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ABSTRACT

A real-valued function ϕ that is defined over all Borel sets of a topological

space is regular if for every Borel set W , ϕ(W ) is the supremum of ϕ(C),

over all closed sets C that are contained in W , and the infimum of ϕ(O),

over all open sets O that contain W .

We study Blackwell games with finitely many players. We show that

when each player has a countable set of actions and the objective of a

certain player is represented by a Borel winning set, that player’s minmax

value is regular.

We then use the regularity of the minmax value to establish the ex-

istence of ε-equilibria in two distinct classes of Blackwell games. One is

the class of n-player Blackwell games where each player has a finite action

space and an analytic winning set, and the sum of the minmax values

over the players exceeds n− 1. The other class is that of Blackwell games

with bounded upper semi-analytic payoff functions, history-independent

finite action spaces, and history-independent minmax values. For the lat-

ter class, we obtain a characterization of the set of equilibrium payoffs.

1. Introduction

Blackwell games (Blackwell [6]) are dynamic multiplayer simultaneous-move

games where the action sets of the players may be history dependent, and the

payoff function is an arbitrary Borel-measurable function of the play. When

the payoff function of a player is given by the characteristic function of a given

set W , we say that W is the winning set of the player. These games subsume

several familiar classes of dynamic games: repeated games with the discounted

payoff or the limiting average payoff (e.g., Sorin [50], Mailath and Samuelson

[31]), games with perfect information (e.g., Gale and Stewart [21]), and graph

games arising in the computer science applications (e.g., Apt and Grädel [1],

Bruyère [8, 9], Chatterjee and Henzinger [13]).

While two-player zero-sum Blackwell games and Blackwell games with perfect

information are quite well understood (see, e.g., Martin [35, 36], Mertens [39],

Kuipers, Flesch, Schoenmakers, and Vrieze [27]), general multiplayer nonzero-

sum Blackwell games have so far received relatively little attention.1

The goal of this paper is to introduce a new technique to the study of multi-

player Blackwell games: regularity of the minmax value, along with a number

of related approximation results. In a nutshell, the technique amounts to the

1 While this manuscript was being prepared, two follow-up works by Flesch and Solan have

appeared: [17, 18].
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approximation of the minmax value of a winning Borel set using a closed sub-

set. This approach allows us to establish existence of ε-equilibria in two distinct

classes of Blackwell games.

Regularity and approximation results. A real-valued function ϕ that

is defined over all Borel sets of a certain space is inner regular if for every

Borel set W , ϕ(W ) is the supremum of ϕ(C), over all closed sets C that are

contained in W . The function ϕ is outer regular if for every Borel set W it is

the infimum of ϕ(O), over all open sets O that contain W . The function ϕ is

regular if it is both inner regular and outer regular. Borel probability measures

on metric spaces are one example of a regular function (see, e.g., Kechris [26,

Theorems 17.10 and 17.11]).

When restricted to two-player zero-sum Blackwell games with finite action

sets and Borel-measurable winning set for Player 1, the value function is known

to be regular (Martin [36]). This result was extended to two-player zero-sum

stochastic games by Maitra, Purves, and Sudderth [32].

We show that in multiplayer Blackwell games with countable action sets and

Borel winning sets, the minmax value of all players is regular. We thus extend

the regularity result of Martin [36] in terms of both the number of actions

(countable versus finite) and the number of players (finite versus two).

A related approximation result concerns the case when a player’s objective is

represented by a bounded Borel-measurable payoff function. Denote by vi(f)

player i’s minmax value when her payoff function is f . We show that vi(f) is the

supremum of vi(g) over all bounded limsup functions g ≤ f , and the infimum

of vi(g) over all bounded limsup function g ≥ f . A limsup function is a func-

tion that can be written as the limit superior of a sequence of rewards assigned

to the nodes of the game tree. This, too, is an extension of results by Maitra,

Purves, and Sudderth [32] and Martin [36] for two-player games to multiplayer

games. If, moreover, the player’s minmax value is the same in every subgame,

one obtains an approximation from below by an upper semi-continuous function,

and an approximation from above by a lower semi-continuous function.

Existence of ε-equilibria. The main contribution of the paper is the ap-

plication of the regularity of the minmax value to the problem of existence of

an ε-equilibrium in multiplayer Blackwell games. We establish the existence in

two distinct classes of Blackwell games.
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One is the class of n-player Blackwell games with bounded upper semi-

analytic payoff functions, history-independent finite action spaces, and history-

independent minmax values. The latter assumption means that every player’s

minmax value is the same in each subgame. Under these assumptions, for

each ε > 0, there is an ε-equilibrium with a pure path of play.

A prominent sufficient condition for the minmax value to be history-indepen-

dent is that the payoff be tail-measurable. Roughly speaking, tail-measurability

amounts to the requirement that the payoff is unaffected by a change of the

action profile in any finite number of stages. We thus obtain the existence of

ε-equilibria in Blackwell games with history-independent finite action spaces

and bounded, upper semi-analytic, and tail-measurable payoff functions.

The second class of games for which we derive an existence result is n-player

Blackwell games where each player has a finite action space at each history, her

objective is represented by an analytic winning set, and the sum of the minmax

values over the players exceeds n−1. Under these conditions we show that there

exists a play that belongs to each player’s winning set; any such play induces

a 0-equilibrium. At the heart of the proof is an approximation of each player’s

minmax value by her minmax value in an auxiliary game, where the winning

set is a closed subset of the player’s winning set in the original game.

The key idea of the proof of the first result is to consider an auxiliary Blackwell

game with winning sets, where the winning set of player i is the set of player i’s

ε-individually rational plays: the plays that yield player i a payoff no smaller

than her minmax value minus ε. We show that, in the thus-defined auxiliary

Blackwell game, each player’s minmax value equals 1, and apply the second

result.

The question whether ε-equilibria exist in multiplayer Blackwell games is a

largely uncharted territory. An important benchmark is the result of Mertens

and Neyman (see Mertens [39]): all games of perfect information with bounded

Borel-measurable payoff functions admit an ε-equilibrium for every ε > 0. Zero-

sum Blackwell games (where at least one of the two players has a finite set of

actions) are known to be determined since the seminal work of Martin [36].

Shmaya [45] extends the latter result by showing the determinacy of zero-

sum games with eventual perfect monitoring, and Arieli and Levy [2] extend

Shmaya’s result to stochastic signals.

Only some special classes of multiplayer dynamic games have been shown to

have an ε-equilibrium. These include stochastic games with discounted payoffs
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(see, e.g., the survey by Jaśkiewicz and Nowak [25]), two-player stochastic games

with the limiting average payoff (Vieille [52, 53]), and graph games with classical

computer science objectives (e.g., Secchi and Sudderth [44], Chatterjee [11,

12], Chatterjee, Majumdar and Jurdziński [14], Bruyère [9], Ummels, Markey,

Brenguier and Bouyer [51]).

Both Shmaya’s ([45]) and Arieli and Levy’s ([2]) arguments rely on the reg-

ularity of the value in zero-sum games as established by Maitra, Purves, and

Sudderth [32] and Martin [36]. A different but related argument invoking regu-

larity of a given measure appears in various other papers; here we refer to Simon

[46] and to Simon and Tomkowicz [47], who use regularity of a measure induced

by a given strategy profile to derive existence of equilibria in a class of quitting

games, and to construct a Bayesian game having no equilibria, respectively.

A companion paper ([3]) establishes the existence of ε-equilibria in Blackwell

games with countably many players, finite action sets, and bounded, Borel-

measurable, and tail-measurable payoff functions. The present paper departs

from [3] in two dimensions. Firstly, it invokes a new proof technique, the reg-

ularity of the minmax value. Secondly, it makes different assumptions on the

primitives. The second of our two existence results (Theorem 4.1) has, in fact,

no analogue in [3]. The first (Theorem 4.3) applies to a larger class of payoff

functions than does the main result in [3]: it only requires players’ minmax val-

ues to be history-independent. While tail-measurability of the payoff functions

is a sufficient condition for history-independence of the minmax values, it is by

no means a necessary condition. Furthermore, Borel-measurability imposed in

[3] is relaxed here to upper semi-analyticity. On the other hand, [3] has a count-

able rather than a finite set of players, something that the methods developed

here do not allow for.

Characterization of equilibrium payoffs. An equilibrium payoff is an

accumulation point of the expected payoff vectors of ε-equilibria, as ε tends to 0.

We establish a characterization of equilibrium payoffs in games with bounded

upper semi-analytic payoff functions, history-independent finite action spaces,

and history-independent minmax values.

In repeated games with patient players, the folk theorem asserts that under

proper conditions, the set of limiting average equilibrium payoffs (or the limit

set of equilibrium payoffs, as the discount factor goes to 0 or the horizon in-

creases to infinity) is the set of all vectors that are individually rational and lie
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in the convex hull of the range of the stage payoff function (see, e.g., Aumann

and Shapley [4], Sorin [50], or Mailath and Samuelson [31]). Our result identifies

the set of equilibrium payoffs of a Blackwell game as the set of all vectors that

lie in the convex hull of the set of feasible and individually rational payoffs. The

intuition for this discrepancy is that in standard repeated games, a low payoff

in one stage can be compensated by a high payoff in another stage, therefore

payoff vectors that are convex combinations of the stage payoff function can be

equilibrium payoffs as long as this convex combination of payoffs is individually

rational. In particular, these combinations can place some positive weight on

payoff vectors that are not individually rational. In Blackwell games, however,

the payoff is obtained only at the end of the game, hence only plays that gen-

erate individually rational payoffs can be taken into account when constructing

equilibria.

Our characterization of the set of equilibrium payoffs is related to the rich

literature on the folk theorem, and the study of the minmax value is instru-

mental to this characterizaion (see, e.g., the folk theorems in Fudenberg and

Maskin [20], Mailath and Samuelson [31], or Hörner, Sugaya, Takahashi, and

Vieille [24]). The minmax value of a player would often be used in the proofs of

equilibrium existence to construct suitable punishments for a deviation from the

supposed equilibrium play (as is done, for instance, in Aumann and Shapley [4],

Rubinstein [43], Fudenberg and Maskin [20], and Solan [48]).

The paper is structured as follows. Section 2 describes the class of Blackwell

games. Section 3 is devoted to the regularity of the minmax value and related

approximation theorems. Section 4 applies these tools to the problem of exis-

tence of equilibrium. Section 5 is devoted to the characterization of equilibrium

payoffs. Section 6 discusses the implications of the results for games with tail-

measurable payoffs. Section 7 contains a discussion, concluding remarks, and

open questions.

2. Blackwell games

Blackwell games. An n-player Blackwell game is a tuple

Γ = (I, A,H, (fi)i∈I),

The elements of Γ are as follows.

The set of players is I, a finite set of cardinality n. For a player i ∈ I we

write −i to denote the set of i’s opponents, I \ {i}.
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The set A is a countable set and H ⊆ ⋃
t∈N

At is the game tree (throughout

the paper N = {0, 1, . . .}). Elements of H are called histories. The set H is

assumed to have the following properties: (a) H contains the empty sequence,

denoted ∅; (b) a prefix of an element of H is an element of H ; that is, if for

some h ∈ ⋃
t∈N

At and a ∈ A the sequence (h, a) is an element of H , so is h; (c)

for each h ∈ H there is an element a ∈ A such that (h, a) ∈ H ; we define

A(h) := {a ∈ A : (h, a) ∈ H};

and (d) for each h ∈ H and each i ∈ I there exists a set Ai(h) such that

A(h) =
∏
i∈I

Ai(h).

