
In order to introduce the main result and also provide
some background material, we require some notation. Let
A = (aij) ∈ Zm×n with m < n and let τ = {i1, . . . , ik} ⊂
{1, . . . , n} with i1 < · · · < ik be an index set. We will use
the notation Aτ for the m× k submatrix of A with columns
indexed by τ . In a similar manner, given x ∈ Rn, we will
denote by xτ the vector (xi1 , . . . ,xik)

T . The complement of
τ in {1, . . . , n} will be denoted by τ̄ = {1, . . . , n}\τ . We
will say that τ is a basis if |τ | = m and the submatrix Aτ is
nonsingular. In the scenario that τ is a basis, we will replace τ
by γ. Further, denote by ∆(A) the maximum absolute valued
m-dimensional subdeterminant of A, namely

∆(A) = max{|det(Aτ )| : τ ⊂ {1, . . . , n} with |τ | = m}.

If ∆(A) is positive, the notation gcd(A) will denote the great-
est common divisor of all m-dimensional subdeterminants of
the matrix A.

We assume without loss of generality that A ∈ Zm×n

with m < n has full rank m and let b ∈ Zm. Consider the
polyhedron

P = P (A, b) =
{
x ∈ Rn

≥0 : Ax = b
}
.

Upon further assuming that P is nonempty, we take any vertex
x∗ of P . Since A has rank m by assumption, it follows that
there exits a basis γ of A such that

x∗
γ = A−1

γ b and x∗
γ̄ = 0. (1)

It is worth noting that in general, given a vertex x∗ of P , the
basis γ need not be unique, however, if one assumes that x∗

is nondegenerate, i.e. exactly m of the x∗
i ’s are nonzero, then

there is indeed a unique choice for the basis γ.
We will estimate the ℓ∞-distance from a vertex x∗ of the

polyhedron P , which is given by a basis γ as in (1), to the set
of its (feasible) lattice points z ∈ P ∩ Zn. It is worth noting
that bounds of this form provide information regarding the
level of accuracy when one “relaxes” an integer program (IP)
and instead solves the related linear program (LP). This type
of relaxation is often (see e.g. [6, Section 11.5]) implemented

since solving the decision version of an IP is in general NP-
complete (see e.g. [12, Chapter 18]), however, it is well-known
that one can solve an LP in polynomial time via the ellipsoid
[9] or the interior-point method [8].

Before stating our result, we recall some of the upper
bounds on the distance from a vertex x∗ of P to the set of
its lattice points z ∈ P ∩ Zn. For this purpose, let us assume
that P is integer feasible, i.e. that P ∩ Zn ̸= ∅. The classical
sensitivity theorem of Cook et al. [4] implies that

∥x∗ − z∥∞ ≤ n ·∆(A) (2)

holds. Eisenbrand and Weismantel [5] improved on this clas-
sical bound through a novel use of Steinitz Lemma [14] in
order to demonstrate that

∥x∗ − z∥1 ≤ m (2m∥A∥∞ + 1)
m

holds, where ∥A∥∞ = maxi,j |aij | is the maximum absolute
entry of A. Lee et al. [10] utilise bounds on the sparsity of
feasible integer points to show that

∥x∗ − z∥1 < 3m2 log
(
2
√
m ·∆(A)1/m

)
·∆(A)

holds. Lee et al. [11] demonstrate that

∥x∗ − z∥1 ≤ m(m+ 1)2 ·∆3(A) + (m+ 1) ·∆(A)

holds in a slightly more general setting. A very recent strong
improvement over the classical bound of Cook et al. [4]
obtained by Celaya et al. [3] demonstrates that we can replace
n by n/2 in (2) provided n ≥ 2. It remains an open
question how tight these bounds actually are. Despite this,
in the knapsack scenario, i.e. when m = 1, upon following
traditional vector notation, Aliev et al. [2] show that

∥x∗ − z∥∞ ≤ ∥a∥∞ − 1

holds and that this bound is optimal.
Since the main result in this article provides an upper bound

on the ℓ∞-distance from any vertex x∗ of P to the set of its
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lattice points, it is useful to define (as in [2]) the (maximum)
vertex distance d(A, b) as

d(A, b) =

{
max
x∗

min
z∈P∩Zn

∥x∗ − z∥∞ , if P ∩ Zn ̸= ∅,

−∞, otherwise,

where the maximum is taken over all vertices x∗ of the
polyhedron P .

