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Abstract 

Researchers use finite mixture models (FMMs) to analyze linked survey and administrative 
data on labor earnings taking account of various types of measurement error in each data 
source. Different combinations of error-ridden and/or error-free observations characterize 
latent classes. Latent class probabilities depend on the probabilities of the different types of 
error. We introduce a suite of Stata commands to fit FMMs to linked survey-administrative 
data: there is a general model and seven simpler variants. We also provide post-estimation 
commands for assessment of reliability, marginal effects, data simulation, and prediction of 
hybrid variables that combine information from both data sources about the outcome of 
interest. Our software can also be used to study measurement errors in other variables besides 
labor earnings. 
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1 Introduction 

 

Linked datasets are datasets in which reports by respondents to a household survey on a 

variable such as labor earnings are linked to reports on the same variable in an administrative 

dataset (e.g. income tax or social security administration data) for the same respondents. 

Researchers have long used linked datasets to examine measurement errors in the variables of 

interest – to investigate whether they impart bias in the observed measures, how much spurious 

variation they account for, and whether errors are correlated with the ‘true’ measure (a negative 

correlation means that low-earners over-report and high-earners under-report). In the first 

generation of studies, analysts assumed that the linked administrative data provided error-free 

measures; all measurement errors arose in the survey reports. A selective list of examples of 

first generation studies is: Bound and Krueger (1991, about the USA), Bollinger (1998, USA), 

Kristensen and Westergaard-Nielsen (2007, Denmark), and Angel et al. (2019, Austria). A 

small and more recent second generation of studies (cited later in this section) has allowed for 

errors in the administrative data as well. The current paper is a methodological contribution to 

second generation studies: we provide software to fit a wide range of models. The models can 

also be applied to variables other than earnings. 

The statistical models underpinning virtually all second generation studies are Finite 

Mixture Models (FMMs), also known as latent class models. The key idea is that true earnings 

for an individual is unobserved but there are two observed earnings measures available, one 

from the household survey data and one from the linked administrative data. Both measures 

are subject to errors of various types (as explained in section 2), though not all individuals 

experience all types of error. We can classify individuals into a finite number of groups (latent 

classes) according to which types of error their earnings measures contain. Observed earnings 

are a combination (‘mixture’) of the distributions for the latent classes. In sum, the FMMs used 

in second generation studies succinctly describe both the distribution of the ‘true’ (error-free) 

substantive variable of interest and the distributions of each of the latent classes and associated 

class membership probabilities.  

These FMMs cannot be fitted using readily-available software such as Stata’s fmm suite 

of commands because of their specialist nature, and we are unaware of suitable community-

contributed programs for Stata or other software. In this article, we provide and illustrate Stata 
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commands for fitting a general class of FMMs to linked data.1 We also provide post-estimation 

commands for assessment of reliability, marginal effects, data simulation, and prediction of 

hybrid variables that combine information from both data sources about the outcome of 

interest. The outcome of interest may be a variable other than labor earnings, as we discuss in 

section 6.  

The FMMs we propose are generalizations of the second generation models developed 

by Kapteyn and Ypma (2007, KY hereafter). KY’s model was the first to incorporate 

administrative data error in addition to survey measurement error. However, the 

characterization of administrative data error was restricted to linkage ‘mismatch’, i.e., the 

situation in which an individual’s survey response is incorrectly linked to the response for some 

other person in the administrative data. KY’s findings, based on linked earnings data for 

Swedish individuals aged 50+, showed that even a small amount of mismatch error was 

consequential (their linked administrative data were less reliable than their survey data), and 

they found no evidence that low-earners overreported and high-earners underreported their 

earnings (a striking contrast with the findings of first generation studies). However, KY did not 

consider measurement error per se in the administrative data, i.e., error arising in its 

compilation (typically involving reporting by employers to tax or social security authorities).2 

In our companion paper (Jenkins and Rios-Avila, 2021b), we extend KY’s model to 

more general FMMs that include administrative measurement error in addition to linkage 

mismatch and survey measurement error. This is our first innovation. Our second is to allow 

the parameters describing the distributions in our FMMs to vary with individual characteristics. 

This introduces greater flexibility and hence potentially better fits to data. It also provides a 

succinct way to address substantive questions such as: does survey earnings measurement error 

differ between older and younger workers? How does administrative data error differ between 

private- and public-sector employees? Our third contribution is to extend the methods for 

earnings prediction proposed by Meijer, Rohwedder, and Wansbeek (2012, MRW hereafter) 

to our more general models. MRW derived formulae for a number of hybrid earnings predictors 

that combined information from both survey and administrative data, and showed that they 

 
1 More generally, FMMs can take many forms: see for example the semi-parametric heterogeneity model of 
Heckman and Singer (1984) or the latent class models as discussed by Aitkin and Rubin (1985). For a textbook 
overview of conventional FMMs, see Cameron and Trivedi (2007: Section 18.5). 
2 There is a small number of second generation studies that allow for administrative data error in earnings: see 
Abowd and Stinson (2013, using data for the USA), Bingley and Martinello (2017, Denmark), Hyslop and 
Townsend (2020, New Zealand), and Bollinger et al. (2018, USA) who also allow for linkage mismatch. Jenkins 
and Rios-Avila (2020) fit KY models to linked data for the UK. Jenkins and Rios-Avila (2021b) review first and 
generation studies in more detail. 



3 

were more reliable than either the survey or the administrative data measure. However, MRW’s 

illustrations focused entirely on KY’s model and their estimates based on Swedish data.3  

By comparison with Jenkins and Rios-Avila (2021b), the current paper focuses on the 

software development side of our work. As we explain in sections 2 and 3, our general approach 

encompasses eight model specifications, ranging from Model 1 (basic) through to the most 

general Model 8. The empirical examples in this paper relate to Models 1–4 (Model 4 is KY’s 

most general model). Jenkins and Rios-Avila’s (2021b) substantive application uses UK linked 

data on employment earnings for individuals of all ages and focuses discussion on estimates 

from fitting Models 4, 5, 7, and 8. 

In section 2, we describe our FMMs and explain how to fit them using maximum 

likelihood. We present our new commands for estimation and post-estimation analysis in 

section 3. In section 4, we illustrate the commands drawing on KY’s and MRW’s empirical 

analysis and confirm that our software reproduces their estimates. Section 5 contains 

conclusions. The Appendix contains additional results that we draw on in the main text. 

 

2 FMMs for linked survey and administrative data 

 

We set out our FMMs in this section, and assume that the variable of interest is the logarithm 

of the labor earnings of employees (‘earnings’). For each of a large number of individuals in a 

linked dataset, we have an observation pair referring to the worker’s earnings derived from the 

survey data and from the administrative data.  

We assume, following KY, that there is a latent variable ξi that represents the true 

variable of interest (log earnings) for each individual i = 1, …, N. This variable is not observed 

directly but there are two measures of it, each potentially error-ridden: one from administrative 

data, ri, and one from survey data, si.  

 

2.1 Administrative data: three types of observation 

 

We assume the administrative data are a mixture of three types of observation. First, we 

distinguish between observations for whom the record linkage between administrative and 

survey data is correct, which occurs with probability πr, and observations who are mismatched, 

 
3 Our replication of MRW’s analysis using UK linked data (Jenkins and Rios-Avila, 2021a) was also restricted to 
KY models. 
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with probability 1–πr. The administrative data measure for mismatched observations is 𝜁𝜁𝑖𝑖, the 

earnings of some other person in the administrative data. Second, among the correctly-matched 

observations, we assume that the administrative data earnings measure is error-free with 

probability πν, or contains measurement error νi with probability 1–πν. (KY assumed πν = 1.) In 

the case with measurement error, errors may be correlated with true earnings with the 

correlation denoted by ρr. If ρr < 0, we have mean-reverting errors: high-earners under-report 

and low-earners over-report; if ρr > 0, the reverse occurs. The three types of observation, 

labelled R1, R2, and R3, are summarized in eq. (1). 

 

𝑟𝑟𝑖𝑖 = �
𝜉𝜉𝑖𝑖
𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑟𝑟�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉� + 𝜈𝜈𝑖𝑖
𝜁𝜁𝑖𝑖

 
     with probability 
     with probability 
     with probability 

𝜋𝜋𝑟𝑟𝜋𝜋𝜈𝜈   
𝜋𝜋𝑟𝑟(1 − 𝜋𝜋𝜈𝜈)
1 − 𝜋𝜋𝑟𝑟

 
(𝑅𝑅1)
(𝑅𝑅2)
(𝑅𝑅3)

 (1) 

 

2.2 Survey data: three types of observation 

 

We assume the survey data are a mixture of three types of observation (following KY). Type 

S1 respondents are those who report their true earnings: si equals true latent earnings ξi with 

probability πs. The survey earnings of type S2 respondents differ from true earnings by a 

measurement error component representing noise (ηi), plus a mean-reversion component 

allowing for a correlation (ρs) between true earnings and error. A third type, S3, contains 

observations with error-ridden survey earnings (as for type S2), except that there is additional 

‘contamination’ (ωi).4 The probability of contamination is πω. Type S2 occurs with probability 

(1–πs)(1–πω); type S3 occurs with probability (1–πs)πω. The three types of observation are 

summarized in eq. (2).  

 

𝑠𝑠𝑖𝑖 = �
𝜉𝜉𝑖𝑖
𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉� + 𝜂𝜂𝑖𝑖
𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉� + 𝜂𝜂𝑖𝑖 + 𝜔𝜔𝑖𝑖

 
     with probability 
     with probability 
     with probability 

𝜋𝜋𝑠𝑠
(1 − 𝜋𝜋𝑠𝑠)(1 − 𝜋𝜋𝜔𝜔)
(1 − 𝜋𝜋𝑠𝑠)𝜋𝜋𝜔𝜔

 
(𝑆𝑆1)
(𝑆𝑆2)
(𝑆𝑆3)

 (2) 

 

 
4 Kapteyn and Ypma (2007) state that contamination error ‘can be the result of erroneously reporting income as 
annual, whereas the amount is a monthly amount, or vice versa, omitting a second job or working only part of the 
year’ (2007: 528). Jenkins and Rios-Avila (2021b) relabel contamination error as reference period error because, 
in their UK application, a particularly important reason for potential differences between survey and 
administrative data observations is that the reference period for earnings used by the survey differs from the 
reference period in the administrative data. 
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In sum, observations in the linked dataset are a mixture of nine types (latent classes j = 

1,…,9) depending on the combination of administrative and survey observation types. The 

latent class probabilities are πj, j = 1,…,9. For example, group 1 contains observations with the 

combination (R1, S1) with probability π1 = πrπνπs, group 2 contains observations with the 

combination (R1, S2) with probability π2 = πrπν(1–πs)(1–πω), etc. The FMM specification is 

completed by assumptions about the latent class earnings densities, fj(ri, si) for each j = 1,…, 

9. 

We assume that true earnings (ξi), mismatched earnings (ζi), and errors (υi, ηi, ωi) are 

each normally distributed with the exception that true earnings and reference period errors (ωi) 

are bivariate normal. We assume normality (as other researchers do) to fit models by maximum 

likelihood (see below) and because it facilitates post-estimation derivations. 

The distributions are identically distributed and mutually independent (assumptions we 

relax shortly). Thus, the distributions of the factors may be written as: 

�𝜉𝜉𝑖𝑖 𝜔𝜔𝑖𝑖 
� = N��

𝜇𝜇𝜉𝜉
𝜇𝜇𝜔𝜔� ,   �

𝜎𝜎𝜉𝜉
2 𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔

𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔 𝜎𝜎𝜔𝜔2
��, 

𝜁𝜁𝑖𝑖 ~𝑁𝑁�𝜇𝜇𝜁𝜁 , 𝜎𝜎𝜁𝜁2�, 𝜂𝜂𝑖𝑖 ~𝑁𝑁�𝜇𝜇𝜂𝜂 , 𝜎𝜎𝜂𝜂2�, and 𝜈𝜈𝑖𝑖 ~𝑁𝑁(𝜇𝜇𝜈𝜈 , 𝜎𝜎𝜈𝜈2), 

(3) 

where ‘µ’ and ‘σ’ denote mean and standard deviation (SD), respectively, and ρω is the 

correlation between true earnings and contamination. Jenkins and Rios-Avila (2021b) argue 

there are grounds for expecting ρω < 0. (KY assumed ρω = 0.) We do not restrict error means 

to equal zero because errors may introduce systematic bias.  

Table 1 summarises the nine latent classes, their probabilities and densities.  

We allow distributions to vary with observed characteristics by writing transformations 

of model parameters as linear indices of characteristics, i.e., 

𝐺𝐺(𝛾𝛾𝑖𝑖)  =  𝜷𝜷𝛾𝛾′𝒙𝒙𝑖𝑖 (4) 

For each model parameter with generic label γ, where xi is a vector of observed 

characteristics for individual i, including a constant. Transformation function G(.) is the 

identity function for means (µ), the logarithmic function for SDs (σ), the logistic function for 

probabilities (π), and Fisher’s z transformation for correlations (ρ).5 See the next section for 

further details. Some previous research has allowed the mean of true earnings (µξ) to vary with 

characteristics, but not other model parameters. Allowing measurement error distributions to 

 
5 Reversion to the mean in the models with a heterogeneous mean earnings function refers to reversion to the 
mean among individuals with the same observed characteristics. 
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differ across individuals has two advantages. The increased flexibility can improve model fit 

to data and researchers can answer substantive questions by examining whether there are 

differences in parameters (and thence error distributions) across different groups, as stated in 

the Introduction. 

The discussion so far refers to our most general model, which we label Model 8. 