The set Ai(h) is called player i’s set of actions at history h, and A(h) the set

of action profiles at h.

Conditions (a), (b), and (c) above say that H is a pruned tree on A. Condi-

tion (c) implies that the game has infinite horizon. Let Ht := H ∩ At denote

the set of histories in stage t.

An infinite sequence (a0, a1, . . .) ∈ AN such that (a0, . . . , at) ∈ H for each t∈N

will be called a play. The set of plays is denoted by [H ]. This is the set of

infinite branches of H . For h ∈ H let O(h) denote the set of all plays of Γ

having h as a prefix. We endow [H ] with the topology generated by the basis

consisting of the sets {O(h) : h ∈ H}. The space [H ] is Polish. For t ∈ N

let Ft be the sigma-algebra on [H ] generated by the sets {O(h) : h ∈ Ht}. The
Borel sigma-algebra of [H ] is denoted by B. It is the minimal sigma-algebra

containing the topology. A subset S of [H ] is analytic if it is the image of a

continuous function from the Baire space NN to [H ]. Each Borel set is analytic.

Each analytic set is universally measurable. Recall that a set S ⊆ [H ] is

said to be universally measurable if (Kechris [26, Section 17.A]), for ev-

ery Borel probability measure P on [H ], there exist Borel sets B,Z ∈ B such

that S �B ⊆ Z and P(Z) = 0; here S�B = (S \B)∪ (B \S) is the symmetric

difference of the sets S and B.

The last element of the game is a vector (fi)i∈I , where fi : [H ] → R is

player i’s payoff function. The most general class of payoff functions we allow

for are bounded upper semi-analytic functions. A function fi : [H ] → R is said

to be upper semi-analytic if, for each r ∈ R, the set {p ∈ [H ] : r ≤ f(p)}
is analytic. In particular, the indicator function 1S of a subset S ⊆ [H ] of
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plays is upper semi-analytic if and only if S is an analytic set. Each Borel-

measurable function in upper semi-analytic. Note that a bounded upper semi-

analytic function is universally measurable, i.e., for each open set U ⊆ R, the

set f−1(U) ⊆ [H ] is universally measurable (see, e.g., Bertsekas and Shreve [5,

Chapter 7]).

The play of the game starts at the empty history h0 = ∅. Suppose that by

a certain stage t ∈ N a history ht ∈ Ht has been reached. Then in stage t,

the players simultaneously choose their respective actions; thus player i ∈ I

chooses an action ai,t ∈ Ai(ht). This results in the stage t action profile

at = (ai,t)i∈I ∈ A(ht). Once chosen, the actions are revealed to all players, and

the history ht+1 = (ht, at) is reached. The result of the infinite sequence of

choices is the play p = (a0, a1, . . .), an element of [H ]. Each player i ∈ I

receives the corresponding payoff fi(p).

Given a Blackwell game Γ and a history h ∈ H , the subgame of Γ starting

at h is the Blackwell game Γh = (I, A,Hh, (fi,h)i∈I). The set Hh of histories

of Γh consists of finite sequences g ∈ ⋃
t∈N

At such that hg ∈ H , where hg

is the concatenation of h and g. The payoff function fi,h : [Hh] → R is the

composition fi ◦ sh, with sh : [Hh] → [H ] given by p �→ hp, where hp is the

concatenation of h and p. Note that Γ∅ is just the game Γ itself.

The Blackwell game Γ is said to have history-independent action sets

if Ai(h) = Ai(∅) for each history h ∈ H and each player i ∈ I; the common

action set is simply denoted by Ai. If Γ has history-independent action sets,

then the set of its histories isH =
⋃

t∈N
At, and the set of plays in Γ is [H ] = AN.

A Blackwell game with history-independent action sets can be described as a

tuple (I, (Ai, fi)i∈I).

Strategies and expected payoffs. A strategy for player i ∈ I is a func-

tion σi assigning to each history h ∈ H a probability distribution σi(h) on the

set Ai(h). The set of player i’s strategies is denoted by Σi. We also let

Σ−i :=
∏
j∈−i

Σj and Σ :=
∏
i∈I

Σi.

Each strategy profile σ = (σi)i∈I induces a unique probability measure on

the Borel sets of [H ], denoted Pσ. The corresponding expectation operator is

denoted Eσ. In particular, Eσ(fi) denotes an expected payoff to player i in

the Blackwell game under the strategy profile σ. It is well defined under the

maintained assumptions, namely boundedness and upper semi-analyticity of fi.
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Take a history h ∈ Ht in stage t. A strategy profile σ ∈ Σ in Γ induces the

strategy profile σh in Γh defined as σh(g) = σ(hg) for each history g ∈ Hh. Let

us define Eσ(fi | h) as the expected payoff to player i in the Blackwell game Γh

under the strategy profile σh: that is,

Eσ(fi | h) := Eσh
(fi,h).

Note that Eσ(fi | h), when viewed as an Ft-measurable function on [H ], is a

conditional expectation of fi with respect to the measure Pσ and the sigma-

algebra Ft; whence our choice of notation.

Minmax value. Consider a Blackwell game Γ, and suppose that player i’s

payoff function fi is bounded and upper semi-analytic. Player i’s minmax

value is defined as

vi(fi) := inf
σ−i∈Σ−i

sup
σi∈Σi

Eσ−i,σi(fi).

Whenever fi = 1Wi is an indicator of an analytic set Wi ⊆ [H ] we write vi(Wi)

for vi(1Wi).

Player i’s minmax value is said to be history-independent if her minmax

value in the subgame Γh equals that in the game Γ, for each history h ∈ H .

3. Regularity and approximation theorems

In this section we state the regularity property of the minmax: the minmax

value of a Borel winning set can be approximated from below by the minmax

value of closed subset and from above by the minmax value of an open superset.

We also describe two related approximation results: the minmax value of a

bounded Borel-measurable payoff function can be approximated from below and

from above by limsup functions. If, in addition, the minmax values are history-

independent, then one can choose the approximation from below to be upper

semicontinuous, and the approximation from above to be lower semicontinuous.

The proofs of all results are detailed in the appendix.

Theorem 3.1 (Regularity of the minmax value): Consider a Blackwell game.

Suppose that player i’s objective is given by a winning set Wi ⊆ [H ]. Suppose

that Wi is Borel. Then

vi(Wi) = sup{vi(C) : C ⊆Wi, C is closed} = inf{vi(O) : O ⊇Wi, O is open}.
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One implication of Theorem 3.1 concerns the complexity of strategies of

player i that ensures that her probability of winning is close to her minmax

value. Suppose, for example, that vi(Wi) = 1
2 . Then for every strategy pro-

file σ−i of the opponents of player i and every ε > 0, she has a response σi

such that Pσ−i,σi(Wi) ≥ 1
2 − ε. The strategy profile σ−i and the winning set Wi

may be complex, and accordingly the good response σi may be complex as well.

However, take now a closed subset C ⊆Wi such that vi(C) > vi(Wi)−ε = 1
2−ε.

The complement of C, denoted Cc, is open, hence it is the union of basic open

sets; that is, it can be presented as a union Cc =
⋃

h∈H′ O(h), for some subset

H ′ ⊆ H of histories. A strategy σ′
i that satisfies Pσ−i,σ′

i
(Ci) ≥ 1

2 − ε must aim

at avoiding Cc, that is, at avoiding histories in H ′. In that sense, σ′ may have

a simple structure.

Example 3.2: Here we consider a Blackwell game where the same stage game

is being played at every stage. The stage game specifies a stage winning set

for each player. A player’s objective in the Blackwell game is to win the stage

game infinitely often.

Thus let Γ = (I, (Ai, 1Wi)i∈I) be a Blackwell game with history-independent

countable action sets, where player i’s winning set is

Wi = {(a0, a1, . . .) ∈ AN : at ∈ Ui for infinitely many t ∈ N};
here Ui, called player i’s stage winning set, is a given subset of

∏
i∈I Ai.

If at ∈ Ui, we say that player i wins stage t. The set Wi is a Gδ-set, i.e., an

intersection of countably many open subsets of AN.

Fix a player i ∈ I. Let

(1) di := inf
x−i∈X−i

sup
xi∈Xi

Px−i,xi(Ui)

be player i’s minmax value in the stage game. As follows from the arguments

below, vi(Wi) is either 0 or 1, and it is 1 exactly when di > 0. In either case,

there are intuitive approximations of player i’s wining sets by a closed set from

below and an open set from above.

First assume that di > 0. Take an ε > 0. Let us imagine that player i’s

objective is not merely to win infinitely many stages in the course of the Black-

well game, but to make sure that she wins at least once in every block of stages

tn, . . . , tn+1 − 1, where the sequence of stages t0 < t1 < · · · is chosen to satisfy(
1− 1

2
di

)tn+1−tn
< 2−n−1 · ε
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for each n ∈ N. This, more demanding condition, defines an approximating set.

Formally, define

Ci :=
⋂
n∈N

⋃
tn≤k<tn+1

{(a0, a1, . . .) ∈ AN : ak ∈ Ui}.

As the intersection of closed sets, Ci is a closed subset of Wi. Moreover,

1 − ε ≤ vi(Ci). To see this, fix any strategy σ−i for i’s opponents. At any

history h, player i has a mixed action σi(h) that, when played against σ−i(h),

guarantees a win at history h with probability of at least 1
2di. Thus, under the

measure Pσ−i,σi the probability for player i not to win at least once in a block

of stages tn, . . . , tn+1 − 1 is at most 2−n−1 · ε, for any history of play up to

stage tn. And hence the probability that there is a block within which player i

does not win once is at most ε.

Suppose that di = 0. Let us imagine that player i’s objective is merely to

win the stage game at least once. This modest objective defines the approxi-

mating set:

Oi =
⋃
t∈N

{(a0, a1, . . .) ∈ AN : at ∈ Ui}.

As the union of open sets, Oi is an open set containingWi. Moreover, vi(Oi) ≤ ε.

To see this, let σ−i be the strategy for i’s opponents such that, at any stage t ∈ N

and any history h ∈ At of stage t, the probability that the action profile at is

an element of Ui is not greater than 2−t−1 ·ε regardless of the action of player i.

Then, for any player i’s strategy σi, the probability that i wins at least once is

not greater than ε.

We turn to two related approximation results for Blackwell games with Borel

payoff functions. A function f : [H ] → R is said to be a limsup function if

there exists a function u : H → R such that for each play (a0, a1, . . .) ∈ [H ],

f(a0, a1, . . .) = lim sup
t→∞

u(a0, . . . , at).

The function f : [H ] → R is a liminf function if −f is a limsup function.

Limsup and liminf payoff functions are ubiquitous in the literature on infinite

dynamic games. At least since the work of Gillette [22], the so-called limiting

average payoff (that is, the limit superior or the limit inferior of the average

of the stage payoffs) is a standard specification of the payoffs in a stochastic

game (see for example Mertens and Neyman [40], or Levy and Solan [30]).
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Stochastic games with limsup payoff functions have been studied in Maitra and

Sudderth [33].

Limsup functions have relatively “low” set-theoretic complexity. Various char-

acterizations of the limsup functions can be found in Hausdorff [23]. In particu-

lar, f is a limsup function if and only if, for each r∈R, the set {p∈ [H ] : r≤f(p)}
is a Gδ-set.

We now state a result on the approximation of the minmax value for Blackwell

games where a player’s objective is represented by a bounded Borel-measurable

payoff function.