The following theorem provides a sharp upper bound for
the (maximum) vertex distance when n = m + 1. As stated
in the abstract, it is hoped that this result provides motivation
for conducting further research into finding more such upper
bounds under additional assumptions. It should be noted that
by sharp we mean that we can construct an example where the
equality appearing in (3) is attained. We provide this example
directly after the statement of the theorem.

Theorem 1. Let A ∈ Zm×(m+1) with full rank m and b ∈ Zm.
If P ∩ Zm+1 ̸= ∅ , then

d(A, b) ≤ ∆(A)

gcd(A)
− 1. (3)

The following example demonstrates the sharpness of The-
orem 1 in the case when m = 2. Consider

A =

(
3 11 7
−5 7 3

)
and b =

(
154
58

)
.

The absolute values of the 2 × 2 subdeterminants of A are
here 76, 44 and 16, respectively. In particular, ∆(A) = 76
and gcd(A) = 4 . The polyhedron P is in this case a line
segment connecting x∗

1 = (110/19, 236/19, 0)T and x∗
2 =

(14/11, 0, 236/11)T and, in addition, the only feasible integer
point is z = (2, 2, 18)T . The ℓ∞-norm distances from the two
vertices to z are

∥x∗
1 − z∥∞ = max

( ∣∣∣∣11019 − 2

∣∣∣∣ , ∣∣∣∣23619
− 2

∣∣∣∣ , 18) = 18

and

∥x∗
2 − z∥∞ = max

( ∣∣∣∣1411 − 2

∣∣∣∣ , 2, ∣∣∣∣23611
− 18

∣∣∣∣ ) =
38

11
,

respectively. In particular, we have d(A, b) = 18 and simply
noting that

∆(A)

gcd(A)
− 1 =

76

4
− 1 = 19− 1 = 18

holds demonstrates that the equality in (3) is attained.

Theorem 1 can be easily applied to estimate the (additive)
integrality gap for an IP with the assumed dimension. Given
A ∈ Zm×(m+1) with full rank m, b ∈ Zm and a cost vector
c ∈ Qn, we now consider the IP

min{cTx : x ∈ P ∩ Zm+1} (4)

and assume that (4) is feasible and bounded.
Denote by IP (c, A, b) and LP (c, A, b) the optimal values

of the IP (4) and its linear programming relaxation

min{cTx : x ∈ P}, (5)

respectively. The (additive) integrality gap IG(c, A, b) asso-
ciated with the IP (4) is

IG(c, A, b) = IP (c, A, b)− LP (c, A, b).

Clearly, in this case, we have

IG(c, A, b) ≤ d(A, b) · ∥c∥1. (6)

Notice that the upper bound (3) is independent of the right-
hand side b and, as such, it is possible to bound the integer
programming gap [7]. Given a pair (A, b), the integer pro-
gramming gap is the maximum IG(c, A, b) over all suitable
integral b, namely

Gap(c, A) = max
b

IG(c, A, b),

where b ranges over all integer vectors such that the IP (4) is
feasible and bounded.

As a corollary of Theorem 1, we obtain the following upper
bound on the integer programming gap under the current
assumptions.

Corollary 1. Let A ∈ Zm×(m+1) with full rank m, b ∈ Zm

and c ∈ Qn. If P ∩ Zm+1 ̸= ∅ , then

Gap(c, A) ≤

(
∆(A)

gcd(A)
− 1

)
· ∥c∥1.