Simpler versions of our general model (Models 1–7) can be fitted using our estimation 

commands, as we explain below, including several of KY’s models. 
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Table 1 Latent class probabilities and distributions 
 
Label, j Combination Latent class probability, πj Latent class distribution densities, fj(ri, si) 

1 R1,S1 𝜋𝜋1 = 𝜋𝜋𝑟𝑟𝜋𝜋𝑣𝑣𝜋𝜋𝑠𝑠 𝑁𝑁��
𝜇𝜇𝜉𝜉
𝜇𝜇𝜉𝜉� ,�

𝜎𝜎𝜉𝜉2 1
1 𝜎𝜎𝜉𝜉2

�� 

2 R1,S2 𝜋𝜋2 = 𝜋𝜋𝑟𝑟𝜋𝜋𝑣𝑣(1 − 𝜋𝜋𝑠𝑠)(1 − 𝜋𝜋𝜔𝜔) 𝑁𝑁��
𝜇𝜇𝜉𝜉

𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜂𝜂� ,�
𝜎𝜎𝜉𝜉2 (1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉2

(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉2 (1 + 𝜌𝜌𝑠𝑠)2𝜎𝜎𝜉𝜉2 + 𝜎𝜎𝜂𝜂2
�� 

3 R1,S3 𝜋𝜋3 = 𝜋𝜋𝑟𝑟𝜋𝜋𝑣𝑣(1 − 𝜋𝜋𝑠𝑠)𝜋𝜋𝜔𝜔 𝑁𝑁��
𝜇𝜇𝜉𝜉

𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜂𝜂 + 𝜇𝜇𝜔𝜔� ,�
𝜎𝜎𝜉𝜉2 (1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉2 + 𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔

(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉2 + 𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔 (1 + 𝜌𝜌𝑠𝑠)2𝜎𝜎𝜉𝜉2 + 𝜎𝜎𝜂𝜂2 + 𝜎𝜎𝜔𝜔2 + 2𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔
�� 

4 R2,S1 𝜋𝜋4 = 𝜋𝜋𝑟𝑟(1 − 𝜋𝜋𝑣𝑣)𝜋𝜋𝑠𝑠 𝑁𝑁��
𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜈𝜈
𝜇𝜇𝜉𝜉 � ,�

(1 + 𝜌𝜌𝑟𝑟)2𝜎𝜎𝜉𝜉2 + 𝜎𝜎𝜈𝜈2 (1 + 𝜌𝜌𝑟𝑟)𝜎𝜎𝜉𝜉2

(1 + 𝜌𝜌𝑟𝑟)𝜎𝜎𝜉𝜉2 𝜎𝜎𝜉𝜉2
�� 

5 R2,S2 𝜋𝜋5 = 𝜋𝜋𝑟𝑟(1 − 𝜋𝜋𝑣𝑣)(1 − 𝜋𝜋𝑠𝑠) (1 − 𝜋𝜋𝜔𝜔) 𝑁𝑁��
𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜈𝜈
𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜂𝜂

� ,�
(1 + 𝜌𝜌𝑟𝑟)2𝜎𝜎𝜉𝜉2 + 𝜎𝜎𝜈𝜈2 (1 + 𝜌𝜌𝑟𝑟)(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉2

(1 + 𝜌𝜌𝑟𝑟)(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉2 (1 + 𝜌𝜌𝑠𝑠)2𝜎𝜎𝜉𝜉2 + 𝜎𝜎𝜂𝜂2
�� 

6 R2,S3 𝜋𝜋6 = 𝜋𝜋𝑟𝑟(1 − 𝜋𝜋𝑣𝑣)(1 − 𝜋𝜋𝑠𝑠)𝜋𝜋𝜔𝜔 𝑁𝑁��
𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜈𝜈

𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜂𝜂 + 𝜇𝜇𝜔𝜔
� ,�

(1 + 𝜌𝜌𝑟𝑟)𝜎𝜎𝜉𝜉2 + 𝜎𝜎𝜈𝜈2 (1 + 𝜌𝜌𝑟𝑟)(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉2 + (1 + 𝜌𝜌𝑟𝑟)𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔
(1 + 𝜌𝜌𝑟𝑟)(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉2 + (1 + 𝜌𝜌𝑟𝑟)𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔 (1 + 𝜌𝜌𝑠𝑠)2𝜎𝜎𝜉𝜉2 + 𝜎𝜎𝜂𝜂2 + 𝜎𝜎𝜔𝜔2 + 2𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔

�  

7 R3,S1 𝜋𝜋7 = (1 − 𝜋𝜋𝑟𝑟)𝜋𝜋𝑠𝑠 𝑁𝑁��
𝜇𝜇𝜁𝜁
𝜇𝜇𝜉𝜉� ,�

𝜎𝜎𝜁𝜁2 0
0 𝜎𝜎𝜀𝜀2

�� 

8 R3,S2 𝜋𝜋8 = (1 − 𝜋𝜋𝑟𝑟)(1 − 𝜋𝜋𝑠𝑠)(1 − 𝜋𝜋𝜔𝜔) 𝑁𝑁��
𝜇𝜇𝜁𝜁

𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜂𝜂� ,�
𝜎𝜎𝜁𝜁2 0
0 (1 + 𝜌𝜌𝑠𝑠)2𝜎𝜎𝜀𝜀2 + 𝜎𝜎𝜂𝜂2

�� 

9 R3,S3 𝜋𝜋9 = (1 − 𝜋𝜋𝑟𝑟)(1 − 𝜋𝜋𝑠𝑠)𝜋𝜋𝜔𝜔 𝑁𝑁��
𝜇𝜇𝜁𝜁

𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜂𝜂 + 𝜇𝜇𝜔𝜔� ,�
𝜎𝜎𝜁𝜁2 0
0 (1 + 𝜌𝜌𝑠𝑠)2𝜎𝜎𝜉𝜉2 + 𝜎𝜎𝜂𝜂2 + 𝜎𝜎𝜔𝜔2 + 2𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔

�� 
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2.3. Estimation 

 

We fit the FMM by maximum likelihood. The general expression for the log-likelihood 

function of our finite mixture is: 

 

log ℒ(𝜽𝜽, π) = � log�𝜋𝜋𝑗𝑗

9

𝑗𝑗=1

𝑓𝑓𝑗𝑗(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖|𝜽𝜽) 
𝑁𝑁

𝑖𝑖=1

, (5) 

 

where we now write each latent class density as conditional on the set of parameters, θ, that 

describe the bivariate distributions, and π = {πr, πs, πυ, πω} are the error probabilities that 

characterize the class probabilities πj.  

The FMM is identified by the assumptions about the relationships between the two 

observed measures and true earnings and the non-normal error structure arising from the 

mixture of distributions: see Kapteyn and Ypma (2007, 532). See also Yakowitz and Spragins 

(1968) who prove that finite mixtures are identifiable if the mixture is of multivariate Gaussian 

distributions, which is the case here. Observe too that, although there are nine latent class 

probabilities, these depend on only four parameters (see Table 1). 

The definition of the first latent class (group 1) also plays an important role. 

Identification uses the assumption that the members of class 1 are ‘completely labeled’ (as KY 

term it). These individuals correctly report their earnings in the survey data, are correctly 

matched to their administrative data records, and there is no error in their administrative 

earnings. Hence, both observed earnings measures equal true earnings, i.e., ri = si = ξi if i ∈ 

class 1. This assumption has two consequences for the log-likelihood function (Redner and 

Walker 1984). 

First, since ri = si, the class 1 distribution degenerates to a univariate normal distribution 

with mean 𝜇𝜇𝜉𝜉 and variance 𝜎𝜎𝜉𝜉
2. Second, because class membership is known for observations 

in this group, the log-likelihood function becomes: 

 

log ℒ𝑖𝑖(𝜽𝜽, π) = � 𝜋𝜋1 log�𝑓𝑓1(𝜉𝜉𝑖𝑖|𝜽𝜽)� + � log��𝜋𝜋𝑗𝑗𝑓𝑓𝑗𝑗(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖|𝜽𝜽)
9

𝑗𝑗=2

�
𝑖𝑖 ∉ class 1

 
𝑖𝑖 ∈ class 1

 (6) 
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In principle, 𝜇𝜇𝜉𝜉 and 𝜎𝜎𝜉𝜉
2 are fully identified using the sample of class 1 observations. In practice, 

the sample of completely labeled observations may be too small for reliable identification of 

these moments. KY’s strategy was to broaden the definition of equality to include observations 

for which survey and administrative earnings were sufficiently ‘close’. This is an empirical 

judgement call.6  

 

3 The ky suite of commands for estimation and post-estimation 

 

This section describes the commands for fitting our general FMM and special cases of it, and 

commands for post-estimation analysis and prediction. We assume the linked dataset is in wide 

format, i.e., with one row per individual. There are variables corresponding to ri and si and also 

(optionally) variables used to define explanatory variables in models with covariates. 

 

3.1 Model estimation: ky_fit  

 

Command ky_fit fits the general FMM and special cases of it. The syntax for the command 

is as follows: 

 
ky_fit r_var s_var [cl_var] [if] [in] [fw pw aw iw] [, model(#) 

options] 

 

where r_var and s_var are required variables. They correspond to the administrative log 

earnings measure ri (r_var) and the survey log earnings measure si (s_var).  

Optionally, you can refer to a binary variable cl_var that identifies observations that 

belong to the completely labeled class. If cl_var is not declared, ky_fit creates a binary 

indicator variable named __ll__ equal to one for observations for which abs(r_var-

s_var)<= #d. The default value of #d is 0, but other values can be declared using delta(#d). 

 model(#) specifies which version of the FMM is fitted. Table 2 lists the model variants 

available, showing for each model the parameter restrictions imposed relative to the most 

general model, and the combinations of types of observation present in the administrative and 

 
6 In their application, KY defined an observation as completely labeled if earnings in the two data sources differed 
by less than 1000 SEK (14.8% of their sample). Jenkins and Rios-Avila (2020), using UK data, assess the 
sensitivity of parameter estimates to different assumptions, varying the fraction of completely labeled observations 
from 0.25% to 16.93%, finding small differences for estimates the latent variable distributions, but some larger 
effects on estimates of the probability of correctly reporting earnings in the survey (πs).  
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survey data. The default specification is Model 1, which assumes error-free administrative data 

plus mean-reverting errors in the survey data (but without contamination). The classical 

measurement error model is Model 1 with µη = 0 and without mean-reverting errors. The most 

general model, described in section 2, corresponds to Model 8. KY’s ‘Full’ model is Model 4. 

Jenkins and Rios-Avila (2021b) focus on Models 4, 5, 7, and 8; Model 5 is the best-fitting 

model in their application. 

 

Table 2. FMM variants and parameter restrictions 
Model Parameter restrictions Types of observation 

#  Administrative data Survey data 
1 𝜇𝜇𝜔𝜔 = 0;𝜎𝜎𝜔𝜔 = 0;𝜋𝜋𝜔𝜔 = 0; 

𝜇𝜇𝜈𝜈 = 0;𝜎𝜎𝜈𝜈 = 0;𝜋𝜋𝜈𝜈 = 1; 
𝜇𝜇𝜁𝜁 = 0;𝜎𝜎𝜁𝜁 = 0;𝜋𝜋𝑟𝑟 = 1; 

𝜌𝜌𝑟𝑟 = 0; 𝜌𝜌𝜔𝜔 = 0 

R1  S1, S2 

2 𝜇𝜇𝜈𝜈 = 0;𝜎𝜎𝜈𝜈 = 0;𝜋𝜋𝜈𝜈 = 1; 
𝜇𝜇𝜁𝜁 = 0;𝜎𝜎𝜁𝜁 = 0;𝜋𝜋𝑟𝑟 = 1; 

𝜌𝜌𝑟𝑟 = 0; 𝜌𝜌𝜔𝜔 = 0 

R1 S1, S2, S3 

3 𝜇𝜇𝜈𝜈 = 0;𝜎𝜎𝜈𝜈 = 0;𝜋𝜋𝜈𝜈 = 1;𝜌𝜌𝑟𝑟 = 0; 
𝜇𝜇𝜔𝜔 = 0;𝜎𝜎𝜔𝜔 = 0;𝜋𝜋𝜔𝜔 = 0;𝜌𝜌𝜔𝜔 = 0 

R1, R2  S1, S2 

4 𝜇𝜇𝜈𝜈 = 0;𝜎𝜎𝑣𝑣 = 0;𝜋𝜋𝑣𝑣 = 1;𝜌𝜌𝑟𝑟 = 0; 
 𝜌𝜌𝜔𝜔 = 0 

R1, R3 S1, S2, S3 

5 𝜌𝜌𝜔𝜔 = 0 R1, R2, R3  S1, S2, S3 
6 𝜇𝜇𝜔𝜔 = 0;𝜎𝜎𝜔𝜔 = 0;𝜋𝜋𝜔𝜔 = 0;𝜌𝜌𝜔𝜔 = 0 R1, R2, R3 S1, S2 
7 𝜇𝜇𝜈𝜈 = 0;𝜎𝜎𝜈𝜈 = 0;𝜋𝜋𝜈𝜈 = 1;𝜌𝜌𝑟𝑟 = 0 R1, R3 S1, S2, S3 
8 No restrictions R1, R2, R3 S1, S2, S3 

 

Optionally, you can specify the parameters of any of the models listed in Table 2 as 

functions of covariates, as described by eq. (4). Table 3 provides a walkthrough of the estimated 

parameters, the parameter-specific options in ky_fit for declaring covariates, and the internal 

transformation used for maximization. If a model-specific parameter is constrained (as 

described by table 2), a declaration of covariates for that parameter is ignored. Because 

parameters (apart from means) are fitted in a transformed metric, they need to be back-

transformed to see them in their ‘natural’ metric, and margins does this: see section 3.3. 
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Table 3. Options to allow parameters to be functions of covariates 
Parameter ky_fit option Transformation 

𝜇𝜇𝜉𝜉 mu_e(varlist) Identity 
𝜎𝜎𝜉𝜉  ln_sig_e(varlist) 𝜎𝜎𝜉𝜉 = exp(ln_sig_e) 
𝜇𝜇𝜔𝜔 mu_w(varlist) Identity 
𝜎𝜎𝜔𝜔 ln_sig_w(varlist) 𝜎𝜎𝜔𝜔 = exp(ln_sig_w) 
𝜇𝜇𝜂𝜂 mu_n(varlist) Identity 
𝜎𝜎𝜂𝜂 ln_sig_n(varlist) 𝜎𝜎𝜂𝜂 = exp(ln_sig_n) 
𝜇𝜇𝜈𝜈 mu_v(varlist) Identity 
𝜎𝜎𝜈𝜈 ln_sig_v(varlist) 𝜎𝜎𝜈𝜈 = exp(ln_sig_n) 
𝜇𝜇𝜁𝜁 mu_t(varlist) Identity 
𝜎𝜎𝜁𝜁 ln_sig_t(varlist) 𝜎𝜎𝜁𝜁 = exp(ln_sig_n) 
𝜌𝜌𝑟𝑟 arho_r(varlist) 𝜌𝜌𝑟𝑟 = tanh(arho_r) 
𝜌𝜌𝑠𝑠 arho_s(varlist) 𝜌𝜌𝑠𝑠 = tanh(arho_s) 
𝜌𝜌𝜔𝜔 arho_w(varlist) 𝜌𝜌𝜔𝜔 = tanh(arho_w) 
𝜋𝜋𝑟𝑟 lpi_r(varlist) 𝜋𝜋𝑟𝑟 = logistic(lpi_r) 
𝜋𝜋𝑠𝑠 lpi_s(varlist) 𝜋𝜋𝑠𝑠 = logistic(lpi_s) 
𝜋𝜋𝜔𝜔 lpi_w(varlist) 𝜋𝜋𝜔𝜔 = logistic(lpi_w) 
𝜋𝜋𝜈𝜈 lpi_v(varlist) 𝜋𝜋𝜈𝜈 = logistic(lpi_v) 

 

Our code fits models in sequential fashion using ml: we use the parameter estimates of 

simpler (more restricted) models as starting values for more flexible models. Additional 

restrictions on model specifications can be applied using constraint(). To use other initial 

values, ml options search() and repeat() are available. You can also provide specific initial 

values for model parameters using option from().  