Theorem 3.3: Consider a Blackwell game. Suppose that player i’s payoff

function fi : [H ] → R is bounded and Borel-measurable. Then:

vi(fi) = sup{vi(g) : g is a bounded limsup function and g ≤ fi}
= inf{vi(g) : g is a bounded limsup function and fi ≤ g}.

Theorems 3.1 and 3.3 have been proven by Martin [36] for the case n = 2,

see [36, Theorem 5, and Remark (b)] and [36, Remark (c)]. They have been

extended to two-player stochastic games by Maitra and Sudderth [34]. Theo-

rems 3.1 and 3.3 extend the known results in two respects. First, they allow for

more than two players, and second, they allow for countably many actions.

The proof of Theorem 3.1 combines and fine-tunes the arguments in Martin

[36] and Maitra and Sudderth [34]. The key element of the proof is a zero-sum

perfect information game, denoted Gi(fi, c), where the aim of Player I is to

“prove” that the minmax value of fi is at least c. Roughly speaking, the game

proceeds as follows. Player I commences the game by proposing a fictitious

continuation payoff, which one could think of as a payoff player i hopes to

attain, contingent on each possible stage 0 action profile. The number c serves

as the initial threshold: player i’s minmax value of the proposed continuation

payoffs is required to be at least c. Player II then chooses a stage 0 action profile,

and the corresponding continuation payoff serves as the new threshold. Player I

then proposes a fictitious continuation payoff contingent on each possible stage 1

action profile, and Player II chooses the stage 1 action profile, etc. Player I wins

if the sequence of continuation payoffs is “justified” by the actual payoff on a

play produced by Player II. Ultimately the proof rests on the determinacy of

the game Gi(fi, c), which follows by Martin [35].

The perfect information game Gi(fi, c) is a version of the games used in

Martin [36]. The main difference is in the use of player i’s minmax value that
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constrains Player I’s choice of fictitious continuation payoffs. The details of our

proof are slightly closer to those in Maitra and Sudderth [34]. Like them we

invoke martingale convergence and the Fatou lemma.

Finally, we state an approximation result for a Blackwell game with history-

independent minmax values. Recall that a function g : AN → R is upper

semicontinuous if, for each r ∈ R, the set {p ∈ [H ] : r ≤ f(p)} is a closed set,

and g is lower semicontinuous if −g is upper semicontinuous. When g = 1B

for some B ⊆ AN, g is upper semicontinuous (resp. lower semicontinuous) if and

only if B is closed (resp. open).

Theorem 3.4: Consider a Blackwell game. Suppose that player i’s payoff

function fi is bounded and Borel-measurable, and player i’s minmax values are

history-independent. Then

vi(fi) = sup{vi(g) : g is a bounded upper semicontinuous function and g ≤ fi}
= inf{vi(g) : g is a bounded lower semicontinuous function and fi ≤ g}.

As the proof reveals, both the upper semicontinuous and the lower semicon-

tinuous functions can be chosen to be two-valued. Recall that (Hausdorff [23])

an upper semicontinuous function and a lower semicontinuous function are both

a limsup and a liminf function. Consequently, in comparison to Theorem 3.3,

an additional assumption of history-independence of the minmax values in The-

orem 3.4 leads to a stronger approximation result. The latter condition cannot

be dropped; see Section 7 for an example of a game with a limsup payoff func-

tion such that the minmax value cannot be approximated from below by an

upper semicontinuous function.

4. Existence of equilibria

In this section, we employ the results of the previous section to establish ex-

istence of ε-equilibria in two distinct classes of Blackwell games. Theorem 4.1

concerns n-player Blackwell games where each player has a finite action space

at each history, her objective is represented by an analytic winning set, and the

sum of the minmax values over the players exceeds n−1. Theorem 4.3 concerns

Blackwell games with bounded upper semi-analytic payoff functions, history-

independent finite action spaces, and history-independent minmax values.
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Consider a Blackwell game Γ and let ε ≥ 0. A strategy profile σ ∈ Σ is an

ε-equilibrium of Γ if for each player i ∈ I and each strategy ηi ∈ Σi of player i,

Eσ−i,ηi(fi) ≤ Eσ−i,σi(fi) + ε.

We state our first existence result.

Theorem 4.1: Consider an n-player Blackwell game Γ = (I, A,H, (1Wi)i∈I).

Suppose that for each player i ∈ I player i’s action set Ai(h) at each his-

tory h ∈ H is finite, and that her winning set Wi is analytic. If

v1(W1) + · · ·+ vn(Wn) > n− 1,

then the set W1 ∩ · · · ∩Wn is not empty. Consequently, Γ has a 0-equilibrium.

Note that any play p ∈ W1 ∩ · · · ∩Wn induces a 0-equilibrium: any strategy

profile that requires all the players to follow p is a 0-equilibrium, because it

yields all players the maximal payoff 1.

The key step of the proof is the approximation of the minmax value of a

player using a closed subset of her winning set. To prove Theorem 4.1 we need

the following technical observation.

Lemma 4.2: Let (X,B, P ) be a probability space, and let Q1, . . . , Qn ∈ B be n

events. Then

P (Q1 ∩ · · · ∩Qn) ≥ P (Q1) + · · ·+ P (Qn)− n+ 1.

Proof. For n = 1 the statement is obvious, and for n = 2 we have

(2)
P (Q1 ∩Q2) = P (Q1) + P (Q2)− P (Q1 ∪Q2)

≥ P (Q1) + P (Q2)− 1.

Assume that the statement holds for some n− 1. Then for n we have

P (Q1 ∩ · · · ∩Qn) = P ((Q1 ∩ · · · ∩Qn−1) ∩Qn)

≥ P (Q1 ∩ · · · ∩Qn−1) + P (Qn)− 1

≥ (P (Q1) + · · ·+ P (Qn−1)− n+ 2) + P (Qn)− 1

= P (Q1) + · · ·+ P (Qn)− n+ 1,

where the first inequality follows from Equation (2) and the second by the

induction hypothesis.
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Proof of Theorem 4.1. We first establish the theorem in the special case of Borel

winning sets, and then generalize it to analytic winning sets.

Part I: Suppose that for each i ∈ I the set Wi ⊆ [H ] is Borel.

By Theorem 3.1 there are closed sets C1 ⊆ W1, . . . , Cn ⊆ Wn such that

v1(C1) + · · ·+ vn(Cn) > n− 1. We show that the intersection C1 ∩ · · · ∩ Cn is

not empty.

Given m ∈ N consider the n-player Blackwell game Γm = (I, A,H, (1Cm
i
)i∈I),

where player i’s winning set is defined by

Cm
i :=

⋃
{O(h) : h ∈ Hm such that O(h) ∩ Ci �= ∅}.

The game Γm essentially ends after m stages: by stage m each player i knows

whether the play is an element of her winning set Cm
i or not. In Γm, player i

wins if after m stages there is a continuation play that leads to Ci. Note that

this continuation play might be different for different players.

The set Cm
i is a clopen set. For each m ∈ N and i ∈ I we have the in-

clusion Cm
i ⊇ Cm+1

i (winning in Γm+1 is more difficult than winning in Γm).

Moreover,
⋂

m∈N
Cm

i = Ci. Indeed, the inclusion Cm
i ⊇ Ci is evident from the

definition. Conversely, take an element q of the set [H ]\Ci. Since [H ]\Ci is an

open set, there exists a history h ∈ H such that q ∈ O(h) and O(h) ⊆ [H ] \Ci.

But then q ∈ [H ] \ Cm
i , where m is the length of the history h.

Define Cm := Cm
1 ∩ · · · ∩Cm

n . Thus {Cm}m∈N is a nested sequence of closed

sets converging to C1 ∩ · · · ∩ Cn. Note that, since by the assumption of the

theorem H is a finitely branching tree, the space [H ] is compact. Thus Cm is a

compact set. Consequently, to prove that C1 ∩ · · · ∩ Cn is not empty, we only

need to argue that Cm is not empty for each m ∈ N.

The game Γm being finite, it has a 0-equilibrium (Nash [41]), say σm. By the

definition of 0-equilibrium, the equilibrium payoff is not less than the minmax

value:

Pσm
−i,σ

m
i
(Cm

i ) = sup
σi∈Σi

Pσm
−i,σi(C

m
i ) ≥ inf

σ−i∈Σ−i

sup
σi∈Σi

Pσ−i,σi(C
m
i ) = vi(C

m
i ).

Moreover, since Cm
i ⊇ Ci, it holds that vi(C

m
i ) ≥ vi(Ci). We conclude that

Pσm(Cm
1 ) + · · ·+ Pσm(Cm

n ) > n− 1.

Finally, we apply Lemma 4.2 to conclude that Pσm(Cm) > 0, hence Cm is not

empty.
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Part II: Now let Γ be any game as in the statement of the theorem. Suppose

by way of contradiction that W1 ∩ · · · ∩Wn is empty. By Novikov’s separation

theorem (Kechris [26, Theorem 28.5]) there exist Borel sets B1, . . . , Bn such

that Wi ⊆ Bi for each i ∈ I and B1 ∩ · · · ∩ Bn = ∅. But since vi(Wi) ≤ vi(Bi)

for each i ∈ I, the game Γ = (I, A,H, (1Bi)i∈I) satisfies the assumptions of the

theorem, and Part I of the proof yields a contradiction.

We state our second and main existence result.

Theorem 4.3: Consider a Blackwell game Γ = (I, A,H, (fi)i∈I). Suppose

that for each player i ∈ I, player i’s action set Ai(h) at each history h ∈ H

is finite, her payoff function fi is bounded and upper semi-analytic, and her

minmax value is history-independent. Then for every ε > 0 the game admits

an ε-equilibrium.

The key idea behind the proof is to consider an auxiliary Blackwell game with

winning sets, the winning set of a player consisting of that player’s ε-individually

rational plays. We show that in the thus-defined auxiliary Blackwell game each

player’s minmax value equals 1, and apply Theorem 4.1.

Given ε > 0 we define the set of player i’s ε-individually rational plays:

Qi,ε(fi) := {p ∈ [H ] : fi(p) ≥ vi(fi)− ε}.
Also define the set

Ui,ε(fi) := {p ∈ [H ] : fi(p) ≥ vi(fi) + ε}.
Note that under the assumptions of Theorem 4.3 both sets are analytic.

Proposition 4.4: Consider a Blackwell game Γ = (I, A,H, (fi)i∈I) and a

player i ∈ I. Suppose that player i’s payoff function fi is bounded and upper

semi-analytic, and that her minmax values are history-independent. Let ε > 0.

Then

(1) vi(Qi,ε(fi)) = 1. In fact, for each strategy profile σ−i ∈ Σ−i of play-

ers −i there is a strategy σi ∈ Σi for player i such that

Pσ−i,σi(Qi,ε(fi)) = 1.

(2) vi(Ui,ε(fi)) = 0. In fact, there exists a strategy profile σ−i ∈ Σ−i of

players −i such that for each strategy σi ∈ Σi for player i it holds that

Pσ−i,σi(Ui,ε(fi)) = 0.
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Proof. Claim 1: It suffices to prove the second statement. Take a strategy

profile σ−i of players −i. It is known that player i has a strategy σi that

is an ε/2-best response to σ−i in each subgame (see, for example, Mashiah-

Yaakovi [38, Proposition 11], or Flesch, Herings, Maes, and Predtetchinski [15,

Theorem 5.7]), and therefore

Eσ−i,σi(fi | h) ≥ vi(fi,h)− ε/2 = vi(fi)− ε/2,

for each history h ∈ H . Since the payoff function fi is bounded, it follows that

there is d > 0 such that

Pσ−i,σi(Qi,ε(fi) | h) ≥ d

for each h ∈ H . Indeed, it is easy to verify that one can choose

d =
ε

2(supp∈[H] fi(p)− vi(fi) + ε)
.

