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The two-sided markets such as ride-sharing companies often involve a
group of subjects who are making sequential decisions across time and/or lo-
cation. With the rapid development of smart phones and internet of things,
they have substantially transformed the transportation landscape of human
beings. In this paper we consider large-scale fleet management in ride-sharing
companies that involve multiple units in different areas receiving sequences
of products (or treatments) over time. Major technical challenges, such as
policy evaluation, arise in those studies because (i) spatial and temporal prox-
imities induce interference between locations and times; and (ii) the large
number of locations results in the curse of dimensionality. To address both
challenges simultaneously, we introduce a multi-agent reinforcement learn-
ing (MARL) framework for carrying policy evaluation in these studies. We
propose novel estimators for mean outcomes under different products that
are consistent despite the high-dimensionality of state-action space. The pro-
posed estimator works favorably in simulation experiments. We further il-
lustrate our method using a real dataset obtained from a two-sided mar-
ketplace company to evaluate the effects of applying different subsidizing
policies. A Python implementation of our proposed method is available at
https://github.com/RunzheStat/CausalMARL.

1. Introduction. This paper concerns the applications in the two-sided markets that in-
volve a group of subjects who are making sequential decisions across time and/or location.
In particular, we consider large-scale fleet management in ride-sharing companies, such as
Uber, Lyft and Didi. These companies form a typical two-sided market that enables effi-
cient interactions between passengers and drivers (Armstrong, 2006; Rysman, 2009). With
the rapid development of smart phones and internet of things, they have substantially trans-
formed the transportation landscape of human beings (Frenken and Schor, 2017; Jin et al.,
2018; Hagiu and Wright, 2019). With rich information on passenger demand and locations
of taxi drivers, they significantly reduce taxi cruise time and passenger waiting time in com-
parison to traditional taxi systems (Li et al., 2011; Zhang et al., 2014; Miao et al., 2016). We
use the numbers of drivers and call orders to measure the supply and demand at a given time
and location. Both supply and demand are spatio-temporal processes and they interact with
each other. These processes depend strongly on the platform’s policies, and have a huge im-
pact on the platform’s outcomes of interest, such as drivers’ income level and working time,
passengers’ satisfaction rate, order answering rate and order finishing rate, etc.

Keywords and phrases: Multi-Agent system, Reinforcement learning, Spatiotemporal studies, Policy evalua-
tion.
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A fundamental question of interest that we consider here is how to establish causal rela-
tionships between platform policies and platform’s outcomes. In particular, we are interested
in evaluating the causal effects of applying different subsidizing policies or recommendation
programs to drivers or passengers in different spatial locations of a city. The purpose of im-
plementing these policies is to balance the taxi supply and passenger demand across different
areas of the city, so as to meet more passengers’ requests and reduce drivers’ vacant time. As
an example, suppose a passenger opens the ride-sharing application on their smart phone and
enters their destination. The platform will decide whether to recommend the customer to join
a program and send them a coupon to discount this ride, depending on their locations. Such a
recommendation increases the chance that the customer orders this particular ride to reduce
the local drivers’ vacant time. As another example, suppose the ride-sharing platform pro-
vides subsides to drivers in areas where there are more passenger call orders than the number
of drivers. Implementing such a policy will attract more drivers to these areas, meeting more
passengers’ requests.

Solving this fundamental question faces at least two major challenges. The first one is that
the spatial and temporal proximities in the aforementioned applications will induce inter-
ference between locations and times. As such, the outcome associated with each unit might
depend on the treatments of all regions. Learning each spatial unit’s value based on its own
data only would yield a biased estimator. See e.g., the performance of the baseline estimator
DR-NS in Sections 4 and 5. We notice that most of the existing policy evaluation methods
in the literature focus on the setting where no interference occurs, that is, the outcome of
each experimental unit is unaffected by treatment assignment of other units (see e.g., Zhang
et al., 2012; Chakraborty et al., 2014; Dudík et al., 2014; Matsouaka et al., 2014; Luedtke
and Van Der Laan, 2016; Belloni et al., 2017; Wu and Wang, 2020; Shi et al., 2020a). Such a
no interference assumption is often referred to as the stable unit treatment value assumption
(SUTVA, Rubin, 1980, 1986) in the causal inference literature. To elaborate the violation of
SUTVA, let us revisit the example of applying driver-side subsidizing policies. As we have
commented, applying a subsidizing policy at one location would attract some drivers from its
neighbouring areas to that location, so the subsidizing policy at one location could influence
various outcomes of those neighbouring areas, inducing interference among spatial units.
Moreover, the subsidizing policy at a given time would affect both current and future sup-
plies, inducing interference across time. In the passenger recommendation program example,
sending coupons to certain passengers not only increases the number of current call orders,
but the chance that these passenger use the app more frequently in the future as well. As
such, applying the recommendation program will increase the number of future call orders,
inducing interference across time. Thus, interference across time and/or among spatial units
leads to the violation of SUTVA in our applications.

The second challenge is that the large number of spatial units results in the curse of dimen-
sionality. Specifically, to implement the subsidizing policy or the customer recommendation
program, the whole city is divided into N = 8 disjoint spatial units, as shown in Figure 1.
For each spatial unit, the company can decide whether to apply certain promotion strategy
to this region or not. In the presence of spatial interference, the amount of data needed to
provide reliable policy value estimates grows exponentially with N , resulting in the curse
of dimensionality. It remains challenging to effectively model the high-dimensional system
without additional assumptions.

The aim of this paper is to evaluate the treatment effects of multiple policies in the pres-
ence of spatiotemporal interference. There is a huge literature on causal inference, but most
existing works assume SUTVA (see e.g., Hirano et al., 2003; Imbens and Rubin, 2015; Wager
and Athey, 2018; Yao et al., 2020). There has been substantial interest in the development of
causal inference under interference. Our work falls into an emerging research topic on space-
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Fig 1: Visualization of N = 8 different spatial units in the city.

or time-dependent treatment effects evaluation (see e.g., Hudgens and Halloran, 2008; Tchet-
gen Tchetgen and VanderWeele, 2012; Toulis and Kao, 2013; Halloran and Hudgens, 2016;
Dempsey et al., 2017; Athey et al., 2018; Boruvka et al., 2018; Bhattacharya et al., 2019;
Bojinov and Shephard, 2019; Ning et al., 2019; Reich et al., 2020). However, none of the
above cited works studies the interference effects in both space and time. In particular, Reich
et al. (2020) gave a systematic review of various statistical models for spatial causal inference
and pinpoint some areas of future work. However, those models in Reich et al. (2020) were
primarily motivated by research questions in environmental and epidemiological studies, so
their generalization to two-sided markets remains unknown.

Reinforcement learning is a general machine learning technique that allows an agent to
interact with a given environment, which has drawn more and more attention in the statistics
literature, see Sutton and Barto (2018) for an overview. Recently, a number of proposals uti-
lize reinforcement learning in mobile health or two-sided markets (Ertefaie, 2014; Luckett
et al., 2019; Chen et al., 2020; Hu et al., 2019; Liao et al., 2020; Wang et al., 2021; Zhou
et al., 2021; Li et al., 2022a,b; Liao et al., 2022; Shi et al., 2022a,b). In addition, there is a
growing literature on adapting reinforcement learning to develop dynamic treatment regimes
in precision medicine, to recommend treatment decisions based on individual patients’ infor-
mation (Murphy, 2003; Chakraborty et al., 2010; Qian and Murphy, 2011; Zhao et al., 2012;
Zhang et al., 2013; Song et al., 2015; Zhao et al., 2015; Zhang et al., 2015, 2018; Zhu et al.,
2017; Wang et al., 2018; Shi et al., 2018a,b; Mo et al., 2020; Meng et al., 2020; Cai et al.,
2021; Fang et al., 2021). All these methods considered a single-agent setup where only one
agent exists in the environment.

The proposed method is motivated by a line of research on multi-agent reinforcement
learning (MARL) in the cooperative setting (see e.g., Zhang et al., 2019, for an overview). In
MARL, multiple autonomous agents operate in a common environment. Each agent aims to
maximize its own cumulative reward by interacting with the environment and other agents.
Compared to the single-agent setup, MARL is much more challenging due to the presence
of the high-dimensional action space induced by multiple agents. Most existing works on
MARL focus on the policy optimization problem where each agent aims to identify an opti-
mal policy that optimizes its long-term reward. In particular, Yang et al. (2018) developed a
mean field Q-learning algorithm in the discounted-reward setting. We remark that many of
these methods are not directly applicable to the problem of policy evaluation, where the ob-
jective is to learn the impact of a given policy using data collected possibly from a different
behavior policy.

The contributions of this paper are summarized as follows. First, we introduce a multi-
agent reinforcement learning framework for policy evaluation. Consider the example of ap-
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plying driver-side subsidizing policies or passenger recommendation programs. Each spatial
unit in the city is considered as an agent. In addition to the treatment-outcome pairs, it is
assumed that each agent is associated with a set of time-varying confounding variables. This
naturally leads to a multi-agent system. Under this framework, the interference effects in
space are modeled by the interactions between different agents, while the interference effects
in time are modeled by the dynamic system transitions. See the causal diagram depicted in
Figure 2 for an illustration. Estimation of the mean outcome under different products is re-
duced to the off-policy evaluation problem in MARL. To the best of our knowledge, this is
the first work that explores MARL in the statistics literature. We remark that alternative to
the MARL framework, the policy evaluation problem can be equivalently formulated using a
single-agent setup whose action space is {0,1}N and reward is the sum of individual rewards
of the agents. However, as mentioned earlier, it remains challenging to handle the exponen-
tially large action space under the single-agent formulation. To the contrary, our formulation
allows us to borrow ideas from the MARL literature to simultaneously address the challenges
of dealing with spatiotemporal interference as well as the curse of dimensionality.

Second, we propose an original off-policy policy evaluation procedure in MARL. A num-
ber of off-policy evaluation algorithms have been developed under the single-agent setup (see
e.g., Thomas et al., 2015; Jiang and Li, 2016; Thomas and Brunskill, 2016; Liu et al., 2018;
Kallus and Uehara, 2019; Tang et al., 2019; Uehara et al., 2020; Shi et al., 2021; Chen and
Qi, 2022). Directly applying these methods will yield value estimators with large variances,
due to the curse of dimensionality. See the performance of the baseline estimator and DR-
NM in Sections 4 and 5. Our proposal is the first to harness the power of modern MARL and
single-agent policy evaluation methods, while establishing rigorous statistical guarantees,
when tackling an important business question in two-sided markets. The proposed estimator
requires estimation of the density ratio of the stationary state distribution and the Q-function
associated with each single agent. The key ingredient of our method lies in learning both the
density ratio and Q-function based on the mean-field approximation and aggregating these
estimators properly to satisfy the doubly-robustness property in the average reward setting.
Event though ideas such as the mean-field approximation and doubly robust estimation are
not completely new, how to integrate them properly and effectively into a value estimator with
desired theoretical guarantees is nontrivial, and is one of the main contributions of this article.
In particular, we propose an original mean-field algorithm to approximate the density ratio in
MARL. We also extend Yang et al. (2018)’s proposal to the average-reward setting, which is
more suitable for our purpose of policy evaluation. The mean field approximation effectively
reduces the high-dimensional state-action space to a moderate scale, leading to a value esti-
mator with decreased variance. The doubly-robustness guarantees that our estimated value is
consistent when either the density ratio or the Q-function is well-approximated, reducing its
bias resulting from the mean-field approximation.

Third, we systematically study how to test the mean-field approximation assumption from
the observed data. Specifically, we show that under an additive noise model assumption, the
mean-field approximation assumption is reduced to certain conditional mean independence
assumptions. See Appendix C for details. This observation allows us to employ existing state-
of-the-art conditional independence tests to examine the validity of mean-field approximation
in practice. To our knowledge, this is the first time that a formal statistical test for such an
assumption is proposed. We illustrate the idea using the forward-backward learning-based
test developed by Shi et al. (2020b) in our numerical studies.