We recommend that you experiment with multiple sets of initial values in order to check 

that the more complex models converge to a global maximum rather than some local maximum. 

This is a well-known issue for FMM models and occasionally arose in in our own work (Jenkins 

and Rios-Avila 2021b) when fitting Models 4–8 with many covariates. Our sequential fitting 

approach reduces the risk of convergence to local maxima but cannot remove it altogether (that 

is impossible). 

ky_fit also allows the use of maximization options technique(), trace, and 

difficult. 

fweights, pweights, aweights, and iweights are allowed. 

ky_fit reports standard errors derived from asymptotic theory by default. Optionally 

you may use robust and cluster(cluster_var). 
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3.2 Post-estimation tools: ky_estat 

 

ky_estat is a post-estimation commalnd that provides summary statistics for a fitted model. 

It is integrated with Stata’s built-in post-estimation command estat, and has the following 

syntax: 

 
estat [pr_t pr_i pr_sr pr_all reliability xirel, sim reps(int 50)] 

 

Option pr_t reports error probabilities πr, πs, πυ, and πω;  

Option pr_j reports latent class probabilities π1 through π9;  

Option pr_sr reports the probabilities of each observation type S1–S3 and R1–R3.  

Option pr_all reports all probabilities.  

 

For models without covariates; estat reports error probabilities in their original metric 

(rather than the metric used for estimation). If you specify error probabilities as functions of 

covariates, estat reports average predicted probabilities. 

If the error probabilities are modeled without covariates, option reliability produces 

a full report of all unconditional probabilities. It also reports two reliability summary statistics 

for each of the survey and administrative data, based on the analytically predicted variances of 

the observed earnings data (ri, si), and their covariances with (model-specific) estimated true 

latent earnings (ξi). The two reliability statistics are: 

𝑅𝑅1𝑟𝑟 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝑟𝑟𝑖𝑖)
𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖)

 ; 𝑅𝑅1𝑠𝑠 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝑠𝑠𝑖𝑖)
𝑉𝑉𝑉𝑉𝑟𝑟(𝑠𝑠𝑖𝑖)

 
(7) 

and 

𝑅𝑅2𝑟𝑟 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝑟𝑟𝑖𝑖)2

𝑉𝑉𝑉𝑉𝑟𝑟(𝜉𝜉𝑖𝑖)𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖)
 ; 𝑅𝑅2𝑠𝑠 =

𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝑠𝑠𝑖𝑖)2

𝑉𝑉𝑉𝑉𝑟𝑟(𝜉𝜉𝑖𝑖)𝑉𝑉𝑉𝑉𝑟𝑟(𝑠𝑠𝑖𝑖)
 

(8) 

 

R1 is analogous to the reliability statistic reported for the classical measurement error model 

with mean-reversion, and is equal to the slope coefficient from a (hypothetical) regression of 

true earnings on the observed earnings measure (Bound and Krueger 1991: 9). Its values may 

be greater than one. R2, a more conventional psychometric measure of reliability (and used by 

MRW), is the squared correlation between true earnings and an observed earnings measure. 

We present analytical expressions for unconditional variance and covariances for Model 8 in 

the Appendix. Expressions for simpler model variants are special cases of these. 
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If you model error probabilities as functions of covariates, option reliability 

produces simulation-based reliability estimates. Use option reps(#) to specify the number of 

replications (the default is 50 replications). For reproducibility, set the seed using seed(#). 

You can also request simulation-based reliability statistics using option sim even if 

error probabilities have not been declared as functions of covariates. 

The final post-estimation option is xirel. This uses simulated data to estimate the 

reliability statistics, mean squared error (MSE), bias, and variance of bias of the seven latent 

earnings predictors proposed by MRW (see the next section). This option also produces 

corresponding statistics for the observed administrative and survey measures. Use reps(#) 

and seed(#) to set the number of replications and seed. 

 

3.3 Post-estimation predictions and marginal effects: ky_p 

 

ky_p is a post-estimation program for obtaining predictions for all relevant parameters of 

FMMs, and is integrated with Stata’s post-estimation commands predict and margins. Table 

4 lists the options available. The analytical formulae for the constructed moments correspond 

to those listed in table 1. 
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Table 4. ky_p options compatible with predict and margins 
 

Option Description 
Structural parameters  
mean_e, mean_n, mean_w, 
mean_t 

Conditional means of latent variables ξ, η, ω, and ζ, 
respectively 

sig_e, sig_n, sig_w, sig_t Conditional SDs of latent variables ξ, η, ω, and ζ, 
respectively 

pi_s, pi_r, pi_w, pi_v Error probabilities  
rho_s, rho_r Mean-reversion parameters for survey data (ρs) and 

administrative data (ρr) 
rho_w Conditional correlation between latent true earnings 

(ξ) and contamination (ω)  
Constructed moments  
mean_r1, mean_r2, mean_r3 Mean of administrative earnings: R1, R2, R3 

respectively 
sig_r1, sig_r1, sig_r1 SD of administrative earnings: R1, R2, R3 respectively 
pi_r1, pi_r2, pi_r3 Probability of belonging to type R1, R2, R3 

respectively 
mean_s1, mean_s2, mean_s3 Mean of survey earnings: S1, S2, S3 respectively 
sig_s1, sig_s2, sig_s3 SD of survey earnings: S1, S2, S3 respectively 
pi_s1, pi_s2, pi_s3 Probability of belonging to type S1, S2, S3 

respectively 
pj_1, ..., pj_9 Probability of belonging to latent class j = 1, …, 9 

Notes. When models 3, 4, and 6 are chosen, mean_r2, sig_r2, and pi_r2, produce estimates for R3 
because type R2 observations are absent. 

 

Table 5 lists the options that are compatible with predict alone (because they are 

functions of the variables ri and si), providing a description and definition. They cannot be used 

with margins. The options include predictions of posterior class probabilities and Bayesian 

classifications based on the posterior probabilities.  

The posterior or conditional probability of observation 𝑖𝑖 belonging to a given class, say 

class 2, is defined as the product of the unconditional probability of belonging to class 2 and 

the ratio of the likelihood of observation i belonging to class 2, divided by the sum of the 

likelihoods of observation i belonging to all classes (2 through 9). Given the posterior 

probabilities, the Bayesian classifier assigns each observation to the class for which the 

posterior probability is greatest. For all variants of our FMMs, the conditional probability of 

belonging to class 1 is equal to 1 if the observation belongs to the completely labeled group 

and 0 otherwise.  
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Table 5. ky_p options compatible with predict only 
Option Description Definition 
pip_r1, 
pip_r2, pip_r3 

Posterior probability of 
belonging to R1, R2, or R3 𝜋𝜋𝑅𝑅𝑗𝑗(𝑟𝑟𝑖𝑖) = 𝜋𝜋𝑅𝑅𝑗𝑗 ∗

𝑓𝑓𝑅𝑅1(𝑟𝑟𝑖𝑖|𝜽𝜽)
 ∑ 𝑓𝑓𝑅𝑅𝑘𝑘(𝑟𝑟𝑖𝑖|𝜽𝜽)3

𝑘𝑘=1
 

pip_s1, 
pip_s2, pip_s3 

Posterior probability of 
belonging to S1, S2, or S3  𝜋𝜋𝑆𝑆𝑗𝑗(𝑠𝑠𝑖𝑖) = 𝜋𝜋𝑆𝑆𝑗𝑗 ∗

𝑓𝑓𝑆𝑆1(𝑠𝑠𝑖𝑖|𝜽𝜽)
 ∑ 𝑓𝑓𝑆𝑆𝑘𝑘(𝑠𝑠𝑖𝑖|𝜽𝜽)3

𝑘𝑘=1
 

pip_1, pip_2, 
..., pip_9 

Posterior probability of 
belonging to class j = 1, …, 9 𝜋𝜋𝑗𝑗(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖) = 𝜋𝜋𝑗𝑗 ∗

𝑓𝑓𝑗𝑗(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖|𝜽𝜽)
 ∑ 𝑓𝑓𝑘𝑘(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖|𝜽𝜽)9

𝑘𝑘=2
 

bclass_r, 
bclass_s 

Bayesian classification of 
observation 𝑖𝑖 to type R1, R2, or 
R3, and to type S1, S2, or S3, 
respectively 

𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 = 𝑗𝑗 if 𝜋𝜋𝑋𝑋𝑗𝑗(𝑥𝑥𝑖𝑖) > 𝜋𝜋𝑋𝑋ℎ(𝑥𝑥𝑖𝑖) 
∀ℎ ≠ 𝑗𝑗 & 𝑏𝑏 ∈ {𝑅𝑅, 𝑆𝑆} & 𝑥𝑥 ∈ {𝑟𝑟, 𝑠𝑠}   

bclass Bayesian classification of 
observation 𝑖𝑖 to class j = 1, …, 9 

𝑏𝑏𝑏𝑏𝑖𝑖 = 𝑗𝑗 if 𝜋𝜋𝑗𝑗(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖) > 𝜋𝜋ℎ(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖) 
∀ℎ ≠ 𝑗𝑗  

 

Finally, you can use predict to obtain seven different predictors of each individual’s 

latent true earnings (ξi) using option star. The methods, proposed by MRW and extended by 

us to our general FMM, combine information from both administrative and survey data. The 

syntax of the option is as follows: 

 
predict prefix, star [replace surv_only] 

 

The new variables are named using prefix and consecutive integers from 1 to 7 and 

are created as data type double. To replace existing variable values, use option replace; 

surv_only requests the same predictors for the situation in which you have access to survey 

data only (as well as model estimates).  

We describe the predictors (‘hybrid’ earnings variables) in Table 6, with derivations of 

the formulae presented in the Appendix. Predictors 1 to 6 use two within-class predictions for 

𝜉𝜉. The first set 𝜉𝜉𝑖𝑖
𝑗𝑗, used for predictors 1, 3, and 5, minimize the Mean Squared Error (MSE), 

𝐸𝐸 ��𝜉𝜉𝑖𝑖 − 𝜉𝜉𝑖𝑖
𝑗𝑗�
2

|𝜉𝜉𝑖𝑖, 𝑖𝑖 ∈ 𝐽𝐽�. The second set of predictors, 𝜉𝜉𝑖𝑖
𝑈𝑈𝑗𝑗, used for cases 2, 5, and 6, minimize 

the MSE conditional on 𝐸𝐸�𝜉𝜉𝑖𝑖 − 𝜉𝜉𝑖𝑖
𝑈𝑈𝑗𝑗| 𝑖𝑖 ∈ 𝐽𝐽� = 0. Predictors 1 and 2 provide weighted predictors 

using the unconditional within-class probabilities πj. Predictors 3 and 4 provide weighted 

predictors using conditional or posterior within-class probabilities 𝜋𝜋𝑗𝑗(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖). Finally, predictors 

5 and 6 use the two-step Bayesian classification. The seventh predictor (𝜉𝜉7𝑖𝑖) is the system-wide 
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predictor that minimizes MSE under the assumption of linearity and imposing the condition of 

unbiasedness.  