Since Qi,ε(fi) is an analytic set, there is a Borel set B such that

Pσ−i,σi(Qi,ε(fi)� B) = 0,

where � stands for the symmetric difference of two sets. It follows that

Pσ−i,σi(Qi,ε(fi)�B | h) = 0,

and consequently Pσ−i,σi(B | h) ≥ d for each history h ∈ H that is reached

under Pσ−i,σi with positive probability. Lévy’s zero-one law implies that

Pσ−i,σi(B) = 1,

and hence Pσ−i,σi(Qi,ε(fi)) = 1.

Claim 2: There is a strategy profile σ−i ∈ Σ−i such that

Eσ−i,σi(fi | h) ≤ vi(fi,h) + ε/2 = vi(fi) + ε/2,

for each history h ∈ H and each strategy σi ∈ Σi. We sketch the main idea

behind the construction of σ−i, following closely the arguments in Mashiah-

Yaakovi [38, Proposition 11] and Flesch, Herings, Maes, and Predtetchinski [15,

Theorem 5.7].

By the definition of the minmax value, for each history h ∈ H , there is a

strategy profile σ−i,h ∈ Σ−i such that for each strategy σi ∈ Σi

(3) Eσ−i,h, σi(fi | h) ≤ vi(fi,h) + ε/4 = vi(fi) + ε/4.

Now the strategy profile σ−i prescribes to play as follows: let t0 = 0 and h0 = ∅
be the empty history at stage 0. Take a k ∈ N for which a stage tk and a

history hk (called the kth switching history) have been defined. As of stage tk,
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the players −i are required to start following the strategy profile σ−i,hk
, and do

so until a history hk+1 arises at some stage tk+1 such that σ−i,hk
is no longer

good enough in the corresponding subgame, in the sense that

sup
σi∈Σi

Eσ−i,hk
,σi(fi | hk+1) > vi(fi) + ε/2.

As of stage tk+1, the players are required to switch to σ−i,hk+1
, and follow it

until stage tk+2 such that σ−i,hk+1
is no longer good enough, and so on.

The crucial point of the construction is that, given a strategy σi of player i,

at each history hk+1 prescribing a switch, the corresponding expected payoff

exceeds that at the previous switching history hk by ε/4. Payoffs, however, are

bounded. It follows that Pσ−i,σi -almost surely, at most finitely many switches

can occur. And hence, starting from some finite k, the strategy profile σ−i

coincides with σ−i,hk
. And this implies that the expected payoff under (σ−i, σi)

is at most vi(fi) + ε/2, as desired.

With σ−i defined, the rest of the proof of the claim is similar to that of

Claim 1.

Proof of Theorem 4.3. Fix an ε > 0. By Proposition 4.4, vi(Qi,ε(fi)) = 1.

Let Γε=(I, A,H, (1Qi,ε(fi))i∈I) be an auxiliary Blackwell game where player i’s

winning set is Qi,ε(fi), the set of player i’s ε-individually rational plays in Γ.

Each player’s minmax value in the game Γε equals 1. Therefore, the auxiliary

game Γε satisfies the hypothesis of Theorem 4.1. We conclude that the inter-

section
⋂

i∈I Qi,ε(fi) is not empty, and hence there is a play p∗ ∈ [H ] such

that

fi(p
∗) ≥ vi(fi)− ε,

for every i ∈ I.

The following strategy profile is a 2ε-equilibrium of Γ (see also Aumann and

Shapley [4]):

• The players follow the play p∗, until the first stage in which one of the

players deviates from this play. Denote by i the minimal index of a

player who deviates from p∗ at that stage.

• From the next stage and on, the players in −i switch to a strategy profile

that reduces player i’s payoff to vi(fi) + ε. A strategy profile with this

property does exist by the assumption of history-independence of the

minmax values.

This completes the proof of the theorem.
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We illustrate the construction of the ε-equilibrium with the following example.

Example 4.5: We consider a two-player Blackwell game with history-indepen-

dent action sets where the same stage game is being played at each stage, and

a player’s objective is to maximize the long-term frequency of the stages she

wins. Specifically, Γ = ({1, 2}, A1, A2, f1, f2), where A1 and A2 are finite, and

fi(a0, a1, . . .) = lim sup
t→∞

1

t
·#{k < t : ak ∈ Ui},

for each (a0, a1, . . .) ∈ AN. Here Ui is player i’s stage winning set. We assume

that U1 and U2 are disjoint, and let di denote player i’s minmax value in the

stage game.

Note that fi is a tail function (see Section 6), and it is a limsup function (in

the sense of the definition in Section 3). We have di = vi(fi), i.e., player i’s

minmax value in the stage game is also player i’s minmax value in the Blackwell

game.

Take any Nash equilibrium x ∈ ∏
i∈I Δ(Ai) of the stage game. Playing x at

each stage is certainly a 0-equilibrium of the Blackwell game Γ, but typically

it is not of the type that appears in the proof of Theorem 4.3. An important

feature of the ε-equilibrium constructed in the proof is that the equilibrium

play is pure; only off the equilibrium path might a player be requested to play

a mixed action. In this particular example we can even choose the equilibrium

play to be periodic. This can be done as follows.

First note that d1 + d2 ≤ 1. This follows since Px(U1) + Px(U2) ≤ 1 (be-

cause U1 and U2 are disjoint by supposition) and since di ≤ Px(Ui) for i = 1, 2

(because the Nash equilibrium payoff is at least the minmax value). Let ε > 0.

Choose natural numbers m, m1, and m2 such that di−ε ≤ mi

m ≤ di, for i = 1, 2.

Note that m1 +m2 ≤ m. Pick a point a1 ∈ U1 and a point a2 ∈ U2, and let p∗

be the periodic play with period m1 + m2 obtained by repeating a1 for the

first m1 stages, and repeating a2 for the next m2 stages. We have

di − ε ≤ mi

m
≤ mi

m1 +m2
= fi(p

∗),

for i ∈ {1, 2}. One can support p∗ as an ε-equilibrium play by a threat of

punishment: in case of a deviation by player 1, player 2 will switch to playing

the minmax action profile from the stage game for the rest of the game, thus

reducing i’s payoff to di. A symmetric punishment is imposed on player 2 in

case of a deviation.
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Under the periodic play p∗, the sum of the players’ payoffs is 1. There are

alternative plays where the payoff to both players is 1, which can support 0-

equilibria. For example, consider the non-periodic play p that is played in

blocks of increasing size: for each k ∈ N, the length of block k is 22
k

. In even

(resp. odd) blocks the players play the action profile a1 (resp. a2). The reader

can verify that since the ratio between the length of block k and the total length

of the first k blocks goes to ∞, the payoff to both players at p is 1.

5. Regularity and the folk theorem

A payoff vector w ∈ R
|I|, assigning a payoff to each player, is called an equi-

librium payoff of the Blackwell game Γ if for every ε > 0 there exists an

ε-equilibrium σε of Γ such that

‖w − Eσε (f)‖∞ ≤ ε.

In other words, an equilibrium payoff is an accumulation point of ε-equilibrium

payoff vectors as ε goes to 0. We let E denote the set of equilibrium payoffs.

Our goal here is to provide a description of E .
In repeated games with stage payoffs, where the total payoff is some average

(discounted average with low discounting, liminf of average, limsup of average,

etc.) of the stage game payoffs, the folk theorem states that the set of equilib-

rium payoffs coincides with the set of all individually rational vectors that are

in the convex hull of the feasible payoff vectors; see, e.g., Aumann and Shapley

[4], Sorin [50], and Mailath and Samuelson [31]. As we will see, when the payoff

functions are general, the set of equilibrium payoffs is the convex hull of the

set of feasible payoff vectors that are individually rational. The reason for the

difference is that in repeated games with stage payoffs, getting a low payoff in

one stage can be compensated by getting a high payoff in the following stage;

when the payoff is obtained only at the end of the game, there is no opportunity

to compensate low payoffs.

Define

Qε(f) :=
⋂
i∈I

Qi,ε(fi),

W ε(f) := {f(p) : p ∈ Qε(f)}.
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The set Qε(f) is the set of ε-individually rational plays, and W ε(f) is the set

of feasible and ε-individually rational payoffs vectors. Whenever convenient, we

write simply Qε and W ε. For every set X in a Euclidean space we denote its

closure by cl(X) and its convex hull by conv(X).

Theorem 5.1: Consider a Blackwell game Γ = (I, A,H, (fi)i∈I). Suppose that

for each player i ∈ I, player i’s action set Ai(h) at each history h ∈ H is finite,

her payoff function fi is bounded and upper semi-analytic, and her minmax

value is history-independent. Then

E =
⋂
ε>0

conv(cl(W ε(f))).

To prove Theorem 5.1 we need the following result, which states that every

ε-equilibrium assigns high probability to plays in Qε1/3(f).

Lemma 5.2: Consider an n-player Blackwell game Γ = (I, A,H, (fi)i∈I). Sup-

pose that for each player i ∈ I, player i’s action set Ai(h) at each history h ∈ H

is finite, her payoff function fi is bounded and upper semi-analytic, and her min-

max value is history-independent. Let ε > 0 be sufficiently small, and let σε be

an ε-equilibrium. Then

Pσε(AN \Qε1/3(f)) < nε1/3.

Proof. Set η := ε1/3. It suffices to show that for every i ∈ I,

(4) Pσε(AN \Qi,η(fi)) < η.

Fix a player i ∈ I and suppose to the contrary that Equation (4) does not

hold. We derive a contradiction by showing that player i has a deviation from σε

that yields her a gain higher than ε.

For t ∈ N, denote by Xt := Pσε(Qi,η(fi)|Ft) the conditional probability of

the event Qi,η(fi) under the strategy profile σε given the sigma-algebra Ft.

By Doob’s martingale convergence theorem, (Xt)t∈N converges to the indicator

function of the event Qi,η(fi), almost surely under Pσε . Since by supposi-

tion Pσε(AN \Qi,η(fi)) > η, we know that Pσε(Xt → 0) > η.

Let K be a bound on the game’s payoffs, and let ρ := ε2/K. Let us call a

history h ∈ Ht a deviation history if under h, stage t is the first one such

that Xt < ρ. On the event {Xt → 0}, a deviation history arises at some

point during play. Consequently, under Pσε , a deviation history arises with

probability of at least η.
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Consider the following strategy σ′
i of player i: play according to σε

i until a

deviation history, say h, occurs (and forever if a deviation history never occurs).

At h, switch to playing a strategy which guarantees player i a payoff of at

least vi(fi) − ε against σε
−i in Γh. Such a strategy exists by our supposition

of history-independence of the minmax values. To conclude the argument, we

compute the gain from the deviation to σ′
i.

For every deviation history h ∈ Ht,

Eσε
−i,σ

′
i
(fi | h) ≥ vi(fi)− ε,(5)

Eσε
−i,σ

ε
i
(fi | h) ≤ ρK + (1− ρ)(vi(fi)− η).(6)

Equation (5) holds by the choice of σ′
i. To derive Equation (6), suppose that,

following the history h, player i conforms to σε
i . Then, conditional on h, with

probability at most ρ the play belongs to Qi,η(fi), and player i’s payoff is at

most K, and with probability at least 1−ρ the play does not belong to Qi,η(fi),

and player i’s payoff is at most vi(fi)− η.