Finally, we investigate the statistical properties of our estimator. In particular, we establish
its doubly-robustness property (Theorem 2) and derive its “oracle" property when both the
density ratio and the Q-function are well approximated (Theorem 3). Our theory allows the
number of spatial units, denoted as N , to be either bounded or diverge to infinity. Therefore,
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Fig 2: Causal diagram for a multi-agent system with two agents. (Sj,t,Aj,t,Rj,t) represents the state-
treatment-outcome triplet of the j-th agent at time t.

the proposed estimator offers a useful policy evaluation tool to a wide range of applications
in the presence of spatiotemporal interference. To prove these results, we develop an expo-
nential inequality for the suprema of empirical processes under weak dependence (Lemma
3), which is useful for finite-sample analysis of machine learning estimates based on depen-
dent observations. As we have mentioned earlier, most off-policy evaluation algorithms are
developed under a single-agent setup. To our knowledge, these theoretical results have not
been established in the existing literature.

The rest of the article is organized as follows. In Section 2, we describe the problem setup
and introduce a potential outcome framework for MARL. We present our method in Section
3. Simulation studies are conducted in Section 4. In Section 5, we apply the proposed method
to a dataset from a two-sided marketplace company to evaluate the effects of applying differ-
ent subsidizing policies. Finally, we conclude our paper by a discussions section. Statistical
property of our method is investigated in the appendix.

2. A potential outcome framework for MARL. In this section, we extend Rubin’s po-
tential outcome framework to the multi-agent system. This allows us to formulate our causal
estimand. We first introduce some notations. For 1≤ i≤N , we consider two treatments (ac-
tions) associated with the i-th spatial unit (agent) such that the action space is represented as
Ai = {0,1}. Let Si denote the state space associated with the i-th agent. In our application,
the two treatments correspond to applying certain promotion strategy to a given spatial unit
or not. The state variables include the number of call orders (demand) and available drivers
(supply), and a supply-demand equilibrium metric that measures the degree of mismatch
between orders and drivers within each region. The joint state and action spaces are given
by S = S1 × S2 × . . . × SN and A = A1 × A2 × . . . × AN = {0,1}N , respectively. For a
sequence of N -dimensional vectors a0,a1, . . . ,at ∈ {0,1}N , we define a treatment history
vector āt = (a⊤

0 ,a
⊤
1 , . . . ,a

⊤
t )

⊤ up to time t. For each i ∈ {1, . . . ,N}, let S∗
i,t+1(āt) ∈ Si and

R∗
i,t(āt) ∈R be, respectively, the potential state and reward (outcome) associated with the i-

th agent at time t+ 1 and time t, which would occur had all agents followed āt. Moreover,
different action histories would lead to different potential outcomes, and more importantly,
these potential outcomes cannot be directly observed.

We first introduce a consistency assumption (CA) to link potential outcomes to the
observed data. Let {(Si,t,Ai,t,Ri,t, Si,t+1)}1≤i≤N,0≤t<T be the observed data, where
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(Si,t,Ai,t,Ri,t) stands for the observed state-action-reward triplet associated with the i-th
agent at time t and T is the termination time of the study. Let At = (A1,t, . . . ,AN,t)

⊤ and
Āt = (A⊤

0 ,A
⊤
1 , . . . ,A

⊤
t )

⊤ be, respectively, the observed treatments at time t and until time
t. The CA is given as follows.

(CA) Si,t = S∗
i,t(Āt−1) and Ri,t =R∗

i,t(Āt) hold almost surely for any i and t.

Under CA, the potential outcomes are allowed to depend on not only past treatments, but
also actions selected by other agents. The CA extends SUTVA to settings with spatiotemporal
interference, since SUTVA requires S∗

i,t+1 and R∗
i,t to be functions of Ai,t only. We also

remark that the notations S∗
i,t and R∗

i,t are used to denote potential outcomes. They are not
deterministic functions of Āt−1 and Āt.

We next introduce a sequential randomization assumption (SRA) that guarantees the iden-
tifiability of our causal estimands.

(SRA) At is independent of W ∗ given {(Si,j ,Ai,j ,Ri,j)}1≤i≤N,0≤j<t∪{Si,t}1≤i≤N for any
t, where W ∗ = ∪t≥0,āt∈{0,1}N(t+1)W ∗

t (āt), in which W ∗
t (āt) denotes the set of potential

outcomes following āt up to time t, that is, W ∗
t (āt) = {(S∗

i,j(āj−1),R
∗
i,j(āj)) : 1 ≤ i ≤

N,0≤ j ≤ t}.

We remark that SRA basically assumes that there is no unmeasured confounders. SRA
is satisfied in randomized experiments, as in our real datasets. Under settings where SRA
is violated, we can apply backdoor or frontdoor adjustment to the MARL setup to handle
unmeasured confounders (see e.g., Wang et al., 2020). This is beyond the scope of the current
paper and we leave it for future research. We also note that when N = 1, i.e., in the single
agent setting, CA and SRA are commonly imposed in sequential decision making problems
(see e.g., Murphy, 2003; Robins, 2004; Zhang et al., 2013; Ertefaie, 2014; Laber et al., 2018;
Luckett et al., 2019).

Next, we introduce the Markov assumption (MA) and the conditional mean independence
assumption (CMIA) to characterize the system transitions. These assumptions serve as the
foundations of the existing state-of-the-art RL algorithms (see e.g., Sutton and Barto, 2018).
Let St = (S1,t, · · · , SN,t)

⊤ and Rt = (R1,t, · · · ,RN,t)
⊤.

(MA) There exists a Markov transition kernel P : S×A× S such that for any t ≥ 0, āt ∈
{0,1}N(t+1) and S ∈ S, we have almost surely that

Pr{St+1 ∈ S|At,St,{Aj ,Rj ,Sj}0≤j<t}=P(S;At,St).

The transition kernel P characterizes the conditional distribution of the future state vector
given the current state-action pair. MA assumes the system dynamics are homogeneous over
time. This enables consistent estimation of our causal estimands. We remark that MA is
testable from the observed data; see e.g., the goodness-of-fit test developed by Shi et al.
(2020b).

(CMIA) There exist functions r1, . . . , rN such that for any 1 ≤ i ≤ N , t ≥ 0, āt ∈
{0,1}N(t+1), we have E(Ri,t|At,St,{Aj ,Rj ,Sj}0≤j<t) = ri(At,St) almost surely.

For each 1 ≤ i ≤ N , ri corresponds to the conditional mean function of Ri,t given the
state-action pair at time t. CMIA is similar to MA in the sense that it also imposes certain
conditional independence assumption between the reward and the past data history. Mean-
while, it is weaker than requiring Ri,t to be independent of (Aj ,Rj , Sj)0≤j<t conditional
on (At, St), since it only requires the conditional mean of Ri,t to satisfy the independence
assumption. It is also weaker than the condition that requires the reward to be a deterministic
function of the state-action pair. The latter condition is commonly imposed in the literature
(see e.g., Ertefaie, 2014; Luckett et al., 2019).
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In practice, to ensure MA and CMIA to be satisfied, we can construct the state by con-
catenating measurements over multiple decision points till the Markov and conditional mean
independence properties are satisfied. In addition, to guarantee the transition kernel P and
the reward functions {ri}i are time-homogeneous, we can include some auxiliary variables
(e.g., time of the day) in the state. See our real data analysis in Section 5 for details. Without
special saying, we assume that CA, SRA, MA and CMIA hold throughout this paper.

We next introduce the average treatment effect (ATE) for multi-agent systems below. We
focus on the class of stationary policies indexed by some π = (π1, . . . , πN )⊤, where each
πi is a binary-valued function of the current state vector. Under π, the i-th spatial unit will
receive the treatment πi(St) at time t. As we have commented, applying a certain promotion
strategy π in our application has both short-term and long-term benefits. We are thus inter-
ested in evaluating the average reward under π. This allows the company to decide whether
to apply such a dynamic policy in a given city or not, under some budget constraints. For any
such policy π, let π̄0 = π(S0) = (π1(S0), . . . , πN (S0))

⊤ be the initial action vector assigned
according to π. Then we recursively define π̄t = (π̄⊤

t−1,π(S
∗
t (π̄t−1)))

⊤ as the treatment as-
signment history under π up to time t for t≥ 1.

Our objective is to evaluate the long term value of a given policy π, defined as

V (π) = lim
t→∞

1

Nt

N∑
i=1

t∑
j=0

ER∗
i,j(π̄j),(1)

where R∗
i,j(π̄j) denotes the potential outcomes of the i-th agent that would occur at time

t had all agents followed the dynamic policy π. We note that V (π) can be represented by
N−1

∑N
i=1 Vi(π), where Vi(π) = limt→∞ t−1

∑t
j=0ER∗

i,j(π̄j). Consequently, to evaluate
V (π), it suffices to estimate Vi(π) for i= 1, · · · ,N .

3. Off-policy evaluation in MARL. In this section, we first propose an importance-
sampling (IS) based estimator for Vi(π) and then develop a doubly-robust version. We next
detail some major steps in constructing these estimators.

3.1. IS based estimator.. In the following, we first consider a potential estimator for
V (π), which is built on the value estimator proposed by Liu et al. (2018) in a single-agent
system. We then discuss its limitation and present our IS based estimator.

To detail the method, we assume the system follows a stationary behavior policy b(·) such
that

Pr(At = at|{Ai,j , Si,j ,Ri,j}1≤i≤N,0≤j<t ∪ {Si,t}1≤i≤N ) = b(at|St),

holds for any at ∈ {0,1}N . In other words, At depends on past observations only through
St. It implies that the process {(St,At)}t≥0 forms a time-homogeneous Markov chain. This
assumption is satisfied in our application where the data are generated from a completely
randomized experiment with b(At|St) = 0.5N for any t. Meanwhile, we also allow b to rely
on the set of current state variables.

Let pb(s) be the density function of the stationary distribution of the stochastic process
{St}t≥0. Similarly, for a given π, let pπ(s) be the stationary density function of {St}t≥0 had
all agents followed π. When the process {St}t reaches its stationary distribution, it follows
from the change-of-measure theorem that

Vi(π) =

∫
Si

ω(s)ri(π(s),s)pb(s)ds= E{ω(St)ri(π(St),St)}

= E
{
ω(St)

I(At = π(St))

b(π(St)|St)
Ri,t

}
,

(2)
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where ω(s) = pπ(s)/pb(s) and I(·) denotes the indicator function. Thus, a natural estimator
for Vi(π) is the IS based estimator V̂ IS0

i (π) = T−1
∑T−1

t=0 ω̂(St)I(At = π(St))Ri,t/b(π(St)|St)
for some estimated ω̂, leading to the IS estimator for V (π):

V̂ IS0(π) = (NT )−1
N∑
i=1

T−1∑
t=0

ω̂(St)I(At = π(St))Ri,t

b(π(St)|St)
.

In a multi-agent system, the above estimator V̂ IS0

i (π) has two major limitations. The first
one is that it suffers from high variance introduced by the importance ratio ω(St)I(At =
π(St))/b(π(St)|St). To better illustrate this, suppose that the state-action pairs are indepen-
dent across different agents. In this case, the overall ratio is the product of ratios associated
with each single agent, so variances in each individual ratio accumulate multiplicatively.
Thus, the overall ratio can have an extremely high variance for large N . The second one
is that consistently estimation of ω(·) is extremely challenging for high-dimensional state-
action space and limited observations. One naive approach could replace the overall weight
in (2) by the individual ratio associated with the i-th agent, but it would ignore the interfer-
ence between different spatial units, leading to a biased value estimator.