 

Table 6. Seven predictors of latent true earnings  
Variable Name Predictor description Definition 
[prefix]1 Weighted unconditional  

𝜉𝜉1𝑖𝑖 = �𝜋𝜋𝑗𝑗

9

𝑗𝑗=1

𝜉𝜉𝑖𝑖
𝑗𝑗 

[prefix]2 Weighted unconditional and unbiased  
𝜉𝜉2𝑖𝑖 = �𝜋𝜋𝑗𝑗

9

𝑗𝑗=1

𝜉𝜉𝑖𝑖
𝑈𝑈𝑗𝑗 

[prefix]3 Weighted conditional  
𝜉𝜉3𝑖𝑖 = �𝜋𝜋𝑗𝑗(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖)

9

𝑗𝑗=1

𝜉𝜉𝑖𝑖
𝑗𝑗 

[prefix]4 Weighted conditional and unbiased  
𝜉𝜉4𝑖𝑖 = �𝜋𝜋𝑗𝑗(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖)

9

𝑗𝑗=1

𝜉𝜉𝑖𝑖
𝑈𝑈𝑗𝑗 

[prefix]5 Two-step  
𝜉𝜉5𝑖𝑖 = �(𝑏𝑏𝑏𝑏𝑖𝑖 = 𝑗𝑗)

9

𝑗𝑗=1

𝜉𝜉𝑖𝑖
𝑗𝑗  

[prefix]6 Two-step unbiased  
𝜉𝜉6𝑖𝑖 = �(𝑏𝑏𝑏𝑏𝑖𝑖 = 𝑗𝑗)

9

𝑗𝑗=1

𝜉𝜉𝑖𝑖
𝑈𝑈𝑗𝑗 

[prefix]7 System-wide, linear 𝜉𝜉7𝑖𝑖 = �̂�𝜇𝜉𝜉 + 𝚺𝚺𝝃𝝃𝝃𝝃 𝚺𝚺𝝃𝝃−𝟏𝟏�𝝃𝝃𝒊𝒊 − 𝝁𝝁�𝝃𝝃|𝒙𝒙 �, 
𝝃𝝃𝒊𝒊 = [𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖] 

Note: 𝜉𝜉𝑖𝑖
𝑗𝑗  is the within-class predictor that minimizes 𝐸𝐸 ��𝜉𝜉𝑖𝑖 − 𝜉𝜉𝑖𝑖

𝑗𝑗�
2

|𝜉𝜉𝑖𝑖 , 𝑖𝑖 ∈ 𝐽𝐽�. 𝜉𝜉𝑖𝑖
𝑈𝑈𝑗𝑗is the within-class predictor 

that minimizes MSE under the condition 𝐸𝐸�𝜉𝜉𝑖𝑖 − 𝜉𝜉𝑖𝑖
𝑈𝑈𝑗𝑗| 𝑖𝑖 ∈ 𝐽𝐽� = 0.  𝚺𝚺𝝃𝝃𝝃𝝃 is the covariance matrix between 𝜉𝜉𝑖𝑖 and 

(𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖). 𝚺𝚺𝝃𝝃−𝟏𝟏 corresponds to the variance-covariance matrix of (𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖). 𝝁𝝁�𝝃𝝃|𝒙𝒙  is the system-wide expected value for 
(𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖). See MRW and the Appendix for further details. 
 

3.4. Data simulation: ky_sim 

 

ky_sim is a utility command for simulating data based on the data generating process 

characterized by the fitted FMM, as described in section 2 and table 2. The new dataset contains 

simulated values of si and ri for each individual.  

ky_sim simulates the joint distribution of administrative and survey log earnings in two 

ways. The first way allows you to simulate data by selecting the FMM that characterizes the 

data generating function, setting the number of observations to be contained in the simulated 

dataset, and providing values for each of the parameters that characterize the given model 

variant. Model parameters are constant across observations – it corresponds to the specification 

of models without covariates. The syntax for this option is as follows: 
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ky_sim, model(#) nobs(#) [ options] 

 

model(#) specifies the model that characterizes the data generating function, where # 

identifies one of the 8 models listed in table 2.  

nobs(#) sets the number of observations in the dataset to be created. 

seed(#) sets the random-number seed to be used for the simulation of the data. 

If there is an unsaved dataset in memory, ky_sim will not generate the new simulated 

data unless option clear is specified. 

You must specify values for the following parameters, with the specification depending 

on model selected: 

 

Means:   mean_e(#) mean_n(#) mean_t(#) mean_w(#) mean_v(#) 

SDs:    sig_e(#) sig_n(#) sig_t(#) sig_w(#) sig_v(#) 

Correlations:   rho_r(#) rho_s(#) rho_w(#) 

Error probabilities:  pi_s(#) pi_w(#) pi_r(#) pi_v(#) 

 

If you specify a parameter value that is not required for the model selected, it is ignored. 

For example, a value for rho_w(#) is ignored if data are simulated using any model other than 

Models 7 or 8. 

When the program is used in this way, it also stores information in e(), so you can use 

the other post-estimation commands described earlier. 

The second way to use ky_sim is as a post-estimation command. In this case, ky_sim 

generates simulated data using parameter estimates from a previously-fitted model as well as 

the data currently in memory. Command syntax in this case is: 

 
ky_sim [, options] 

 

If ky_sim is specified without any options directly after fitting a model with ky_fit, 

simulated data are created using the parameters from this previously-fitted model.  

 Alternatively, you can use parameters from a previously-fitted model that have been 

stored in memory using estimates store or saved to disk using estimates save, using the 

options est_sto() or est_sav(). If you retrieve the stored or saved estimates to use with 

ky_sim, and a model with covariates had been fitted, all the relevant covariates must be 

available in the dataset currently in memory.  
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The option prefix(str) allows specification of the prefix for the names of the newly-

created variables. If nothing is declared, the program uses the variable name prefix ‘_’. Option 

replace, enables the program to overwrite variables if they already exist in the dataset, and 

option seed(#) allows you to set the seed for replication purposes. 

Depending on the model chosen, ky_sim creates the variables shown in Table 7. 

 

Table 7. Variables created using ky_sim 
Variable name Description 
[prefix]e_var Latent true log(earnings) 
[prefix]n_var Factor ηi  (survey data measurement error) 
[prefix]w_var Factor ωi (survey data contamination) 
[prefix]v_var Factor νi (administrative data measurement error) 
[prefix]t_var Mismatched log earnings ζi 
[prefix]pi_ri = 1 if data are linked correctly 
[prefix]pi_vi = 1 if administrative data have no mean-reverting error  
[prefix]pi_si = 1 if survey data are reported correctly 
[prefix]pi_wi = 1 if survey data contain contamination  
[prefix]r_var Administrative log(earnings) 
[prefix]s_var Survey log(earnings) 
[prefix]l_var = 1 if ri and si are error free 
Notes. prefix is empty if ky_sim is used as a post-estimation command. If nothing is 
specified, prefix = ‘_’ when using the second way to simulate data. 

 

 

4 Illustrations: estimation and post-estimation 

 

This section shows how to use the commands described in the previous section, revisiting the 

pioneering second generation study by KY and MRW’s companion paper, showing how to 

reproduce their estimates. We do not have access to KY’s confidential linked dataset, and so 

we simulate their data using the parameter estimates they report, and then analyze the data 

using the commands described earlier.  

We start by setting the parameter estimates for KY’s ‘Full’ (most general) model, 

reported in KY’s table C2, based on a sample of size 400. We use globals; you could also use 

locals or scalars. 

 
global mean_e  12.283 

global mean_t   9.187 

global mean_w (-0.304) 

global mean_n (-0.048) 

global sig_e    0.717 
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global sig_t    1.807 

global sig_w    1.239 

global sig_n    0.099  

global pi_r     0.959 

global pi_s     0.152 

global pi_w     0.156 

global rho_s  (-0.013) 

 

KY’s Full model corresponds to Model 4 of our FMM variants (see table 2). We use 

option model(4), and set the sample size with nobs(400). Since ky_sim stores all the 

information in e(), we can also store that information in memory with estimates store and 

use it as a benchmark later. 

 
ky_sim, seed(101) nobs(400) model(4)   ///  

mean_e($mean_e) mean_t($mean_t) mean_w($mean_w) /// 

mean_n($mean_n) sig_e($sig_e) sig_t($sig_t) ///  

sig_w($sig_w) sig_n($sig_n)   /// 

pi_r($pi_r) pi_s($pi_s) pi_w($pi_w) rho_s($rho_s) clear 

 

estimates store model0 

 

Using the simulated dataset, we can fit all of the (simpler) models that are reported in 

KY’s table C2 in addition to their Full model (our model 4). KY’s ‘Basic’ model corresponds 

to our Model 1 with the additional restriction that µη = 0. Their ‘no-mismatch’ and ‘no-

contamination’ models correspond to our models 2 and 3.  

 
constraint 1 [mu_n]_cons = 0 

ky_fit r_var s_var l_var, model(1) constraint(1) 

estimates store model1 

ky_fit r_var s_var l_var, model(2)  

estimates store model2 

ky_fit r_var s_var l_var, model(3)  

estimates store model3  

ky_fit r_var s_var l_var, model(4)  

estimates store model4  

estimates table model0 model4 model3 model2 model1  
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Table 8 shows that parameter estimates derived from the simulated data are close to those 

reported by KY; so too are standard errors and log-likelihood values. The transformation of the 

mean-reversion correlation (arho_s) is large and statistically significant in the Basic model, but 

is much smaller for other models. The largest difference across models is in the estimate of 

ln_sig_w. We attribute this to the random nature of the simulated dataset. 

 
Table 8. Estimates of KY models based on simulated data 

 KY Full 
Model 

Simulated data 

  Full model No contamination No mismatch Basic Model 
mu_e 12.283 12.349 (0.034) 12.306 (0.038) 12.240 (0.048) 12.246 (0.037) 
mu_n –0.048 –0.061 (0.006) –0.062 (0.006) –0.059 (0.006) 0.000 (.) 
mu_w –0.304 –0.344 (0.148)   0.479 (0.284)   
mu_t 9.187 8.586 (0.678) 11.622 (0.256)     
ln_sig_e –0.333 –0.406 (0.036) –0.285 (0.036) –0.047 (0.035) –0.047 (0.035) 
ln_sig_n –2.313 –2.295 (0.048) –2.270 (0.047) –2.268 (0.046) –0.449 (0.038) 
ln_sig_w 0.592 –0.026 (0.112)   0.731 (0.100)   
ln_sig_t 0.214 0.501 (0.315) 0.622 (0.098)     
arho_s –0.013 –0.022 (0.010) –0.015 (0.010) –0.026 (0.010) –0.680 (0.054) 
lpi_r 3.152 3.520 (0.335) 1.838 (0.159)     
lpi_s –1.719 –1.844 (0.148) –1.708 (0.150) –1.879 (0.147) –1.879 (0.147) 
lpi_w –1.688 –1.784 (0.189)   –1.683 (0.161)   
logℒ  –543.0  –595.5  –695.5  –1041.8  

Notes. Standard errors in parentheses. Sample size = 400. 
 

Table 8 reports estimated parameters (other than means) in a transformed metric. We 

use margins to obtain estimates of the parameters in their natural metric. To illustrate this, we 

focus on the estimates from the Full model derived from simulated data. 

 
margins, predict(mean_e) predict(sig_e) /// 

predict(mean_t) predict(sig_t) /// 
predict(mean_w) predict(sig_w) /// 
predict(mean_n) predict(sig_n)  /// 
predict(pi_r) predict(pi_s) /// 
predict(pi_w) predict(rho_s) 

 
[output partially omitted] 

 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      Z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    _predict | 
          1  |   12.34936   .0335341   368.26   0.000     12.28364    12.41509 
          2  |   .6659948    .023718    28.08   0.000     .6195083    .7124813 
          3  |   8.586231   .6782982    12.66   0.000     7.256791    9.915671 
          4  |   1.650615   .5192742     3.18   0.001     .6328562    2.668374 
          5  |  -.3435237   .1479331    -2.32   0.020    -.6334672   -.0535803 
          6  |   .9747349   .1089581     8.95   0.000     .7611809    1.188289 
          7  |  -.0608566   .0063531    -9.58   0.000    -.0733084   -.0484048 
          8  |   .1007999   .0048806    20.65   0.000      .091234    .1103657 
          9  |   .9712426   .0093542   103.83   0.000     .9529088    .9895765 
         10  |   .1365808   .0174403     7.83   0.000     .1023985    .1707632 
         11  |   .1437948   .0233102     6.17   0.000     .0981077    .1894819 
         12  |  -.0220813   .0097204    -2.27   0.023     -.041133   -.0030297 
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------------------------------------------------------------------------------ 

 
If you specify a model in which parameters depend on explanatory variables, margins 

can also be used to obtain average predictive margins (APMs) of those parameters and to test 

contrasts. For example, suppose your ky_fit command specifies that the log of the survey 

measurement error SD depends on a binary indicator variable for the respondent’s sex using 

the option ln_sig_v(i.female), and that women are coded with female = 1 and men with 

female = 0. The following margins commands provide APM estimates of  σν, first for the 

sample as a whole and, second, separately by sex. The third command provides a test of the 

difference between the APMs for sex. 

 
margins, predict(sig_v)  

margins female, predict(sig_v) 

margins female, predict(sig_v) pwcompare(effect) 

 

The first command derives the value of σν for every observation from the fitted model, with 

values of explanatory variables (female in this case) set at their sample values, and then reports 

the average over the sample of the derived σν values, as well as the associated standard error. 

The second command provides separate estimates for men and women. It calculates the APM 

of  σν for female = 0 by first setting all sample values of female to 0 and then averaging over 

the whole sample. (If other explanatory variables had been included in the equation – not the 

case here – they would be left at their sample values.) The command calculates the APM of   

σν for female = 1 analogously.7 The third command provides the test of the binary contrast in 

APMs. You can also use other pairwise and contrast options (help margins). 

Let us now return to KY’s Full model estimates, and consider the reliability of the 

survey and administrative data. MRW showed how to investigate reliability using a simulation-

based method as well as by using analytical solutions (implied by the estimated model). MRW 

illustrated their methods using KY’s estimates, showing that their survey data were more 

reliable than their administrative data, attributing this to the small but consequential prevalence 

of linkage mismatch.  

