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Abstract

We introduce a multivariate Poisson‐Generalized
Inverse Gaussian regression model with varying

dispersion and shape for modeling different types of

claims and their associated counts in nonlife insurance.

The multivariate Poisson‐Generalized Inverse Gaus-

sian regression model is a general class of models

which, under the approach adopted herein, allows us

to account for overdispersion and positive correlation

between the claim count responses in a flexible

manner. For expository purposes, we consider the

bivariate Poisson‐Generalized Inverse Gaussian with

regression structures on the mean, dispersion, and

shape parameters. The model's implementation is

demonstrated by using bodily injury and property

damage claim count data from a European motor

insurer. The parameters of the model are estimated

via the Expectation‐Maximization algorithm which is

computationally tractable and is shown to have a

satisfactory performance.
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1 | INTRODUCTION

The regression analysis of multivariate count data for capturing the dependence structures
between multiple count response variables based on explanatory variables is encountered
across several disciplines such as biology, biometrics, genetics, medicine, marketing, ecology,
sociology, econometrics, and insurance. In general, multivariate count data models can be
classified into the following three classes: multivariate Poisson models, multivariate mixed
Poisson (MVMP) models, and copula‐based models. For more details, the interested reader can
refer to the works of Aguero‐Valverde and Jovanis (2009); Aitchison and Ho (1989); Cameron
et al. (2004); Cameron and Trivedi (2013); Chen and Hanson (2017); Chib and Winkelmann
(2001); El‐Basyouny and Sayed (2009); Famoye (2010); Genest and Nešlehová (2007); Ghitany
et al. (2012); Gurmu and Elder (2000); Ho and Singer (2001); Joe (1997); Johnson et al. (1997);
Jung and Winkelmann (1993); Karlis and Meligkotsidou (2005); Kocherlakota (1988);
Kocherlakota and Kocherlakota (2001); Krummenauer (1998); Lakshminarayana et al.
(1999); Lee (1999); Ma et al. (2008); Marra and Wyszynski (2016); M'Kendrick (1925); Munkin
and Trivedi (1999); Nikoloulopoulos (2013, 2016); Nikoloulopoulos and Karlis (2010); Park and
Lord (2007); Rüschendorf (2013); Silva et al. (2019); Stein and Juritz (1987); Stein et al. (1987);
Winkelmann (2008); Zhan et al. (2015); Zimmer and Trivedi (2006), and Chiquet et al. (2020).

In a nonlife insurance setting, the actuary may be concerned with modeling jointly different
types of claims and their associated counts. In this market segment, there are several
circumstances where the interest lies in developing models which can accommodate for
positively correlated claims whilst accounting for overdispersion which is a direct consequence
of unobserved heterogeneity due to systematic effects in the data. Furthermore, these
dependence structures between different claim types may be observed within the same
insurance policy, such as property damage and bodily injury claims in motor third party
liability (MTPL) insurance, or in alternative types of coverage, such as home and auto
insurance, bundled together under a single policy. Regarding the latter, some of the advantages
for the policyholder are multi‐product premium discounts, straightforward tracking of policy
renewal dates, easy claims reporting, and a more “personal” relationship between the insured
and their insurer where the latter closely identify their needs and mitigate possible insurance
coverage gaps. From the insurer's perspective though, bundling multiple types of insurance for
the same policyholder translates into a need to develop predictive models which can efficiently
capture the joint dynamics of different claims types associated with various insurance business
lines. With regard to the use of alternative multivariate count models in nonlife insurance, see
for instance, Abdallah et al. (2016); Bermudez et al. (2018); Bermudez and Karlis
(2011, 2012, 2017); Bolancé et al. (2020); Bolancé and Vernic (2019); Denuit et al. (2019);
Fung et al. (2019); Gómez‐Déniz and Calderín‐Ojeda (2021); Jeong and Dey (2021); Pechon
et al. (2019, 2021, 2018); Shi and Valdez (2014a,b) and Tzougas and di Cerchiara (2021).

