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Abstract
This paper revisits the debate around the link between population density and the 
severity of COVID-19 spread in the USA. We do so by conducting an empirical 
analysis based on graphical evidence, regression analysis and instrumental variable 
strategies borrowed from the agglomeration literature. Studying the period between 
the start of the epidemic and the beginning of the vaccination campaign at the end 
of 2020, we find that the cross-sectional relationship between density and COVID-
19 deaths changed as the year evolved. Initially, denser counties experienced more 
COVID-19 deaths. Yet, by December, the relationship between COVID deaths and 
urban density was completely flat. This is consistent with evidence indicating den-
sity affected the timing of the outbreak—with denser locations more likely to have 
an early outbreak—yet had no influence on time-adjusted COVID-19 cases and 
deaths. Using data from Google, Facebook, the US Census and other sources, we 
investigate potential mechanisms behind these findings.

JEL Classification I12 · R12

1 Introduction

Historically, cities have been associated with the propagation of infectious diseases.1 
It is therefore not surprising that the impact of density—the defining feature of cit-
ies—on the spread of COVID-19 was a frequent talking point from the very outset 
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1 See Duranton and Puga (2020), Voigtländer and Voth (2013) for treatments of this relationship in eco-
nomics.
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of the COVID-19 pandemic. As early as 22nd of March 2020, in the context of a 
critical outbreak in New York City, state governor Andrew Cuomo tweeted “There 
is a density level in NYC that is destructive. It has to stop and it has to stop now. 
NYC must develop an immediate plan to reduce density.”2

The notion that dense cities would be hotbeds of virus transmission prompted a 
flurry of academic research on the topic. Initial studies—especially those looking 
at the United States’ experience—suggested urban density fostered a faster spread 
of the disease.3 Similar evidence was reported for other countries including India 
(Bhadra et al. 2021), Brazil (Pequeno et al. 2020) and Germany (Ehlert 2021). How-
ever, subsequent research exploring a longer time series yielded mixed findings (see 
for example McFarlane 2021; Kim et al. 2021; Florida et al. 2021). This prompted a 
more nuanced approach to the question, and subsequent work on the roles of crowd-
ing, experienced density and other more direct measures of social interactions.4

Now that massive vaccination campaigns have gradually reduced the threat of 
COVID-19 worldwide, can we draw any definitive conclusions about the mediating 
role of density in shaping the health impact of COVID-19 in cities? We turn to this 
question by looking at the evolution of the epidemic in the contiguous USA, in the 
period between the first registered cases in January 2020 and the beginning of the 
vaccination campaign in mid-December. By looking at the whole of 2020, we seek 
to understand how the results of initial studies indicating density was an important 
determinant of the impact of COVID-19 progressively led to more ambiguous find-
ings as the pandemic evolved. Our empirical analysis combines descriptive evidence 
with an instrumental variable strategy borrowed from the agglomeration literature in 
economics. In doing so, our methodological approach avoids some of the pitfalls of 
conventional regression estimates and is close to methods that are familiar to both 
economists and economic geographers.

We find convincing evidence that density affected the timing of the outbreak in 
each county, with denser locations more likely to have an early outbreak. We show 
this leads to an initially positive and significant relationship between the impact of 
COVID-19 and population density at the county level, consistent with the results of 
early studies on the spread of the virus in the USA. However, after adjusting for the 
timing of the onset of the disease in each county, we find no evidence that popula-
tion density is positively associated with the impact of COVID-19. Interestingly, we 
find a negative relationship between density and the spread of COVID-19 within a 
county at the very beginning of an outbreak, but this relationship fades completely 
within 2 months. We also show that, by the end of 2020, density could no longer 

2 The attribution of detrimental effects of density for the evolution of the epidemic was not specific to 
the USA. On 9 of December 2020, Michael Gove (Chancellor of the Duchy of Lancaster and Minister 
for the UK Cabinet Office) said on ITV’s Good Morning Britain that population density was one of the 
reasons why the UK had more COVID-19-related deaths in comparison to Germany.
3 See for example Angel et  al. (2020), Whittle and Diaz-Artiles (2020), Zhang and Schwartz (2020), 
Wheaton (2020) and Almagro and Orane-Hutchinson (2020). For a review of the empirical literature on 
the topic—covering papers in urban planning, economics and medical sciences—see Teller (2021).
4 For example, there is evidence that a higher percentage of overcrowded households and poor hous-
ing conditions in US counties have both lead to higher mortality from COVID-19 (Ahmad et al. 2020; 
Krieger et al. 2020; Kamis et al. 2021).
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explain the cross-sectional pattern of accumulated cases or deaths. Dense locations 
were hit first, but, as the pandemic evolved, they were not hit harder. These results 
help us frame other studies on this topic and understand how the findings in that lit-
erature changed as the pandemic developed.

The fact that—by the end of 2020—density had no effect on the local impact 
of COVID-19 appears counter-intuitive. The virus spreads via human contact and 
denser areas provide more opportunities for human interaction. Yet, this is not the 
only way in which density can affect the spread of disease. Several mediating fac-
tors can make the direction of this relationship theoretically ambiguous. We ana-
lyze social/behavioral factors that could explain our findings, bearing in mind that 
the spread of disease is a social as well as a biological phenomenon (Papageorge 
et al. 2020). To do so we use data from Google, Facebook, the US Census and The 
County Health Rankings and Roadmaps program. First, we show that density is pos-
itively associated with the reduction in work- and leisure-related activities through-
out the pandemic, suggesting that compliance with social distancing measures was 
higher in denser locations. Second, we use our empirical strategy to illustrate the 
well-known fact that density is negatively associated with the share of Republican 
voters, which have been shown to be less engaged in social distancing and other 
efforts to reduce transmission (Allcott et al. 2020). Third, we show population den-
sity is positively associated with access to healthcare and income and negatively 
associated with inhabitants’ age. Collectively, these results yield suggestive evi-
dence of mechanisms generating offsetting negative effects of density on the spread 
and severity of the COVID-19 outbreak, and help us rationalize the estimates of the 
overall effects reported in our main analysis.

Estimating how population density shaped the spread and severity of the COVID-
19 outbreak, as well as its effects on local behavioral responses and demograph-
ics is challenging for several reasons. First, population densities are not randomly 
assigned and they might be correlated with unobserved confounding factors. For 
example, population densities can be affected by locational productive advantages, 
whether natural or man-made (e.g., soil quality or transportation infrastructure), that 
may also simultaneously affect local economic conditions. Insofar as the COVID-19 
outbreak is affected by economic factors, unobservable locational advantages can 
confound the effect of density on the spread and severity of the disease. Second, 
differences in the timing of the onset of the disease can generate cross-sectional dif-
ferences in the severity of the outbreak at one point in time in the absence of true 
differences in the local reproduction rate. Finally, data on COVID-19 cases might be 
reported with error due to variation in local testing strategy and capacity.

We overcome the empirical challenges mentioned above in several ways. We 
use two Instrumental Variable (IV) strategies borrowed from the agglomeration lit-
erature in economics to induce plausibly exogenous variation in population density 
without affecting COVID-19 cases and deaths directly. More specifically, in our geo-
logical IV approach, we use the presence of aquifers, earthquake risk, and soil drain-
age capacity to as instruments for density (as in Duranton and Turner 2018). In our 
historical IV strategy, we use the traditional long-lag instrument, which measures 
urban population density in the 1880 US Census (as in Ciccone and Hall 1996 and 
a large subsequent literature). We use these tools to study both how density affected 
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the timing of the outbreak in each county and the time-adjusted number of deaths 
after that outbreak. We focus on the daily number of confirmed COVID-19 deaths 
rather than cases as our main outcome of interest since this is considered to be a 
more accurate indicator of local COVID-19 prevalence (Subbaraman 2020), and 
discuss COVID-reported cases as a robustness check. Finally, we cross-validate our 
COVID-19 figures with official data from the CDC to ensure reported deaths are 
consistent with other measures of COVID-19 mortality.