 
7 margins, predict(sig_v) over(female) provides an alternative calculation. This derives estimates in 
the same way as the first command, except that the averaging is done separately for men and for women. In our 
experience, the estimates derived using this approach are very similar to those derived using the second 
command’s approach. 
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The reliability statistics reported in MRW’s table 6 can be obtained using our post-

estimation commands and the estimates reported by KY. For this illustration, we compare 

simulation-based and analytical reliability statistics using estat reliability and estat 

reliability, sim. We also use Ben Jann’s (2007) esttab utility, part of his estout package, 

for reporting results. We first show the code. Table 9 summarizes the results. 
 

ky_sim, seed(101) nobs(400) model(4) /// 
mean_e($mean_e) mean_t($mean_t) mean_w($mean_w) /// 
mean_n($mean_n) sig_e($sig_e) sig_t($sig_t) /// 
sig_w($sig_w) sig_n($sig_n) /// 
pi_r($pi_r) pi_s($pi_s) pi_w($pi_w) rho_s($rho_s) clear 

 
quietly: estat reliability 
matrix rel_analytical = r(rel) 
quietly: estat reliability, sim reps(100) seed(10) 
matrix rel_simulation = r(rel) 
esttab matrix(rel_analytical, fmt(4)) using table9, /// 

mtitle("Analytical Statistics") rtf replace b(4) 
esttab matrix(rel_simulation, fmt(4)) using table9, /// 

mtitle("Simulation Statistics") rtf append b(4) 
 
 

Table 9. Reliability statistics: replication of MRW’s Table 6 
 

Derivation method Var Cov Rel1 Rel2 
Analytical     
  Administrative data 1.0038 0.4930 0.4912 0.4710 
  Survey data 0.7257 0.5084 0.7006 0.6929 
Simulation 
  Administrative data 0.9947 0.4866 0.4892 0.4662 
  Survey data 0.7169 0.5055 0.7051 0.6981 

 

 Table 9 shows that corresponding analytical and simulation-based statistics are similar. 

According to both derivation methods, we conclude that the survey data are more reliable than 

the administrative data, even though the mismatch probability is only 4.1%. The ‘analytical’ 

statistics are the same as those reported in MRW’s table 6. 

 MRW’s main contribution was derivation of expressions for multiple predictors of 

latent true log earnings that combine information from survey and administrative measures 

with FMM estimates. To obtain observation-specific values for MRW’s seven predictors, use 

the star option to predict. To evaluate the statistical performance of the various predictors 

(assuming the data generating process represented by model estimates is correct), we use post-

estimation command estat xirel. Internally, this calls on ky_sim to simulate data, and 

predict, star to obtain the predictions.  
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estat xirel, seed(10) reps(1000) 
 
            Rel1       Rel2        MSE    E(Bias)  Var(Bias) 
r_var     0.5040     0.4847     0.5492    -0.1267     0.5331 
s_var     0.7033     0.6954     0.2293    -0.0803     0.2228 
  e_1     0.5632     0.5406     0.4358    -0.1192     0.4216 
  e_2     0.5627     0.5428     0.4356    -0.1181     0.4216 
  e_3     1.0007     0.9776     0.0115     0.0001     0.0115 
  e_4     0.9866     0.9720     0.0146     0.0001     0.0146 
  e_5     0.9866     0.9724     0.0144    -0.0010     0.0144 
  e_6     0.9780     0.9681     0.0169    -0.0014     0.0169 
  e_7     1.0012     0.7593     0.1241     0.0004     0.1241 

 

The outputs for e_1 to e_7 correspond closely to what is shown in MRW’s table 6. Observe the 

extremely good statistical performance of these predictors, especially e_3 through e_6 (see our 

table 6 for details of their definitions).  

 

5 Conclusions 

 

This paper introduces a new set of commands for estimation and post-estimation 

analysis of measurement error models for linked survey and administrative data. Our FMM 

specifications are those proposed by Jenkins and Rios-Avila (2021b) that extend those 

proposed by KY. In particular, we allow for measurement error in the administrative data, as 

well as linkage mismatch and measurement error in the survey data. We also provide a suite of 

post-estimation commands for simulation, assessing reliability, and deriving highly-reliable 

hybrid earnings predictors of latent true earnings, building on the work of MRW. As Abowd 

and Stinson have pointed out, such predictors ‘could be used by statistical agencies to produce 

a measure of “true earnings” […], a valuable measure for researchers that would allow agencies 

to release information from administrative data while limiting confidentiality concerns’ (2013: 

1467). 

Although our discussion has referred to labor earnings, our programs could also be used 

to examine measurement errors in other income variables. For example, Kapteyn and Ypma 

(2007) fitted their models to linked data on pensions and tax payments as well as employment 

earnings. Our approach could potentially be applied to other continuous variables such as 

height and body weight. (For example, a researcher may have, for each of a large number of 

study participants, a self-reported measure of height or weight and a measure taken by a 

specialist interviewer: cf. Cawley 2004.) A researcher has to decide before using our software 
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whether it is appropriate to assume that the unobserved true distribution of the concept of 

interest is normally distributed.  

We hope that our software will help researchers compare measurement error processes 

over time and across countries using a common approach that is based on a relatively general 

model. Linked datasets are becoming more commonly available. One limitation of our models 

is that they refer to cross-sectional data. We do not exploit the additional information provided 

by longitudinal linked datasets, as done in different ways by, e.g., Abowd and Stinson (2013), 

Bollinger et al. (2018), and Hyslop and Townsend (2020). Adding longitudinal features to our 

FMM models is a task for future research. 
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7 Programs and supplemental materials 

 

Our software suite works with Stata version 14 or later. To install a snapshot of the 

corresponding software files as they existed at the time of publication of the article, type 

 
net sj XX-X 

net install stxxxx  (to install program files, if available) 

net get stxxxx  (to install ancillary files, if available) 
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9 Appendix  

 

This appendix contains three sections. Section A1 discusses the relationship between 

conditional and unconditional correlations for a pair of random variables. Section A2 provides 

expressions for expected values (means), variances, and covariances for the components in our 

general FMM. Section A3 provides expressions for hybrid earnings predictors of latent true 

earnings for our general model, building on MRW’s work. 

 

A1. Unconditional and conditional correlations between variables  

 

Consider two random variables 𝑒𝑒𝑖𝑖 and 𝑢𝑢𝑖𝑖 defined as follows: 

𝑒𝑒𝑖𝑖 = 𝜇𝜇𝑒𝑒|𝒙𝒙 + 𝜀𝜀𝑖𝑖,𝑒𝑒;𝑢𝑢𝑖𝑖 = 𝜇𝜇𝑢𝑢|𝒙𝒙 + 𝜀𝜀𝑖𝑖,𝑢𝑢 

�
𝜀𝜀𝑖𝑖,𝑒𝑒
𝜀𝜀𝑖𝑖,𝑢𝑢�~𝑁𝑁 ��00� , � 𝜎𝜎𝑒𝑒2 𝜌𝜌𝜎𝜎𝑒𝑒𝜎𝜎𝑢𝑢

𝜌𝜌𝜎𝜎𝑒𝑒𝜎𝜎𝑢𝑢 𝜎𝜎𝑢𝑢2
�� 

where 𝜇𝜇𝑘𝑘|𝒙𝒙 = 𝐸𝐸(𝑘𝑘𝑖𝑖|𝒙𝒙) for ki ∈ {ei, ui} and 𝒙𝒙 is a vector of observed characteristics for 

individual i = 1,…, N. Based on the law of total variance, and assuming �𝜀𝜀𝑖𝑖,𝑒𝑒 , 𝜀𝜀𝑖𝑖,𝑢𝑢� are 

independently distributed from 𝒙𝒙, we have: 

𝑉𝑉𝑉𝑉𝑟𝑟(𝑘𝑘𝑖𝑖) = 𝐸𝐸�𝑉𝑉𝑉𝑉𝑟𝑟(𝑘𝑘𝑖𝑖|𝒙𝒙)� + 𝑉𝑉𝑉𝑉𝑟𝑟�𝐸𝐸(𝑘𝑘𝑖𝑖|𝒙𝒙)� 

𝑉𝑉𝑉𝑉𝑟𝑟(𝑘𝑘𝑖𝑖) = 𝜎𝜎𝑘𝑘2 + 𝑉𝑉𝑉𝑉𝑟𝑟�𝜇𝜇𝑘𝑘|𝒙𝒙� for 𝑘𝑘𝑖𝑖 ∈  {𝑒𝑒𝑖𝑖,𝑢𝑢𝑖𝑖} 

Similarly, using the law of total covariance we have: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑒𝑒𝑖𝑖,𝑢𝑢𝑖𝑖) = 𝐸𝐸�𝐶𝐶𝐶𝐶𝐶𝐶(𝑒𝑒𝑖𝑖,𝑢𝑢𝑖𝑖|𝒙𝒙)� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝐸𝐸(𝑒𝑒𝑖𝑖|𝒙𝒙),𝐸𝐸(𝑢𝑢𝑖𝑖|𝒙𝒙)� 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑒𝑒𝑖𝑖,𝑢𝑢𝑖𝑖) = 𝜌𝜌𝜎𝜎𝑒𝑒𝜎𝜎𝑢𝑢 + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝑒𝑒|𝒙𝒙, 𝜇𝜇𝑢𝑢|𝒙𝒙� 

Thus, even if 𝑒𝑒𝑖𝑖 and 𝑢𝑢𝑖𝑖 are conditionally uncorrelated, their unconditional correlation may be 

non-zero. 
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A2 Expected values, variances, and covariances for the general FMM 

 

We provide expressions for the moments of the administrative data and the survey data, in turn.  

 

A2.1 Administrative data 

 

The data structure for administrative data is: 

𝑟𝑟𝑖𝑖 = �
𝑟𝑟1,𝑖𝑖 = 𝜉𝜉𝑖𝑖
𝑟𝑟2,𝑖𝑖 = 𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑟𝑟�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜈𝜈𝑖𝑖
𝑟𝑟3,𝑖𝑖 = 𝜁𝜁𝑖𝑖

 
with probability 
with probability 
with probability 

𝜋𝜋𝑟𝑟1 = 𝜋𝜋𝑟𝑟𝜋𝜋𝑣𝑣
𝜋𝜋𝑟𝑟2 = 𝜋𝜋𝑟𝑟(1 − 𝜋𝜋𝑣𝑣)
𝜋𝜋𝑟𝑟3 = 1 − 𝜋𝜋𝑟𝑟

� 

The data generating process for the latent variables is: 

 �
𝜉𝜉𝑖𝑖
𝜈𝜈𝑖𝑖
𝜁𝜁𝑖𝑖
� = 𝑁𝑁��

𝜇𝜇𝜉𝜉|𝒙𝒙
𝜇𝜇𝜈𝜈|𝒙𝒙
𝜇𝜇𝜁𝜁|𝒙𝒙

� , �
𝜎𝜎𝜉𝜉
2 0 0

0 𝜎𝜎𝜈𝜈2 0
0 0 𝜎𝜎𝜁𝜁2

�� 

where 𝜇𝜇𝛾𝛾|𝒙𝒙 can be expressed as a linear function of 𝒙𝒙, for each  𝛾𝛾 ∈ {𝜉𝜉, 𝜈𝜈, 𝜁𝜁}. 

 

Unconditional moments by data type (class) 

 

Class 1: 𝑟𝑟1,𝑖𝑖 = 𝜉𝜉𝑖𝑖 

Expected value:  

𝐸𝐸�𝑟𝑟1,𝑖𝑖� = 𝜇𝜇𝜉𝜉  

Variance: 

𝑉𝑉𝑉𝑉𝑟𝑟�𝑟𝑟1,𝑖𝑖� = 𝑉𝑉𝑉𝑉𝑟𝑟(𝜉𝜉𝑖𝑖) = 𝜎𝜎𝜉𝜉
2 + 𝑉𝑉𝑉𝑉𝑟𝑟�𝜇𝜇𝜉𝜉|𝒙𝒙� 

Covariance with 𝜉𝜉𝑖𝑖:  

𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖, 𝑟𝑟1,𝑖𝑖� = 𝑉𝑉𝑉𝑉𝑟𝑟(𝜉𝜉𝑖𝑖) = 𝜎𝜎𝜉𝜉
2 + 𝑉𝑉𝑉𝑉𝑟𝑟�𝜇𝜇𝜉𝜉|𝒙𝒙� 

 

Class 2: 𝑟𝑟2,𝑖𝑖 = 𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑟𝑟�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝑋𝑋� + 𝜈𝜈𝑖𝑖 

Expected value:  

𝐸𝐸�𝑟𝑟2,𝑖𝑖� = 𝐸𝐸�𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑟𝑟�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜈𝜈𝑖𝑖� 

= 𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜈𝜈  

Variance: 

𝑉𝑉𝑉𝑉𝑟𝑟�𝑟𝑟2,𝑖𝑖� = 𝑉𝑉𝑉𝑉𝑟𝑟�𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑟𝑟�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜈𝜈𝑖𝑖� 

= 𝑉𝑉𝑉𝑉𝑟𝑟�𝜇𝜇𝜉𝜉|𝒙𝒙 + (1 + 𝜌𝜌𝑟𝑟)�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜈𝜈𝑖𝑖� 
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= 𝜎𝜎𝜇𝜇𝜉𝜉|𝒙𝒙
2 + (1 + 𝜌𝜌𝑟𝑟)2𝜎𝜎𝜉𝜉

2 + 𝑉𝑉𝑉𝑉𝑟𝑟(𝜈𝜈𝑖𝑖) + 2 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝒙𝒙, 𝜇𝜇𝜈𝜈|𝒙𝒙� 

Covariance with 𝜉𝜉𝑖𝑖: 

𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖, 𝑟𝑟2,𝑖𝑖� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑟𝑟�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜈𝜈𝑖𝑖� 

= 𝑉𝑉𝑉𝑉𝑟𝑟(𝜉𝜉𝑖𝑖) + 𝜌𝜌𝑟𝑟𝜎𝜎𝜉𝜉
2 + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝑋𝑋 ,𝜇𝜇𝜈𝜈|𝒙𝒙� 

= 𝑉𝑉𝑉𝑉𝑟𝑟�𝜇𝜇𝜉𝜉|𝒙𝒙� + (1 + 𝜌𝜌𝑟𝑟)𝜎𝜎𝜉𝜉
2 + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝑋𝑋 ,𝜇𝜇𝜈𝜈|𝒙𝒙� 

Class 3: 𝑟𝑟3,𝑖𝑖 = 𝜁𝜁𝑖𝑖  

Expected value:  

𝐸𝐸�𝑟𝑟3,𝑖𝑖� = 𝐸𝐸(𝜁𝜁𝑖𝑖) = 𝜇𝜇𝜁𝜁 

Variance: 

 𝑉𝑉𝑉𝑉𝑟𝑟�𝑟𝑟3,𝑖𝑖� = 𝑉𝑉𝑉𝑉𝑟𝑟(𝜁𝜁𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑟𝑟�𝜇𝜇𝜁𝜁|𝒙𝒙� + 𝜎𝜎𝜁𝜁2  