To address these two limitations, we propose to factorize the importance ratio by using the
mean-field approximation procedure. The key idea of this procedure is to approximate the
reward function ri as a function of the state-action pairs of the i-th agent and its neighbours
only. This allows us to focus on the density ratio of these restricted state-action pairs as
detailed in (5). As the input of such a density ratio is reduced to a moderate scale, the variance
of the value estimator is dramatically reduced. It also enables consistent estimation of the
density ratio.

We next detail the mean-field approximation procedure. For any 1 ≤ i ≤ N , let N (i)
denote the index set of the neighboring agents of agent i. Let ms

i and ma
i be some mean-field

functions of the local states and actions related to the i-th agent, respectively. For instance,
one may set these functions to some averaged state and action over its neighbors, i.e.,

ms
i (s) =

1

|N (i)|
∑

j∈N (i)

sj and ma
i (a) =

1

|N (i)|
∑

j∈N (i)

aj ,(3)

for any i, where |N (i)| denotes the number of candidates in N (i) and (si, ai) corresponds
to the state-action pair associated with the i-th agent. For each i ∈ {1, . . . ,N} and any s ∈ S,
a ∈ {0,1}N , we adopt the following mean-field approximation,

ri(a,s) = r̄i(ai,m
a
i (a), si,m

s
i (s)),(4)

for some function r̄i.
We make a few remarks. First, it is generally conceived that (4) holds in many applications,

such as the ride-sharing platform. Specifically, the state-action pair at one location can affect
the outcome of other locations only through its impact on the distribution of drivers. Within
each time unit, each driver can travel at most from one location to its neighbouring locations.
Hence, the distribution of drivers in one location is independent of the state-action pairs in
non-adjacent locations.

Second, it is possible to test (4) for some given mean-field functions ma
i and ms

i . Specif-
ically, notice that (4) essentially requires the conditional mean of Ri,t to be independent of
(At,St) given (Ai,t,m

a
i (At), Si,t,m

s
i (St)). When Ri,t satisfies the additive noise model as-

sumption, Ri,t = f(Si,t+1,Ai,t, Si,t)+εi,t, for some mean zero random error εi,t, (4) holds if
Si,t+1 is conditionally independent of (At,St) given (Ai,t,m

a
i (At), Si,t,m

s
i (St)). As such,

existing state-of-the-art conditional independence tests can be applied to test this assumption.
We discuss this further in Section 4.
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Recall that pb(·) and pπ(·) are the stationary distribution of St under b and π, re-
spectively. Let pi,π(·) denote the corresponding marginal distribution of the triplet S̃i,t =

(ma
i (π(St)), Si,t,m

s
i (St)). Similarly, we define pi,b(·). Let ωi(S̃i,t) denote the density ratio

pi,π(S̃i,t)/pi,b(S̃i,t). It follows from similar arguments in (2) that Vi(π) equals∫
s̃i

ωi(s̃i)r̄i(πi(s), s̃i)pi,b(s̃i)ds̃i

=Eωi(S̃i,t)
I(Ai,t = πi(St),m

a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
Ri,t,

(5)

where bi(π|S̃i,t) denotes the conditional probability Pr(Ai,t = πi(St),m
a
i (At) =ma

i (π(St))|S̃i,t).
In settings where At is independent of St, as in our application, bi can be explicitly calcu-
lated. More generally, bi can be estimated by the state-of-the-art machine learning algorithms
(see Appendix B in the supplement for details).

Motivated by (5), we consider a new IS based estimator of Vi(π) as follows:

V̂ IS
i (π) =

1

T

T−1∑
t=0

ω̂i(S̃i,t)
I(Ai,t = πi(St),m

a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
Ri,t

for some estimated ω̂i. Since the sampling ratio in V̂ IS
i (π) is a function of S̃i,t, Ai,t and

ma
i (At) only, V̂ IS

i (π) has a much smaller variance compared to the value estimator outlined
at the beginning of this section. In addition, consistent estimation of ωi is feasible since the
dimension of the input of ωi has been reduced to a moderate scale. Given V̂ IS

i (π), the corre-
sponding estimator for the average value V (π) is given by V̂ IS(π) =N−1

∑N
i=1 V̂

IS
i (π).

We discuss the estimating procedure for the density ratio ωi in Section 3.3.

3.2. Doubly-robust estimator. Compared to V̂ IS(π), the doubly-robust (DR) estimator
offers protection against model misspecification of the density ratio and is more efficient in
general. Kallus and Uehara (2019) developed a double reinforcement learning method for
value evaluation in a single-agent discounted reward setting. In this section, we extend their
proposal to a multi-agent average reward setup. Before presenting the estimator, we introduce
the Q-function associated with the i-th agent under a given policy π as

Qπ
i (a,s) =

+∞∑
t=0

E[{R∗
i,t(π̄t(a))− Vi(π)}|S0 = s], ∀s ∈ S,a ∈ {0,1}N ,

where π̄t(a) denotes the treatment history up time t such that the initial treatment equal to
a and all other actions assigned according to π. We remark that Qπ

i (a,s) is finite and well-
defined when the Markov chain approaches its steady-state exponentially fast under π. In that
case, most of the differences on the right-hand-side will be earned in the first few iterations.
Please see Section 8.2.1 of Puterman (1994) for details.

The DR estimator for Vi(π) takes the following form,

(6)

Ṽi(π) +
1

T

T−1∑
t=0

ω̃(St)
I(At = π(St))

b(π(St)|St)
{Ri,t + Q̃i(π(St+1),St+1)− Q̃i(At,St)− Ṽi(π)},

where Ṽi(π) denotes some initial estimator for Vi(π) and ω̃ and Q̃i stand for estimators
for ω and Qi, respectively. Note that by the Bellman equation (see Lemma 2 in Section 3.4
for details), the second term in (6) has zero mean when (Q̃i, Ṽi(π)) = (Qi, Vi(π)). When
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ω̃ = ω, it can be shown that (6) has the same asymptotic mean as the IS-based estimator.
Based on the above discussion, one can verify that (6) is consistent when either ω̃ = ω or
(Q̃i, Ṽi(π)) = (Qi, Vi(π)).

However, due to the presence of high-dimensional state-action space, the estimator out-
lined in (6) suffers from high variance. In addition, consistent estimation of ω and Qi

are extremely difficult. To address these concerns, we replace the density ratio in (6) by
ω̂i(S̃i,t)I(Ai,t = πi(St),m

a
i (At) =ma

i (π(St)))/bi(π|S̃i,t). To enable consistent estimation
of Qi, we consider factorizing Qi based on mean-field approximation as well. Specifically,
for each i ∈ {1, . . . ,N}, and any s ∈ S, a ∈ {0,1}N , we propose to approximate Qi by

Qπ
i (a,s) = Q̄i(ai,m

a
i (a), si,m

s
i (s)),(7)

for some functions Q̄i.
When (4) holds, we show that (7) is satisfied if (π(St+1),m

a
i (π(St+1)), S̃i,t+1) is con-

ditionally independent of (At,St) given (Ai,t,m
a
i (At), Si,t,m

s
i (St)). See Appendix C for

details. Similarly, existing state-of-the-art conditional independence tests can be applied to
verify this assumption.

To learn Q̄i and Vi(π), we extend the regularized policy iteration algorithm (Farahmand
et al., 2016; Liao et al., 2020) to our setup. The detailed procedure is given in Section 3.4.
Meanwhile, other methods developed in single-agent systems (see e.g., Uehara et al., 2020)
may be adopted as well. Let Q̂i and V̂i(π) denote the corresponding estimators, we define
our value estimator

V̂ DR
i (π) = V̂i(π) +

1

T

T−1∑
t=0

ω̂i(S̃i,t)
I(Ai,t = πi(St),m

a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)

×{Ri,t + Q̂i(πi(St+1), S̃i,t+1)− Q̂i(Ai,t,m
a
i (At), Si,t,m

s
i (St))− V̂i(π)}.

(8)

The corresponding estimator for V (π) is given by V̂ DR(π) =N−1
∑N

i=1 V̂
DR
i (π).

To conclude this section, we present an overview of our theoretical results for V̂ DR(π).
Details are given in the appendix. Our theoretical studies are mostly concerned with an
“oracle" estimator V̂ DR∗(π), which works as if the true values Q̄i, ω∗

i and V ∗
i (π) were

known. Specifically, let V̂ DR∗
i (π) be a version of V̂ DR(π) by replacing ω̂i, Q̂i and V̂i(π)

in (8) with the corresponding population limits. The oracle estimator is given by V̂ DR∗(π) =

N−1
∑N

i=1 V̂
DR∗
i (π). In Theorem 1, we establish the doubly-robustness property of the ora-

cle estimator. Specifically, we show the oracle estimator is (NT )−1/2-consistent and asymp-
totically normal when one of the mean-field approximation is valid, i.e., either (4) or (7)
holds. In Theorem 2, we establish the doubly-robustness property of our estimator, i.e.,
V̂ DR(π) is consistent when either (4) or (7) holds. In Theorem 3, we show our value esti-
mator achieves the “oracle" property when both mean-field approximations (4) and (7) are
valid. Specifically, it is (NT )−1/2-consistent and asymptotically normal with the asymptotic
variance equal to that of the oracle estimator. We remark that to establish these theoretical re-
sults, we require the state-action process {(St,At)} to satisfy the exponential β-mixing con-
dition; see (A1) in Appendix A. Under stationarity, this assumption is equivalent to require
the underlying Markov chain to satisfy geometric ergodicity (see Theorem 3.7 of Bradley,
2005). It guarantees that the estimated values concentrates on their oracle values with high
probability, allowing us to establish the oracle property. Please refer to the proof of Theorem
3 in Appendix D.3 for details.

3.3. Estimation of the density ratio. In the single-agent setup, there are multiple estima-
tion methods available to produce an estimated density ratio (Liu et al., 2018; Kallus and
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Uehara, 2019; Nachum et al., 2019; Liao et al., 2022). In our implementation, we extend the
proposal in Liu et al. (2018) to the multi-agent setup. We first present an overview of the
algorithm. A key observation is given by Lemma 1, which establishes the relationship be-
tween ωi(S̃i,t) and ωi(S̃i,t+1). Based on this lemma, the idea is to introduce a discriminator
function to construct a mini-max loss function (see Equation (9)). Then ωi is estimated by
optimizing this loss function. We next present Lemma 1.

LEMMA 1. Suppose S̃i,t+1 is independent of (St,At) given S̃i,t, Ai,t and ma
i (At). We

have E∆i,t(ωi)f(S̃i,t+1) = 0 for any i, t and function f where

∆i,t(ωi) = ωi(S̃i,t)
I(Ai,t = πi(St),m

a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
− ωi(S̃i,t+1).

Under the conditions in Lemma 1, {(S̃i,t,Ai,t,m
a
i (At))}t≥0 forms a time-homogeneous

Markov chain. This lemma motivates us to compute ω̂i by minimizing the following loss
function,

ω̂i = argmin
ωi∈Ω

sup
f∈F

∣∣∣∣∣
T−1∑
t=0

∆i,t(ωi)f(S̃i,t+1)

∣∣∣∣∣
2

,(9)

for some function classes Ω and F . In our implementation, we set F to a unit ball of a
reproducing kernel Hilbert space (RKHS), i.e.,

F = {f ∈H : ∥f∥H = 1},

where

H=

{
f(·) =

T−1∑
t=0

btκ(S̃i,t+1; ·) : {bt}T−1
t=0 ∈RT

}
,

for some positive definite kernel κ(·; ·) and ∥ · ∥H denotes the corresponding RKHS norm.
The use of RKHS enables us to derive a close-form expression for the objective function

on the right-hand-side (RHS) of (9). Specifically, using similar arguments in the proof of
Theorem 2 of Liu et al. (2018), the optimization problem in (9) is then reduced to

ω̂i = argmin
ωi∈Ω

T−1∑
t1=0

T−1∑
t2=0

∆i,t1(ωi)∆i,t2(ωi)κ(S̃i,t1+1, S̃i,t2+1).