The proof of this corollary follows immediately from (6)
and the statement of Theorem 1.

In order to simply the notation slightly during the proof of
the main result, we let Λ = Λ(A, b) denote the affine lattice
in Rm+1 formed by taking integer points in the (affine) flat
that is described by the linear system Ax = b, namely

Λ = Λ(A, b) =
{
x ∈ Rm+1 : Ax = b

}
∩ Zm+1.

Further, let π(·) : Rm+1 → R denote the projection onto the
final coordinate, i.e. the projection which forgets about the first
m coordinates.

Proof. Reordering the columns of the matrix A if necessary,
we may assume without loss of generality that

γ = {1, 2, . . . ,m},

i.e. that A = (Aγ , Aγ̄) , where det(Aγ) ̸= 0 . It should be
noted that Aγ̄ is here an m-dimensional column vector. The
polyhedron P can be written as

P =
{
x ∈ Rm+1

≥0 : Aγxγ +Aγ̄xγ̄ = b
}
,

where x = (xγ , xγ̄)
T , i.e. xγ ∈ Rm and xγ̄ = xm+1 ∈ R

contain the entries of the vector x corresponding to Aγ and
Aγ̄ , respectively. In this case, the conditions (1) on x∗ become

x∗
γ = A−1

γ b and x∗
γ̄ = x∗

m+1 = 0 .

2. Proof of Theorem 1 
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Further, using Cramer’s Rule (see e.g. [13, Theorem 2.20]),
the vertex x∗ has the form

x∗ =

(
det
(
A1

γ(b)
)

det (Aγ)
, . . . ,

det
(
Am

γ (b)
)

det (Aγ)
, 0

)T

, (7)

where Ai
γ(b) denotes the submatrix Aγ whose i-th column

has been replaced by b. Observe that if the polyhedron P is
bounded, then P is a line segment in Rm+1 connecting its
two vertices. If instead P is unbounded, then the polyhedron
P is a ray in Rm+1, where x∗ is the only vertex of P .

Recall that we are upper bounding the distance with respect
to the ℓ∞-norm from the vertex x∗ to some (feasible) integral
point. We denote such an integral point by

z = (z1, . . . , zm+1)
T ∈ P ∩ Zm+1.

Further, we assume for technical reasons that z is the feasible
lattice point with minimal final entry. In other words, we
assume the lattice point z is the closest (feasible) integral
point to the vertex x∗ in the xm+1-th coordinate direction
with respect to the ℓ∞-norm.

Note that by the form (7) of the vertex x∗, its projection is
π(x∗) = 0. Firstly, we upper bound

∥π(x∗)− π(z)∥∞ = zm+1

before “lifting” to a (feasible) lattice point in Rm+1. Recall
that Λ denotes the affine lattice in Rm+1 containing all integer
points which satisfy Ax = b. In particular, its projection π(Λ)
is a one-dimensional affine lattice which, in light of [1, Lemma
10], has determinant

det(Λ) =
|det(Aγ)|
gcd(A)

.

It follows that all projected affine lattice points from π(Λ)
belong to the same congruence class. Further, upon noting that
the least residue in this congruence class is one of the integers
{0, 1, . . . ,det(Λ)−1}, it follows since z is by assumption the
closest to the vertex x∗ in the final coordinate direction that
π(z) satisfies

π(z) = zm+1 ≤ det(Λ)− 1 =
|det(Aγ)|
gcd(A)

− 1. (8)

Observe that if one fixes the value of zm+1, then the
corresponding m-dimensional integer solution zγ is uniquely
determined by

zγ = A−1
γ

(
b−Aγ̄zm+1

)
since the submatrix Aγ is nonsingular by assumption. In order
to simplify subsequent notation, we let

b̃ = b−Aγ̄zm+1.

