit.no/nmbu-598 

xmlui/bitstream/handle/11250/2387830/WGIIAR5-Chap13_FINAL.pdf?sequence=5 (2014). 599 

51. Kopp, R. E., Shwom, R. L., Wagner, G. & Yuan, J. Tipping elements and climate–economic shocks: Pathways 600 

toward integrated assessment. Earths Future 4, 346–372 (2016). 601 

52. Taleb, N. N. The Black Swan: The Impact of the Highly Improbable. (Random House Publishing Group, 2007). 602 

53. Buchanan, M. Ubiquity: The Science of History, or Why the World is Simpler Than We Think. (Weidenfeld & 603 

Nicolson, 2000). 604 

54. Roe, G. H. & Baker, M. B. Why is climate sensitivity so unpredictable? Science 318, 629–632 (2007). 605 

55. Jevrejeva, S. et al. Probabilistic Sea Level Projections at the Coast by 2100. Surv. Geophys. 40, 1673–1696 606 



(2019). 607 

56. Carter, T. R. et al. New assessment methods and the characterisation of future conditions. in Climate change 608 

2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report 609 

of the intergovernmental panel on climate change 133–171 (Cambridge University Press, 2007). 610 

57. Schweizer, V. J. Reflections on cross-impact balances, a systematic method constructing global socio-technical 611 

scenarios for climate change research. Clim. Change 162, 1705–1722 (2020). 612 

58. Guivarch, C., Lempert, R. & Trutnevyte, E. Scenario techniques for energy and environmental research: An 613 

overview of recent developments to broaden the capacity to deal with complexity and uncertainty. 614 

Environmental Modelling & Software 97, 201–210 (2017). 615 

59. Zappa, G. & Shepherd, T. G. Storylines of Atmospheric Circulation Change for European Regional Climate 616 

Impact Assessment. J. Clim. 30, 6561–6577 (2017). 617 

60. Dessai, S. et al. Building narratives to characterise uncertainty in regional climate change through expert 618 

elicitation. Environmental Research Letters vol. 13 074005 (2018). 619 

61. Bhave, A. G., Conway, D., Dessai, S. & Stainforth, D. A. Water Resource Planning Under Future Climate and 620 

Socioeconomic Uncertainty in the Cauvery River Basin in Karnataka, India. Water Resour. Res. 54, 708–728 621 

(2018). 622 

62. Schewe, J. et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 623 

10, 1005 (2019). 624 

63. Schleussner, C.-F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 625 

1.5 °C and 2 °C. Earth Syst. Dyn. 7, 327–351 (2016). 626 

64. Piontek, F. et al. Multisectoral climate impact hotspots in a warming world. Proc. Natl. Acad. Sci. U. S. A. 111, 627 

3233–3238 (2014). 628 

65. Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. 629 

Natl. Acad. Sci. U. S. A. 117, 11350–11355 (2020). 630 

66. Steffen, W. et al. Sustainability. Planetary boundaries: guiding human development on a changing planet. 631 

Science 347, 1259855 (2015). 632 

67. Beckerman, W. & Pasek, J. Justice, Posterity, and the Environment. (OUP Oxford, 2001). 633 

68. Caney, S. Human rights, climate change, and discounting. Env. Polit. 17, 536–555 (2008). 634 



69. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009). 635 

70. Arrow, K. J. et al. How Should Benefits and Costs Be Discounted in an Intergenerational Context? The Views 636 

of an Expert Panel. SSRN Electronic Journal (2013) doi:10.2139/ssrn.2199511. 637 

71. Watkiss, P. & Downing, T. The social cost of carbon: Valuation estimates and their use in UK policy. iaj 8, 638 

(2008). 639 

72. Lenton, T. M. & Williams, H. T. P. On the origin of planetary-scale tipping points. Trends Ecol. Evol. 28, 380–640 

382 (2013). 641 

73. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. 642 

Int. J. Climatol. 37, 4302–4315 (2017). 643 

74. Stainforth, D. A. et al. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. 644 

Nature 433, 403–406 (2005). 645 

75. Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. 646 

Proceedings of the National Academy of Sciences 111, 3228–3232 (2014). 647 

76. Weyant, J. & Kriegler, E. Preface and introduction to EMF 27. Clim. Change 123, 345–352 (2014).648 



 649 



0
2

4
6

S
u
rf

a
c
e
 A

ir
 T

e
m

p
e
ra

tu
re

 C
h
a
n
g
e
 (

K
)

2
6

2
8

3
0

3
2

N
e
w

 D
e
lh

i 
T
e
m

p
e
ra

tu
re

 (
K

)

−1
00

0
10

0
C

h
a
n
g

e
 i
n
 d

e
a
th

 r
at

e 
(d

ea
th

s /
 1

00
,0

00
)

−5
0

5
W

e
lfa

re
 l
o
s
s
 (

%
 G

D
P

 e
q
u
iv

a
le

n
t)

SSP1−2.6
SSP3−7.0

Policy

scenario

5
10

15
2
0

G
lo

b
a
l 
P

o
p
u
la

ti
o
n
 (

b
ill

io
n
)

Socioeconomics

(SSP IAM)

Climate

(GCM)

Weather

(Dowscaling)

Physical

impacts

Economic

damages



Climate/Environ

ment

System

Cascading tipping points

Social/Economic 

System

Cascading disasters

Natural

disasters

Simultaneous

exposure/sensitivity

changes

Multiple stressors Cascading social changes

Exposure 

& 

Sensitivity
Social

outcomes



-50

0

50

-100 0 100

Hazard

Flood

Drought

Precip. Variation

Chill

Heat

Insignificant

Z-Score

0

1

2

3

4

5



Flood Drought Precip. Variation Chill Heat

-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6

0

250

500

750

Z-score relative to recent climatology

P
o

p
u

la
ti
o

n
 (

m
ill

io
n

s
)



Heatwaves

Wildfires

River floods

Tropical cyclones

Combined

Terrestrial biodiversity

Coral reef collapse

Agricultural losses

Fisheries productivity

Combined

Productivity

Energy

Mortality

Conflict

Combined

Water stress

Sea inundation

Internal migration

External migration

Combined

Natural disasters Ecosystem & Food Economics & Welfare Displacement

0% 25% 50% 75% 0.0% 2.5% 5.0% 7.5% -25% 0% 25% 50% 75% 0% 20% 40% 60%

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Population Affected (%)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

Change in GMST (C): 2 C 3 C 4 C



0%

25%

50%

75%

100%

0 1 2 3 4 5 6

Change in GMST from pre-industrial (°C)

P
o

p
u

la
ti
o

n
 a

ff
e

c
te

d
 (

%
)


	Article File
	Figure 1
	Figure 2
	Figure 3A
	Figure 3B
	Figure 4A
	Figure 4B