Covariance with 𝜉𝜉𝑖𝑖:  

𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖, 𝑟𝑟3,𝑖𝑖� = 𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝜁𝜁𝑖𝑖) = 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝒙𝒙, 𝜇𝜇𝜁𝜁|𝒙𝒙� 

 

Moments for administrative data, overall: 

Expected value: 

𝐸𝐸(𝑟𝑟𝑖𝑖) = 𝜋𝜋𝑟𝑟1𝐸𝐸�𝑟𝑟1,𝑖𝑖� + 𝜋𝜋𝑟𝑟2𝐸𝐸�𝑟𝑟2,𝑖𝑖� + 𝜋𝜋𝑟𝑟3𝐸𝐸�𝑟𝑟3,𝑖𝑖� 

= 𝜋𝜋𝑟𝑟1𝜇𝜇𝜉𝜉 + 𝜋𝜋𝑟𝑟2�𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜈𝜈� + 𝜋𝜋𝑟𝑟3𝜇𝜇𝜁𝜁  

= �𝜋𝜋𝑟𝑟1 + 𝜋𝜋𝑟𝑟2�𝜇𝜇𝜉𝜉 + 𝜋𝜋𝑟𝑟2𝜇𝜇𝜈𝜈 + 𝜋𝜋𝑟𝑟3𝜇𝜇𝜁𝜁 

Variance: 

𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖) = �𝜋𝜋𝑟𝑟𝑗𝑗

3

𝑗𝑗=1

𝑉𝑉𝑉𝑉𝑟𝑟�𝑟𝑟𝑗𝑗,𝑖𝑖� + 𝑉𝑉𝑉𝑉𝑟𝑟 �𝐸𝐸�𝑟𝑟𝑗𝑗,𝑖𝑖�� 

where: 

𝑉𝑉𝑉𝑉𝑟𝑟 �𝐸𝐸�𝑟𝑟𝑗𝑗,𝑖𝑖�� = �𝜋𝜋𝑟𝑟𝑗𝑗

3

𝑗𝑗=1

�𝐸𝐸�𝑟𝑟𝑗𝑗,𝑖𝑖� − 𝐸𝐸(𝑟𝑟𝑖𝑖)�
2
 

Covariance with 𝜉𝜉𝑖𝑖: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝑟𝑟𝑖𝑖) = �𝜋𝜋𝑟𝑟𝑗𝑗𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖 , 𝑟𝑟𝑗𝑗,𝑖𝑖�
3

𝑗𝑗

 

 

A2.2 Survey data 

 

The data structure for survey data is: 
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𝑠𝑠𝑖𝑖 = �
𝑠𝑠1,𝑖𝑖 = 𝜉𝜉𝑖𝑖
𝑠𝑠2,𝑖𝑖 = 𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜂𝜂𝑖𝑖
𝑠𝑠3,𝑖𝑖 = 𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜂𝜂𝑖𝑖 + 𝜔𝜔𝑖𝑖

 
with probability 
with probability 
with probability 

𝜋𝜋𝑠𝑠1 = 𝜋𝜋𝑠𝑠
𝜋𝜋𝑠𝑠2 = (1 − 𝜋𝜋𝑠𝑠)(1 − 𝜋𝜋𝜔𝜔)
𝜋𝜋𝑠𝑠3 = (1 − 𝜋𝜋𝑠𝑠)𝜋𝜋𝜔𝜔

� 

 

The data generating process for the latent variables is: 

�
𝜉𝜉𝑖𝑖
𝜂𝜂𝑖𝑖
𝜔𝜔𝑖𝑖

� = 𝑁𝑁��
𝜇𝜇𝜉𝜉|𝒙𝒙
𝜇𝜇𝜂𝜂|𝒙𝒙
𝜇𝜇𝜔𝜔|𝒙𝒙

� , �
𝜎𝜎𝜉𝜉
2 0 𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔

0 𝜎𝜎𝜈𝜈2 0
𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔 0 𝜎𝜎𝜔𝜔2

�� 

 

where 𝜇𝜇𝛾𝛾|𝒙𝒙  can be expressed as a linear function of 𝒙𝒙 for each γ ∈ {𝜉𝜉, 𝜈𝜈, 𝜁𝜁}. 

 

Unconditional moments by data class 

 

Class 1: 𝑠𝑠1,𝑖𝑖 = 𝜉𝜉𝑖𝑖 

Expected value:  

𝐸𝐸�𝑠𝑠1,𝑖𝑖� = 𝜇𝜇𝜉𝜉  

Variance: 

𝑉𝑉𝑉𝑉𝑟𝑟�𝑠𝑠1,𝑖𝑖� = 𝑉𝑉𝑉𝑉𝑟𝑟(𝜉𝜉𝑖𝑖) = 𝜎𝜎𝜉𝜉
2 + 𝑉𝑉𝑉𝑉𝑟𝑟�𝜇𝜇𝜉𝜉|𝒙𝒙� 

Covariance with 𝜉𝜉𝑖𝑖:  

𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖, 𝑠𝑠1,𝑖𝑖� = 𝑉𝑉𝑉𝑉𝑟𝑟(𝜉𝜉𝑖𝑖) = 𝜎𝜎𝜉𝜉
2 + 𝑉𝑉𝑉𝑉𝑟𝑟�𝜇𝜇𝜉𝜉|𝒙𝒙� 

 

Class 2: 𝑠𝑠2,𝑖𝑖 = 𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜂𝜂𝑖𝑖 

Expected value:  

𝐸𝐸�𝑠𝑠2,𝑖𝑖� = 𝐸𝐸�𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜂𝜂𝑖𝑖� 

= 𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜂𝜂  

Variance: 

𝑉𝑉𝑉𝑉𝑟𝑟�𝑠𝑠2,𝑖𝑖� = 𝑉𝑉𝑉𝑉𝑟𝑟�𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜂𝜂𝑖𝑖� 

= 𝑉𝑉𝑉𝑉𝑟𝑟�𝜇𝜇𝜉𝜉|𝒙𝒙 + (1 + 𝜌𝜌𝑠𝑠)�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜂𝜂𝑖𝑖� 

= 𝜎𝜎𝜇𝜇𝜉𝜉|𝒙𝒙
2 + (1 + 𝜌𝜌𝑠𝑠)2𝜎𝜎𝜉𝜉

2 + 𝑉𝑉𝑉𝑉𝑟𝑟(𝜂𝜂𝑖𝑖) + 2 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝒙𝒙, 𝜇𝜇𝜂𝜂|𝒙𝒙� 

Covariance with 𝜉𝜉𝑖𝑖: 

𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖, 𝑠𝑠2,𝑖𝑖� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖, 𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜂𝜂𝑖𝑖� 
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= 𝑉𝑉𝑉𝑉𝑟𝑟(𝜉𝜉𝑖𝑖) + 𝜌𝜌𝑠𝑠𝜎𝜎𝜉𝜉
2 + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝒙𝒙, 𝜇𝜇𝜂𝜂|𝒙𝒙� 

= 𝑉𝑉𝑉𝑉𝑟𝑟�𝜇𝜇𝜉𝜉|𝒙𝒙� + (1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉
2 + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝒙𝒙, 𝜇𝜇𝜂𝜂|𝒙𝒙� 

 

Class 3: 𝑠𝑠3,𝑖𝑖 = 𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜂𝜂𝑖𝑖 + 𝜔𝜔𝑖𝑖 

Expected value:  

𝐸𝐸�𝑠𝑠3,𝑖𝑖� = 𝐸𝐸�𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜂𝜂𝑖𝑖 + 𝜔𝜔𝑖𝑖� 

= 𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜂𝜂 + 𝜇𝜇𝜔𝜔 

Variance: 

𝑉𝑉𝑉𝑉𝑟𝑟�𝑠𝑠3,𝑖𝑖� = 𝑉𝑉𝑉𝑉𝑟𝑟�𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜂𝜂𝑖𝑖 + 𝜔𝜔𝑖𝑖� 

= 𝑉𝑉𝑉𝑉𝑟𝑟�𝜇𝜇𝜉𝜉|𝒙𝒙 + (1 + 𝜌𝜌𝑠𝑠)�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜂𝜂𝑖𝑖 + 𝜔𝜔𝑖𝑖� 

= 𝜎𝜎𝜇𝜇𝜉𝜉|𝒙𝒙
2 + (1 + 𝜌𝜌𝑠𝑠)2𝜎𝜎𝜉𝜉

2 + 𝑉𝑉𝑉𝑉𝑟𝑟(𝜂𝜂𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑟𝑟(𝜔𝜔𝑖𝑖) + 2 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝒙𝒙, 𝜇𝜇𝜂𝜂|𝒙𝒙�

+ 2 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝒙𝒙, 𝜇𝜇𝜔𝜔|𝒙𝒙� + 2(1 + 𝜌𝜌𝑠𝑠)𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔 + 2 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜔𝜔|𝒙𝒙, 𝜇𝜇𝜂𝜂|𝒙𝒙� 

Covariance with 𝜉𝜉𝑖𝑖: 

𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖, 𝑠𝑠3,𝑖𝑖� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖, 𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠�𝜉𝜉𝑖𝑖 − 𝜇𝜇𝜉𝜉|𝒙𝒙� + 𝜂𝜂𝑖𝑖 + 𝜔𝜔𝑖𝑖� 

= 𝑉𝑉𝑉𝑉𝑟𝑟(𝜉𝜉𝑖𝑖) + 𝜌𝜌𝑠𝑠𝜎𝜎𝜉𝜉
2 + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝒙𝒙, 𝜇𝜇𝜂𝜂|𝒙𝒙� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝒙𝒙, 𝜇𝜇𝜔𝜔|𝒙𝒙� + 𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔 

= 𝑉𝑉𝑉𝑉𝑟𝑟�𝜇𝜇𝜉𝜉|𝒙𝒙� + (1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉
2 + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝒙𝒙, 𝜇𝜇𝜂𝜂|𝒙𝒙� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝜉𝜉|𝒙𝒙, 𝜇𝜇𝜔𝜔|𝒙𝒙� + 𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔 

 

Moments for survey data, overall: 

Expected value: 

𝐸𝐸(𝑠𝑠𝑖𝑖) = 𝜋𝜋𝑠𝑠1𝐸𝐸�𝑠𝑠1,𝑖𝑖� + 𝜋𝜋𝑠𝑠2𝐸𝐸�𝑠𝑠2,𝑖𝑖� + 𝜋𝜋𝑠𝑠3𝐸𝐸�𝑠𝑠3,𝑖𝑖� 

= 𝜋𝜋𝑠𝑠1𝜇𝜇𝜉𝜉 + 𝜋𝜋𝑠𝑠2�𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜂𝜂� + 𝜋𝜋𝑠𝑠3�𝜇𝜇𝜉𝜉 + 𝜇𝜇𝜂𝜂 + 𝜇𝜇𝜔𝜔� 

= 𝜇𝜇𝜉𝜉 + �𝜋𝜋𝑠𝑠2 + 𝜋𝜋𝑠𝑠3�𝜇𝜇𝜂𝜂 + 𝜋𝜋𝑠𝑠3𝜇𝜇𝜔𝜔 

Variance: 

𝑉𝑉𝑉𝑉𝑟𝑟(𝑠𝑠𝑖𝑖) = �𝜋𝜋𝑠𝑠𝑗𝑗

3

𝑗𝑗=1

𝑉𝑉𝑉𝑉𝑟𝑟�𝑠𝑠𝑗𝑗,𝑖𝑖� + 𝑉𝑉𝑉𝑉𝑟𝑟 �𝐸𝐸�𝑠𝑠𝑗𝑗,𝑖𝑖�� 

where: 

𝑉𝑉𝑉𝑉𝑟𝑟 �𝐸𝐸�𝑟𝑟𝑗𝑗,𝑖𝑖�� = �𝜋𝜋𝑠𝑠𝑗𝑗

3

𝑗𝑗=1

�𝐸𝐸�𝑠𝑠𝑗𝑗,𝑖𝑖� − 𝐸𝐸(𝑠𝑠𝑖𝑖)�
2
 

Covariance with 𝜉𝜉𝑖𝑖 
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𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝑠𝑠𝑖𝑖) = �𝜋𝜋𝑠𝑠𝑗𝑗𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖, 𝑠𝑠𝑗𝑗,𝑖𝑖�
3

𝑗𝑗

 

 

A2.3 Conditional moments by data class 

 

Table A1. Mean and variance of 𝒓𝒓𝒊𝒊 and 𝒔𝒔𝒊𝒊, conditional on 𝒙𝒙, by class 

Data type 𝐸𝐸(. |𝒙𝒙) or 𝜇𝜇.|𝒙𝒙 𝑉𝑉𝑉𝑉𝑟𝑟(. |𝒙𝒙) 𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖 , . |𝒙𝒙) 

𝑟𝑟1,𝑖𝑖 𝜇𝜇𝜉𝜉|𝒙𝒙 𝜎𝜎𝜉𝜉
2 𝜎𝜎𝜉𝜉

2 

𝑟𝑟2,𝑖𝑖 𝜇𝜇𝜉𝜉|𝒙𝒙 + 𝜇𝜇𝜈𝜈|𝒙𝒙 (1 + 𝜌𝜌𝑟𝑟)2𝜎𝜎𝜉𝜉
2 + 𝜎𝜎𝜈𝜈2 (1 + 𝜌𝜌𝑟𝑟)𝜎𝜎𝜉𝜉

2 

𝑟𝑟3,𝑖𝑖 𝜇𝜇𝜁𝜁|𝒙𝒙 𝜎𝜎𝜁𝜁2 0 

𝑠𝑠1,𝑖𝑖 𝜇𝜇𝜉𝜉|𝒙𝒙 𝜎𝜎𝜉𝜉
2 𝜎𝜎𝜉𝜉

2 

𝑠𝑠2,𝑖𝑖 𝜇𝜇𝜉𝜉|𝒙𝒙 + 𝜇𝜇𝜂𝜂|𝒙𝒙 (1 + 𝜌𝜌𝑠𝑠)2𝜎𝜎𝜉𝜉
2 + 𝜎𝜎𝜂𝜂2 (1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉

2 

𝑠𝑠3,𝑖𝑖 𝜇𝜇𝜉𝜉|𝒙𝒙 + 𝜇𝜇𝜂𝜂|𝒙𝒙 + 𝜇𝜇𝜔𝜔|𝒙𝒙 (1 + 𝜌𝜌𝑠𝑠)2𝜎𝜎𝜉𝜉
2 + 𝜎𝜎𝜂𝜂2 + 𝜎𝜎𝜔𝜔2

+ 2(1 + 𝜌𝜌𝑠𝑠)𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔 

(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉
2 + 𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔 

 

Table A2. Covariance between 𝒓𝒓𝒊𝒊 and 𝒔𝒔𝒊𝒊, conditional on 𝒙𝒙, by class 

𝐶𝐶𝐶𝐶𝐶𝐶(. |𝒙𝒙)  𝑠𝑠1,𝑖𝑖 𝑠𝑠2,𝑖𝑖 𝑠𝑠3,𝑖𝑖 

𝑟𝑟1,𝑖𝑖 𝜎𝜎𝜉𝜉2 (1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉2 (1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉2 + 𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔 

𝑟𝑟2,𝑖𝑖 (1 + 𝜌𝜌𝑟𝑟)𝜎𝜎𝜉𝜉2 (1 + 𝜌𝜌𝑟𝑟)(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉2 (1 + 𝜌𝜌𝑟𝑟)(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜀𝜀2 + (1 + 𝜌𝜌𝑟𝑟)𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔 

𝑟𝑟3,𝑖𝑖 0 0 0 

 

Overall covariance conditional on 𝒙𝒙 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖|𝒙𝒙) = ��𝜋𝜋𝑟𝑟ℎ𝜋𝜋𝑠𝑠𝑘𝑘

3

𝑘𝑘=1

𝐶𝐶𝐶𝐶𝐶𝐶�𝑟𝑟ℎ,𝑖𝑖, 𝑠𝑠𝑘𝑘,𝑖𝑖|𝒙𝒙�
3

ℎ=1

 

But because 𝐶𝐶𝐶𝐶𝐶𝐶�𝑟𝑟3,𝑖𝑖, 𝑠𝑠𝑘𝑘,𝑖𝑖|𝒙𝒙� = 0 ∀ 𝑘𝑘 = 1,2,3, this becomes: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖|𝒙𝒙) = 𝜋𝜋𝑟𝑟1 �𝜋𝜋𝑠𝑠1𝜎𝜎𝜉𝜉
2 + 𝜋𝜋𝑠𝑠2(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉

2 + 𝜋𝜋𝑠𝑠3 �(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉
2 + 𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔��

+ 𝜋𝜋𝑟𝑟2 �𝜋𝜋𝑠𝑠1(1 + 𝜌𝜌𝑟𝑟)𝜎𝜎𝜉𝜉
2 + 𝜋𝜋𝑠𝑠2(1 + 𝜌𝜌𝑟𝑟)(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜉𝜉

2

+ 𝜋𝜋𝑠𝑠3 �(1 + 𝜌𝜌𝑟𝑟)(1 + 𝜌𝜌𝑠𝑠)𝜎𝜎𝜀𝜀2 + (1 + 𝜌𝜌𝑟𝑟)𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔�� 

= 𝜋𝜋𝑟𝑟1��1 + �𝜋𝜋𝑠𝑠2 + 𝜋𝜋𝑠𝑠3�𝜌𝜌𝑠𝑠�𝜎𝜎𝜉𝜉
2 + 𝜋𝜋𝑠𝑠3𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔�

+ 𝜋𝜋𝑟𝑟2��1 + �𝜋𝜋𝑠𝑠2 + 𝜋𝜋𝑠𝑠3�𝜌𝜌𝑠𝑠�(1 + 𝜌𝜌𝑟𝑟)𝜎𝜎𝜉𝜉
2 + 𝜋𝜋𝑠𝑠3(1 + 𝜌𝜌𝑟𝑟)𝜌𝜌𝜔𝜔𝜎𝜎𝜉𝜉𝜎𝜎𝜔𝜔� 
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Overall unconditional covariance: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖|𝒙𝒙) + 𝐶𝐶𝐶𝐶𝐶𝐶�𝜇𝜇𝑟𝑟|𝒙𝒙, 𝜇𝜇𝑠𝑠|𝒙𝒙� 

where 

𝜇𝜇𝑟𝑟|𝒙𝒙 = 𝐸𝐸(𝑟𝑟𝑖𝑖|𝒙𝒙) = �𝜋𝜋𝑟𝑟1 + 𝜋𝜋𝑟𝑟2�𝜇𝜇𝜉𝜉|𝒙𝒙 + 𝜋𝜋𝑟𝑟2𝜇𝜇𝜈𝜈|𝒙𝒙 + 𝜋𝜋𝑟𝑟3𝜇𝜇𝜁𝜁|𝒙𝒙 

𝜇𝜇𝑠𝑠|𝒙𝒙 =  𝜇𝜇𝜉𝜉|𝒙𝒙 + �𝜋𝜋𝑠𝑠2 + 𝜋𝜋𝑠𝑠3�𝜇𝜇𝜂𝜂|𝒙𝒙 + 𝜋𝜋𝑠𝑠3𝜇𝜇𝜔𝜔|𝒙𝒙 
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A3 Predictors of latent true earnings 

 

Following MRW, we differentiate between within-class predictors and a system-wide 

predictor. For the second case, we consider the simplest scenario of prediction under linearity. 

 

System-wide predictor under linearity 

Consider two measures 𝑟𝑟𝑖𝑖 and 𝑠𝑠𝑖𝑖, which are manifest measures of latent true earnings, 𝜉𝜉𝑖𝑖, but 

are measured with error. Without loss of generality, assume that 𝜇𝜇𝑘𝑘 = 𝜇𝜇𝑘𝑘|𝑋𝑋 = 0. A predictor 

for the latent variable, 𝜉𝜉𝑖𝑖, can be derived as a linear combination as follows: 

𝜉𝜉𝑖𝑖 = 𝜃𝜃1𝑟𝑟𝑖𝑖 + 𝜃𝜃2𝑠𝑠𝑖𝑖 (A1) 

The system-wide predictor will be characterized given a set of weights 𝜃𝜃1 and 𝜃𝜃2 that minimize 

the MSE between the predictor and the true latent variable 𝜉𝜉𝑖𝑖. 

min
𝜃𝜃1,𝜃𝜃2

𝑀𝑀𝑆𝑆𝐸𝐸 =  𝐸𝐸 ��𝜉𝜉𝑖𝑖 − 𝜉𝜉𝑖𝑖�
2
� = 𝐸𝐸([𝜉𝜉𝑖𝑖 − (𝜃𝜃1𝑟𝑟𝑖𝑖 + 𝜃𝜃2𝑠𝑠𝑖𝑖)]2) (A2) 

The first-order conditions are: 
𝜕𝜕𝑀𝑀𝑆𝑆𝐸𝐸
𝜕𝜕𝜃𝜃1

= 𝐸𝐸([𝜉𝜉𝑖𝑖 − 𝜃𝜃1𝑟𝑟𝑖𝑖 − 𝜃𝜃2𝑠𝑠𝑖𝑖]𝑟𝑟𝑖𝑖) 

= 𝐸𝐸(𝜉𝜉𝑖𝑖𝑟𝑟𝑖𝑖 − 𝜃𝜃1𝑟𝑟𝑖𝑖2 − 𝜃𝜃2𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖) 

= 𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝑟𝑟𝑖𝑖) − 𝜃𝜃1𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖) − 𝜃𝜃2𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖) = 0 

 

(A3) 

𝜕𝜕𝑀𝑀𝑆𝑆𝐸𝐸
𝜕𝜕𝜃𝜃2

= 𝐸𝐸([ 𝜉𝜉𝑖𝑖 − 𝜃𝜃1𝑟𝑟𝑖𝑖 − 𝜃𝜃2𝑠𝑠𝑖𝑖]𝑠𝑠𝑖𝑖) 

= 𝐸𝐸(𝜉𝜉𝑖𝑖𝑠𝑠𝑖𝑖 − 𝜃𝜃1𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖 − 𝜃𝜃2𝑠𝑠𝑖𝑖2) 

= 𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝑠𝑠𝑖𝑖) − 𝜃𝜃1𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖) − 𝜃𝜃2𝑉𝑉𝑉𝑉𝑟𝑟(𝑠𝑠𝑖𝑖2) = 0 

(A4) 

Solving the system of equations given by (A3) and (A4) we have: 

�𝐶𝐶𝐶𝐶𝐶𝐶
(𝜉𝜉𝑖𝑖, 𝑟𝑟𝑖𝑖)

𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝑠𝑠𝑖𝑖)
� = � 𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖) 𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖)

𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖) 𝑉𝑉𝑉𝑉𝑟𝑟(𝑠𝑠𝑖𝑖)
� �𝜃𝜃1𝜃𝜃2

� 

�𝜃𝜃1𝜃𝜃2
� = � 𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖) 𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖)

𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖) 𝑉𝑉𝑉𝑉𝑟𝑟(𝑠𝑠𝑖𝑖)
�
−1

�𝐶𝐶𝐶𝐶𝐶𝐶
(𝜉𝜉𝑖𝑖, 𝑟𝑟𝑖𝑖)

𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝑠𝑠𝑖𝑖)
� 

(A5) 

 

Given solutions for 𝜃𝜃1 and 𝜃𝜃2, we can substitute them into (A1), which provides the system-

wide predictor for 𝜉𝜉𝑖𝑖. 

𝜉𝜉𝑖𝑖 = [𝜃𝜃1 𝜃𝜃2] �
𝑟𝑟𝑖𝑖
𝑠𝑠𝑖𝑖� (A6) 
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𝜉𝜉𝑖𝑖 = [𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝑟𝑟𝑖𝑖) 𝐶𝐶𝐶𝐶𝐶𝐶(𝜉𝜉𝑖𝑖, 𝑠𝑠𝑖𝑖)] � 𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖) 𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖)
𝐶𝐶𝐶𝐶𝐶𝐶(𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖) 𝑉𝑉𝑉𝑉𝑟𝑟(𝑠𝑠𝑖𝑖)

�
−1

�
𝑟𝑟𝑖𝑖
𝑠𝑠𝑖𝑖� 

 

This is the same predictor as given by MRW’s equation (11), page 96. We label this predictor 

7 in the main text. 

 

Within Class Predictors 

For the estimates that rely on within-class predictors (predictors 1–6 in the main text), MRW 

discuss two estimators: linear estimators that minimize the within-class MSE 𝜉𝜉𝑖𝑖
𝑗𝑗, and the 

estimator that minimizes the MSE conditional on the estimator being unbiased 𝜉𝜉𝑈𝑈𝑖𝑖
𝑗𝑗 .  

The general form for the within class predictor 𝜉𝜉𝑖𝑖
𝑗𝑗 follows the same structure as equation 

(A2), but for each sub class 2–9, and so is not discussed further here. However, the unbiased 

estimator depends on the specific class. 

The solutions for classes 1, 2, 3, 4, and 7 are straightforward to derive, because they 

assume that either 𝑟𝑟𝑖𝑖 or 𝑠𝑠𝑖𝑖 are error-free measures of 𝜉𝜉𝑖𝑖. Thus, we concentrate on the predictors 

corresponding to classes 5, 6, 8, and 9. 

Classes 8 and 9 

These two classes assume that only 𝑠𝑠𝑖𝑖 contains information that can be used to construct 

the predictor for 𝜉𝜉. We refer here to the predictor for class 9, as the more general case. Without 

loss of generality, we assume that the unconditional and conditional (on 𝑏𝑏) means of all 

variables in the model are equal to zero. 

Under these assumptions, the predictor 𝜉𝜉 for class 9 is a linear transformation of 𝑠𝑠𝑖𝑖 

given by: 

𝜉𝜉𝑈𝑈𝑖𝑖9 = 𝜃𝜃𝑠𝑠3,𝑖𝑖 (A7) 

where 𝜃𝜃 is selected so it minimizes the within-class MSE, conditional on the predictor being 

unbiased estimate for 𝜉𝜉. We start with the second condition: 

𝐸𝐸�𝜉𝜉𝑖𝑖 − 𝜃𝜃𝑠𝑠3,𝑖𝑖|𝜉𝜉𝑖𝑖� = 0 

= 𝐸𝐸(𝜉𝜉𝑖𝑖 − 𝜃𝜃(𝜉𝜉𝑖𝑖 + 𝜌𝜌𝑠𝑠𝜉𝜉𝑖𝑖 + 𝜂𝜂𝑖𝑖 + 𝜔𝜔𝑖𝑖)|𝜉𝜉𝑖𝑖) 

= 𝐸𝐸(𝜉𝜉𝑖𝑖|𝜉𝜉𝑖𝑖) − 𝜃𝜃(1 + 𝑝𝑝𝑠𝑠)𝐸𝐸(𝜉𝜉𝑖𝑖|𝜉𝜉𝑖𝑖) − 𝜃𝜃𝐸𝐸(𝜂𝜂𝑖𝑖|𝜉𝜉𝑖𝑖) − 𝜃𝜃𝐸𝐸(𝜔𝜔𝑖𝑖|𝜉𝜉𝑖𝑖) 

= 𝜉𝜉𝑖𝑖 − 𝜃𝜃(1 + 𝑝𝑝𝑠𝑠)𝜉𝜉𝑖𝑖 − 0 − 𝜃𝜃𝜌𝜌𝜔𝜔
𝜎𝜎𝜔𝜔
𝜎𝜎𝜉𝜉
𝜉𝜉𝑖𝑖 

⇒ 1 − 𝜃𝜃(1 + 𝑝𝑝𝑠𝑠) − 𝜃𝜃𝜌𝜌𝜔𝜔
𝜎𝜎𝜔𝜔
𝜎𝜎𝜉𝜉

= 0 
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⇒ 𝜃𝜃 =
1

1 + 𝑝𝑝𝑠𝑠 + 𝜌𝜌𝜔𝜔
𝜎𝜎𝜔𝜔
𝜎𝜎𝜉𝜉

 (A8) 

Thus, the 𝜉𝜉 unbiased predictor for class 9 is 

𝜉𝜉𝑈𝑈𝑖𝑖9 = 𝜃𝜃𝑠𝑠3,𝑖𝑖 =
𝑠𝑠3,𝑖𝑖

1 + 𝑝𝑝𝑠𝑠 + 𝜌𝜌𝜔𝜔
𝜎𝜎𝜔𝜔
𝜎𝜎𝜉𝜉

 (A9) 

and the unbiased predictor for class 8 is 

𝜉𝜉𝑈𝑈𝑖𝑖8 = 𝜃𝜃𝑠𝑠2,𝑖𝑖 =
𝑠𝑠2,𝑖𝑖

1 + 𝑝𝑝𝑠𝑠
 (A10) 

Equations (A9) and (A10) imply that the unbiased predictors for classes 8 and 9 are defined 

uniquely by imposing the unbiasedness assumption. 