As discussed above, a number of papers have examined the link between den-
sity and COVID-19 incidence in the USA.5 Alongside these studies, a vast num-
ber of papers in economics and economic geography have focused on other social 
determinants of differences in the spread of COVID-19 such as mobility Glaeser 
et al. (2020), Almagro et al. (2020), racial composition Benitez et al. (2020), Ham-
man (2021), social capital and institutions Ding et al. (2020), Rodríguez-Pose and 
Burlina (2021) as well as on the predicted long-run impact of the pandemic on cities 
(Florida et al. 2021), Nathan and Overman (2020). We contribute to this literature 
by looking specifically at density—arguably one of the first explanatory factors that 
attracted the attention of the field in early 2020—and its changing role throughout 
the US epidemic. Given that density is associated with many of the factors that were 
studied subsequently—mobility, race, urbanization—our findings also help interpret 
the results reported in the broader literature.

2  Data

Our dataset combines information on COVID-19 cases and deaths, population 
density, demographics, social connectedness, behavioral changes, voting behavior, 
healthcare provision, income and geological features at the US county level. We will 
use COVID data extending over the period between the 22nd of January, when the 
first US case was confirmed in King County, up until the 15th of December 2020, 
the day after the COVID vaccination campaign began in the USA. We restrict our 
sample to urban counties6 in the contiguous USA which leaves us with 1759 coun-
ties comprising ∼ 93% of the total US population. When analyzing the pace of the 
outbreak, we further restrict the sample further to those counties that had at least one 
confirmed COVID-19-related death 60 days before the end of our sample period. 

6 Urban counties are those that are classified as either ‘metropolitan’ or ‘micropolitan’ core-based statis-
tical areas in the 2010 census.

5 The literature on the relationship between the 1918 Influenza pandemic (the Spanish Flu) and popula-
tion density is naturally more developed and can shed light on the link between pandemics and density 
more broadly. Interestingly, while it may seem intuitive that the influenza pandemic was positively asso-
ciated with population density as the virus spread via human contact, a review of the literature produce 
mixed results. For example, Garrett (2007) finds a positive relationship between mortality rates and pop-
ulation density in the USA. In contrast, Mills et al. (2004) find no statistical association between popula-
tion density and the initial reproductive number (R) using data on 45 US cities. Chowell et al. (2008) also 
find no association between transmissibility, death rates and indicators of population density in England 
and Wales. Ferguson et al. (2006) studies the development of the 1918 pandemic and finds evidence for 
an early onset in dense urban cores before a more smooth development of the disease across space.
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This Outbreak Sub-sample consists of 1441 counties representing ∼ 89 % of the total 
US population (see Fig. 4). In the following, we describe the dataset and provide 
further information about the sources and URLs for download in “Appendix B” and 
descriptive statistics in Table 1.

2.1  COVID‑19 cases and deaths

We obtain a panel of daily confirmed COVID-19 fatalities and cases for US counties 
from usafacts.org.7 The most intuitive indicator to monitor the COVID-19 outbreak 
is the daily number of confirmed cases. However, this figure is likely to be distorted 
by varying local testing strategy and capacity. Furthermore, the ability of the virus 
to spread across asymptomatic people makes the task of recording the number of 

Table 1  Descriptive statistics

Descriptive statistics presenting the mean and standard deviation for a set of key variables of interest. 
Panel A corresponds to the whole sample of urban counties (i.e. counties belonging to a CBSA). Panel B 
corresponds to the Outbreak sub-sample consisting of counties that had at least one confirmed COVID-
19 death 60 days before the end of our sample period on the 15th of December 2020

Mean Standard deviation

(A) Full sample
Population density 147 696
Weighted population density 522 1117
Population 173,406 432,333
COVID deaths 60 days after 10th case 49 272
COVID cases 60 days after 10th case 841 3376
Share of population above 60 years 0.24 0.05
Δ workplace-related activity −40.61 7.82
Δ retail-related activity −35.62 11.98
Number of counties 1759
Share of US population: 93%
(B) COVID outbreak sub-sample
Population density 173 766
Weighted population density 585 1220
Population 203,190 472,196
COVID deaths 60 days after 10th case 59 299
COVID cases 60 days after 10th case 1008 3704
Share of population above 60 years 0.24 0.05
Δ workplace-related activity −41.17 7.92
Δ retail-related activity −35.94 11.39
Number of counties 1441
Share of US population: 89%

7 These are obtained from county-level reports by local health authorities across the USA. See “Appen-
dix B” for further details.
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infections in the community extremely difficult (Subbaraman 2020). Therefore, 
we mainly use the daily number of confirmed COVID-19 deaths as this is a more 
accurate indicator of the local COVID-19 prevalence.8 In order to ensure that our 
COVID-19 data are reliable, we cross-validate our COVID-19 figures with official 
data from the Centers for Disease Control and Prevention (CDC). In the left panel 
of Fig.  5, we compare our total COVID-19 fatality counts by county to the latest 
figures on officially confirmed deaths due to COVID-19. In the right panel, we com-
pare total fatalities to CDC excess death estimates. Both graphs exhibit strong linear 
relationships and support the validity of our COVID-19 data.9 The evolution of daily 
COVID-19 fatality numbers used in this paper is illustrated in “Appendix Fig. 6.” In 
our analysis below, when we refer to deaths taking place in the first-wave, we refer 
to those taking place up to the 5th of July, which is the minimum in the moving 
average of deaths after April 2020.

2.2  Population density

Based on the US census for 2010, we compute two measures of population density. 
The first is simply the total population of a county over its total area. This will con-
stitute the independent variable of interest throughout most of our analysis. The sec-
ond variable takes the population density for all census-blocks within a county and 
computes the associated population-weighted mean. Population-weighted density is 
meant to measure average “experienced” density and was popularized in economics 
by Glaeser and Kahn (2004) and Rappaport (2008). It can be computed using spa-
tially disaggregated data on the distribution of population and weighting each small 
unit of population density by its relative population in the county.

2.2.1  Instrumental variables

For our geological instrumental variable estimates, we use three different instru-
ments. More specifically, we use variables measuring earthquake risks and pres-
ence of aquifers from the US Geological Survey (USGS) (also used in Duranton and 
Turner 2018), and data on soil drainage quality from NRCS State Soil Geographic 
Data Base. We match our grid cells to the geological data using grid cell centroids 
to spatially impute data on aquifers, earthquake risks and soil drainage quality. For 
our historical instrument, we use population density obtained from the 1880 US 

8 Recent work led by Diego Puga looks at the relationship between density and COVID-19 incidence 
in Spain using prevalence data obtained from randomized serological tests. Cross-sectional correlations 
using this information point to a flat (or weakly negative) relationship between the disease’s spread and 
density.
9 In contrast, the correlation between county-level COVID-19 fatalities and USAFacts is −0.001 and 
insignificant indicating that COVID-19 mortality is not simply an amplification of fatalities occurring 
under normal circumstances but rather follows distinct patterns that are consistently capture by our data-
base.
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census. We impute these data on the county level using spatial matching based on 
the assumption of uniform population distribution within 1880 counties.10

2.2.2  Behavioral adjustment/social distancing

To measure how much people in different counties adjusted their behavior as a 
response to the COVID-19 outbreak, we use the ‘COVID-19 Community Mobility 
Reports’ by Google (Google CMR). This database aggregates extensive anonymized 
mobile device GPS user data and estimates the percentage change in activities (such 
as work, retail or transit) by county and day. The five week period from January 3rd 
to February 6th before the start of the COVID-19 outbreak in the US serves as the 
corresponding baseline period.