It remains to specify the function class for Ω. Motivated by the approximation capabilities
of neural networks, we set Ω to the class of multilayer perceptron networks. See Figure 3
for an illustration. We use different parameters to factorize different ωi such that each ω̂i

is computed separately. Alternatively, one could allow different ωi to share some common
parameters. Stochastic gradient descent is applied to update the parameters in the neural
network. We detail our procedure in Algorithm 1.

3.4. Estimation of the Q-function and the value. In this section, we describe methods
to estimate compute Q̂i and the initial value estimator V̂i(π). The key ingredient of the al-
gorithm lies in minimizing a regularized version of the Bellman residual to work with rich
nonparametric function class, while simultaneously controlling its complexity. In our imple-
mentation, we use the RKHS as the function class to approximate the Q-function. A key
observation is given by the following lemma,
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Algorithm 1 Estimation of the density ratio.
Input: The data {(Si,j ,Ai,j ,Ri,j) : 1≤ i≤N,0≤ j < T}. A target policy π.
Initialize: Initial the density ratio ωi = ωi,θ for 1≤ i≤N , to be some neural networks parameterized by θ.
for iteration = 1,2, · · · do

a Randomly sample a batchM from {0,1, · · · , T − 1}.
b Update the parameter θ by θ← θ− ϵN−1∑N

i=1∇θDi(ωi,θ/zωi,θ ) where Di(ωi,θ) is equal to

1

|M|
∑

t1,t2∈M
∆i,t1(ωi,θ)∆i,t2(ωi,θ)κ(S̃i,t1+1, S̃i,t2+1),

and zωi,θ is a normalization constant zωi,θ = |M|−1∑
t∈M ωi,θ(S̃i,t+1).

Output ωi,θ for 1≤ i≤N .

Fig 3: Illustration of multilayer perceptron with two hidden layers, m0 = 2, m1 =m2 = 3. Here u is
the input, A(ℓ) and b(ℓ) denote the corresponding parameters to produce the linear transformation for
the (ℓ− 1)th layer.

LEMMA 2. E{Ri,t +Qπ
i (π(St+1),St+1)|St,At}= Vi(π) +Qπ

i (At,St) almost surely
for any i, t.

The equation in Lemma 2 is well-known as the Bellman equation in the average-reward
case. Based on Lemma 2, it is tempting to estimate Qπ

i by directly minimizing

argmin
(Vi,Qi)

T−1
∑
t

{Ri,t +Qi(π(St+1),St+1)− Vi −Qi(At,St)}2.(10)

However, the resulting estimators are known to be biased when the Markov transition func-
tion is not deterministic (see e.g., Farahmand et al., 2016). To elaborate this, we note that the
population limit of the objective function in (10) equals

T−1
∑
t

E[E{Ri,t +Qi(π(St+1),St+1)|St,At} − Vi −Qi(At,St)]
2

+T−1
∑
t

E[Var{Ri,t +Qi(π(St+1),St+1)|St,At}].
(11)

The first line equals zero when Qi =Qπ
i and Vi = Vi(π). However, the second line depends

on Qi as well. As such, (Qπ
i , Vi(π)) might not necessarily be the minimizer of (11).

To resolve this issue, we consider first estimating the residual E{Ri,t+Qi(π(St+1),St+1)|St,At}
− Vi −Qi(At,St) as a function of At, St, Qi, Vi and then minimizing a regularized version
of the squared residual. Under (7), we factorize Qi(a,s) by Qi(ai,m

a
i (a), si,m

s
i (s)). This
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yields the following optimization,

(V̂i(π), Q̂i) = argmin
(η,Qi)∈R×Q

1

T

T−1∑
t=0

ĝ2i (Ai,t,m
a
i (At), Si,t,m

s
i (St);η,Qi) + λ∥Qi∥2Q,(12)

where

ĝi(·, ·, ·, ·, ·;η,Qi) = argmin
g∈G

1

T

T−1∑
t=0

{Ri,t +Qi(πi(St+1), S̃i,t+1)− η

−Qi(Ai,t,m
a
i (At), Si,t,m

s
i (St))− g(Ai,t,m

a
i (At), Si,t,m

s
i (St))}2 + µ∥g∥2G ,

(13)

and µ and λ stand for some tuning parameters and ∥ · ∥Q, ∥ · ∥G denote the corresponding
RKHS norms. The purpose of adding the regularization terms in (12) and (13) is to prevent
overfitting and guarantee the consistency of the estimator Q-function. Specifically, without
the regularization term in (12), the estimated Q-function overfits to the noise and becomes
inconsistent. The regularization term in (13) guarantees that the population limit of the RHS
of (12) converges to the first line of (11). Without this regularization term, the coupled opti-
mization problems reduces to (10), yielding a biased solution.

Next we derive the close-form expressions of (V̂i(π), Q̂i). Let Zi,t = (Ai,t,m
a
i (At), Si,t,m

s
i (St))

⊤

and Z∗
i,t = (πi(St+1), S̃i,t+1)

⊤. Let Kg and KQ denote the reproducing kernels used to
model g and Q, respectively. In our implementation, we use Gaussian RBF kernels to model
these two functions. For a given Qi and η, the optimizer of (11) ĝi can be represented by∑T−1

t=0 β̂i,tKg(Zi,t, ·). With some calculations, we obtain β̂i = (β̂i,0, · · · , β̂i,T−1)
⊤ as

β̂i = argmin
β

1

T

T−1∑
t=0

Ri,t +Qi(Z
∗
i,t)− η−Qi(Zi,t)−

T−1∑
j=0

βjKg(Zi,j ,Zi,t)


2

+ µβ⊤Kgβ

=
1

T
β⊤{KgK

⊤
g + TµKg}β− 2

T
β⊤Kg(R+Q∗

i −Qi − η1)

+some terms that are independent of β,

where Kg = {Kg(Zi,j1 ,Zi,j2)}j1,j2 and R, Q∗
i and Qi are the column vectors formed by

elements in Rt, Qi(Z
∗
i,t) and Qi(Zi,t), respectively. This allows us to derive a close-form

expression for β̂i. See Appendix B for details. As a result, for a given Qi and η, we have

ĝi(Zi,t;η,Qi) = β̂⊤
i Kget,

where et denotes the column vector with the t-th element equals to one and other elements
equal to zero. As such,

1

T

T−1∑
t=0

ĝ2i (Ai,t,m
a
i (At), Si,t,m

s
i (St);η,Qi) =

1

T
β̂⊤
i KgK

T
g β̂i.

Similarly, we can represent Qi as
∑2T−1

t=0 α̂i,tKQ(Z̃i,t, ·) where Z̃i,t denotes the t-th el-
ement in the vector (Z⊤

i,0, · · · ,Z⊤
i,T−1,Z

∗⊤
i,0 , · · · ,Z∗⊤

i,T−1)
⊤. The closed-form expression of

α̂i = (α̂i,0, · · · , α̂i,T−1)
⊤ can be similarly obtained. Details are given in Appendix B.

4. Simulations. In this section, we design an example to simulate the environment of
a ride-sharing platform. Specifically, we consider orders and drivers operating in a map of
5 × 5 spatial grids. For each grid, we design three time-varying variables to construct the
state. Let Di,t and Oi,t, respectively, denote the number of drivers and orders in the i-th
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Fig 4: Mean squared errors of different value estimates, aggregated over 100 simulations. T is set to
336 (the experiment lasts for two weeks and each hour is treated as one time unit) in the top plots and
σR is set to 15 in the bottom plots. MSEs of DR-NM are larger than 1000 for all choices of σR and T
and thus are not plotted.

grid during the time interval (t− 1, t]. In practice, these two factors are known to have large
impact on the driver income and customer satisfaction. The last variable Mi,t measures the
degree of mismatch between orders and drivers in the i-th grid at time t. Specifically, we set
Mi,t = 0.5{1− |Di,t −Oi,t|/(1 +Di,t +Oi,t)}+ 0.5Mi,t−1. Given the state vector at time
t+ 1, we generate the reward Ri,t from the following model:

Ri,t =Mi,t+1min(Di,t+1,Oi,t+1) + εi,t,(14)

where {εi,t}i,t are i.i.d. N (0, σ2
R). At each time t, the platform can decide whether to imple-

ment a certain driver-side subsidizing policy to the ith spatial unit or not. This yields a binary
action Ai,t. In our experiment, {Ai,t}i,t are i.i.d. according to a Bernoulli distribution with
success probability 0.5.

Orders are simulated in the following manner. For i= 1, . . . ,25, we first randomly gener-
ate µi from N(100,252). Then we independently generate Oi,t’s from a Poisson distribution
with expectation µi. Thus, each µi represents the average number of orders during each time
unit in region i. We plot these µi’s in Figure 6 (a).

Drivers are simulated in the following manner. Initially, we put 80 drivers in each grid. At
each time, drivers will be attracted to nearby regions that either implement the subsidizing
policy or has large number of orders. To characterize this effect, at each time, we assign
an attraction rate parameter to each region as νi,t = 1.5exp(Ai,t) + 0.5(Oi,t/Di,t). At time
t + 1, drivers are more likely to move to neighborhood regions with large attraction rates.
Specifically, we set Di,t+1 = νi,tDi,t(

∑
j∈N (i) νj,t)

−1.
Under the current setup, to increase the long-term reward, we can implement subsidiz-

ing policies in regions with large µi’s. Specifically, we focus on four nondynamic policies
{πK}K∈{6,7,8,9}. Under πK , the subsidizing policies will be implemented in the top K re-
gions with largest µi’s at each time. We are interested in evaluating the values V (πK) for
K = 6,7,8,9. The true value of V (πK) can be approximated via Monte Carlo simulations.
Specifically, in each simulation, we generate data trajectories {(Si,t,Ai,t,Ri,t)}1≤i≤N,0≤t<M
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Fig 5: Distribution of p-values for testing the mean-field approximation assumption associated with
two randomly selected regions.

under the target policy πK for some sufficiently large integer M > 0, and calculate the aver-
age reward (NM)−1

∑N
i=1

∑M−1
t=0 Ri,t. Then we aggregate these rewards over hundreds of

simulations and treat it as the true value of V (π). These estimated true values ranges from 55
to 60, with standard errors ranges from 0.05 to 0.35, across different settings. Comparisons
are made among the following methods:
(a) The doubly-robust estimator (denoted by DR) proposed in Section 3;
(b) The IS based estimator (denoted by IS) proposed in Section 3;
(c) The doubly-robust estimator without considering the spatial dependence (denoted by DR-
NS);
(d) The doubly-robust estimator in (6) without the mean field approximation (denoted by
DR-NM);
(e) The Q-function based value estimator N−1

∑N
i=1 V̂i(π) where each V̂i(π) is computed

according to Section 3.4 (denoted by QV);
(f) A naive average of all immediate rewards.