We can now compute the gain from the deviation to σ′
i: If a deviation history

never arises, σ′
i recommends the same actions as σε

i , and therefore the gain is 0.

A deviation history occurs with a probability of at least η, and thus

Eσε
−i,σ

′
i
(fi)− Eσε

−i,σ
ε
i
(fi) ≥ η

(
vi(fi)− ε− ρK − (1− ρ)(vi(fi)− η)

)
= η(−ε− ε2 + ρvi(fi) + η − ρη)

= ε
2
3

(
1− ε

2
3 − ε

5
3 +

vi(fi)

K
ε

5
3 − 1

K
ε2
)
,

which behaves like ε
2
3 when ε is small, and therefore exceeds ε.

Proof of Theorem 5.1. Let |I| = n. Let w ∈ R
n be an equilibrium payoff. As-

sume by contradiction that there is an α > 0 such that w �∈ conv(cl(Wα)). For a

vector z ∈ R
n write dist(z) to denote the distance from z to the set conv(cl(Wα))

under the ‖ · ‖∞ metric on R
n. By assumption, δ := 1

4dist(w) > 0. De-

note ε := min(δ, α3, ( δ
Kn )

3) > 0, where K is a bound on the game payoff.

From w being an equilibrium payoff, there exits an ε-equilibrium, say σε,

such that ‖w − Eσε(f)‖∞ ≤ ε ≤ δ. We have the following chain of inequalities:

dist(Eσε(f)) ≤ Eσε(dist(f)) ≤ 2K · Pσε(AN \Qα(f)) ≤ 2K · n · ε 1
3 ≤ 2δ,

where the first inequality follows from the fact that dist : Rn → R is a convex

function, the second from the fact that f(p) ∈ Wα whenever p ∈ Qα(f), the



Vol. TBD, 2024 EQUILIBRIA IN MULTIPLAYER BLACKWELL GAMES 23

third follows since Qε1/3(f) ⊆ Qα(f) and by Lemma 5.2, and the last holds by

the choice of ε. But then

dist(w) ≤ ‖w − Eσε (f)‖∞ + dist(Eσε (f)) ≤ 3δ,

contradicting the choice of δ.

We turn to prove the other direction. Let w ∈ ⋂
ε>0 conv(cl(W

ε)). We need

to show that w is an equilibrium payoff. Fix an ε > 0.

Carathéodory’s Theorem (Carathéodory, [10]) implies that

cl(conv(W ε)) = conv(cl(W ε)),

hence w is an element of cl(conv(W ε)), and thus we can choose a vector wε ∈
conv(W ε) such that ‖w − wε‖∞ ≤ ε. We argue that wε is a vector of expected

payoffs in some 3ε-equilibrium.

The payoffwε can be presented as a convex combination of n+1 vector payoffs,

say f(p1), . . . , f(pn+1), with each pk an element of Qε(f). Using jointly con-

trolled lotteries as done, e.g., in Forges [19], Lehrer [28], or Lehrer and Sorin [29],

the players can generate the required randomization over the plays p1, . . . , pn+1

during the first stages of the game. Once a specific play pk has been chosen,

the construction of the 3ε-equilibrium is standard: the players play pk, and if

player i deviates, her opponents revert to playing a strategy profile that gives

player i at most vi(fi)+ ε. Such a strategy exists by the assumption of history-

independence of the minmax values.

Example 5.3: Consider the two-player Blackwell game Γ=({1, 2}, A1, A2, f1, f2),

where the action sets are A1 = {T,M,B} and A2 = {L,C,R}, and for a play

p = (a0, a1, . . .) the payoffs are

(f1(p), f2(p))

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1, 1) if lim infn→∞ 1
t ·#{k < t : ak = (T,L) or ak = (M,C)} > 1

2 ,

(4,−1) if lim infn→∞ 1
t ·#{k < t : ak = (B,L)} = 1,

(−1, 4) if lim infn→∞ 1
t ·#{k < t : ak = (T,R)} = 1,

(0, 0) otherwise.

Thus the payoff is (1, 1) if the (liminf) frequency of the stages where either

(T,L) or (M,C) is played is larger than 1
2 . It is (4,−1) if (B,L) is played with

frequency of 1, and (−1, 4) if (T,R) is played with the frequency of 1. All other

cases result in a payoff of (0, 0).
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Observe that when player 1 plays B repeatedly, the maximal payoff that

player 2 can achieve is 0, and this is player 2’s minmax value. Similarly,

player 1’s minmax value is 0. For each ε ∈ (0, 1), the set W ε(f) consists of

the two points (0, 0) and (1, 1). By Theorem 5.1, the set of equilibrium pay-

offs E is the line segment connecting (0, 0) and (1, 1); see Figure 1.

−3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

4

5

x

y

Figure 1. The set of equilibrium payoffs (the segment connect-

ing (0, 0) and (1, 1)) vs. the set of convex combinations of fea-

sible payoffs that are individually rational (the dark triangle).

Naturally, all equilibrium payoffs w are (a) convex combinations of the feasible

payoffs vectors (0, 0), (1, 1), (4,−1), and (−1, 4), and (b) individually rational,

i.e., they satisfy w1 ≥ 0 and w2 ≥ 0. The set of all payoff vectors satisfying (a)

and (b) is represented in Figure 1 by the shaded triangle. The point we wish

to make here is that the properties (a) and (b) are not sufficient for a payoff

vector to be an equilibrium payoff.

Take for concreteness the point (3, 0). This payoff vector is in the convex

hull of the feasible payoff vectors and is individually rational. Yet, for ε < 2
3 ,

there is no ε-equilibrium with the payoff (close to) the vector (3, 0). We give a

heuristic argument.

Suppose to the contrary that σ is such an ε-equilibrium. The strategy profile σ

necessarily assigns a probability of at least 2
3 to the set of plays that yield the
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payoff vector (4,−1). But this implies that Player 2 has a deviation that would

improve her payoff over the candidate ε-equilibrium by at least 2
3 . Player 2 needs

to deviate to playing R forever (for example), at any history of the game where

her conditional expected payoff under σ is close enough to −1. Since playing R

would yield at least 0, by such a deviation, she would improve her conditional

expected payoff by at least 1. Levy’s zero-one law guarantees that the histories

where player 2 is called to deviate in this way arise with a probability close

to 2
3 , so that the expected gain from the deviation is also close to 2

3 .

The above discussion of Example 5.3 leads to a slightly more general conclu-

sion: if the set of feasible payoffs is finite, then the set of equilibrium payoffs

is the convex-hull of the feasible payoffs that are individually rational (equal to

or larger than the minmax). For each player the minmax value is within the

finite set of feasible payoffs, and placing any probability on a payoff that is not

individually rational enables profitable deviations.

6. Blackwell games with tail-measurable payoffs

An important class of games with history-independent minmax values are those

where the payoff functions are tail-measurable. In this section we concentrate

on games with tail-measurable payoffs.

Consider a Blackwell game with history-independent action sets,

Γ = (I, (Ai, fi)i∈I). A set Q ⊆ AN is said to be a tail set if whenever a

play p = (a0, a1, . . .) is an element of Q and q = (b0, b1, . . .) is such that at = bt

for all t ∈ N sufficiently large, then q is also an element of Q. Let T denote the

sigma-algebra of the tail subsets of AN. We note that the tail sigma-algebra T

and the Borel sigma-algebra B are not nested. For constructions of tail sets

that are not Borel, see Rosenthal [42] and Blackwell and Diaconis [7].

Examples of tail sets are: (1) the winning sets of Example 3.2, (2) the set of

plays in which a certain action profile a ∈ A is played with limsup-frequency

at most 1
2 , and (3) the set of plays in which a certain action profile a∗ ∈ A is

played at most finitely many times at even stages (with no restriction at odd

stages).

An important class of tail sets are the shift invariant sets. A set Q ⊆ AN

is a shift invariant set if for each play p = (a0, a1, . . .), p ∈ Q if and only if

(a1, a2, . . .) ∈ Q. Equivalently, shift invariant sets are the sets that are invariant
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under the backward shift operator on AN. Shift invariant sets are tail sets. The

converse is not true: while the sets in examples (1) and (2) above are shift

invariant, that of example (3) is not.

A function f : AN → R is called tail-measurable if, for each r ∈ R, the set

{p ∈ AN : r ≤ f(p)} is an element of T. Intuitively, a payoff function is tail

measurable if an action taken in any particular stage of the game has no impact

on the payoff. The payoff function in Example 4.5 is tail-measurable.

Remark 6.1: The assumption that the set of actions of each player is history-

independent is required so that the tail-measurability of the payoff functions has

a bite. If the sets of actions were history-dependent, then by having a different

set of actions at each history, any function could be turned into tail-measurable.

We now state one key implication of tail-measurability, namely the history-

independence of minmax values.

Proposition 6.2: Let Γ = (I, (Ai, fi)i∈I) be a Blackwell game with history-

independent action sets, and let i ∈ I be a player. If player i’s payoff function

is bounded, upper semi-analytic, and tail-measurable, then her minmax value

is history-independent.

Proof. It suffices to show that vi(fi,a) = vi(fi) for each a ∈ A, where, with a

slight abuse of notation, we write a for a history in stage 1. Since fi is tail-

measurable, all the functions fi,a for a ∈ A are identical to each other. Hence,

fixing any particular action profile ā ∈ A, letting

Xi := Δ(Ai) and X−i :=
∏
j∈−i

Xj ,

we have

vi(fi) = inf
x−i∈X−i

sup
xi∈Xi

∑
a∈A

∏
j∈I

xj(aj) · ( inf
σ−i∈Σ−i

sup
σi∈Σi

Eσ−i,σi(fi,a))

= inf
x−i∈X−i

sup
xi∈Xi

∑
a∈A

∏
j∈I

xj(aj) · vi(fi,ā) = vi(fi,ā).

If the payoff functions of all the players in a game Γ are tail-measurable,

then, for each fixed stage t ∈ N, all the subgames of Γ starting at stage t are

identical. On the other hand, the subgames starting, say, at stage 1, are not

identical to the game itself (see example (3) of a tail-measurable payoff function

above). Nonetheless, as Proposition 6.2 implies, the players’ minmax values are

the same in every subgame.
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The condition of history-independence of the minmax values is more inclusive

than that of tail-measurability of the payoffs; the examples that follow illustrate

the point.

Example 6.3: Consider a one-player Blackwell game where the player’s payoff

function is 1S , the indicator of a set S ⊆ [H ]. If S is dense in [H ], then the

minmax value of the player is 1 in each subgame. A dense set may or may not

be a tail set.

Example 6.4: We consider a Blackwell game similar to that of Example 3.2, but

where the stage game may depend on the history, as long as each player’s stage

minmax value is the same.

Specifically, let Γ = (I, A,H, (1Wi)i∈I). Suppose that at each history h ∈ H ,

each player i ∈ I has a stage winning set Ui(h) ⊆ A(h), and her winning set in

the Blackwell game Γ is

Wi = {(a0, a1, . . .) ∈ [H ] : at ∈ Ui(a0, . . . , at−1) for infinitely many t ∈ N}.
Assume that the stage minmax value of player i is the same at each history:

there is a number di such that

di = inf
x−i∈Δ(A−i(h))

sup
xi∈Δ(Ai(h))

Px−i,xi(Ui(h))

for every h ∈ H . Then player i’s minmax value in each subgame of Γ is 0

if di = 0, and is 1 if di > 0. Thus player i’s minmax value is history-independent.