2.2.3  Other variables

We obtain data on county-level demographic characteristic estimates for 2018 from 
the US census. Social connectedness is measured with Facebook’s Social Connect-
edness Index (Facebook SCI), which captures the intensity of the link between loca-
tions using the number of friend links in this social network (see Bailey et al. 2018 for 
further details on the SCI). Finally, data on access to healthcare and income comes 
from the County Health Rankings and Roadmaps program. Specifically, we use three 
indicators: (1) the ratio of population to primary care physicians (2) the percentage of 
adults under the age of 65 without health insurance and (3) median household income.

3  Empirical analysis

Our empirical analysis proceeds in two ways. We first provide a series of figures 
that illustrate the main results, both in terms of the relationship between density and 
COVID-19 deaths, the evolution of that relationship over time and the explanations 
behind this evolution. We then provide formal quantitative estimates for these rela-
tionships using our OLS and IV strategies. The fact that by-and-large the quantita-
tive findings are the same regardless of the methods employed in the analysis gives 
us confidence on the robustness of our results to methodological decisions made in 
the research process.

3.1  Graphical evidence

The top-left panel of Fig.  1 illustrates the positive cross-sectional correlation 
between a county’s population density—calculated as the total population over the 

10 Note that, while the assumption of uniform distribution is clearly a simplification which could lead 
to measurement error, this should not have a substantial impact on our main estimates. This is because 
measurement error in the instruments could affect the relevance of the instruments but should not gener-
ate bias in the coefficients of interest unless the measurement error itself is correlated with COVID-19 
incidence.
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surface area—and the number of COVID-19-related deaths per capita by the end 
of the first wave on the 5th of July.11 This is the basic fact that had been noticed in 
Wheaton (2020) and Dubner (2020) as early as April 2020. Similar graphs, again 
displaying positive relationships using population-weighted densities and number of 
cases, are reported in “Appendix Fig. 7.”

Naturally, these cross-sectional patterns do not constitute conclusive evidence 
that urban density results in faster or more deadly COVID-19 spread. There are at 
least two problems that could arise in this context. First, the positive correlation in 
the top left panel of Fig. 1 can be the result of differences in the timing of the onset 
of the disease across locations. Second, certain location characteristics which are 
correlated with both density and COVID-19 spread and severity could induce a cor-
relation in the absence of any actual causal link. We discuss this second issue in 
detail in the next section.

The top right panel of Fig. 1 illustrates the point on differences in the timing of 
the onset of the disease across locations by showing that the positive correlation 
between population density and COVID-19-related deaths observed in the first-wave 
becomes almost flat when we use data extending to the 15th of December 2020. We 
investigate the timing dimension further in the bottom left panel of Fig. 1 where we 
show the relationship between population density and the number of days between 
the 22nd of January and the first fatality in each county. The figure exhibits a clear 
negative relationship, indicating that dense locations experienced COVID-19 fatali-
ties earlier than more sparsely populated locations.

We can adjust for the differences in the timing of the onset of the disease by com-
puting the number of deaths after a fixed number of days from that onset. This is 
what is typically shown in cross-country comparisons of the early evolution of the 
pandemic. In our case, we can compute the number of COVID-19 deaths at a speci-
fied time after the outbreak started in a county. We define the start of the outbreak as 
the first day with 10 reported cases and compute the number of deaths 60 days after 
this date for all counties.12 The link between this time-adjusted variable and density 
is illustrated in the bottom-right panel of Fig. 1. The relationship is almost flat after 
time-adjusting, suggesting that density does not simply translate into a higher rate of 
COVID-19 fatalities.

How is it possible that initial studies reported a clear positive influence of den-
sity on the impact of COVID-19, yet we report no relationship here? The answer is 
illustrated in Panel A of Fig. 2, where we report how the slope of the relationship 
between population density and accumulated deaths evolved over 2020. These are 
simply the coefficients of a univariate regressions of the logarithm of total accumu-
lated deaths—up to the period in the horizontal axis—on the logarithm of a county’s 

11 We define the first wave as the period between the onset of the disease in the USA in February 2020 
and the minimal daily death rate before the second rise in COVID-19 fatalities. See “Appendix Fig. 6.”
12 The choice of 10 cases as marking the start of an outbreak from which we take the 60-day window 
is taken so as to ensure that there is some degree of within-county transmission at the time the window 
starts. We study how results change using different post-onset time windows in Sect. 3.2.
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population density.13 Panel A of Fig. 2 shows a positive relationship between deaths 
and density appeared at the beginning of the US epidemic, with the positive relation-
ship peaking by May 15th 2020. Yet in subsequent months the relationship progres-
sively flattened, with the slopes of interest shrinking progressively until becoming 
statistically insignificant by November 15th. Thus, there was an apparently positive 
relationship at the beginning of the US epidemic, but this relationship became flat as 
the pandemic evolved.

Several factors could explain this result. We will turn to these in detail when we 
discuss mechanisms in Sect. 3.4, but consider as an illustration the role of changes in 
mobility across cities. Figure 3 shows the change in mobility relative to the January 
2020 baseline for sparse and dense counties, with the split based on median county 
density.14 The left panel corresponds to changes in workplace-related mobility, the mid-
dle panel corresponds to changes in mobility for leisure activities and the right panel 
for transit. As expected, we observe a sharp reduction in mobility starting around mid-
March. Importantly, in all cases we observe that this reduction is more acute in denser 
counties. Glaeser et al. (2020) show reductions in mobility had a substantial effect on 
the spread of COVID-19 over our sample period. Therefore, a sharper reduction in 
mobility in denser cities could contain the spread of the disease in these locations.

3.2  Estimation

To obtain credible quantitative estimates of the relationship between time-adjusted 
COVID-19-related mortality and density, we also need to deal with potential con-
founders affecting both density and the prevalence and severity of the disease. Cli-
mate conditions, for example, can simultaneously influence household location 
decisions (see Glaeser et al. 2001) and COVID-19 spread.15 Local amenities such 
as waterfronts or low precipitation levels can themselves influence travel patterns—
e.g., by increasing tourist arrivals—which could in turn affect COVID-19 rates. 
Insofar as some of these elements are observable, we can include them as controls 
in our regressions. Yet, some confounders may be unobservable due to their inher-
ent nature or lack of accurate data. For instance, locational productive advantages 
can simultaneously affect local economic conditions and increase local densities.16 
Examples range from natural factors such as fertile or irrigable lands to man-made 
infrastructures such as ports or highways. Insofar as COVID-19 incidence and 
deaths are affected by economic conditions, unobservable locational advantages can 
confound the effect of density on the spread and severity of the disease.

14 The data are based on COVID-19 Community Mobility Reports released by Google and is based on 
data from portable device users in US counties.

13 Specifically, we estimate Ln(Acc. Deathst
i
+ 1) = �

0
+ �tLn(Pop.Densi) + �i , where i is an index for 

counties and t indicates the end period, so that Acc. Deathst
i
 corresponds to accumulated deaths in county 

i from the start of the pandemic up to date t (e.g., the 15th of April).