In the current study, we develop a multivariate Poisson‐Generalized Inverse Gaussian
(MVPGIG) regression model with varying dispersion and shape for modeling positively
correlated and overdispersed claim counts from different types of coverage in a flexible manner.
In particular, within the adopted modeling framework, in addition to the marginal mean
parameters, which are traditionally modeled using risk factors, regressors are allowed on the
dispersion and shape parameters. The proposed approach allows us to model the skewness and
kurtosis of the model explicitly as a function of the explanatory variables for the mean,
dispersion and shape parameters. Instead, if only the mean parameter is modeled in terms of
explanatory variables then this can lead to a misclassification of policyholders with a high
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number of claims due to the unobserved heterogeneity changes with covariates. Furthermore,
the MVPGIG, is a broad family of models including many MVMP models considered
in the aforementioned literature ones as special and/or limiting cases, such as, for example,
the multivariate Negative Binomial (MVNB), or multivariate Poisson‐Gamma, multivariate
Poisson‐Inverse Gaussian (MVPIG), multivariate Poisson‐Inverse Exponential, multivariate
Poisson‐Inverse Chi Squared, and multivariate Poisson‐Scaled Inverse Chi Squared distribu-
tions, depending on the estimated values of the dispersion and shape parameters which are
modeled based on covariate information, hence enabling us to account for the tail behavior of
observed data in versatile manner. The latter can be regarded as an important property for
capturing overdispersion since this phenomenon is not necessarily attributed to an excess of
zeros but it may be also caused by a heavy tail in the claim count data, see Shared (1980). For
illustrative purposes, the bivariate Poisson‐Generalized Inverse Gaussian (BPGIG) regression
model with varying dispersion and shape is fitted on Motor Third Party Liability (MTPL)
insurance bodily injury and property damage claim count data using a novel Expectation‐
Maximization (EM) type algorithm. The proposed maximum likelihood (ML) estimation
scheme takes advantage of the stochastic mixture representation of the BPGIG model to reduce
the problem of maximizing its cumbersome likelihood function which is expressed in terms of
the modified Bessel function of the third kind to the simple problem of maximizing the
likelihood function of its mixing density.

The remainder of this article is organized, as follows: Section 2 deals with the construction
of the proposed MVPGIG regression model with varying dispersion and shape parameters.
In Section 3, we describe the ML estimation procedure for the BPGIG model via the EM
algorithm. A real data application based on the two‐dimensional MTPL data set is presented in
Section 4 and the fitting performance of the BPGIG regression model with varying dispersion
and shape parameters is compared to that of the bivariate Negative Binomial (BNB) and
Poisson‐Inverse Gaussian (BPIG) regression models with varying dispersion of Tzougas and
Pignatelli di Cerchiara (2021) that we use as a benchmark for comparison. In Section 5, the a
posteriori, or Bonus‐Malus, premiums determined by the from the BNB and BPIG models are
compared with those resulting from the proposed BPGIG model using the expected value
principle. Finally, concluding remarks can be found in Section 6.

2 | THE MULTIVARIATE POISSON ‐GENERALIZED
INVERSE GAUSSIAN REGRESSION MODEL WITH
VARYING DISPERSION AND SHAPE PARAMETERS

Consider that in a nonlife insurance policy of an insured j, where j n= 1, …, , we observe
multi‐peril claim frequencies Ki j, , for i m= 1, …, types of coverage. Assume that given the
random variables Z > 0j , K Zi j j,  per claim type i are distributed according to a Poisson
distribution with probability mass function (pmf) given by

P k z
μ z μ z

k
( ) =

exp[− ]( )

!
,i j j

i j j i j j
k

i j
,

, ,

,

i j,

 (1)

for k = 0, 1, 2, 3, …i j, , where μ > 0i j, , with mean and variance k z μ z( ) =i j j i j j, , and

k z μ zVar( ) =i j j i j j, , .
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Also, suppose that Zj are random variables from a Generalized‐Inverse Gaussian (GIG)
distribution with probability density function (pdf) given by