To implement the proposed estimator, we set the mean-field functions to the averaged
state and action over the neighbors, as in (3). Before presenting the results, we first inves-
tigate the validity of the mean-field approximation assumption with such a choice of mean-
field functions. In our simulations, the reward is generated according to the additive noise
model (see (14)). As we have commented, it suffices to test the conditional independence
of (πi(St+1),m

a
i (π(St+1)), S̃i,t+1) and (At,St) given (Ai,t,m

a
i (At), Si,t,m

s
i (St)). Notice

that according to the definition of πK , the evaluation policies depend only on µi’s (which are
fixed over different simulations) and are thus state-agnostic, e.g., πK(St) = πK . As such,
πi(St+1) and ma

i (π(St+1)) are independent of At and St. It suffices to test the conditional
independence of S̃i,t+1 and (At,St) given (Ai,t,m

a
i (At), Si,t,m

s
i (St)). Here, we adopt the

forward-backward learning procedure developed by Shi et al. (2020b). There test does not
impose parametric model assumptions on the transition dynamic and is consistent even in
high-dimensional settings. In Figure 5, we report the distributions of p-values for testing
the mean-field approximation assumption associated with two randomly selected regions. It
can be seen that the p-values are approximately uniformly distributed. This implies that the
mean-field approximation assumption is likely to hold in simulations.

Our experiments were run on an c5d.9xlarge instance on the AWS EC2 platform, with
36 cores and 72GB RAM. Computing our estimator for one target policy takes roughly one
minute. To calculate DR-NS, for each spatial unit, we separately calculate a doubly-robust
estimator based on its own state-action-reward triplets. The final estimator is defined as a
simple average of all these estimators. Mean square errors (MSEs) of value estimators in
(a)-(f) are reported in Figure 4 (b) with different choices of σR and T . MSEs of DR-NM are
larger than 1000 for all choices of σR and T and thus are not plotted.
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We summarize our findings below: (i) The proposed IS and DR estimators achieve smaller
MSEs than DR-NS, DR-NM and Naive Average in all cases. In addition, we find that the
standard errors of these MSEs are much smaller than the differences between MSEs. Con-
sequently, our methods perform significantly better than the competing baselines. As com-
mented before, this is due to the fact that DR-NS and the naive average estimator ignore
interactions among different agents while DR-NM suffers from the curse of dimensionality;
(ii) In general, MSEs of our proposed estimators increase with σR and decreases with T ,
though the trend is not that obvious; (iii) DR outperforms IS and QV in most cases. Although
the MSEs of DR and QV are very similar in Figure 4, we conduct paired two-sample t-test
to test whether the MSE of DR is strictly smaller than that of QV, and find that the tests are
significant in most cases. See Appendix E of the supplementary article for details.

5. Applications. We apply the proposed method to a real dataset from a ride-sharing
company, to examine the effectiveness of applying driver-side subsidizing policies and cus-
tomer recommendation programs. The data is from a randomized experiment, conducted at
a given city, partitioned into eight irregular spatial regions, as shown in Figure 1. Thirty-
minutes is defined as one time unit. Figure 6 (b) depicts the number of orders Oi,t within
each spatiotemporal unit, averaged across days. The total Gross Merchandise Volume (GMV)
within each spatiotemporal unit is set to the immediate reward Ri,t.

Due to data confidentiality, we are not able to use the raw data. Here, we simulate Di,t,
Oi,t, Ri,t and the degree of mismatch between orders and drivers Mi,t for i = 1, . . . ,8 and
t = 0, . . . , T − 1. Specifically, we conduct two real data based simulations to evaluate two
promotion strategies, one offered to the drivers and another to the passengers. As commented
in the introduction, driver-side subsidies will change the spatial distribution of drivers, in-
ducing interference effects in both space and time. Applying recommendation programs to
certain passengers will increase their chances of requesting orders in the future, inducing
interference effects in time.

In the first simulation experiment, we aim to evaluate driver-side subsidizing policy. The
numbers of orders {Oi,t}i,t are independently generated. The spatial distribution of orders
are identical across days and the expected number of orders is set to the historical average.
The numbers of drivers {Di,t}i,t are affected by both the subsidizing action and the spatial
distribution of orders. We use a similar generative model as in Section 4 with the model
parameters estimated using the real dataset. In the second simulation experiment, we aim to
evaluate the causal effect of applying passenger recommendation programs. The distribution
of {Oi,t}i,t is set to depend on the action. The distribution of {Di,t}i,t, however, is set to
depend on the orders only. For both experiments, the data generative models are chosen such
that the distribution of these generative variables are very similar to that of the observed data.

Similar to the simulation study, we first apply the forward-backward learning procedure
to test the mean-field approximation assumption. Recall that we partition the city into eight
spatial regions. The empirical rejection probabilities associated with these regions are 0.03,
0.09, 0.06, 0.07, 0.04, 0.08, 0.03 and 0.1, respectively, under the significance level 0.05. As
such, we expect this assumption holds in our data application as well.

It can be seen from Figure 6 that the data are time-varying within each day. To guar-
antee the transition matrix is homogeneous in time (see MA), we define the state Si,t =
(Di,t,Oi,t,Mi,t, Tt)

⊤ for any i and t, where the variable Tt denotes the time of the day.
Since one time unit consists of thirty-minutes, Tt satisfies Tt = Tt+48 for any t. The Markov
chain will converge to its limiting distribution under mild conditions as the number of days
approaches infinity (Lloyd, 1977). As such, the proposed method remains valid. We are in-
terested in evaluating the values under the driver-side policies (i) - (iii) in the first simulation
and the passenger-side policies (iv) - (vi) in the second simulation.
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(a) (b)

Fig 6: (a) visualization of µi; (b) number of orders within each spatiotemporal unit, averaged across
days. The numbers in (b) are scaled due to sensitivity and privacy concerns.

Fig 7: Mean squared errors of different value estimates, aggregated over 100 simulations for driver-
side subsidizing policies. The target policies are spatially adaptive, timely adaptive and sptiotemporally
adaptive, from left to right. MSEs of DR-NM are over 100 in all cases and are hence not reported.

(i) Driver-side spatially adaptive policy: the four regions that have the largest numbers of
orders on average will receive the subsidizing policy all the time.

(ii) Driver-side timely adaptive policy: all regions during peak hours will receive the subsi-
dizing policy.

(iii) Driver-side spatiotemporally adaptive policy: the four regions that have the largest num-
ber of orders on average will receive the subsidizing policy during peak hours.

(iv) Passenger-side spatially adaptive policy: the four regions that have the most vacant
drivers will receive the subsidizing policy all the time.

(v) Passenger-side timely adaptive policy: all regions during time periods with the most va-
cant drivers will receive the subsidizing policy.

(vi) Passenger-side spatiotemporally adaptive policy: the four regions that have the most
vacant drivers on average will receive the subsidizing policy during non-peak hours.

For each of the target policy, we compute the MSEs of value estimators constructed based
on (a)-(d), with different choices of T . The naive average (e) is not considered since the
estimator is meaningless when the target differs from the behavior policy. MSEs of DR-NM
are over 100 in all cases and are hence not reported. MSEs of other methods are plotted in
Figure 7 for the first simulation and Figure 8 for the second simulation. It can be seen that DR
outperforms other competitors in most cases. It is worth mentioning that DR-NS performs
better than IS when evaluating (v) and (vi). This is partly because applying passenger-side
recommendation program to a given region only affect the number of orders within that
region. The interference effect in space is moderate in this case.
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Fig 8: Mean squared errors of different value estimates, aggregated over 100 simulations for
passenger-side subsidizing policies. The target policies are spatially adaptive, timely adaptive and
sptiotemporally adaptive, from left to right.

6. Discussion. In this article, we introduce a MARL framework for spatiotemporal treat-
ment effects evaluation and develop a novel off-policy value estimator in MARL. The validity
of our method relies on SRA. It would be practically interesting to extend our proposal to set-
tings where SRA is violated. We leave it for future research.

For simplicity, we set the mean-field function to be the averaged state or action over the
neighbors in our numerical experiments. Such a choice works well in our experiments as the
MSE of the proposed estimator is much smaller than those of the estimators without consid-
ering the spatial dependence or the mean-field approximation. In addition, we find that the re-
sulting mean-field approximation assumption is likely to hold in our numerical experiments.
However, it remains unclear whether such a choice of the mean-field function is optimal.
We next propose two methods for adaptively selecting the mean-field function in practice.
The first method requires a canddiate set of mean-field functions. Given each mean-field
function in the candidate set, we can apply existing state-of-the-art conditional independence
test to compute its p-value. We next select the mean-field function with the largest p-value.
The second method parametrize the mean-field function using some universal approximator
(e.g., neural networks) and estimate the associated parameters by minimizing some empiri-
cal measures of the conditional dependence of (πi(St+1),m

a
i (π(St+1)), Si,t+1,m

s
i (St+1))

and (At,St) given (Ai,t,m
a
i (At), Si,t,m

s
i (St)), such as the maximum mean discrepancy

(see e.g., Fukumizu et al., 2007). Since the estimated mean-field function minimizes these
measures, it is likely to satisfy the conditional independence assumption. It is practically in-
teresting to further investigate these methods. However, it is beyond the scope of the current
paper. We leave it for future research.

Let 0 and 1 denote two non-dynamic policies that assign Treatments 0 and 1 to each region
at any time. We can decompose the value difference V (1)−V (0) as the sum of direct effects
(DE) and indirect effects (IE). Specifically, it follows from CMIA that

V (1)− V (0) = lim
t→∞

1

Nt

N∑
i=1

t∑
j=0

E{R∗
i,j(1)−R∗

i,j(0)}

= lim
t→∞

1

Nt

N∑
i=1

t∑
j=0

E{ri(1,S∗
j (0))− ri(0,S

∗
j (0))}︸ ︷︷ ︸

DE
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Fig 9: Graphical illustration of direct and indirect effects.

+ lim
t→∞

1

Nt

N∑
i=1

t∑
j=0

E{ri(1,S∗
j (1))− ri(1,S

∗
j (0))}︸ ︷︷ ︸

IE

,

where S∗
t (0) and S∗

t (1) denote the potential states under Policies 0 and 1, respectively. See
Figure 9 for a graphical illustration. The DE represents the sum of the short-term treatment
effects on the immediate outcome over time assuming that the baseline policy is being em-
ployed in the past. In contrast, IE characterizes the carryover effects of past policies that work
through the state vector. It is practically interesting to extend the current proposal to estimat-
ing DE and IE. However, this is beyond the scope of the current paper. We leave it for future
research.
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APPENDIX A: THEORETICAL RESULTS

This section is organized as follows. We first introduce a key lemma that establishes an
exponential inequality for the suprema of empirical processes under weak dependence. We
next discuss the statistical properties of the proposed estimator.

A.1. A key lemma. We briefly introduce the setup before presenting the lemma. Let
{Zt : t ≥ 0} be a stationary β-mixing process whose β-mixing coefficients are given by
{β(q) : q ≥ 0}. Let F be a pointwise measurable class of functions that take Zt as input
with a measurable envelope function F . For any f ∈ F , suppose Ef(Z0) = 0. Let σ2 > 0
be a positive constant such that supf∈F Ef2(Z0) ≤ σ2 ≤ EF 2(Z0). We focus providing an
exponential inequality for the empirical process supf∈F |

∑T−1
t=0 f(Zt)|.

Toward that end, we introduce the notion of the VC type class (Chernozhukov et al., 2014,
Definition 2.1). For any probability measure Q, let eQ denote a semi-metric on F such that
eQ(f1, f2) = ∥f1 − f2∥Q,2 =

√
Q|f1 − f2|2. An ϵ-net of the space (F , eQ) is a subset Fϵ

of F , such that for every f ∈ F , there exists some fϵ ∈ Fϵ satisfying eQ(f, fϵ)< ϵ. We say
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that F is a VC type class with envelope F , if there exist constants c0 > 0, c1 ≥ 1, such that
supQN (F , eQ, ϵ∥F∥Q,2) ≤ (c0/ϵ)

c1 , for all 0 < ϵ ≤ 1, where the supremum is taken over
all finitely discrete probability measures on the support of F , and N (F , eQ, ϵ∥F∥Q,2) is the
infimum of the cardinality of ϵ∥F∥Q,2-nets of F . We refer to c1 as the VC index of F .