Note that the game Γ need not have history-independent action sets. Even

when the action sets are history-independent, the winning sets need not neces-

sarily be tail-measurable.

To illustrate the last claim, suppose that there are two players playing match-

ing pennies at each stage. At stage 0, player 1 wants to match the choice

of player 2 (and player 2 wants to mismatch the choice of player 1). Subse-

quently the roles of the two players swap as follows: the player to win stage t

wants to match her opponent’s action at stage t+ 1, while the loser at stage t

wants to mismatch the action of her opponent at stage t+ 1. Formally, we let

Γ = ({1, 2}, A1, A2, 1W1 , 1W2) be the two-player Blackwell game with history-

independent action sets, where A1 = A2 = {H,T}, the winning sets W1 andW2

are as above, and the stage winning sets are defined recursively as follows:

U1(∅) = {(H,H), (T,T)} and U2(∅) = {(H,T), (T,H)},
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and

U1(h, a) =

⎧⎨
⎩
U1(∅) if a ∈ U1(h),

U2(∅) if a ∈ U2(h),
and U2(h, a) =

⎧⎨
⎩
U2(∅) if a ∈ U1(h),

U1(∅) if a ∈ U2(h),

for each h ∈ H and a ∈ A. The sets W1 and W2 are not tail: out of the two

plays

((H,H), (H,H), (H,H), . . .) and ((H,T), (H,H), (H,H), . . .),

the first is an element of W1 \W2, while the second is an element of W2 \W1.

Example 6.5: Consider a Blackwell game Γ = (I, A,H, (fi)i∈I), where player i’s

objective is (as in Example 4.5) to maximize the long-term frequency of the

stages she wins:

fi(a0, a1, . . .) = lim sup
t→∞

1

t
·#{k < t : ak ∈ Ui(a0, . . . , ak−1)}.

As in the previous example, Ui(h) ⊆ A(h) is player i’s stage winning set at

history h ∈ H . Assume, as above, that player i’s minmax value in each stage

game is di. Then also her minmax value in each subgame of Γ is di.

Example 6.6: Start with a Blackwell game with tail-measurable payoff func-

tions. Suppose that the minmax values of all the players in the game are 0.

Take any history h, and redefine the payoff functions so that any play hav-

ing h as a prefix has a payoff of 0. In the resulting game, the minmax value of

each player in each subgame remains 0, but the payoff functions are no longer

tail-measurable (unless the original payoff functions are constant). A similar

modification can be performed with any subset of histories, not just one.

From the results above we now deduce a number of implications for Blackwell

games with tail-measurable payoffs.

Corollary 6.7: Consider a Blackwell game Γ = (I, (Ai, 1Wi)i∈I) with history-

independent action sets. If player i’s winning set Wi is an analytic tail set,

then vi(Wi) is either 0 or 1.

Proof. Suppose that vi(Wi) > 0. Let ε := vi(Wi)/2. In view of Proposition 6.2,

player i’s minmax value in Γ is history-independent. Applying Proposition 4.4,

we conclude that vi(Qi,ε(1Wi))=1. But Qi,ε(1Wi)=Wi by the choice of ε.
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The following conclusion follows directly from Proposition 6.2 and Theo-

rem 4.3.

Corollary 6.8: Suppose that the game Γ = (I, (Ai, 1Wi)i∈I) has history-

independent action sets. Suppose, furthermore, that for each player i ∈ I,

player i’s action set Ai is finite and her payoff function fi is bounded, upper

semi-analytic, and tail-measurable. Then for every ε > 0 the game admits an

ε-equilibrium.

7. Concluding remarks

Approximations by compact sets. Any Borel probability measure on [H ]

(recall that [H ] is Polish under the maintained assumptions), is not merely reg-

ular, but is tight: the probability of a Borel set B ⊆ [H ] can be approximated

from below by the probability of a compact subset K ⊆ B (Kechris [26, Theo-

rem 17.11]). The minmax value is not tight in this sense. To see this, consider

any two-player Blackwell game where player 1’s winning set W1 is the entire

set of plays [H ], so that v1(W1) = 1, and where A2(∅), player 2’s action set at

the beginning of the game, is N. We argue that v1(K) = 0 for every compact

set K ⊆ W1. Indeed, the projection of a compact set K ⊆ W1 on A2(∅) is

a compact, and hence a finite set. Therefore, player 2 can guarantee that the

realized play is outside K by choosing a sufficiently large action at stage 0.

Thus v1(K) = 0, as claimed.

Approximations by semicontinuous functions. The conclusion of Theo-

rem 3.4 would no longer be true without the assumption of history-indepenence

of the minmax values. Here we give an example of a game with a limsup payoff

function where the minmax value cannot be approximated from below by an

upper semicontinuous function.

Consider a zero-sum game Γ where A1 = A2 = {0, 1}, and player 1’s payoff

function is

f(a0, a1, . . .) =

⎧⎪⎪⎨
⎪⎪⎩
lim supt→∞

1
t#{k < t : a2,k = 0}, if τ = ∞,

2, if τ <∞ and a2,τ = 1,

0, if τ <∞ and a2,τ = 0,

where τ = τ(a0, a1, . . .) ∈ N ∪ {∞} is the first stage where player 1 chooses

action 1. The game was analyzed in Sorin [49], who showed that v1(f) = 2/3.
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Let g ≤ f be a bounded upper semicontinuous function. We argue

that v1(g) ≤ 1/2. For t ∈ N, let St denote the set of plays p such that t ≤ τ(p).

Note that St is closed. We argue that

inf
t∈N

sup{g(p) : p ∈ St} ≤ 1.

Suppose this is not the case. Take an ε > 0 such that 1+ε < sup{g(p) : p ∈ St}
for each t ∈ N. Let U0 := {1 + ε ≤ g}, and for each t ≥ 1 let Ut := U0 ∩ St.

The set Ut is not empty for each t ∈ N. Moreover, it is a closed, and hence a

compact subset of AN. Thus U0 ⊇ U1 ⊇ · · · is a nested sequence of non-empty

compact sets. Therefore, there is a play p ∈ ⋂
t∈N

Ut. It holds that τ(p) = ∞,

and consequently f(p) ≤ 1 < g(p), a contradiction.

Take an ε > 0. Find a t ∈ N such that sup{g(p) : p ∈ St} ≤ 1 + ε.

Suppose that player 2 plays 0 for the first t stages, and thereafter plays 0

with probability 1/2 at each stage. This guarantees that the payoff under the

function g is at most (1 + ε)/2.

On the assumption of finiteness of the action sets. The hypothesis

of Theorem 4.1 requires that the action sets at each history be finite, and

its conclusion is not true without this assumption. Indeed, consider the two-

player Blackwell game Γ = ({1, 2}, A1, A2,W1,W2) with history-independent

action sets A1 = A2 = N. Player 1’s winning set W1 consists of all plays

(a1,t, a2,t)t∈N such that a1,t > a2,t holds for all sufficiently large t ∈ N, and

player 2’s winning setW2 consists of all plays (a1,t, a2,t)t∈N such that a1,t < a2,t

holds for all sufficiently large t ∈ N. Then W1 and W2 are Borel-measurable

and tail-measurable, and v1(W1) = v2(W2) = 1, but W1 ∩W2 = ∅. Hence, the

game has no ε-equilibrium for any ε < 1/2. Indeed, an ε-equilibrium σ would

need to satisfy Pσ(Wi) ≥ vi(Wi)− ε > 1/2 for both i ∈ {1, 2}.
As discussed above, the assumption that the sets of actions are history-

dependent is intertwined with the assumption that the payoffs are tail-mea-

surable.

Continuity of the minmax. Unlike Borel probability measures, the minmax

value is in general not continuous in the following sense: there is an increasing

sequence of Borel sets C0 ⊆ C1 ⊆ · · · such that

lim
n→∞ vi(Cn) < vi

( ⋃
n∈N

Cn

)
.
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In fact, one can construct an example of this kind where Cn is both a Gδ

and an Fσ set, as follows. Consider a two-player Blackwell game with history-

independent action sets where A1 is a singleton (player 1 is a dummy) while A2

contains at least two distinct elements. Let {p0, p1, . . .} be a converging (with

respect to any compatible metric on AN) sequence of plays, no two members

of which are the same. Let Cn := AN \ {pn, pn+1, . . .}. Then v1(Cn) = 0 for

each n ∈ N while

v1

( ⋃
n∈N

Cn

)
= v1(A

N) = 1.

Maxmin value. Consider a Blackwell game Γ, and suppose that player i’s

payoff function fi is bounded and upper semi-analytic. Player i’s maxmin

value is defined as

zi(fi) = sup
σi∈Σi

inf
σ−i∈Σ−i

Eσ−i,σi(fi).

The minmax value is not smaller than the maxmin value: zi(fi) ≤ vi(fi).

If I = {1, 2}, player 1’s payoff function f1 is bounded and Borel-measurable,

and for every h ∈ H either the set A1(h) of player 1’s actions or the set A2(h)

of player 2’s actions at h is finite, then in fact z1(f1) = v1(f1), as follows from

the determinacy of zero-sum Blackwell games (Martin [36]). Strict inequality

might arise for at least two reasons.

The first is the failure of determinacy. The results of Section 3 are established

under the assumption that the action sets are countable, an assumption that is

insufficient to guarantee determinacy of a two-player zero-sum Blackwell game

even if player 1’s winning set is clopen. Wald’s game provides an illustration.

Suppose that each of the two players chooses a natural number; player 1 wins

provided that his choice is at least as large as player 2’s. Formally, consider a

Blackwell game with I = {1, 2}, where the action sets at ∅ are

A1(∅) = A2(∅) = N,

and player 1’s winning setW1 consists of plays such that player 1’s stage 0 action

is at least as large as player 2’s stage 0 action: a1,0 ≥ a2,0. Then player 1’s

minmax value is v1(W1) = 1 while her maxmin value is z1(W1) = 0.

The second possibility for a maxmin and the minmax values to be different

arises in games with three or more players. The reason is that the definitions of

both the maxmin and the minmax values impose that the opponents of player i

choose their actions independently after each history. The point is illustrated
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by Maschler, Solan, and Zamir [37, Example 5.41], which can be seen as a

three-player Blackwell game with binary action sets, where the player’s payoff

function only depends on the stage 0 action profile.

Analogues of Theorems 3.1, 3.3, and 3.4 could be established for the maxmin

values using the same approach.

Open problems. Existence of an ε-equilibrium in dynamic games with general

(Borel-measurable) payoffs has been, and still is, one of the Holy Grails of game

theory. A more modest approach, also pursued in this paper, is to establish

existence in some special classes of games. Blackwell games, as they are defined

here, do not include moves of nature. An interesting avenue for a follow up

research is to extend the methods developed in this paper to the context of

stochastic games with general Borel-measurable payoff functions.

Theorems 3.1 and 3.3 provide two distinct approximation results, and neither

seems to be a consequence of the other. This raises the question of whether there

is a natural single generalization that would encompass both these results as

two special cases.

Appendix A. The proof of Theorems 3.1, 3.3, and 3.4

The proofs of Theorems 3.1 and 3.3 are adaptations of the corresponding argu-

ments in Maitra and Sudderth [34] and in Martin [36] and are provided here for

completeness. Theorem 3.4 follows easily from Theorem 3.1 and Proposition 4.4.