( )
g z σ ν

c

K
z

σ
c z

c z
( ; , ) =

2
exp −

1

2
+

1
,j j j

j
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ν σ

j
ν

j
j j

j j1

−1
j

j
j

j




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

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






 (2)

for σ > 0j and ν− < <j∞ ∞, where
( )
( )

c =j
K σ

K σ

νj j

νj j

+1
−1

−1
and

K ω x ω x
x

dx( ) = exp −
1

2
+
1

ν
ν

0

−1
j

j

∞ 


 





is the modified Bessel function of the third kind of order νj and argument ω. This
parameterization ensures that the model is identifiable since Z( ) = 1j . Furthermore, note that

( ) ( )
( )

Var Z
K K

K

( ) = − 1.j

ν σ ν σ

ν σ

+2
1 1

+1
1

2

j
j

j
j

j
j

Thus, considering the assumptions in Equations (1) and (2) it is easy to see that the
unconditional distribution of Ki j, will be a multivariate Poisson‐Generalized Inverse Gaussian
(MVPGIG) distribution with joint probability mass function (JPMF) given by

( )
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(3)

Note that if we let ν = −0.5j in Equation (3) the MVPGIG distribution reduces to a multivariate
Poisson‐Inverse Gaussian (MVPIG) distribution. Further, the multivariate Negative Binomial
(MVNBB) distribution is a limiting case of Equation (3), obtained by letting σj → ∞ for ν > 0j

and ν < −1j respectively.
Henceforth, for expository purposes, we will restrict attention to the bivariate case m= 2.

We assume that the mean, dispersion and shape parameters of the bivariate Poisson‐
Generalized Inverse Gaussian (BPGIG) are modeled as functions of explanatory variables with
parametric linear functional forms:

( )x βμ = exp ,jj
T
1 11, , (4)

( )x βμ = exp ,jj
T
2 22, , (5)
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( )x βσ = exp jj
T
3 3, (6)

and

x βν = ,jj
T
4 4, (7)

where x x x, ,j j j1 2 3, , , , and x j4, are vectors of covariates with dimensions p × 11 , p p× 1, × 12 3

and p × 14 respectively, with ( ) ( ) ( )β β β β β β, …, , , …, , , …,p
T

p
T

p
T

1,1 1, 2,1 2, 3,1 3,1 2 3
and ( )β β, …, p

T
4,1 4, 4

the corresponding parameter vectors and where it is considered that the matrices X1, X2, X3,
and X4 with rows given by x i1, , x i2, , x i3, , and x i4, respectively, are of full rank.

Finally, the following desirable properties ensure the flexibility of the proposed model for
capturing overdispersion and accommodating for positive correlation structures1 between the
different claim count response variables.

1. The marginal distribution of Ki j, , for i m= 1, …, and j n= 1, …, , is a Poisson‐Generalized
Inverse Gaussian, or Sichel, distribution. Also, the mean and the variance of Ki j, are given by

K μ( ) =i j i j, , (8)

and

K μ μ c
ν

c
σVar( ) = + +

2( + 1)
− 1 .i j i j i j j

j

j
j, , ,

2 −2






 (9)

2. Let K zi j j,  and zj , for i m= 1, …, and j n= 1, …, , be distributed according to the Poisson and
GIG distributions which are given Equations (1) and (2), respectively. Also, consider that the
cumulative generating function of zj is denoted by C t( )zj , then the cumulative generating
function of the marginal distribution of Ki j, , which is denoted by C t( )Ki j, , is given by

C t C μ e( ) = [ ( − 1)]K z i j
t

,i j j, (10)

and hence, since zj has a unit mean, the third and fourth cumulants of Ki j, and zj are related by

C μ μ Var z μ C= + 3 ( ) + ,K i j i j j i j z3 , ,
2

,
3

3i j j, (11)

and

C μ μ Var z μ C μ C= + 7 ( ) + 6 + ,K i j i j j i j z i j z4 , ,
2

,
3

3 ,
4

4i j j j, (12)

where C K3 i j,
and C K4 i j,

are the third and fourth cumulants of Ki j, .