15 A number of recent papers document a negative effect of temperature on COVID-19 incidence, at 
least in temperate weathers. See for example Prata et al. (2020), Tobías and Molina (2020).
16 Locational advantages increase local densities because higher land prices in these areas trigger a sub-
stitution of land for capital in the production of structures (i.e. an increase in building heights).



 F. Carozzi et al.

1 3

To overcome the problem posed by potential unobservable confounding fac-
tors, we borrow canonical instruments for density from the agglomeration literature 
Combes et al. (2011) and our previous work on the relationship between density and 
air pollution Carozzi and Roth (2020). Specifically, we will instrument population 
density with either geological factors which can affect the costs of compact urban 
development or a long-lags in population density.

We use three geological instruments: the fraction of the urban footprint with aqui-
fer presence, a measure of average earthquake risks and an estimate of soil drainage 
quality. The rationale for the aquifer instrument is that new dwellings in the periph-
ery of urban areas need to either to pay for a costly connection with the municipal 
network or to directly connect with an underwater source. Given that the option of 
the underwater source is only available if there is an aquifer where the dwelling is 
located, cities with more land over aquifers can sprawl out further, contain more 
sparse development and lower densities. This instrument is motivated by the work in 
Burchfield et al. (2006) which reports that aquifers in the urban fringe are associated 
with urban sprawl. The rationale for our earthquake risk instrument is the expecta-
tion that the risk of an earthquake might influence building regulations, construction 
practices and the space between buildings, thus also affecting urban density. We also 
expect this instrument to satisfy the exogeneity condition, once we condition for dis-
tance to sea, average precipitation, latitude, longitude, and state fixed effects. Finally, 
the soil drainage quality variable is expected to affect land suitability for building at 
different densities. In fully urbanized land, a significant fraction of rainfall is drained 
through drainage networks and sewage systems (Konrad 2003). However, at lower 
densities, soil drainage capacity is important to avoid stagnant water and, possibly, 
floods. In addition, high drainage soil is not ideal for laying down heavy infrastruc-
ture, making the task of building high density development more expensive.

We use a separate instrument for density based on historical population as 
recorded in the 1880 US census. Settlements in this period were in place before 
much of the technological revolutions in transportation that have affected location 
patterns in the last decades and also precede current patterns of industrial location. 
The use of historical population instruments for density was popularized by Ciccone 
and Hall (1996) and has been featured recurrently in the literature on agglomeration 
economies since (see Combes and Gobillon 2015 for a review).

Our main estimating equation will regress measures of COVID-19 presence on 
the logarithm of population density:

where i indexes individual counties, �s is a set of state effects and Xi is a set of con-
trols. In all specifications, we control for average maximum and minimum tempera-
tures, average yearly precipitation, latitude, longitude, distance between the county 
centroid and the closest sea front and distance to the closest waterfront. Our outcomes 
include different measures of COVID-19 presence. In most of our analysis, these 
are either variables capturing the time it took for the disease to arrive at a county or 
a time-adjusted measure of COVID-19 presence - the logarithm of the number of 
COVID-19 fatalities in the county 60 days after the 10th case was confirmed.

(1)Yi = �s + �Ln(Pop.Density)i + �
�Xi + �i
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Before presenting our results, it is important to highlight that our estimates of 
parameter � from Eq. (1) will capture the overall effect of density on the outcome 
of interest. This includes the effect of geographic proximity facilitating transmission 
but also effects operating through the impact of density on agglomeration econo-
mies, personal behavior, local population compositions, healthcare systems, etc. 
After reporting estimates of the overall effect of density, we will turn to investigate 
the specific mediating factors behind it in Sect. 3.4 below.

3.3  Main results

We first report baseline cross-sectional correlations between population density and 
COVID-19 cases and deaths during the first-wave. In Table 2, we estimate Eq. (1) 
via Ordinary Least Squares (OLS) using the logarithm of the number of cases per 
100,000 inhabitants and the logarithm of the number of deaths per 100,000 inhabit-
ants as outcome variables. We find positive and statistically significant effects of 
population density on COVID-19 incidence, in line with the descriptive evidence 
reported in the top-left panel of Fig.  1. Specifically, when using the conventional 
measure of population density, we find elasticities of 22% and 13% for cases and 
deaths, respectively. This suggests that a 1% increase in population density increases 
cases and deaths per 100,000 people by 0.22% and 0.13%. When using our popula-
tion-weighted measure of density, we also find very similar positive elasticities. The 
findings for COVID-19 cases are consistent with the evidence presented by Wheaton 
(2020) and Almagro and Orane-Hutchinson (2020). Yet this should not be taken as 

Table 2  Cases and deaths in first COVID-19 wave in 2020: baseline OLS estimates

Baseline OLS estimates. Columns (1) and (2) use the log of cases per 100,000, columns (3) and (4) the 
log of deaths per 100,000 inhabitants as dependent variables, both taken as accumulated by the 5th of 
July. In the top panel, we report estimates for the effect of log of population density. In the bottom panel, 
we use the log of population-weighted density. In all models, we include controls for average maximum 
and minimum temperatures, average yearly precipitation, latitude, longitude, distance between the county 
centroid and the closest sea front and distance to the closest waterfront. The specifications in columns 
(2) and (4) add state effects. Standard errors in parenthesis are clustered at the CBSA level. ***p < 0.01 , 
**p < 0.05 , * p < 0.1

Log(cases per 100,000) Log(Deaths per 100,000)

Log(population density) 0.218*** 0.217*** 0.130** 0.126***
(0.027) (0.021) (0.051) (0.034)

R2 0.20 0.42 0.11 0.36
Obs. 1756 1756 1414 1414

Log(cases per 100,000) Log(cases per 100,000)

Log(weight. density) 0.229*** 0.219*** 0.150** 0.110***
(0.027) (0.020) (0.059) (0.036)

State effects No Yes No Yes
R2 0.21 0.42 0.11 0.35
Obs. 1756 1756 1414 1414
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conclusive evidence that density has a causal effect on the spread of COVID-19. As 
argued above, potential differences in the timing of the onset of the disease across 
locations or the presence of potential unobservable confounders can induce substan-
tial bias in these coefficients.

Estimates reported in Table 3 deal with these empirical issues by looking explic-
itly at differences in the onset of the COVID-19 epidemic across locations and 
incorporating our instrumental variable strategy. In panels A and B, we report esti-
mates for the effect of density on the number of days to the first case and the number 
of days to the first death. These numbers are measured relative to the date of the 
first reported case in the USA, so that small numbers correspond to an earlier onset 
of an outbreak. In column 1, we report OLS estimates obtained after controlling 
for state effects and covariates. In columns 2 and 3, we show IV estimates obtained 

Table 3  Onset of the disease 
and deaths after 60 days in 2020

The main explanatory variable in all models is the natural logarithm 
of population density. Panels A and B report estimates using  the 
number of days to the first case and first  death, respectively, as 
dependent variables. Panel C reports estimates using  the log of the 
number of deaths per 100,000 residents in a county, 60 days after the 
10th reported case  as dependent variable. Column (1) corresponds 
to OLS estimates, and column (2) and (3) presents 2SLS estimates 
using the Geological and Historical instruments, respectively. In all 
models, we include controls for average maximum and minimum 
temperatures, average yearly precipitation, latitude, longitude, dis-
tance between the county centroid and the closest sea front and dis-
tance to the closest waterfront. The specifications in columns (2) and 
(3) add state effects. Standard errors in parenthesis are clustered at 
the CBSA level. ***p < 0.01 , **p < 0.05 , * p < 0.1

OLS IV

(A) Days to first case
Log(population density) −5.957*** −4.288*** −5.034***

(0.447) (0.864) (0.870)
IV F-stat 25.9 111.0
R2 0.44 0.42 0.43
Obs. 1759 1759 1733
(B) Days to first fatality
Log(population density) −15.935*** −6.673** −13.384***