 

Classes 5 and 6 

For classes 5 and 6, there are two measures that can be used as proxies for 𝜉𝜉, each with its own 

sources of errors. We refer here to the solution for class 6, as the more general case. 

Consider first the unbiased predictors that could be derived using data from 𝑟𝑟2𝑖𝑖 or 𝑠𝑠3𝑖𝑖, 

which follow the same structure as equations A3 and A4: 

𝜉𝜉𝑈𝑈𝑖𝑖6𝑟𝑟2 =
𝑟𝑟2,𝑖𝑖

1 + 𝑝𝑝𝑟𝑟
= 𝜃𝜃𝑟𝑟2𝑟𝑟2,𝑖𝑖 (A11) 

𝜉𝜉𝑈𝑈𝑖𝑖6𝑠𝑠3 =
𝑠𝑠3,𝑖𝑖

1 + 𝑝𝑝𝑠𝑠 + 𝜌𝜌𝜔𝜔
𝜎𝜎𝜔𝜔
𝜎𝜎𝜉𝜉

= 𝜃𝜃𝑠𝑠3𝑠𝑠3,𝑖𝑖 (A12) 

An unbiased 𝜉𝜉 predictor for class 6 that combines the information from both sources can be 

obtained using a weighted average between both predictors: 

𝜉𝜉𝑈𝑈𝑖𝑖6 = 𝛿𝛿𝜉𝜉𝑈𝑈𝑖𝑖6𝑟𝑟 + (1 − 𝛿𝛿)𝜉𝜉𝑈𝑈𝑖𝑖6𝑠𝑠  

𝜉𝜉𝑈𝑈𝑖𝑖6 = 𝛿𝛿𝜃𝜃𝑟𝑟2𝑟𝑟2,𝑖𝑖  + (1 − 𝛿𝛿)𝜃𝜃𝑠𝑠3𝑠𝑠3,𝑖𝑖 (A13) 

To determine the optimal weight, we need to find the value 𝛿𝛿 that minimizes the MSE, which 

is given by: 

min
𝛿𝛿
𝐸𝐸 ��𝜉𝜉𝑖𝑖 − 𝛿𝛿𝜃𝜃𝑟𝑟2𝑟𝑟2,𝑖𝑖 − (1 − 𝛿𝛿)𝜃𝜃𝑠𝑠3𝑠𝑠3,𝑖𝑖�

2
�. 

The first order condition is: 
𝜕𝜕𝑀𝑀𝑆𝑆𝐸𝐸
𝜕𝜕𝛿𝛿

= 𝐸𝐸 ��𝜉𝜉𝑖𝑖 − 𝛿𝛿𝜃𝜃𝑟𝑟2𝑟𝑟2,𝑖𝑖 − (1 − 𝛿𝛿)𝜃𝜃𝑠𝑠3𝑠𝑠3,𝑖𝑖��𝜃𝜃𝑟𝑟2𝑟𝑟2,𝑖𝑖 − 𝜃𝜃𝑠𝑠3𝑠𝑠3,𝑖𝑖�� = 0 
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𝜃𝜃𝑟𝑟2𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖, 𝑟𝑟2,𝑖𝑖� − 𝜃𝜃𝑠𝑠3𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖, 𝑠𝑠3,𝑖𝑖� − 𝛿𝛿𝜃𝜃𝑟𝑟22 𝑉𝑉𝑉𝑉𝑟𝑟�𝑟𝑟2,𝑖𝑖�

+ 𝛿𝛿𝜃𝜃𝑟𝑟2𝜃𝜃𝑠𝑠3𝐶𝐶𝐶𝐶𝐶𝐶�𝑟𝑟2,𝑖𝑖, 𝑠𝑠3,𝑖𝑖� − (1 − 𝛿𝛿)𝜃𝜃𝑟𝑟2𝜃𝜃𝑠𝑠3𝐶𝐶𝐶𝐶𝐶𝐶�𝑟𝑟2,𝑖𝑖, 𝑠𝑠3,𝑖𝑖�

+ (1 − 𝛿𝛿)𝜃𝜃𝑠𝑠32 𝑉𝑉𝑉𝑉𝑟𝑟�𝑠𝑠3,𝑖𝑖� = 0 

(A14) 

Finally, solving for 𝛿𝛿, we have: 

𝛿𝛿 =
𝜃𝜃𝑟𝑟2𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖 , 𝑟𝑟2,𝑖𝑖� − 𝜃𝜃𝑠𝑠3𝐶𝐶𝐶𝐶𝐶𝐶�𝜉𝜉𝑖𝑖, 𝑠𝑠3,𝑖𝑖� − 𝜃𝜃𝑟𝑟2𝜃𝜃𝑠𝑠3𝐶𝐶𝐶𝐶𝐶𝐶�𝑟𝑟2,𝑖𝑖, 𝑠𝑠3,𝑖𝑖� + 𝜃𝜃𝑠𝑠32 𝑉𝑉𝑉𝑉𝑟𝑟�𝑠𝑠3,𝑖𝑖�

𝜃𝜃𝑟𝑟22 𝑉𝑉𝑉𝑉𝑟𝑟�𝑟𝑟2,𝑖𝑖� − 2𝜃𝜃𝑟𝑟2𝜃𝜃𝑠𝑠3𝐶𝐶𝐶𝐶𝐶𝐶�𝑟𝑟2,𝑖𝑖, 𝑠𝑠3,𝑖𝑖� + 𝜃𝜃𝑠𝑠32 𝑉𝑉𝑉𝑉𝑟𝑟�𝑠𝑠3,𝑖𝑖�
 (A15) 

 

Substituting (A15) into (A12) provides the unbiased predictor for class 6. 

To summarize, Table A3 presents the expressions for the within-class predictions for 

all 9 classes assuming that our general model (Model 8) describes the data generating process. 

The expressions for the other models are simplified versions of the expressions in the table. 
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Table A3. Expressions for the within-class predictors as functions of the parameters (general FMM) 
 

Class (𝑗𝑗) 𝑟𝑟 𝑠𝑠 𝜉𝜉𝑗𝑗  𝜉𝜉𝑈𝑈
𝑗𝑗  

1 𝑟𝑟1,𝑖𝑖 𝑠𝑠1,𝑖𝑖 
1
2

(𝑟𝑟 + 𝑠𝑠) 
1
2

(𝑟𝑟 + 𝑠𝑠) 
2 𝑟𝑟1,𝑖𝑖 𝑠𝑠2,𝑖𝑖 𝑟𝑟 𝑟𝑟 
3 𝑟𝑟1,𝑖𝑖 𝑠𝑠3,𝑖𝑖 𝑟𝑟 𝑟𝑟 
4 𝑟𝑟2,𝑖𝑖 𝑠𝑠1,𝑖𝑖 𝑠𝑠 𝑠𝑠 

5 𝑟𝑟2,𝑖𝑖 𝑠𝑠2,𝑖𝑖 𝜇𝜇𝜉𝜉|𝑥𝑥 + 𝜮𝜮𝝃𝝃,𝟓𝟓
′  𝜮𝜮𝟔𝟔−𝟏𝟏 �

𝑟𝑟𝑖𝑖 − 𝜇𝜇𝑟𝑟2|𝒙𝒙
𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑠𝑠2|𝒙𝒙

�  𝜇𝜇𝜉𝜉|𝒙𝒙 + �
𝛿𝛿𝑟𝑟2,𝑠𝑠2𝜃𝜃𝑟𝑟2

�1 − 𝛿𝛿𝑟𝑟2,𝑠𝑠2�𝜃𝜃𝑠𝑠2
�
′

�
𝑟𝑟𝑖𝑖 − 𝜇𝜇𝑟𝑟2|𝒙𝒙
𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑠𝑠2|𝒙𝒙

� 

 

6 𝑟𝑟2,𝑖𝑖 𝑠𝑠3,𝑖𝑖 𝜇𝜇𝜉𝜉|𝑥𝑥 + 𝜮𝜮𝝃𝝃,𝟔𝟔
′  𝜮𝜮𝟔𝟔−𝟏𝟏 �

𝑟𝑟𝑖𝑖 − 𝜇𝜇𝑟𝑟2|𝒙𝒙
𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑠𝑠3|𝒙𝒙

�  𝜇𝜇𝜉𝜉|𝒙𝒙 + �
𝛿𝛿𝑟𝑟2,𝑠𝑠3𝜃𝜃𝑟𝑟2

�1 − 𝛿𝛿𝑟𝑟2,𝑠𝑠3�𝜃𝜃𝑠𝑠3
�
′

�
𝑟𝑟𝑖𝑖 − 𝜇𝜇𝑟𝑟2|𝒙𝒙
𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑠𝑠3|𝒙𝒙

� 

 
7 𝑟𝑟3,𝑖𝑖 𝑠𝑠1,𝑖𝑖 𝑠𝑠 𝑠𝑠 

8 𝑟𝑟3,𝑖𝑖 𝑠𝑠2,𝑖𝑖 𝜇𝜇𝜉𝜉|𝑥𝑥 + 𝐶𝐶𝐶𝐶𝑣𝑣�𝜉𝜉𝑖𝑖,𝑠𝑠2,𝑖𝑖|𝒙𝒙�
𝑉𝑉𝑉𝑉𝑟𝑟�𝑠𝑠2,𝑖𝑖|𝒙𝒙�

�𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑠𝑠2|𝒙𝒙�  𝜇𝜇𝜉𝜉|𝒙𝒙 + 1
𝜃𝜃𝑠𝑠2
�𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑠𝑠2|𝒙𝒙�  

9 𝑟𝑟3,𝑖𝑖 𝑠𝑠3,𝑖𝑖 𝜇𝜇𝜉𝜉|𝑥𝑥 + 𝐶𝐶𝐶𝐶𝑣𝑣�𝜉𝜉𝑖𝑖,𝑠𝑠3,𝑖𝑖|𝒙𝒙�
𝑉𝑉𝑉𝑉𝑟𝑟�𝑠𝑠3,𝑖𝑖|𝒙𝒙�

�𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑠𝑠3|𝒙𝒙�  𝜇𝜇𝜉𝜉|𝒙𝒙 + 1
𝜃𝜃𝑠𝑠3
�𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑠𝑠3|𝒙𝒙�  

 

Notes. 𝜮𝜮𝝃𝝃,𝒋𝒋
′  represents the covariances between 𝜉𝜉𝑖𝑖 and (𝑟𝑟𝑖𝑖, 𝑠𝑠𝑖𝑖), conditional on characteristics 𝒙𝒙 and class 𝑗𝑗. 𝜮𝜮𝒋𝒋−𝟏𝟏 

represents the variance covariance matrix between 𝑟𝑟𝑖𝑖 and 𝑠𝑠𝑖𝑖, conditional on characteristics 𝒙𝒙 and class 𝑗𝑗. 

Also, 𝛿𝛿𝑟𝑟𝑗𝑗,𝑠𝑠𝑘𝑘 =
𝜃𝜃𝑟𝑟𝑗𝑗𝐶𝐶𝐶𝐶𝑣𝑣�𝜉𝜉𝑖𝑖,𝑟𝑟𝑗𝑗,𝑖𝑖�−𝜃𝜃𝑠𝑠𝑘𝑘𝐶𝐶𝐶𝐶𝑣𝑣�𝜉𝜉𝑖𝑖,𝑠𝑠𝑘𝑘,𝑖𝑖�−𝜃𝜃𝑟𝑟𝑗𝑗𝜃𝜃𝑠𝑠𝑘𝑘𝐶𝐶𝐶𝐶𝑣𝑣�𝑟𝑟𝑗𝑗,𝑖𝑖,𝑠𝑠𝑘𝑘,𝑖𝑖�+𝜃𝜃𝑠𝑠𝑘𝑘

2 𝑉𝑉𝑉𝑉𝑟𝑟�𝑠𝑠𝑘𝑘,𝑖𝑖�

𝜃𝜃𝑟𝑟𝑗𝑗
2 𝑉𝑉𝑉𝑉𝑟𝑟�𝑟𝑟𝑗𝑗,𝑖𝑖�−2𝜃𝜃𝑟𝑟𝑗𝑗𝜃𝜃𝑠𝑠𝑘𝑘𝐶𝐶𝐶𝐶𝑣𝑣�𝑟𝑟𝑗𝑗,𝑖𝑖,𝑠𝑠𝑘𝑘,𝑖𝑖�+𝜃𝜃𝑠𝑠𝑘𝑘

2 𝑉𝑉𝑉𝑉𝑟𝑟�𝑠𝑠𝑘𝑘,𝑖𝑖�
 ; 𝜃𝜃𝑟𝑟2 = 1

1+𝜌𝜌𝑟𝑟
; 𝜃𝜃𝑠𝑠2 = 1

1+𝜌𝜌𝑠𝑠
; and 𝜃𝜃𝑠𝑠3 = 1

1+𝜌𝜌𝑠𝑠+𝜌𝜌𝜔𝜔
𝜎𝜎𝜔𝜔
𝜎𝜎𝜉𝜉

. 