In particular, using Cramer’s Rule, for fixed zm+1, the corre-
sponding m-dimensional integral solution zγ is given by

zγ = (z1, . . . , zm)T

=

(
det
(
A1

γ(b̃)
)

det (Aγ)
, . . . ,

det
(
Am

γ (b̃)
)

det (Aγ)

)T

.
(9)

Further, the m-dimensional solution (9) to the linear system
Aγxγ = b̃ can be “lifted” to yield a solution to the original
linear system by simply appending the fixed value zm+1 to
the (m+ 1)-th entry. In other words, we can write

z = (z1, . . . , zm, zm+1)
T

=

(
det
(
A1

γ(b̃)
)

det (Aγ)
, . . . ,

det
(
Am

γ (b̃)
)

det (Aγ)
, zm+1

)T

.

Using (7), the vertex distance is

∥x∗ − z∥∞

= max

(∣∣∣∣det
(
Aj

γ(b)
)
− det

(
Aj

γ(b̃)
)

det (Aγ)

∣∣∣∣, zm+1

)
,

(10)

where 1 ≤ j ≤ m. Recall (8) and, in particular, clearly

|x∗
m+1 − zm+1| = zm+1 ≤ ∆(A)

gcd(A)
− 1

holds as required by (3).
It remains to finally consider the other differences appearing

in (10). In particular, we consider

|x∗
j − zj | =

∣∣∣∣det
(
Aj

γ(b)
)
− det

(
Aj

γ(b̃)
)

det (Aγ)

∣∣∣∣ (11)

for j ∈ {1, . . . ,m}. Upon noting that Aj
γ(b) and Aj

γ(b̃) differ
only by their j-th column and recalling that

b̃ = b−Aγ̄zm+1

for fixed zm+1, it follows using several fundamental properties
of determinants that (11) can be equivalently expressed as

|x∗
j − zj | =

∣∣∣∣zm+1 ·
∣∣det (Aj

γ(Aγ̄)
)∣∣

|det (Aγ)|

∣∣∣∣ . (12)

It is worth noting that we could alternatively deduce (12)
from (11) by applying Laplace’s expansion formula (see e.g.
[13, Theorem 10.33]) and then performing some algebraic
manipulation.

Upon recalling (8), we can bound (12) by∣∣∣∣zm+1 ·
∣∣det (Aj

γ(Aγ̄)
)∣∣

|det (Aγ)|

∣∣∣∣
≤

∣∣∣∣∣∣∣det (Aj
γ(Aγ̄)

)∣∣ · ( 1

gcd(A)
− 1

|det(Aγ)|

) ∣∣∣∣∣ .
(13)

Notice that the matrix Aj
γ(Aγ̄) contains only columns from A

and, in consequence,∣∣ det (Aj
γ(Aγ̄)

)∣∣ ≤ ∆(A)

holds. Finally, since

gcd(A) ≤
∣∣ det (Aγ)

∣∣ ≤ ∆(A)
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holds, it follows that (13) is bounded by∣∣∣∣∣∣∣ det (Aj
γ(Aγ̄)

)∣∣ · ( 1

gcd(A)
− 1

|det(Aγ)|

) ∣∣∣∣∣
≤

∣∣∣∣∣∆(A) ·
(

1

gcd(A)
− 1

∆(A)

) ∣∣∣∣∣ = ∆(A)

gcd(A)
− 1,

which implies that (3) holds as required and concludes the
proof of Theorem 1.
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[7] Serkan Hoşten and Bernd Sturmfels. Computing the integer program-
ming gap. Combinatorica, 27(3):367–382, 2007.

[8] Narendra Karmarkar. A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual ACM symposium
on Theory of computing, pages 302–311, 1984.

[9] Leonid G Khachiyan. A polynomial algorithm in linear programming.
In Doklady Akademii Nauk, volume 244.5, pages 1093–1096. Russian
Academy of Sciences, 1979.

[10] Jon Lee, Joseph Paat, Ingo Stallknecht, and Luze Xu. Improving prox-
imity bounds using sparsity. In Mourad Baı̈ou, Bernard Gendron, Oktay
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