(1.132) (3.247) (2.443)
IV F-stat 24.9 95.3
R2 0.34 0.29 0.33
Obs. 1667 1667 1642
(C) Log(Deaths per 100,000, 60 days after 10th case)
Log(population density) −0.046 −0.053 0.043

(0.040) (0.125) (0.077)
IV F-stat 25.6 60.5
R2 0.30 0.30 0.29
Obs. 1441 1441 1418
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using our Geological and Historical instruments, respectively. Note that the first-
stage F-stats lie at 25 or above and the instruments explain between 5% and 10% of 
the variance in population density, indicating that they are not weak. Our second-
stage estimates confirm that denser areas have indeed experienced earlier onsets of 
the disease whether we use days to the first case or days to the first death. A one 
log-point increase in density reduces the time to the first case by between 4 and 6 
days depending on the specification. The effect on the time to the first deaths is even 
larger. These estimates demonstrate the importance of adjusting for differences in 
the timing of the onsets across locations when estimating the relationship between 
population density and COVID-19 health outcomes.

In Panel C of Table 3, we examine our main outcome of interest; the effect of 
population density on time-adjusted COVID-19-related mortality. As mentioned 
previously, we focus on confirmed COVID-19-related deaths rather than cases as 
our main outcome of interest because it is considered to be a more accurate indi-
cator of local COVID-19 prevalence. We provide a complementary analysis using 
reported cases in Sect. 3.5. In column 1, we find that the cross-sectional correlation 
observed in Table 2 becomes negative and statistically insignificant, suggesting that 
the positive link between population density and COVID-19 deaths might have been 
confounded by differences in the timing of the local outbreak. In columns 2 and 3, 
we use our instrumental variable approach to test this hypothesis more convincingly. 
Our second-stage results reveal a statistically insignificant relationship between pop-
ulation density and COVID-19-related deaths in both columns, portraying a similar 
picture as the OLS estimate presented in column 1. Our 2SLS results are unsurpris-
ingly less precise, but the overall picture is clear. We find no evidence that popula-
tion density is positively linked with COVID-19-related deaths.

We can use our IV strategy to reproduce the findings illustrated in Panel A of 
Fig.  2 showing the evolution of the cross-sectional relationship between COVID-
19 deaths and population density over time. For this purpose, we estimate modified 
versions of Eq. (1) where the dependent variable is now the accumulated number 
of deaths up to the 15th day of each month in 2020 from March to December. Esti-
mates of the different �t slope coefficients obtained using 2SLS are reported in Panel 
B of Fig. 2. In this case, we use both our geological and historical instruments as a 
source of exogenous variation. We observe that these results mimic those in Panel 
A, with an initially positive and significant relationship emerging by April 15th giv-
ing way to a progressive flatter relationship throughout 2020.

Finally, we test whether the relationship between density and time-adjusted 
COVID-19 deaths changes with the window used. To do this, we obtain estimates 
corresponding to 21, 30, and 45 day windows, all measured after the 10th case is 
reported in each county. The results are reported in Table 4 and show that the time-
adjusted number of deaths is not positively affected by density, regardless of the 
window used. Interestingly, we find that at a beginning of an outbreak in a given 
county this relationship is in fact negative but becomes flat within two months.

On first reflection, the null (or negative) results for COVID-19 spread in this sec-
tion appear surprising given that the virus spreads via human contact and denser 
areas can provide more opportunities for human interactions. Nevertheless, there are 
several mediating factors that might offset this intuitive mechanism. For example, 
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density itself might attract younger residents who are less likely to develop sig-
nificant symptoms. In addition, both behavioral and/or policy induced changes in 
behavior may be different in dense counties. In fact, studies on previous pandemics 
(e.g., the 1918 influenza pandemic) also show that population density is not neces-
sarily linked with the spread and severity of a disease (Mills et  al. 2004). In the 
next section, we explore potential mechanisms that can explain our reduced-form 
findings.

3.4  Mechanisms

Variation in density might lead to changes in several local conditions, which can 
themselves affect the spread and severity of the disease. These types of changes may 
provide mechanisms that reinforce or offset the hypothesized positive effects that 
have been suggested in the literature, both in terms of timing of the local onset of 
the pandemic and subsequent spread. We turn to study some of these mechanisms 
by estimating the effect of density on other determinants of COVID-19 spread and 
severity. To do so, we re-estimate Eq. (1) using these hypothetical mediators as out-
comes. The resulting estimates do not provide definite proof regarding the mecha-
nisms explaining the effect of density on COVID-19 incidence and mortality, but 
should be interpreted as suggestive evidence in this regard.

Table 4  Density and time-
adjusted deaths in 2020 for 
different post-onset windows

Estimates of the effect of the natural logarithm of population den-
sity on time-adjusted COVID-19 deaths per 100,000 population. Dif-
ferent panels correspond to different choices of the time-adjustment 
windows in the dependent variable. Standard errors clustered at the 
CBSA level. ***p < 0.01 , **p < 0.05 , * p < 0.1

OLS IV

(A) Log(Deaths per 100,000, 21 days after 10th case)
Log(population density) −0.377*** −0.357*** −0.194**

(0.044) (0.116) (0.076)
First-stage F-stat 20.1 67.2
Obs. 1159 1159 1141
(B) Log(Deaths per 100,000, 30 days after 10th case)
Log(population density) −0.240*** −0.234* −0.072

(0.046) (0.130) (0.074)
First-stage F-stat 20.4 72.8
Obs. 1264 1264 1242
(C) Log(Deaths per 100,000, 45 days after 10th case)
Log(population density) −0.126*** −0.162 −0.021

(0.045) (0.129) (0.078)
First-stage F-stat 24.0 77.7
Obs. 1367 1367 1345
Instrument Geological Historical
State effects Yes Yes Yes
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We begin by looking at possible factors explaining the early onset of the disease 
in denser cities and show that density is associated with higher social connectedness 
with other US counties. Our proxy for this variable relies on Facebook’s Social Con-
nectedness Index (SCI).17 This index is based on the relative frequency of friendship 
links between users of the social network, with higher index values corresponding 
to a larger number of friendship links. To proxy for social connectedness with other 
counties, we aggregate the SCI of each county with all other counties and normal-
ize it by the own-county SCI. The resulting variable is large when inhabitants in 
a county are disproportionately connected to other counties. Coefficients resulting 
from estimating Eq. (1) using the logarithm of this proxy as an outcome variable are 
provided in Panel A of Table 5. As above, we report both OLS estimates (column 
1) and 2SLS estimates using our geological and historical instruments (columns 2 
and 3). We observe consistently positive elasticities of roughly 0.4-0.5 across col-
umns, indicating denser counties are more intensely related to other counties in the 
USA.18 These results provide a plausible explanation to our findings of early onsets 
of COVID-19 cases and deaths in denser counties illustrated in Fig. 1 and Table 3.

Next, we study how density affects behavioral responses to the pandemic (e.g., 
compliance with social distancing measures). We use data from the Google COVID-
19 Community Mobility Reports (CMR) to measure how mobility patterns in each 
county have changed relative to baseline levels measured in January 2020. In Pan-
els B and C of Table 5, we show the relationship between county density and the 
change in mobility to workplaces and retail activity, respectively. We find that pop-
ulation density is associated with a larger decline in mobility for both indicators. 
Doubling density reduces workplace-related mobility and retail-related activity by 
approximately 2.6–3.4% and 1.7–2.4%, respectively. Given the significant variation 
in density across US counties, these estimates are large. Insofar as social distancing 
reduces the spread of the disease, these differences in behavior might explain why 
we find limited differences in spread by location after accounting for the timing of 
onset of the disease and confounding factors.