1A limitation of the proposed model is that it cannot allow for negative correlation between the claim count response
variables. However, regarding MTPL data, such as those we use in this study, positive correlation between MTPL bodily
injury and property damage claim counts is what we expect.
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The skewness and kurtosis of Ki j, are β κ Var K= [ ( )]K i j1 3 ,
1.5

i j,
∕ and

{ }β κ Var K= 3 + [ ( ) ]K i j2 4 ,
2

i j,
∕ respectively, where the cumulants of the mixing distribution

are given by

C g g= [ − 3 ]z3 2 1j (13)

and

( )C g g g g= − 4 + 6 − 3 ,γ4 3 2 1 1
2

(14)

where g c σ ν c= 1 + 2 ( + 1) − 1j j j j1
2∕ ∕







 ,

g σ ν c σ ν ν c= 2 ( + 2) + 4 ( + 1)( + 2) + 1 − 1j j j j j j j2
3 2 2∕ ∕









g σ ν ν c σ ν ν ν σ ν c= 1 + 4 ( + 2)( + 3) + 8 ( + 1)( + 2)( + 3) + 4 ( + 2) − 1j j j j j j j j j j3
2 4 3 3∕ ∕















 .

3. The covariance (Cov) between K j1, and K j2, is given by

K K μ μ c
ν

c
σCov( , ) = +

2( + 1)
− 1 .j j j j j

j

j
j1, 2, 1, 2,

−2






 (15)

3 | STATISTICAL INFERENCE: THE EM ALGORITHM

In this section, an EM type algorithm (Dempster et al., 1977; McLachlan & Krishnan, 2007) is
developed to facilitate maximum likelihood (ML) estimation of the BPGIG regression model
with varying dispersion and shape.

Furthermore, assume that x x x xk k j n( , , , , , ), = 1, …,j j j jj j 1 2 3 41, 2, , , , , , is a sample of indepen-
dent observations, where K j1, and K j2, are the claim count variables and x x x, ,j j j1 2 3, , , and x j4,

are the vectors of covariates with dimensions p p p× 1, × 1, × 11 2 3 and p × 14 respectively.
Also, assume that Z j n, = 1, …,j , are the random effects which are nonobservable and are
considered to produce missing data. By augmentation of the unobserved Zj one can write the
complete log‐likelihood as follows:

( )( )( )

θ μ z k μ

ν c ν z K σ c z

ℓ ( ) [− + log( )]

+ log( ) + ( − 1)log( ) − log − + ,

c i j
n

i j j i j i j

j
n

j j j j ν j σ j j c z

=1
2

=1 , , ,

=1
−1 1

2

1
j

j j j

∝  










(16)

where θ β β β β= ( , , , )1 2 3 4 is the vector of the parameters.
We present below the E‐ and the M‐Steps of our EM type algorithm. At the E‐Step, we

compute the Q‐function, which is the conditional expectation of the complete log‐likelihood
function given by Equation (16), given θr, which is the estimated value of θ at the rth iteration.
The M‐Step consists in maximizing the Q‐function. In particular, we want to find the updated
parameters θr+1 such that the Q‐function is increased with respect to θ.
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• E‐Step: The Q‐function at the r‐th iteration can be written as

( )

( )

( ) ( )

( )

θ θ θ θQ k k

μ w k μ

ν c ν w

K σ
σ

c w
w

c

( ; ) (ℓ ( ) , ; )
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1

2
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z c j j
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i j
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j i j i j
r

j
n

j
r

j
r

j
r

j

ν j
r

j
r j

r
j

j

j
r
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1, 2,
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=1
2

=1 ,
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1, , ,
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=1
( ) ( ) ( )

3,

( )
( )

( )
1,

2,

( )j
r( )

≡

∝

∕


 












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











(17)

where we have defined the pseudo‐values θ θw z k w z k= [ ; ], = ;j z j i j
r

j z j i j
r

1, ,
( )

2,
−1

,
( )

j j
 


  


 and

θw z k= [log( ) ; ]rj z j i j3, ,j
 .