LEMMA 3. Suppose the envelop function is uniformly bounded by some constant M > 0.
In addition, suppose F belongs to the class of VC-type class such that supQN(F , eQ, ε∥F∥Q,2)≤
(A/ε)ν for some A≥ e, ν ≥ 1. Then there exist some constants c,C > 0 such that

Pr

(
sup
f∈F

∣∣∣∣∣
T−1∑
t=0

f(Zt)

∣∣∣∣∣> c

√
νqσ2T log

(
AM

σ

)
+ cνM log

(
AM

σ

)
+ cqτ +Mq

)

≤Cq exp

(
− τ2q

CTσ2

)
+Cq exp

(
− τ

CM

)
+

Tβ(q)

q
,

for any τ > 0, 1≤ q < T/2.

As commented in the introduction, Lemma 3 is useful for finite-sample analysis of ma-
chine learning estimates under weak dependence. It allows us to derive a sharp bound on the
difference between the proposed value estimator and the oracle estimator.

A.2. Statistical performance guarantees. To derive these theoretical results, we need
one additional condition to characterize the dependence between observations over time.

(A1) The process {(St,At)}t≥0 is strictly stationary. Its β-mixing coefficients {β(q)}q≥0

(see e.g., Bradley, 2005, for definition) satisfy β(q) ≤ κ0ρ
q for some constants κ0 > 0 and

0< ρ< 1.

When (A1) holds and the initial distribution of {St}t≥0 equals to its stationary distribution,
the stationarity condition in (A1) is automatically satisfied. The second part of (A1) holds
when {(St,At)}t≥0 satisfies geometric ergodicity. Geometric ergodicity is weaker than the
uniform ergodicity condition imposed in the existing reinforcement learning literature (Bhan-
dari et al., 2018; Zou et al., 2019).

In addition, let V ∗
i (π) and ω∗

i be the population limit of V̂i(π) and ω̂i, respectively. We
require V ∗

i (π) = Vi(π) when (7) holds and ω∗
i = ωi when (4) holds.

THEOREM 1. Suppose (A1) hold, NTVar{V̂ DR∗(π)} → σ2 > 0 and T →∞. Suppose
that {Ri,t, Q̄i, ω

∗
i , Vi(π) : 1≤ i≤N, t≥ 0} are uniformly bounded from infinity and the set

of functions {bi : 1 ≤ i ≤ N} are uniformly bounded from zero. Then as either (4) or (7)

holds,
√
NT{V̂ DR∗(π)− V (π)} d→N(0, σ2), where d→ denotes converge in distribution.

We next investigate the statistical properties of our estimator V̂ DR(π). Our theories are
generally applicable to a class of density ratio and Q-function estimators that satisfy certain
mild conditions. We summarize these conditions in (A2) and (A3) and present them below.

(A2)(i)
∑N

i=1 |V ∗
i (π) − V̂i(π)|/N = op(1); (ii) Q̂i,π ∈ Q, ω̂i ∈ W almost surely for any

i where the function classes Q and W belong to VC type classes with VC indices
bounded by ν = O(T κ) for some 0 ≤ κ < 1, and envelope functions are bounded by some
constant M . (iii) maxi,a

∫
s̃i
|Q̂i(a, s̃i) − Q∗

i (a, s̃i)|2pi,b(s̃i)ds̃i = op(1), maxi
∫
s̃i
|ω̂i(s̃i) −

ω∗
i (s̃i)|2pi,b(s̃i)ds̃i = op(1).
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(A3)(i) maxi |V ∗
i (π)−V̂i(π)|2 = op((NT )−1/2); (ii) maxi,a

∫
s̃i
|Q̂i(s̃i)−Q∗

i (a, s̃i)|2pi,b(s̃i)ds̃i =
op((NT )−1/2); (iii) maxi

∫
s̃i
|ω̂i(s̃i) − ω∗

i (s̃i)|2pi,b(s̃i)ds̃i = op((NT )−1/2); (iv) T ≫
Nν2 log4(NT ).

Condition (A2) requires V̂i(π), Q̂i and ω̂i to be consistent whereas (A3) requires these
estimators to converge at a certain rate. When using RKHS or neural networks to estimate the
Q-function and the density ratio, the corresponding convergence rates have been established
(Fan et al., 2020; Kallus and Uehara, 2019; Liao et al., 2022). The conditions on Q and W
in (A2) are mild as these function classes are user-specified.

THEOREM 2 (doubly-robustness). Suppose the conditions in Theorem 1 hold. Suppose
(A2) holds. Then as either (4) or (7) holds, we have V̂ DR(π)− V (π) = op(1).

THEOREM 3 (oracle property). Suppose the conditions in Theorem 2 hold. Suppose (A3)
holds. Then when both (4) and (7) hold, we have

√
NT{V̂ DR(π)− V (π)} d→N(0, σ2).

Theorem 3 implies that the asymptotic variance of the doubly-robust estimator is the same
as that of the oracle estimator, when both mean-field approximations are valid. The explicit
formula for σ2 is given in Appendix D.2 of the supplementary article. We also remark that
different from the i.i.d. case considered in classical semiparametric statistics, there is no
guarantee that the asymptotic variance of the doubly-robust estimator will be smaller than or
equal to that of the importance sampling estimator under our setting where observations are
time dependent.

APPENDIX B: MORE ON THE LEARNING PROCEDURE

We first present a close-form expression for β̂i and α̂i. We next discuss the case where the
behavior policy is unknown.

B.1. Closed-form for β̂i. Notice that Kg is symmetric, by some calculations, we obtain

β̂i = (KgK
⊤
g + TµKg)

−1Kg(R+Q∗
i −Qi − η1) = (Kg + TµI)−1(R+Q∗

i −Qi − η1).

B.2. Closed-form for α̂i. Let KQ denotes a 2T ×2T matrix where its (j1+1, j2+1)th
element is given by KQ(Z̃i,j1 , Z̃i,j2), we have

Qi(Zi,t) =α⊤
i KQet and Qi(Z

∗
i,t) = α̂⊤

i KQet+T .

It follow that

Q∗
i −Qi = [−IT ,IT ]︸ ︷︷ ︸

C

KQα̂i.

Note that KQ is symmetric. Let E = K⊤
g {Kg + (T − 1)µI}−1, α̂i corresponds to the

solution of the following optimization problem,

α̂i = argmin
α

(R+CKQα− η1)⊤E⊤E(R+CKQα− η1) + Tλα⊤KQα.

Taking derivatives with respect to α and η, we obtain

(α̂i, V̂i(π))
⊤ =−([CKQ,−1]⊤E⊤E[CKQ,−1] + [TλKQ,0;0

⊤,0])−1[CKQ,−1]E⊤ER.
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B.3. Unknown behavior policy. Note that bi(π|S̃i,t) = E{I(Ai,t = πi(St),m
a
i (At) =

ma
i (π(St)))|S̃i,t}. It can thus be learned by applying machine learning algorithms to datasets

with responses {I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St))) : 0≤ t < T} and predictors {S̃i,t :
0≤ t < T}.

APPENDIX C: MORE ON THE MEAN-FIELD APPROXIMATION

We first show that (7) holds when (4) is satisfied and that (πi(St+1),m
a
i (π(St+1)), S̃i,t+1)

is conditionally independent of (At,St) given (Ai,t,m
a
i (At), Si,t,m

s
i (St)). When (4) is sat-

isfied, it follows that

Qπ
i (a,s) =

∑
t≥0

γtEπ{r̄i(Ai,t,m
a
i (At), S̃i,t)|A0 = a,S0 = s}.

It suffices to show that the conditional mean function Eπ{r̄i(Ai,t,m
a
i (At), S̃i,t)|A0 =

a,S0 = s} depends on (a,s) only through (ai,m
a
i (a), si,m

s
i (s)), for any t≥ 0. When t= 0,

this assertion is automatically satisfied by (4). When t > 0, we have

Eπ{r̄i(Ai,t,m
a
i (At), S̃i,t)|A0 = a,S0 = s}.

It suffices to show that for any square integrable function h, Eπ{h(πi(St),m
a
i (π(St)), S̃i,t)|A0 =

a,S0 = s} depends on (a,s) only through (ai,m
a
i (a), si,m

s
i (s)), for any t≥ 1.

We next prove this assertion by induction. When t = 1, this assertion is automatically
satisfied by condition. Suppose the assertion holds with t≤ j. It suffices to show it is satisfied
for t= j + 1. Under MA and the given conditions, for any square integrable function h, we
have

Eπ{h(πi(Sj+1),m
a
i (π(Sj+1)), S̃i,j+1)|A0 = a,S0 = s}

= Eπ[Eπ{h(πi(Sj+1),m
a
i (π(Sj+1)), S̃i,j+1)|Aj ,Sj}|A0 = a,S0 = s]

= Eπ[Eπ{h(πi(Sj+1),m
a
i (π(Sj+1)), S̃i,j+1)|Ai,j ,m

a
i (Aj), S̃i,j}|A0 = a,S0 = s]

= Eπ[Eπ{h(πi(Sj+1),m
a
i (π(Sj+1)), S̃i,j+1)|πi(Sj),m

a
i (π(Sj)), S̃i,j}|A0 = a,S0 = s].

The last line is a function of (ai,ma
i (a), si,m

s
i (s)) only, given that Eπ{h(πi(Sj),m

a
i (π(Sj)), S̃i,j)|A0 =

a,S0 = s} depends on (a,s) only through (ai,m
a
i (a), si,m

s
i (s)). This completes the proof.

APPENDIX D: PROOFS

We use c and C to denote some generic constants whose values are allowed to vary from
place to place. For any two positive sequences {at}t≥1 and {bt}t≥1, we write at ⪯ bt if
there exists some constant C > 0 such that at ≤ Cbt for any t. The notation at ⪯ 1 means
at =O(1).

Lemma 1 can thus be proven in a similar manner as Theorem 1 of Liu et al. (2018). Lemma
2 can be similarly proven as Lemma 1 of ?. Theorem 2 can be proven in a similar manner as
Theorem 3. In the following, we focus on proving Theorems 1, 3 and Lemma 3.

D.1. Proof of Lemma 3. We break the proof into three steps. In the first step, we use
Berbee’s coupling lemma (see Lemma 4.1 in ?) to approximate supf∈F |

∑T−1
t=0 f(Zt)| by

sum of i.i.d. variables. In the second step, we apply the tail inequality in Lemma 1 of ?
to bound the derivation between the empirical process and its mean. Finally, we apply the
maximal inequality in Corollary 5.1 of Chernozhukov et al. (2014) to bound the expectation
of the empirical process.
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Step 1. Following the discussion below Lemma 4.1 of ?, we can construct a sequence of
random variables {Z0

t : t≥ 0} such that

sup
f∈F

∣∣∣∣∣
T−1∑
t=0

f(Zt)

∣∣∣∣∣= sup
f∈F

∣∣∣∣∣
T−1∑
t=0

f(Z0
t )

∣∣∣∣∣ ,(15)

with probability at least 1− Tβ(q)/q, and that the sequences {U0
2i : i≥ 0} and {U0

2i+1 : i≥
0} are i.i.d. where U0

i = (Z0
iq,Z

0
iq+1, · · · ,Z0

iq+q−1).
Recall that Ir = {q⌊T/q⌋, q⌊T/q⌋+ 1, · · · , T − 1}, we have

sup
f∈F

∣∣∣∣∣
T−1∑
t=0

f(Z0
t )

∣∣∣∣∣≤
q−1∑
j=0

sup
f∈F

∣∣∣∣∣∣
⌊T/q⌋∑
t=0

f(Z0
tq+j)

∣∣∣∣∣∣+ sup
f∈F

∣∣∣∣∣∑
t∈Ir

f(Z0
t )

∣∣∣∣∣ .
Under the boundedness assumption on F , the second term on RHS is bounded from above
by Mq. Without loss of generality, suppose ⌊T/q⌋ is an even number. The first term on the
RHS can be bounded from above by

∑2q−1
j=0 supf∈F |

∑⌊T/(2q)⌋
t=0 f(Z0

2tq+j)|. To summarize,
we have shown

sup
f∈F

∣∣∣∣∣
T−1∑
t=0

f(Z0
t )

∣∣∣∣∣≤
2q−1∑
j=0

sup
f∈F

∣∣∣∣∣∣
⌊T/(2q)⌋∑

t=0

f(Z0
2tq+j)

∣∣∣∣∣∣+Mq.