Several factors could explain this difference in behavior across dense and sparse 
counties. One candidate that could account for both policy responses and individual 
differences in behavior relates to ideological or political views. Allcott et al. (2020) 
show that the Republican county vote share has a positive and significant association 
with the number of weekly visits to points of interest during the peak of the social 
distancing measures in April. Anecdotal evidence also reveals substantial differences 
in the tone of the Democratic and Republican parties when discussing the pandemic 
and its consequences. If density is associated with reduced support for the Republican 
party, residents of denser areas may be more likely to comply with the social distanc-
ing advise. In Panel D of Table 5, we estimate this link using voting data from the 
2016 presidential election as a proxy for Republican support. We find that population 
density has a negative association with the share of Republican voters, an observation 

17 Kuchler et al. (2020) study how interpersonal networks provided a channel for the spread of the dis-
ease based on the SCI.
18 Dense counties are also candidates to have higher connectedness with locations outside of the USA.
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that should come as no surprise for observers of US politics.19 This difference in 
political preferences across locations could explain, at least in part, the observed dif-
ferences in the behavioral response to the pandemic illustrated in Fig. 3 and Table 5.

Table 5  Suggested mechanisms: 
social connectedness and 
behavioral responses

The main explanatory variable in all models is the natural logarithm 
of population density. In Panel A, we present the results for the 
social connectedness of a county based on Facebook’s Social Con-
nectedness Index. Panels B and C report the results on behavioral 
adjustment of workplace and retail activities relative to the January 
baseline, respectively. Panel D features the results on votes for the 
Republican party in the 2016 presidential election. Column (1) cor-
responds to OLS estimates, and column (2) and (3) presents 2SLS 
estimates using the Geological and Historical instruments, respec-
tively. In all models, we include controls for average maximum and 
minimum temperatures, average yearly precipitation, latitude, longi-
tude, distance between the county centroid and the closest sea front 
and distance to the closest waterfront. The specifications in columns 
(2) and (3) add state effects. Standard errors in parenthesis are clus-
tered at the CBSA level. **p < 0.01 , * p < 0.05 , * p < 0.1

OLS IV

(A) Social connectedness
Log(population density) 0.619*** 0.452*** 0.372***

(0.017) (0.045) (0.034)
IV F-stat 25.9 111.0
Obs. 1758 1758 1732
(B) Δ Workplace-related activity
Log(population density) −3.789*** −4.860*** −3.796***

(0.156) (0.478) (0.301)
IV F-stat 19.5 56.8
Obs. 1355 1355 1336
(C) Δ Retail-related activity
Log(population density) −2.519*** −2.615** −3.471***

(0.325) (1.022) (0.641)
IV F-stat 19.7 50.4
Obs. 1289 1289 1270
(D) Republican vote share 2016
Log(population density) −0.050*** −0.009 −0.080***

(0.003) (0.011) (0.008)
IV F-stat 25.9 111.0
Obs. 1759 1759 1733
Instrument Geological Historical
State effects Yes Yes Yes

19 This relationship remains highly robust upon controlling for the share of black population as well 
as the population above 60 years of age. In fact, when adding these additional controls, the relation-
ship remains between -0.04 and -0.05 and significant at the 99% confidence level for all three estimation 
approaches.
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We can arrive at two conclusions from the results reported in Table 5. First, dense 
counties are more connected with other locations and this may account for earlier 
onset of the COVID-19 epidemic in these areas. Second, the behavioral response to 
the disease was larger in denser counties, with less mobility for work and leisure and 
reduced use of public transit in these locations.

Finally, in Table 6, we examine the effect of density on access to healthcare and 
demographics, as these are likely to affect COVID-19-related mortality. In Panels 
A and B, we examine the effect of density on access to healthcare using the ratio 
of population to primary care physicians and the percentage of adults under the age 
of 65 without health insurance as proxies. We find that density is positively associ-
ated with the former and negatively associated with the latter, suggesting that denser 
locations benefit from better access to healthcare. In our context, this could be an 
important mediating factor for two main reasons. First, access to primary healthcare 
might affect the presence and management of underlying health conditions which 
consider being risk factors for COVID-19 mortality (Zhou et  al. 2020). Second, 
access might also affect the probability of seeking and receiving medical treatment 
once infected with COVID-19. Relatedly, we also examine the link between popula-
tion density and income in Panel C as it is likely to affect access to healthcare and 
also health status more broadly. As expected, we find that the density is positively 
associated with median household income, offering an additional explanation for 
our headline results. Finally, in Panel D, we examine the effect of density on the 
share of the population above 60 years of age. This is of particular importance given 
that older age considered to be a significant risk factor (Zhou et al. 2020) and that 
population density is likely to affect the age structure of local areas via its impact 
on employment opportunities Glaeser (1999). Indeed, we find some evidence that 
population density is linked with a smaller share of residents above 60 years of age. 
In other words, dense counties are “younger” than sparse counties and this could 
reduce the number of deaths in these areas.

Overall, our points relating to behavioral responses, healthcare provision and 
demographics provide probable explanations for the surprisingly flat relationship 
between density and COVID-19-related mortality reported in panel C of Table 3.

3.5  Robustness checks

In this section, we provide several tests to evaluate the robustness of our main find-
ings. We first revisit our results for the time-adjusted COVID-19 deaths by control-
ling for time of onset. In Panel A of “Appendix Table 7,” we test whether the null 
effect of density is robust to flexibly controlling by week of onset in each state. This 
goes beyond simply time-adjusting the outcome variable of interest as it also incor-
porates differences in knowledge regarding the disease or country-wide behavio-
ral adjustments. We find that our qualitative results remain unchanged, with coef-
ficients being insignificantly different from 0 across specifications. In panel B, we 
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test whether our results are affected by excluding the New York metropolitan area.20 
In this case, we find a negative and statistically significant relationship between 
density and time-adjusted COVID-19 deaths in our OLS estimate but statistically 

Table 6  Mechanisms: healthcare 
provision and demographics

The main explanatory variable in all models is the natural logarithm 
of population density. In Panel A, we present the results for primary 
health care supply measured as the natural logarithm of the number 
of primary health care physicians in each county divided by popu-
lation. Panels B refers to the share of adults without health insur-
ance. Panel C reports the results on median household income in 
1000 USD. Panel D features the estimates for the share of population 
above 60 years of age. Column (1) corresponds to OLS estimates, 
and column (2) and (3) presents 2SLS estimates using the Geo-
logical and Historical instruments, respectively. In all models, we 
include controls for average maximum and minimum temperatures, 
average yearly precipitation, latitude, longitude, distance between 
the county centroid and the closest sea front and distance to the clos-
est waterfront. The specifications in columns(2) and (3) add state 
effects. Standard errors in parenthesis are clustered at the CBSA 
level. **p < 0.01,**p < 0.05 , p < 0.1

OLS IV

(A) Log primary care physicians per capita
Log(population density) 0.244*** 0.180*** 0.148***

(0.014) (0.042) (0.024)
IV F-stat 25.9 97.8
Obs. 1714 1714 1688
(B) Share of pop. uninsured
Log(population density) −0.003*** −0.005 −0.010***

(0.001) (0.003) (0.002)
IV F-stat 25.9 111.0
Obs. 1759 1759 1733
(C) Median houshold income
Log(population density) 3.975*** 7.051*** 2.167***

(0.349) (1.068) (0.816)
IV F-stat 25.9 111.0
Obs. 1759 1759 1733
(D) Share of pop. above 60 years
Log(population density) −0.019*** −0.002 −0.014***

(0.001) (0.005) (0.003)
IV F-stat 25.9 111.0
Obs. 1759 1759 1733
Instrument Geological Historical
State effects Yes Yes Yes

20 We use the census 2010 definition corresponding to the New York-Northern New Jersey-Long Island 
CBSA.
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insignificant effects when we use our IV methodologies. We interpret these results 
with caution, as we are imposing sample selection that simultaneously exclude the 
MSA with the largest initial outbreak and the highest density.