• M‐Step:
– First, differentiate the Q−function with respect to β1:

( )β
θ θ

h
Q

β
k μ w x( ) =

( ; )
= − ,

r

l j

n

j j
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j j l11
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1, =1
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∂
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H
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n
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1, 1, , 1, ,
∂
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 (19)

for j n= 1, …, and l p= 1, …, 1. Then, the Newton–Raphson iterative algorithm for β1 is as
follows:

( ) ( )β β β βH h− .r r r r
1 1 1 1
( +1) ( )

1
( )

−1

1
( )≡



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

 (20)

– Second, differentiate the Q−function with respect to β2:
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h
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j j l22
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∂
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j
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T

2 2
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1, 2, , 2, ,
∂

∂ ∂
 (22)

for j n= 1, …, and l p= 1, …, 2. Then, the Newton–Raphson iterative algorithm for β2 is as
follows:

( ) ( )β β β βH h− .r r r r
2 2 2 2
( +1) ( )

2
( )

−1

2
( )≡







 (23)
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– Third, differentiate the Q−function with respect to β3:
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and where
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Then, the Newton–Raphson iterative algorithm for β3 is as follows:
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– Finally, differentiate the Q−function with respect to β4:
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for j n= 1, …, and l p= 1, …, 4. Thus, the Newton–Raphson iterative algorithm for β4 is as
follows:

( ) ( )β β β βH h− .r r r r
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 (31)
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4 | NUMERICAL ILLUSTRATION

We conducted an empirical analysis using a sample of claim frequency data which was
randomly selected from a larger pool of MTPL insurance policies observed during the year 2017
from a major European insurance company. We are interested in modeling the MTPL bodily
injury and property damage claims with their associated claim counts denoted by K j1, and K j2,

respectively, for j n= 1, …, . For each policy, the total number of claims for each type of claim
were reported within this yearly period. The sample comprised insured parties with complete
records; that is, with the availability of all a priori rating variables which affect both K j1, and
K j2, . Furthermore, an exploratory analysis was carried out to accurately select the subset of
explanatory variables with the highest predictive power for both K j1, and K j2, . There were
n = 5186 observations and three explanatory variables that met our criteria. Table 1
summarizes the explanatory variables whilst Table 2 depicts some standard descriptive
statistics for K j1, and K j2, , along with the values of Kendall's τ and Spearman's ρ correlation
coefficients. As it was expected, Table 2 shows the existence of positive correlation between k j1,

and k j2, as well as their marginal overdispersion. Furthermore, we would like to call attention to
the fact that, as is well known, the range of Kendall's τ and Spearman's ρ for discrete random
variables is narrower than [−1, 1] , see Denuit and Lambert (2005); Mesfioui and Tajar (2005)
and Mesfioui et al. (2022). Furthermore, Nikoloulopoulos and Karlis (2010) and Safari‐Katesari
et al. (2020) showed how to compute the population versions of Kendall's τ and Spearman's

TABLE 1 The explanatory variables and their description

Categories

Variables C1 C2 C3

City population (v1) ≤1,000,000 1,000,001–2,000,000 ≥2,000,001

Number of years that the policyholder

has been registered with the <5 years >5 years –

insurance company (v2)

Horsepower of the vehicle (v3) 0–1400 cc 1400–1800 cc ≥1800cc

TABLE 2 Descriptive statistics for the two responses

K1 K2

Statistic Value Statistic Value

Minimum 0 Minimum 0

Median 0 Median 0

Mean 0.0954 Mean 0.0618

Variance 0.1375 Variance 0.0644

Maximum 4 Maximum 3

Kendall's τ : 0.1760

Spearman's ρ: 0.1777
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ρ by pairing copulas with discrete marginal distributions, respectively. Following their setup,
we investigated the variability of the population versions of Kendall's τ and Spearman's ρ from
lowest to highest attainable values for our data by pairing two marginal Poisson distributions
with varying mean parameter μ from 1 up to 20 using the Normal copula. Also, we considered
that the copula parameter θ can vary from −1 to 1. We observed that the values of Kendall's τ
and Spearman's ρ stabilize close to 1 for the values of μ which are greater than 10. Therefore,
the bivariate Negative Binomial (BNB) and Poisson‐Inverse Gaussian (BPIG) regression models
with varying dispersion and the bivariate Poisson‐Generalized Inverse Gaussian (BPGIG)
regression model with varying dispersion and shape which allow for positive correlation
between the two types of claims are better assumptions than the bivariate Poisson model, as the
latter is not equipped for handling overdispersion. Moreover, Table 3 presents the estimated
regression coefficients for the BNB and BPIG regression models with varying dispersion and
the BPGIG regression model with varying dispersion and shape.2