This together with (15) yields that

(16)

Pr

(
sup
f∈F

∣∣∣∣∣
T−1∑
t=0

f(Zt)

∣∣∣∣∣> 2τq+Mq

)
≤ Pr

2q−1∑
j=0

sup
f∈F

∣∣∣∣∣∣
⌊T/(2q)⌋∑

t=0

f(Z0
2tq+j)

∣∣∣∣∣∣> 2τq

+
Tβ(q)

q
,

for any τ > 0. By Bonferroni’s inequality, we obtain

Pr

2q−1∑
j=0

sup
f∈F

∣∣∣∣∣∣
⌊T/(2q)⌋∑

t=0

f(Z0
2tq+j)

∣∣∣∣∣∣> 2τq

≤
2q−1∑
j=0

Pr

sup
f∈F

∣∣∣∣∣∣
⌊T/(2q)⌋∑

t=0

f(Z0
2tq+j)

∣∣∣∣∣∣> τ

 ,

for any τ > 0. Since the process is stationary, we obtain

Pr

2q−1∑
j=0

sup
f∈F

∣∣∣∣∣∣
⌊T/(2q)⌋∑

t=0

f(Z0
2tq+j)

∣∣∣∣∣∣> 2τq

≤ 2qPr

sup
f∈F

∣∣∣∣∣∣
⌊T/(2q)⌋∑

t=0

f(Z0
2tq)

∣∣∣∣∣∣> τ

 .

Combining this together with (16) yields

Pr

(
sup
f∈F

∣∣∣∣∣
T−1∑
t=0

f(Zt)

∣∣∣∣∣> 2τq+Mq

)
≤ 2qPr

sup
f∈F

∣∣∣∣∣∣
⌊T/(2q)⌋∑

t=0

f(Z0
2tq)

∣∣∣∣∣∣> τ

+
Tβ(q)

q
.(17)

By construction, {Z0
2tq : t≥ 0} are i.i.d. This completes the proof of the first step.

Step 2. In the second step, we focus on relating the empirical process supf∈F |
∑⌊T/(2q)⌋

t=0 f(Z0
2tq)|

to its expectation. Without loss of generality, assume T = kq for some integer k > 0. Set the
constants η and δ in Lemma 1 of ? to 1, we obtain

Pr

sup
f∈F

∣∣∣∣∣∣
⌊T/(2q)⌋∑

t=0

f(Z0
2tq)

∣∣∣∣∣∣> 2E sup
f∈F

∣∣∣∣∣∣
⌊T/(2q)⌋∑

t=0

f(Z0
2tq)

∣∣∣∣∣∣+ τ


≤ 4exp

(
− τ2

2Tσ2/q

)
+ exp

(
− τ

CM

)
,
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for some constant C > 0. Combining this together with (17), we obtain

Pr

sup
f∈F

∣∣∣∣∣
T−1∑
t=0

f(Zt)

∣∣∣∣∣> 4qE sup
f∈F

∣∣∣∣∣∣
⌊T/(2q)⌋∑

t=0

f(Z0
2tq)

∣∣∣∣∣∣+ 2τq+Mq


≤ 8q exp

(
− τ2

2Tσ2/q

)
+ 2q exp

(
− τ

CM

)
+

Tβ(q)

q
,

(18)

for any τ > 0. This completes the proof of the second step.
Step 3. It remains to bound E supf∈F |

∑⌊T/(2q)⌋
t=0 f(Z0

2tq)|. By Corollary 5.1 of Cher-
nozhukov et al. (2014), we obtain

E sup
f∈F

∣∣∣∣∣∣
⌊T/(2q)⌋∑

t=0

f(Z0
2tq)

∣∣∣∣∣∣⪯
√

νσ2T

q
log

(
AM

σ

)
+ νM log

(
AM

σ

)
.

Combining this together with (18), we obtain

Pr

(
sup
f∈F

∣∣∣∣∣
T−1∑
t=0

f(Zt)

∣∣∣∣∣> c

√
νqσ2T log

(
AM

σ

)
+ cνM log

(
AM

σ

)
+ cqτ +Mq

)

≤Cq exp

(
− τ2q

CTσ2

)
+Cq exp

(
− τ

CM

)
+

Tβ(q)

q
,

for some constants c,C > 0 and any τ > 0,1≤ q < T/2. The proof is hence completed.

D.2. Proof of Theorem 1. We introduce some notations. Let Q̄i,t = Q̄i(Ai,t,m
a
i (At), Si,t,m

s
i (St)),

Q̄i,t(π) = Q̄i(πi(St), S̃i,t) and ω∗
i,t = ω∗

i (S̃i,t).
To prove Theorem 1, we apply the central limit theorem for mixing triangle arrays devel-

oped in ?. Define V̂ DR∗
t (π) as

1

N

N∑
i=1

[
V ∗
i (π) + ω∗

i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
{Ri,t + Q̄i,t+1(π)− Q̄i,t − V ∗

i (π)}

]
,

we have V̂ DR∗(π) = T−1
∑T−1

t=0 V̂ DR∗
t (π). Under the stationarity assumption, σ2 is equal to

the variance of
√
NV̂ DR∗

t (π).
Suppose we have shown each V̂ DR∗

t (π) is an unbiased estimator for V (π). For t ∈
{0,1, · · · , T − 1}, let xt = (NT )−1/2{V̂ DR∗

t (π)− V (π)}. It suffices to show the conditions
in (1)-(5) of ? hold for {xt : 0≤ t < T}. We next verify these conditions.
Condition (1). Note that {Ri,t, Q̄i, ω

∗
i , Vi(π) : 1≤ i≤N, t≥ 0} are uniformly bounded from

infinity, the set of functions {bi : 1 ≤ i ≤ N} are uniformly bounded from zero. As such,
{xt : 0≤ t < T} are uniformly bounded. Condition (1) thus holds for any ν∗ > 0.
Condition (2). This condition is automatically implied by the assumption that NTVar{V̂ DR∗(π)}→
σ2 > 0.
Condition (3). This condition holds by setting κ= 0 and Tn = 0 for any n.
Condition (4). Note that the strong mixing coefficients are upper bounded by the β-mixing
coefficients. Under Condition (A4), we can take the sequence α(h) in Condition (4) by κ0ρ

h.
Condition (5). Since κ0ρ

h decays to zero at an exponential rate as h grows to infinity, Con-
dition (5) is automatically satisfied.

It remains to show EV̂ DR∗
t (π) = V (π) for any t. Suppose (A3) holds. Under the given

conditions, we have V ∗
i (π) = Vi(π). By Lemma 2, we have

E{Ri,t + Q̄i,t+1(π)− Q̄i,t − V ∗
i (π)|At,St}= 0,



28

and hence,

Eω∗
i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
{Ri,t + Q̄i,t+1(π)− Q̄i,t − V ∗

i (π)}= 0.

Consequently, EV̂ DR∗
t (π) =N−1

∑N
i=1 Vi(π) = V (π).

Suppose (A2) holds. Then we have ω∗
i,t = ωi,t for any i, t where ωi,t is a shorthand

for ωi(S̃i,t). As a result, for any i, t, the expectation of the density ratio ω∗
i,tI(Ai,t =

πi(St),m
a
i (At) =ma

i (π(St)))/bi(π|S̃i,t) equals one. As such, we have

E

{
V ∗
i (π)− ω∗

i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
V ∗
i (π)

}

= V ∗
i (π)E

{
1− ω∗

i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)

}
= 0.

(19)

In addition, using similar arguments in (2), we have by (A2) that

E

{
ω∗
i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
Ri,t

}
= Vi(π).(20)

Moreover, by some calculations, we have

E

{
ω∗
i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
Q̄i,t

}

= E

{
ω∗
i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
Q̄i,t+1(π)

}
=

∫
s̃i

Q∗
i (πi(St+1), s̃i)p(π, s̃i)ds̃i.

Consequently,

E

[
ω∗
i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
{Q̄i,t+1(π)− Q̄i,t}

]
= 0.

This together with (19) and (20) yields

E

[
V ∗
i (π) + ω∗

i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
{Ri,t + Q̄i,t+1(π)− Q̄i,t − V ∗

i (π)}

]
= Vi(π).

It follows that EV̂ DR∗(π) = V (π).
Thus, V̂ DR∗(π) is unbiased when either (A2) or (A3) holds. The proof is hence completed.

D.3. Proof of Theorem 3. Similarly, we define Q̂i,t, Q̂i,t(π) and ω̂i,t to be versions of
Q̄i,t, Q̄i,t(π) and ω∗

i,t with Q̄i and ω∗
i replaced with Q̂i and ω̂i, respectively.

By Theorem 1, it suffices to show
√
NTV̂ DR(π) is asymptotically equivalent to√

NTV̂ DR∗(π). Note that V̂ DR(π)− V̂ DR∗(π) can be decomposed by η1+η2+η3+η4+η5
where

η1 =
1

NT

T−1∑
t=0

N∑
i=1

{
ω∗
i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
− 1

}
{V ∗

i (π)− V̂i(π)},
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η2 =
1

NT

T−1∑
t=0

N∑
i=1

ω∗
i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
{Q̂i,t+1(π)− Q̂i,t − Q̄i,t+1(π) + Q̄i,t},

η3 =
1

NT

T−1∑
t=0

N∑
i=1

(ω̂i,t − ω∗
i,t)

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
{Ri,t + Q̄i,t+1(π)− Q̄i,t − V ∗

i (π)},

η4 =
1

NT

T−1∑
t=0

N∑
i=1

(ω̂i,t − ω∗
i,t)

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
{Q̂i,t+1(π)− Q̂i,t − Q̄i,t+1(π) + Q̄i,t},

η5 =
1

NT

T−1∑
t=0

N∑
i=1

(ω̂i,t − ω∗
i,t)

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
{V ∗

i (π)− V̂i(π)}.

In the following, we show |ηj |= op((NT )−1/2), for j = 1,2, · · · ,5.
Upper bounds on |η1|: Note that η1 =N−1

∑N
i=1 η1,i where

η1,i = {V ∗
i (π)− V̂i(π)}

[
1

T

T−1∑
t=0

{
ω∗
i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
− 1

}]
.

When (A2) holds, we have ω∗
i,t = ωi,t for any i, t. The expectation of the density ratio equals

one. As a result, we have

E

{
ωi,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
− 1

}
= 0,

for any i, t. In the following, we apply the Bernstein’s inequality for exponential β-mixing
processes (?) to bound |η1|.

Under Condition (A4), the β-mixing coefficients of the sequence{
ωi,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
− 1 : t≥ 0

}
,(21)

decays to zero at an exponential rate. In addition, all the terms in (21) are uniformly bounded
by some constant c > 0. As a result,

max
t1,t2

E

∣∣∣∣∣ωi,t1

I(Ai,t1 = πi(St), Ãi,t1 =ma
i (π(St)))

bi(π|S̃i,t1)
− 1

∣∣∣∣∣
∣∣∣∣∣ωi,t2

I(Ai,t2 = πi(St), Ãi,t2 =ma
i (π(St)))

bi(π|S̃i,t2)
− 1

∣∣∣∣∣
=O(1).