Consider a Blackwell game Γ = (I, A,H, (fi)i∈I), fix a player i ∈ I, and

suppose that player i’s payoff function fi is bounded and Borel-measurable.

Also assume without loss of generality that 0 ≤ fi ≤ 1. When we will consider

Theorem 3.1 we will substitute fi = 1Wi .

Given h∈H, letR(h) denote the set of one-shot payoff functions r :A(h)→[0, 1].

Let Xi(h) :=Δ(Ai(h)) denote player i’s set of mixed actions at history h, and let

X−i(h) :=
∏
j∈−i

Xj(h).

For x ∈ ∏
i∈I Xi(h) we write r(x) to denote Ex(r), the expectation of r with

respect to x. Player i’s minmax value of the function r ∈ R(h) is

di(r) := inf
x−i∈X−i(h)

sup
xi∈Xi(h)

r(x−i, xi).
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We next introduce the main tool of the proof, an auxiliary two-player game

of perfect information denoted by Gi(fi, c). This is a variation of the games Gv

and G′
v in Martin [36, p. 1575].

Given c ∈ (0, 1] and a Borel measurable function fi : [H ] → [0, 1], define the

game Gi(fi, c) as follows:

• Let h0 :=∅. Player I chooses a one-shot payoff function r0 :A(h0)→ [0, 1]

such that di(r0) ≥ c.

• Player II chooses an action profile a0 ∈ A(h0) such that r0(a0) > 0.

• Let h1 := (a0). Player I chooses a one-shot payoff function

r1 : A(h1) → [0, 1] such that di(r1) ≥ r0(a0).

• Player II chooses an action profile a1 ∈ A(h1) such that r1(a1) > 0.

• Let h2 := (a0, a1). Player I chooses a one-shot payoff function

r2 : A(h2) → [0, 1] such that di(r2) ≥ r1(a1). And so on.

This results in a run (r0, a0, r1, a1, . . .).
2 Player I wins the run if

lim sup
t→∞

rt(at) ≤ fi(a0, a1, . . .) and 0 < fi(a0, a1, . . .).

Let T be the set of all legal positions in the game Gi(fi, c). This is a tree on

the set R ∪A where R :=
⋃

h∈H R(h). Sequences of even (odd) length in T are

Player I’s (Player II’s) positions. The tree T is pruned: an active player has a

legal move at each legal position of the game. Indeed, consider Player I’s legal

position in the game Gi(fi, c) and let ht denote, as above, the sequence of action

profiles produced, to date, by Player II. Then the function rt which is identically

equal to 1 on the set A(ht) is a legal move for Player I. Consider now Player II’s

legal position in Gi(fi, c), let ht denote the sequence of action profiles produced

to date by Player II, and let rt be Player I’s latest move. Then di(rt) > 0.

Therefore, there exists an action profile at ∈ A(ht) such that rt(at) > 0, and

thus at is Player II’s legal move at the given position.

The set [T ] is the set of all runs of the game Gi(fi, c), a subset of (R ∪A)N.
A run is consistent with a pure strategy σI of Player I if it is generated by the

pair (σI, σII), for some pure strategy σII of Player II. Runs that are consistent

with pure strategies of Player II are defined analogously.

2 To distinguish histories and plays of Γ from those of Gi(fi, c), we refer to the latter as

positions and runs. To distinguish the players of Γ from those of Gi(fi, c), we refer to

the latter as Player I and Player II, using the initial capital letters.
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Player I’s pure strategy σI in Gi(fi, c) is said to be winning if Player I wins

all runs of the game that are consistent with σI.

Proposition A.1: Let c ∈ (0, 1] and let fi : [H ] → [0, 1] be a Borel-measurable

function. If Player I has a winning strategy in the game Gi(fi, c), then there ex-

ists a closed set C ⊆ [H ] and a limsup function g : [H ] → [0, 1] such that g ≤ fi,

{g > 0} ⊆ C ⊆ {fi > 0}, and c ≤ vi(g). In particular, c ≤ vi(C); and

if fi = 1Wi , then

C ⊆Wi.

Proof. Fix Player I’s winning strategy σI in Gi(fi, c).

Step 1: Defining C ⊆ [H ] and g : [H ] → [0, 1].

Let TI ⊆ T denote the set of positions in the game Gi(fi, c) of even length

(i.e., Player I’s positions) that are consistent with σI, i.e., those positions that

can be reached under a strategy profile (σI, σII) for some pure strategy of σII of

Player II. Let πI : TI → H be the projection that maps a position of length 2t

in Gi(fi, c) to a history of length t in Γ: Formally, πI(∅) := ∅, πI(r0, a0) := (a0),

etc. Let HI ⊆ H be the image of TI under πI. Since in the tree TI Player I’s

moves are uniquely determined by σI, the map πI is in fact a bijection between TI

and HI. We write φ : HI → TI for the inverse of πI. The map φ induces

a continuous bijection [HI] → [TI], which we also denote by φ. We say that

positions in HI are σI-acceptable, and define C to be the set [HI].

For each t ∈ N, define the function ρt : Ht → R as follows: ρ0(∅) := c.

Let t ∈ N and consider a history ht ∈ Ht. If ht is not σI-acceptable, we

define ρt+1(ht, at) := 0 for each at ∈ A(ht). Suppose that ht is σI-acceptable,

and let rt := σI(φ(ht)). For each at ∈ A(ht) define ρt+1(ht, at) := rt(at). Note

that if ht is σI-acceptable while (ht, at) is not, we have ρt+1(ht, at) = rt(at) = 0.

Also define g : [H ] → [0, 1] by letting

g(a0, a1, . . .) := lim sup
t→∞

ρt(a0, . . . , at−1).

Step 2: Verifying that g ≤ fi and {g > 0} ⊆ C ⊆ {fi > 0}.
Since σI is Player I’s winning strategy in Gi(fi, c), all runs in [TI] are won by

Player I, and hence [HI] ⊆ {fi > 0}. For a play p = (a0, a1, . . .) in [HI],

if φ(p) = (r0, a0, r1, a1, . . .), then g(p) equals lim supt→∞ rt(at). Since the

run φ(p) is won by Player I, we conclude that g(p) ≤ fi(p). Thus g ≤ fi

on [H ].
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Step 3: Verifying that c ≤ vi(g). Since g ≤ 1C it will then follow that c ≤ vi(C).

Fix a strategy profile σ−i ∈ Σ−i for the players in −i in the game Γ. Take

any ε > 0. We define a strategy σi for player i in the game Γ with the property

that Eσ−i,σi(g) ≥ c− 2ε.

Step 3.1: Defining player i’s strategy σi.

Let r0 := σI(∅), Player I’s first move in Gi(fi, c) according to her strategy σI.

Define σi(∅) to be a mixed action on Ai(∅) such that

r0(σ−i(∅), σi(∅)) ≥ c− ε.

Let t ≥ 1 and consider a history ht = (a0, . . . , at−1) ∈ Ht of Γ. If ht

is not σI-acceptable, then σi(ht) is arbitrary. If ht is σI-acceptable,

let φ(ht) := (r0, a0, . . . , rt−1, at−1) and rt := σI(φ(ht)). Define σi(ht) to be

a mixed action on Ai(ht) such that

rt(σ−i(ht), σi(ht)) ≥ rt−1(at−1)− ε · 2−t.

Step 3.2: Verifying that Eσ−i,σi(g) ≥ c− 2ε.

For each t ∈ N let us define ρεt := ρt−ε ·2−t+1. One can think of the functions

ρε0, ρ
ε
1, . . . as a stochastic process on [H ] that is measurable with respect to the

filtration {Ft}t∈N. We now argue that this process is a submartingale with

respect to the measure Pσ−i,σi .

Letting r0 := σI(∅) we have

Eσ−i,σi(ρ
ε
1) = Eσ−i,σi(r0(a0))− ε = r0(σ−i(∅), σi(∅))− ε ≥ c− 2ε = ρε0(∅).

Consider a σI-acceptable history ht = (a0, . . . , at−1) ∈ Ht of length t ≥ 1. Let

(r0, a0, . . . , rt−1, at−1) := φ(ht) and rt := σI(φ(ht)).

We have

Eσ−i,σi(ρ
ε
t+1|ht) = Eσ−i,σi(rt(at)|ht)− ε · 2−t

= rt(σ−i(ht), σi(ht))− ε · 2−t

≥ rt−1(at−1)− ε · 2−t − ε · 2−t

= ρεt(ht).

On the other hand, if ht is not σI-acceptable, then

Eσ−i,σi(ρ
ε
t+1|ht) = −ε · 2−t > −ε · 2−t+1 = ρεt(ht).

This establishes the submartingale property for ρε0, ρ
ε
1, . . ..
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The submartingale property implies that Eσ−i,σi(ρ
ε
t) ≥ ρε0(∅) = c − 2ε for

each t ∈ N. Using Fatou lemma we thus obtain

Eσ−i,σi(g) = Eσ−i,σi(lim sup
t→∞

ρt) ≥ Eσ−i,σi(lim sup
t→∞

ρεt)

≥ lim sup
t→∞

Eσ−i,σi(ρ
ε
t) ≥ c− 2ε,

as desired.

Proposition A.2: Let c ∈ (0, 1] and let fi : [H ] → [0, 1] be a Borel-measurable

function. If Player II has a winning strategy in the game Gi(fi, c), then for ev-

ery ε > 0 there exists an open set O ⊆ [H ] and a limsup function g : [H ] → [0, 1]

such that fi ≤ g, {fi = 1} ⊆ O ⊆ {g = 1}, and vi(g) ≤ c + ε. In particular,

vi(O) ≤ c+ ε; and if fi = 1Wi , then Wi ⊆ O.

Proof. Fix Player II’s winning strategy σII in Gi(fi, c).

Step 1: Defining O ⊆ [H ] and g : [H ] → [0, 1].

We recursively define (a) the notion of a σII-acceptable history in the

game Γ, (b) for each σII-acceptable history h in Γ, Player I’s position ψ(h)

in the game Gi(fi, c), and (c) for each σII-acceptable history h of Γ, a function

uh : A(h) → [0, 1].

The empty history ∅ of Γ is σII-acceptable. We define ψ(∅) := ∅, the empty

history in Gi(fi, c). Let t ∈ N and consider a history ht ∈ Ht of the game Γ.

If ht is not σII-acceptable, so is the history (ht, at) for each at ∈ A(ht). Suppose

that ht is σII-acceptable and that Player I’s position ψ(ht) in Gi(fi, c) has been

defined. Take at ∈ A(ht). Let R
∗(ht, at) denote the set of Player I’s legal moves

at position ψ(ht) to which σII responds with at:

R∗(ht, at) := {rt ∈ R(ht) : (ψ(ht), rt) ∈ T and σII(ψ(ht), rt) = at}.
The history (ht, at) is defined to be σII-acceptable if R(ht, at) is not empty.

In this case we define

uht(at) := inf{rt(at) : rt ∈ R∗(ht, at)}.
Choose rt ∈ R∗(ht, at) with the property that

(7) uht(at) ≤ rt(at) ≤ uht(at) + ε · 3−t−2,

and define ψ(ht, at) := (ψ(ht), rt, at).

Finally, extend the definition of uh to all histories h of Γ by setting uh(a) := 1

whenever (h, a) is not σII-acceptable.
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Let HII be the set of σII-acceptable histories of Γ. We define the set O to

be the complement of [HII], that is O := [H ] \ [HII]. Since [HII] is a closed

subset of [H ] (e.g., Kechris [26, Proposition 2.4]), O is an open subset of [H ].