Much of the evidence featured in the discussion around the role of urban den-
sity in shaping the impact of COVID-19 has focused on the conventional, area-
weighted definition of density (i.e., population divided by surface). In order to 
speak to that debate, this has been the object of our main analysis. But we can 
evaluate the robustness of our results to the definition of density by studying the 
effect of population-weighted densities. In “Appendix Table  8,” we reproduce 
our main results using this variable as our main independent variable of inter-
est. Unfortunately, since our geological instruments do not provide a strong first 
stage for this variable, our IV analysis relies solely on our long-lag instrument. 
Reassuringly, we find that the overall results are qualitatively similar to those 
obtained in Table 3. Panels A and B show denser counties had earlier onsets of 
the disease compared to sparse counties. In panel C, we find a negative associa-
tion between weighted density and COVID-19-related deaths when using OLS. 

Fig. 1  And Population Density and COVID-19 in 2020. Notes The horizontal axis represents the log-
arithm of the county’s population density. Top left panel vertical axis represents the logarithm of the 
accumulated number of fatalities per hundred thousand inhabitants by the 5th of July 2020. Top right 
panel vertical axis represents the logarithm of the accumulated number of fatalities per hundred thou-
sand inhabitants by the 1st of December 2020. Bottom-left panel vertical axis represents the number of 
days between the 22nd of January and the first fatality in each county. Bottom-right panel vertical axis 
represents the logarithm of the number of dead 60 days after the 10th case was reported in the county. 
Black markers correspond to counties forming part of a CBSA. Fitted lines estimated via Ordinary Least 
Squares. Univariate R-squared included in all Figures alongside fitted line
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However, our IV estimates again show a statistically insignificant elasticity. We 
therefore conclude that variation in density did not result in more COVID-19 
incidence and deaths in the USA beyond the effect on early onset of the disease 
despite prior descriptive evidence. We also check the robustness of our results 
regarding suggested mechanisms using population-weighted density as our main 
regressor of interest in “Appendix Table 9.” Reassuringly, we find that the over-
all results are qualitatively analogous to those reported in Table 3.

Fig. 2  OLS Accumulated COVID-19 Deaths-Density Elasticities over Time. Notes Both panels depict 
the cross-sectional relationship between the natural logarithms of accumulated deaths and population 
density for every monthly period ending in the 15th, from March through December 2020. Panel A: coef-
ficients from univariate OLS regressions. Panel B: IV estimates obtained using both the geological and 
historical instruments for density. For each estimate, we report the 95% confidence interval based on 
standard errors clustered at the CBSA level
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Finally, we test whether density affects the time-adjusted number of reported 
cases of COVID-19. As argued above, the number of cases is more likely to be 
affected by variation in testing resources and by the presence of asymptomatic 
cases. This motivates our focus on number of deaths in much of the main analy-
sis. In Table 10, we report estimates of the relationship between density and the 
number of cases per 100,000 inhabitants measured 21, 30, 45 and 60 days after 
the 10th reported case in the county. IV estimates for the effect of density on 
time-adjusted cases are similar to estimates reported in Table  4. We conclude 
that the data do not yield any evidence indicating a positive effect of density on 
the spread of the disease.

4  Conclusions

Urban areas are often places of intense social interaction, crowded living and close 
contact. Whether Justinian’s Constantinople, fourteenth century Florence or 1918 
Philadelphia - cities have historically been associated with the propagation of infec-
tious disease. In the first three months of the global COVID-19 pandemic, large, dense 
urban areas around the world such as New York, Madrid and London were identified as 
disease hotspots. Increased awareness of the risks of present and future epidemics has 
understandably prompted a debate about the future of cities. Did density—the defining 
feature of cities—promote the spread of the disease?

Our analysis of the onset of the COVID-19 pandemic in the USA raises a series of 
important points regarding these questions. First, density is associated with an early 
arrival of COVID-19, so that urban cores and superstar cities get a head start on the 
spread of the disease. Second, the subsequent spread—once COVID-19 has arrived—
is not faster or deadlier than in smaller towns or sparsely populated peripheries. Cities 
get hit first, but do not get hit harder. We argue this is one of the reasons why many of 
the early studies of the impact of density on the impact of COVID-19 reported positive 

Fig. 3  Changes in Mobility Relative to January Baseline (2020). Notes The figures plot the daily change 
and local regression curve (LOESS) over time in mobility relative to the January 2020 baseline for 
sparse counties and dense counties, with the split based on median weighted county density. The left 
panel refers to adjustment of workplace-related activity. The middle panel refers to leisure time activities 
including restaurants, cafes, shopping centers, theme parks, museums, libraries, and movie theaters. The 
right panel refers to transit including public transport hubs such as subway, bus, and train stations
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findings. A wider look at the whole period before vaccination began yields a different 
overall view of this relationship.

Several mechanisms may explain these findings. Large cities are intensely inter-con-
nected with other locations, which can explain early onset. In the case of within-city 
spread, different offsetting forces may be at play. Crowding may promote the spread of 
the disease but differences in precautionary measures, access to healthcare and demo-
graphics may contain it. As a result, our findings emphasize the importance of distin-
guishing between differences in spread between and within locations.

Our study contributes to the understanding of how a summary feature of urban 
structure—population density—shapes spread of disease and deaths. The way in which 
other elements or urban form, cities’ transport infrastructure or housing conditions 
(e.g., overcrowding) shaped the impact of the COVID-19 pandemic is not addressed 
here and remains an active area of research (see e.g., Kamis et al. 2021; Borsati et al. 
2022 and Brotherhood et al. 2022).

Appendix

A: Additional figures and tables

See Figs. 4, 5, 6, 7 and Tables 7, 8, 9, 10.
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Fig. 4  Sample counties, COVID-19 and population density
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Fig. 5  Validating Covid-19 figures. Notes In the left panel, the vertical axis represents the log of the offi-
cially confirmed COVID-19 mortality rate per county by the CDC and the horizontal axis the COVID-19 
mortality rate by USAFacts. The right panel plots the USAFacts state-level mortality rate (vertical axis) 
over the excess death estimates by the CDC (horizontal axis). Blue fit lines estimated via Ordinary Least 
Squares including the 95% confidence interval in gray

Fig. 6  Aggregate Daily Number of COVID-19 Deaths (2020). Notes Daily COVID-related deaths 
reported in the USA between February and the 15th of December 2020. Solid line represents moving 
average of daily deaths
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Fig. 7  Cases and Deaths per 100,000 in First-Wave versus Weighted Density. Notes The horizontal axis 
represents the logarithm of the county’s population-weighted density. In the left panel, the vertical axis 
represents the logarithm of the number of cases per 100,000 inhabitants. In the right panel, the vertical 
axis represents the logarithm of the number of fatalities per thousand inhabitants. Black markers corre-
spond to counties forming part of a CBSA. Black fit lines estimated via Ordinary Least Squares