It thus follows from Theorem 4.2 of ? that there exists some constant C > 0 such that there
exists some constant C > 0 such that for any τ ≥ 0 and integer 1< q < T ,

max
i

Pr

(∣∣∣∣∣
T−1∑
t=0

{
ωi,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
− 1

}∣∣∣∣∣≥ 6τ

)
≤ T

q
β(q)

+max
i

Pr

(∣∣∣∣∣∑
t∈Ir

{
ωi,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
− 1

}∣∣∣∣∣≥ τ

)
+ 4exp

{
− τ2

Cq(T + τ)

}
,

(22)

where Ir = {q⌊T/q⌋, q⌊T/q⌋+ 1, · · · , T − 1}. Suppose τ ≥ qc. Notice that |Ir| ≤ q. It fol-
lows that

max
i

Pr

(∣∣∣∣∣∑
t∈Ir

{
ωi,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
− 1

}∣∣∣∣∣≥ τ

)
= 0.(23)



30

Under (A4), β(q) =O(ρq). Set q =−3 log(NT )/ logρ, we obtain Tβ(q)/q =O(N−3T−2).
Set τ =max{2

√
CqT log(NT ),4Cq log(NT )}, we obtain as T →∞ that

τ2

2
≥ 2CqT log(NT ) and

τ2

2
≥ 2Cqτ log(nT ) and τ ≥ qc.

Since
√

CqT log(NT )≫ 2Cq log(NT ), it follows from (22) and (23) that

max
i

Pr

(∣∣∣∣∣
T−1∑
t=0

{
ωi,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
− 1

}∣∣∣∣∣≥ 12
√

CqT log(NT )

)
⪯N−2T−2.

By Bonferroni’s inequality, we obtain the following event occurs with probability at least
1−O(N−1T−2),

max
i

∣∣∣∣∣
T−1∑
t=0

{
ωi,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
− 1

}∣∣∣∣∣≤ 12
√

CqT log(NT ).

It follows that

|η1| ≤
1

N

N∑
i=1

|η1,i| ⪯
log(NT )√

T

(
1

N

N∑
i=1

|V ∗
i (π)− V̂i(π)|

)
,(24)

with probability approaching 1. Under (A6) and the condition that T ≫ N log4(NT ), we
obtain η1 = op((NT )−1/2).

Upper bounds on |η2|: When (A2) holds, we have ω∗
i,t = ωi,t for any i and t. As discussed

in the proof of Theorem 1, we have Eη2,i = 0 for any i where

η2,i =
1

T

T−1∑
t=0

ω∗
i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
{Q̂i,t+1(π)− Q̂i,t − Q̄i,t+1(π) + Q̄i,t}.

In addition, notice that η2,i can be written as

η2,i =
1

T

T−1∑
t=0

ω∗
i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
{Q̂i,t+1(π)− Q̂i,t(π)− Q̄i,t+1(π) + Q̄i,t(π)}.

We apply Lemma 3 to bound maxi |η2,i|. Define the class of functions Qi,ε by{
f ∈Q : max

i,a

∫
s̃i

|f(a, s̃i)−Q∗
i (a, s̃i)|2pi,b(s̃i)ds̃i ≤ ε

}
,

where ε= ϵN−1/2T−1/2 for some sufficiently small ϵ > 0. It then follows from (A5)(ii) and
(iii) that Q̂i,π ∈Qε for any i with probability tending to 1. As such, we have

η2,i ≤ T−1 sup
Qi∈Qi,ε

∣∣∣∣∣
T−1∑
t=0

ω∗
i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)
{f(πi(St+1), S̃i,t+1)

−f(πi(St), S̃i,t)− Q̄i,t+1(π) + Q̄i,t(π)}
∣∣∣ .

Consider the process {(S̃i,t,Ai,t,m
a
i (At), S̃i,t+1) : t≥ 0}. Under (A4), such a process has

β-mixing coefficients {β∗(q) : q ≥ 0} that satisfies β∗(q) =O(ρq) as well. For any f , define
the function g = g(f) such that

g(S̃i,t,Ai,t,m
a
i (At), S̃i,t+1, πi(St), πi(St+1)) = ω∗

i,t

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)

×{f(πi(St+1), S̃i,t+1)− f(πi(St), S̃i,t)− Q̄i,t+1(π) + Q̄i,t(π)},
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almost surely. Consider the class of functions Gi,ε = {g(f) : f ∈Qi,ε}. Since Qi,ε belongs to
the class of VC-type class, so does Gi,ε. Moreover, the VC-index of Gi,ε is the same as Qi,ε.
Under the boundedness assumption in Theorem 2, we have

Eg2(S̃i,t,Ai,t,m
a
i (At), S̃i,t+1, πi(St), πi(St+1))≤O(1)ε,

for some constant O(1). In addition, the envelope function of Gi,ε is uniformly bounded.
Let Zi,t = (S̃i,t,Ai,t,m

a
i (At), S̃i,t+1, πi(St), πi(St+1)). Applying Lemma 3, we obtain

max
i

Pr

(
sup
g∈Gi,ε

∣∣∣∣∣
T−1∑
t=0

g(Zi,t)

∣∣∣∣∣> c

√
νqεT log

(
1

ε

)
+ cν log

(
1

ε

)
+ cqτ + cq

)

≤ cq exp

(
− τ2q

cTε

)
+ cq exp

(
−τ

c

)
+

Tβ(q)

q
,

for some constant c > 0. Set q =−2 log(NT )/ logρ, we have Tβ(q)/q =O(N−2T−1). Set
τ =max(2c log(NT ),

√
2cεT log(NT )/q), the RHS is bounded by O(N−2T−1 log(NT )).

By Bonferroni’s inequality, we obtain with probability tending to 1 that

T |η2,i| ≤ c

√
νqεT log

(
1

ε

)
+ cν log

(
1

ε

)
+ cqτ + cq, ∀i ∈ {1, · · · ,N},

or equivalently,

max
i

|η2,i| ⪯
√

ϵ

NT
+ o

(
1√
NT

)
,

under the condition that T ≫ Nν2 log4(NT ). Since ε can be chosen arbitrarily small, we
obtain maxi |η2,i|= op((NT )−1/2). This in turn implies η2 = op((NT )−1/2).

Upper bounds on |η3|: Using similar arguments in proving η2 = op((NT )−1/2), we can
show η3 = op((NT )−1/2). We omit the technical details to save space.

Upper bounds on |η4| and |η5|: We show η4 = op((NT )−1/2) only. Using similar argu-
ments, one can show η5 = op((NT )−1/2).

Note that

η4 =
1

NT

T−1∑
t=0

N∑
i=1

(ω̂i,t − ω∗
i,t)

I(Ai,t = πi(St),m
a
i (At) =ma

i (π(St)))

bi(π|S̃i,t)

×{Q̂i,t+1(π)− Q̂i,t(π)− Q̄i,t+1(π) + Q̄i,t(π)}

≤O(1)
1

NT

T−1∑
t=0

N∑
i=1

|ω̂i,t − ω∗
i,t||Q̂i,t+1(π)− Q̂i,t(π)− Q̄i,t+1(π) + Q̄i,t(π)|

≤O(1)

{
1

NT

T−1∑
t=0

N∑
i=1

[(ω̂i,t − ω∗
i,t)

2 + {Q̂i,t+1(π)− Q̂i,t(π)− Q̄i,t+1(π) + Q̄i,t(π)}2]

}

≤O(1)

{
1

NT

T−1∑
t=0

N∑
i=1

(ω̂i,t − ω∗
i,t)

2

}
+O(1)

{
1

NT

T−1∑
t=0

N∑
i=1

{Q̂i,t(π)− Q̄i,t(π)}2
}
,

where O(1) denotes some universal constant, and the last two inequalities are due to Cauchy-
Schwarz inequality.
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To prove η4 = op((NT )−1/2), it suffices to show

max
i

[
1

T

T−1∑
t=0

{Q̂i,t(π)− Q̄i,t(π)}2
]
= op((NT )−1/2),(25)

and

max
i

{
1

T

T−1∑
t=0

(ω̂i,t − ω∗
i,t)

2

}
= op((NT )−1/2).(26)

The left-hand-side (LHS) of (25) can be upper bounded by

max
i

sup
f∈Qi,ε

[
1

T

T−1∑
t=0

{f(πi(St), S̃i,t)− Q̄i,t(π)}2
]
,

with probability tending to 1. Using similar arguments in proving η2 = op((NT )−1/2), we
can show

max
i

sup
f∈Qi,ε

∣∣∣∣∣ 1T
T−1∑
t=0

{f(πi(St), S̃i,t)− Q̄i,t(π)}2 −
1

T

T−1∑
t=0

E{f(πi(St), S̃i,t)− Q̄i,t(π)}2
∣∣∣∣∣

⪯ ϵ√
NT

+ o

(
1√
NT

)
,

with probability tending to 1. Under (A6), we have

max
i

sup
f∈Qi,ε

∣∣∣∣∣ 1T
T−1∑
t=0

E{f(πi(St), S̃i,t)− Q̄i,t(π)}2
∣∣∣∣∣⪯ ϵ√

NT
.

It follows that

max
i

sup
f∈Qi,ε

[
1

T

T−1∑
t=0

{f(πi(St), S̃i,t)− Q̄i,t(π)}2
]
⪯ ϵ√

NT
+ o

(
1√
NT

)
,

with probability tending to 1. Let ϵ→ 0, we obtain (25). Similarly, we can show (26) holds.
The proof is hence completed.

APPENDIX E: ADDITIONAL SIMULATION RESULTS

We conduct paired two-sample t-test to test whether the MSE of DR is strictly smaller than
that of QV in our simulation studies. The p-values of these t-tests are reported in Tables 1 and
2. It can be seen that most p-values are significant under the 0.05 significance level. Figure
10 plots the mean squared errors (MSEs) of the DR and QV estimators with a different y-axis
scale. It can be clearly seen that our estimator achieves a strictly smaller MSE when K = 6,7
or 9.
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σR = 0 σR = 5 σR = 10 σR = 15 σR = 20 σR = 25 σR = 30

K = 9 1.1× 10−116 1.3× 10−102 5.3× 10−73 8.4× 10−40 1.2× 10−22 2.8× 10−14 2.3× 10−8

K = 8 0.50 0.71 0.97 0.98 0.99 1.00 1.00

K = 7 6.6× 10−87 1.9× 10−75 3.4× 10−41 1.2× 10−27 4.9× 10−19 4.1× 10−15 6.4× 10−7

K = 6 8.8× 10−43 1.5× 10−39 1.2× 10−19 3.6× 10−13 8.8× 10−10 9.8× 10−4 5.8× 10−3

TABLE 1
P-values of paired two-sample t-test in the simulation study with different combinations of σR and K . T is fixed

to 336.

σR = 0 σR = 5 σR = 10 σR = 15 σR = 20 σR = 25 σR = 30

K = 9 1.1× 10−116 1.3× 10−102 5.3× 10−73 8.4× 10−40 1.2× 10−22 2.8× 10−14 2.3× 10−8

K = 8 0.50 0.71 0.97 0.98 0.99 1.00 1.00

K = 7 6.6× 10−87 1.9× 10−75 3.4× 10−41 1.2× 10−27 4.9× 10−19 4.1× 10−15 6.4× 10−7

K = 6 8.8× 10−43 1.5× 10−39 1.2× 10−19 3.6× 10−13 8.8× 10−10 9.8× 10−4 5.8× 10−3

TABLE 2
P-values of paired two-sample t-test in the simulation study with different combinations of T and K . σR is fixed

to 15.

Fig 10: Mean squared errors of the DR and QV estimators, aggregated over 100 simulations. T is set
to 336 (the experiment lasts for two weeks and each hour is treated as one time unit) in the top plots
and σR is set to 15 in the bottom plots.