Furthermore, we compare the fit of the BNB and BPIG regression models with varying
dispersion to that of the BPGIG regression model with varying dispersion and shape based on
the standard specification tests DEV, AIC, and SBC. The DEV is given by

θlDEV = −2ˆ ( ˆ), (32)

with l̂ being the maximum of the log‐likelihood and θ̂ the vector of estimated parameters of
the model. Moreover, the AIC is defined as

dfAIC = DEV + 2 × (33)

and the SBC is given by

n dfSBC = DEV + log( ) × , (34)

where df are the degrees of freedom which correspond to the number of fitted parameters in
the model and n is the number of observations in the sample. The values of the DEV, AIC, and
SBC for the competing models are provided in Table 4. As is well known, two models can be
considered to be significantly different if the difference in the log‐likelihoods exceeds five,
corresponding to a difference in their respective AIC and SBC values of greater than ten and

TABLE 4 BNB, BPIG and BPGIG models comparison based on global deviance, AIC and SBC

Model df Global deviance AIC SBC

BNB 18 4388 4424 4542

BPIG 18 4249 4285 4403

BPGIG 19 4223 4261 4386

Abbreviations: BNB, bivariate Negative Binomial; BPIG, bivariate Poisson‐Inverse Gaussian; BPGIG, bivariate
Poisson‐Generalized Inverse Gaussian.

2All the parameters were statistically significant at a 5% threshold.
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five respectively. Thus, this case we see that the best fitting performances are provided by the
BPGIG regression model with varying dispersion and shape.3

Finally, we compare the forecasting performance of the proposed model and the benchmark
models using both in‐sample estimation and out‐of sample validation. For this purpose, we split
the data into training and test data at the ratio of 9 : 1. Therefore, the training data for the re‐
estimation of the parameters of the models contains 4149 data points. The remaining 1037 data
points are used for testing purposes. To measure the prediction performances the deviance
statistic is used. The deviance value for the BNB, BPIG, and BPGIG models are 490.80, 475.25,
and 472.35 respectively. Thus, the BPGIG model outperforms the two competing bivariate
mixed Poisson models.

5 | CALCULATION OF THE A POSTERIORI PREMIUMS

In this subsection, the expected value premium principle is used to compute the a posteriori, or
Bonus‐Malus, premium rates determined by the BNB, BPIG, and BPGIG models for t = 1 for
three risk class profiles that we classify as Best, Average, and Worst according to the values of
the mean claim frequencies μ j1, and μ j2, , which are calculated using the same set of explanatory
variables per claim type i = 1, 2. The results are depicted in Table 5.

6 | CONCLUSIONS

In this article, we presented the MVPGIG claims count regression model with varying
dispersion and shape for modeling different types of claims in nonlife insurance. The MVPGIG
is a wide family of models which, under the proposed modeling framework, can provide
sufficient flexibility for capturing overdispersion and positive correlation structures in highly‐
dimensional claim count data. For demonstration purposes, the bivariate version of the model,
namely the BPGIG model, with regression specifications for the mean, dispersion, and shape
parameters was fitted on MTPL property damage and bodily injury claim count data. The ML
estimates of the parameters of the model were obtained via a novel EM type algorithm.
However, it should be noted that a shortcoming of the proposed approach is that there is a
strong discrepancy between the flexibility within the equations of the random effect
distribution, and the rigidity between these equations. To relax this rigidity, the BPGIG model
can be constructed either by using the so‐called trivariate reduction method or by considering
correlated GIG random effects (say z j1; and z j2; ) paired via a Gaussian copula following the
approaches of Bermudez and Karlis (2017) and Pechon et al. (2018) in the former and latter
case respectively. Both approaches are very efficient when modeling different types of claims
from different types of coverage or household claim frequencies in MTPL insurance. Finally, in
a forthcoming paper, time series components will be included to accommodate for both cross
dependence between different types of claims and time dependence, proceeding along similar
lines as in Bermudez et al. (2018) among others.

3Note that the stopping criterion for the EM algorithm was rather strict as the algorithm iterated between the E and the
M‐steps until the relative change in the log‐likelihood between two successive iterations was smaller than 10−12.
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