Table 7  Robustness: density and 
deaths

Robustness tests corresponding to Table  3 Panel C, additionally 
controlling for the week of the onset (Panel A) and excluding New 
York State (Panel B). The main explanatory variable in all models 
is the natural logarithm of population density. The dependent vari-
able is the log of the number of deaths per 100,000 inhabitants in a 
county 45 days after the first case. Column (1) corresponds to OLS 
estimates, and column (2) and (3) refer to 2SLS estimates using 
the Geological and Historical instruments, respectively. In all mod-
els, we include controls for average maximum and minimum tem-
peratures, average yearly precipitation, latitude, longitude, distance 
between the county centroid and the closest sea front and distance 
to the closest waterfront. The specifications in columns (2) and (3) 
add state effects. Standard errors in parenthesis are clustered at the 
CBSA level. ***p < 0.01 , **p < 0.05 , * p < 0.1

OLS IV

(A) Controlling for week of onset effects
Log(population density) −0.092** −0.089 0.106

(0.046) (0.173) (0.103)
First-stage F-stat 23.8 60.6
Obs. 1441 1203 1181
(B) Excluding New York state
Log(population density) −0.128** −0.053 0.043

(0.053) (0.125) (0.077)
First-stage F-stat 25.6 60.5
Obs. 1203 1441 1418
Instrument Geological Historical
State effects Yes Yes Yes
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Table 8  Weighted densities: 
onset of the disease and deaths 
after 60 days (2020)

The main explanatory variable in all models is the natural loga-
rithm of weighted density. Panels A and B report the estimates for 
the number of days to the first case and death, respectively. Panel C 
reports the result for the log of the number of deaths per 100,000 
inhabitants in a county, 60 days after the tenth case. Column (1) cor-
responds to OLS estimates, and column (2) presents 2SLS estimates 
using the Historical instrument. In all models, we include controls 
for average maximum and minimum temperatures, average yearly 
precipitation, latitude, longitude, distance between the county cen-
troid and the closest sea front and distance to the closest waterfront. 
The specifications in columns (2) and (3) add state effects. Standard 
errors in parenthesis are clustered at the CBSA level. ***p < 0.01 , 
**p < 0.05 , * p < 0.1

OLS IV

(A) Days to first case
Log(weight. density) −5.867*** −9.789***

(0.573) (1.745)
IV F-stat 27.9
R2 0.44 0.34
Obs. 1759 1733
(B) Days to first fatality
Log(weight. density) −15.886*** −30.336***

(1.205) (7.102)
IV F-stat 20.8
R2 0.32 0.23
Obs. 1667 1642
(C) Log(Deaths per 100,000, 60 days after 10th case)
Log(weight. density) −0.078** 0.090

(0.039) (0.160)
First-stage F-stat 14.7
R2 0.30 0.28
Obs. 1441 1418
Instrument Historical
State effects Yes Yes
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Table 9  Robustness: suggested 
mechanisms and weighted 
densities

Corresponds to Table  5, using the log of weighted density as the 
main explanatory variable

OLS IV

(A) Social connectedness
Log(weight. density) 0.532*** 0.724***

(0.021) (0.091)
IV F-stat 27.7
Obs. 1758 1732
(B) Δ Workplace-related activity
Log(weight. density) −2.968*** −7.501***

(0.200) (1.248)
IV F-stat 15.6
Obs. 1355 1336
(C) Δ Retail-related activity
Log(weight. density) −1.893*** −7.293***

(0.413) (1.765)
IV F-stat 13.0
Obs. 1289 1270
(D) Republican vote share 2016
Log(weight. density) −0.048*** −0.156***

(0.004) (0.023)
IV F-stat 27.9
Obs. 1759 1733
Instrument Historical
State effects Yes Yes



 F. Carozzi et al.

1 3

Table 10  Robustness: cases

The dependent variables are the log of the number of cases 60 days 
per 100,000 inhabitants after the 10th confirmed case. Column (1) 
corresponds to OLS estimates, and column (2) and (3) refer to 2SLS 
estimates using the Geological and Historical instruments, respec-
tively. In all models, we include controls for average maximum and 
minimum temperatures, average yearly precipitation, latitude, longi-
tude, and the distance between the county centroid and the closest 
sea front. The specifications in columns (2) and (3) add state effects. 
Standard errors in parenthesis are clustered at the CBSA level. 
***p < 0.01 , **p < 0.05 , * p < 0.1

OLS IV

(A) Log(cases per 100,000, 21 days after 10th case)
Log(population density) −0.249*** −0.334*** −0.148**

(0.033) (0.110) (0.059)
IV F-stat 25.9 111.0
Obs. 1759 1759 1733
(B) Log(cases per 100,000, 30 days after 10th case)
Log(population density) −0.187*** −0.269** −0.076

(0.035) (0.117) (0.063)
IV F-stat 25.4 109.8
Obs. 1758 1758 1732
(C) Log(cases per 100,000, 45 days after 10th case)
Log(population density) −0.133*** −0.200* −0.047

(0.035) (0.116) (0.066)
IV F-stat 25.3 109.5
Obs. 1757 1757 1731
(D) Log(cases per 100,000, 60 days after 10th case)
Log(population density) −0.107*** −0.145 −0.023

(0.035) (0.111) (0.064)
IV F-stat 25.6 108.6
Obs. 1754 1754 1728
Instrument Geological Historical
State effects Yes Yes Yes
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B: Data sources

• USAfacts.org COVID-19 Data
  USAFacts is a non-profit civic initiative that provides data on the US popula-

tion and government and works in partnership with the Penn Wharton Budget 
Model and the Stanford Institute for Economic Policy Research (SIEPR). The 
data can be retrieved at: https:// usafa cts. org/ visua lizat ions/ coron avirus- covid- 19- 
spread- map/. [Last visited: December 18th 2020]

• CDC Official COVID-19 Mortality Rate This database comprises confirmed 
or presumed COVID-19 fatalities and is limited to counties with at least 10 
COVID-19 deaths. It should be noted, the dataset is incomplete because of 
the time lag between the death and the official certificate submitted to the 
National Center for Health Statistics (NCHS). For this reason, these data cor-
respond to 514 counties only. The latest figures can be downloaded at: https:// 
data. cdc. gov/ NCHS/ Provi sional- COVID- 19- Death- Counts- in- the- United- St/ 
kn79- hsxy. [Last visited: December 18th 2020]

• CDC Excess Mortality Excess mortality corresponds to the deviation of total 
deaths to average expected deaths based on the experience in past years for 
each state. The latest estimates can be downloaded at: https:// www. cdc. gov/ 
nchs/ nvss/ vsrr/ covid 19/ excess_ deaths. htm. [Last visited: December 18th 
2020]

• US Census contains information about demographics on the country level and 
can be accessed via: https:// www. census. gov/ data/ tables/ time- series/ demo/ 
popest/ 2010s- count ies- detail. html. [Last visited: May 14th 2020]

• ‘COVID-19 Community Mobility Reports’ by Google
  This report contains information about the behavioral activity change and 

social distancing in response to the COVID outbreak by county and day. 
For more detail on this database please visit https:// www. google. com/ covid 
19/ mobil ity/ data_ docum entat ion. html? hl= en. [Last visited: December 18th 
2020]

• Social Connectedness Data Obtained after presenting a brief email application 
for the data based on this paper’s outline to Mike Bailey and others at Facebook. 
April 6 2020 Release Version.

• Healthcare and Income Data from The County Health Rankings and Roadmaps 
program contains information on healthcare access and various social and eco-
nomics indicators at the country level and can be accessed via: https:// www. 
count yheal thran kings. org. [Last visited: July 3rd 2020]
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