Let TII ⊆ T be the image of HII under ψ. The function ψII : HII → TII induces a

continuous function ψII : [HII] → [TII]. Note that all runs in [TII] are consistent

with Player II’s winning strategy σII.

For t ∈ N define a function υt : Ht → R by letting υ0(∅) := c; and for

each t ∈ N and each history (ht, at) ∈ Ht+1, by letting υt+1(ht, at) := uht(at).

Note that, for t ∈ N and ht ∈ Ht, we have υt(ht) = 1 whenever ht is not σII-

acceptable.

Also define g : [H ] → [0, 1] by letting

g(a0, a1, . . .) := lim sup
t→∞

υt(a0, . . . , at−1).

Step 2: Verifying that fi ≤ g ≤ 1 and {fi = 1} ⊆ O ⊆ {g = 1}.
The function g is equal to 1 on the set O; thus O ⊆ {g = 1}. Consider a play

p = (a0, a1, . . .) ∈ [HII], and let ψ(p) := (r0, a0, r1, a1, . . .). It follows by (7)

that

g(p) := lim sup
t→∞

rt(at).

Since the run ψ(p) is won by Player II, it must hold that either fi(p) < g(p)

or 0 = fi(p); in either case fi(p) < 1 and fi(p) ≤ g(p). We conclude that

[HII] ⊆ {fi < 1}, or equivalently that {fi = 1} ⊆ O, and that fi ≤ g on [H ].

Step 3: Verifying that vi(g) ≤ c + ε. Since 1O ≤ g, it then follows that

vi(O) ≤ c+ ε.

Step 3.1: Defining a strategy profile for player i’s opponents.

First we argue that

(8) di(u∅) ≤ c.

Suppose to the contrary that c ≤ di(u∅)−λ for some λ > 0. Define r0 ∈ R(∅) by
letting r0(a) := max{u∅(a) − λ, 0}. Since u∅ − λ ≤ r0, it holds

that c ≤ di(u∅)− λ ≤ di(r0). Consequently, r0 is a legal move of Player I in

the game Gi(fi, c) at position ∅. Denote a0 := σII(r0). As a0 is Player II’s

legal move in Gi(fi, c) at position (r0), it must be the case that r0(a0) > 0, and

hence r0(a0) = u∅(a0)− λ. On the other hand, r0 ∈ R∗(∅, a0), so the definition

of u∅ implies that u∅(a0) ≤ r0(a0), a contradiction.
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Take t ≥ 1, let ht := (ht−1, at−1) ∈ Ht be a σII-acceptable history, and

let rt−1 be such that ψ(ht) = (ψ(ht−1), rt−1, at−1). Then

(9) di(uht) ≤ rt−1(at−1).

Indeed, suppose to the contrary that rt−1(at−1) ≤ di(uht)−λ for some λ > 0.

Define rt ∈ R(ht) by letting rt(a) := max{uht(a)− λ, 0}. Since uht − λ ≤ rt, it

holds that

rt−1(at−1) ≤ di(uht)− λ ≤ di(rt).

Consequently, rt is a legal move of Player I at position ψ(ht). Let

at := σII(ψ(ht), rt).

As at is Player II’s legal move at position (ψ(ht), rt), it must be the case

that rt(at)>0, and hence rt(at)=uht(at)−λ. On the other hand, rt∈R∗(ht, at),
so the definition of uht implies that uht(at) ≤ rt(at), a contradiction.

We now define a strategy profile σ−i of i’s opponents in Γ as follows: For a

history ht ∈ Ht of Γ let σ−i(ht) ∈ X−i(h) be such that

(10) uht(σ−i(ht), xi) ≤ di(uht) + ε · 3−t−1 for each xi ∈ Δ(Ai(ht)).

Step 3.2: Verifying that Eσ−i,σi(g) ≤ c+ ε for each strategy σi ∈ Σi of player i

in Γ.

Fix a strategy σi ∈ Σi. For t ∈ N define a function υεt := υt + ε · 3−t.

The sequence υε0, υ
ε
1, . . . could be thought of as a process on [H ], measurable

with respect to the filtration {Ft}t∈N. We next show that the process is a

supermartingale with respect t0 Pσ−i,σi .

By Equations (10) and (8),

Eσ−i,σi(υ
ε
1) = Eσ−i,σi(u∅(a0)) + ε · 3−1

= u∅(σ−i(∅), σi(∅)) + ε · 3−1

≤ di(u∅) + ε · 2 · 3−1

≤ c+ ε = υε0(∅).

Take t ≥ 1, let ht = (ht−1, at−1) ∈ Ht be a σII-acceptable history, and let rt−1

be such that ψ(ht) = (ψ(ht−1), rt−1, at−1). We have by Equations (10), (9),
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and (7):

Eσ−i,σi(υ
ε
t+1 | ht) = Eσ−i,σi(uht(at) | ht) + ε · 3−t−1

= uht(σ−i(ht), σi(ht)) + ε · 3−t−1

≤ di(uht) + ε · 2 · 3−t−1

≤ rt−1(at−1) + ε · 2 · 3−t−1

≤ uht−1(at−1) + ε · 3 · 3−t−1

= υεt (ht−1, at−1) = υεt (ht).

If, on the other hand, the history ht is not σII-acceptable, then

Eσ−i,σi(υ
ε
t+1 | ht) = 1 + ε · 3−t−1 ≤ 1 + ε · 3−t = υεt (ht).

Since the process υε0, υ
ε
1, . . . is bounded below (by 0), by the Martingale Con-

vergence Theorem, it converges pointwise Pσ−i,σi -almost surely; whenever the

process converges, its limit is g. Hence

Eσ−i,σi(g) = Eσ−i,σi( lim
t→∞ υεt ) ≤ υε0(∅) = c+ ε,

as desired.

We now invoke the result of Martin [35] on Borel determinacy of perfect

information games. To do so, we endow [T ] with its relative topology as a

subspace of the product space (R ∪ A)N, where R ∪ A is given its discrete

topology. One can then check that Player I’s winning set in Gi(fi, c) is a Borel

subset of [T ]. It follows that for each c ∈ (0, 1] the game Gi(fi, c) is determined:

either Player I has a winning strategy in the game or Player II does. We arrive

at the following conclusion.

Proposition A.3: If vi(fi) < c, then Player II has a winning strategy

in Gi(fi, c). If c < vi(fi), then Player I has a winning strategy in Gi(fi, c).

Theorems 3.1 and 3.3 follow from Propositions A.1, A.2, and A.3.

Proof of Theorem 3.4. Take an ε > 0. Without loss of generality, suppose

that fi takes values in [0, 1].

By Proposition 4.4 we know that vi(Qi,ε(fi)) = 1. To obtain an approxi-

mation from below, use Theorem 3.1 to choose a closed set C ⊆ Qi,ε(fi) such

that 1 − ε ≤ vi(C), and define the function g := (vi(fi) − ε) · 1C . Then g ≤ fi

and vi(fi) − 2ε ≤ (vi(fi) − ε) · (1 − ε) ≤ vi(g). Since C is closed, g is upper

semicontinuous.
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By Proposition 4.4 we know that vi(Ui,ε(fi)) = 0. To obtain an approxi-

mation from above, use Theorem 3.1 to choose an open set O ⊇ U ε
i (fi) such

that vi(O) ≤ ε, and define the function

g := vi(fi) + ε+ (1− vi(fi)− ε) · 1O.

Then fi ≤ g ≤ 1 and vi(g) ≤ vi(fi) + 2ε. Since O is open, g is lower semicon-

tinuous.
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[25] A. Jaśkiewicz and A. S. Nowak, Nonzero-sum stochastic games, in Handbook of Dynamic

Game Theory, Springer, Cham, 2018, pp. 281–344.

[26] A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Vol. 156,

Springer, New York, 1995,

[27] J. Kuipers, J. Flesch, G. Schoenmakers and K. Vrieze, Subgame perfection in recursive

perfect information games, Economic Theory 71 (2021), 603–662.

[28] E. Lehrer, Mediated talk, International Journal of Game Theory 25 (1996), 177–188.

[29] E. Lehrer and S. Sorin, One-shot public mediated talk, Games and Economic Behavior

20 (1997), 131–148.



42 G. ASHKENAZI-GOLAN ET AL. Isr. J. Math.

[30] Y. J. Levy and E. Solan, Stochastic games, in Complex Social and Behavioral Systems—

Game Theory and Agent-Based Models, Encyclopedia of Complexity and Systems Sci-

ence, Springer, New York, 2020, pp. 229–250.,

[31] G. J. Mailath and L. Samuelson, Repeated Games and Reputations: Long-Run Rela-

tionships, Oxford University Press, New York, 2006,

[32] A. Maitra, R. Purves and W. Sudderth, Approximation theorems for gambling problems

and stochastic games, in Game Theory and Economic Applications, Lecture Notes in

Economics and Mathematical Systems, Vol. 389, Springer, Berlin, 1992, pp. 114–132

[33] A. Maitra and W. Sudderth, Borel stochastic games with lim sup payoff, Annals of

Probability 21 (1993), 861–885.

[34] A. Maitra and W. Sudderth, Finitely additive stochastic games with Borel measurable

payoffs, International Journal of Game Theory 27 (1998), 257–267.

[35] D. A. Martin, Borel determinacy, Annals of Mathematics 102 (1975), 363–371.

[36] D. A. Martin, The determinacy of Blackwell games, Journal of Symbolic Logic 63 (1998),

1565–1581.

[37] M. Maschler, E. Solan and S. Zamir, Game Theory, Cambridge University Press, Cam-

bridge, 2013.

[38] A. Mashiah-Yaakovi, Correlated equilibria in stochastic games with Borel measurable

payoffs, Dynamic Games and Applications 5 (2015), 120–135.

[39] J. F. Mertens, Repeated games, in Proceedings of the International Congress of Mathe-

maticians. Vols. 1, 2, American Mathematical Society, Providence, RI, 1987, pp. 1528–

1577.

[40] J. F. Mertens and A. Neyman, Stochastic Games. International Journal of Game Theory

10 (1981), 53–66.

[41] J. F. Nash, Equilibrium points in n-person games. Proceedings of the National Academy

of Sciences of the United States of America 36 (1950), 48–49.

[42] J. Rosenthal, Nonmeasurable invariant sets, American Mathematical Monthly 82 (1975),

488–491.

[43] A. Rubinstein, Equilibrium in supergames, in Essays in Game Theory, Springer, New

York, 1994, pp. 17–27.

[44] P. Secchi and W. D. Sudderth, Stay-in-a-set games, International Journal of Game The-

ory 30 (2002), 479–490.

[45] E. Shmaya, The determinacy of infinite games with eventual perfect monitoring, Pro-

ceedings of the American Mathematical Society 139 (2011), 3665–3678.

[46] R. S. Simon, The structure of non-zero-sum stochastic games, Advances in Applied Math-

ematics 38 (2007), 1–26.

[47] R. S. Simon and G. Tomkowicz, A Bayesian Game without ε-equilibria, Israel Journal of

Mathematics 227 (2018), 215–231.

[48] E. Solan, Characterization of correlated equilibria in stochastic games, International

Journal of Game Theory 30 (2001), 259–277.

[49] S. Sorin, Asymptotic properties of a non-zero sum stochastic game, International Journal

of Game Theory 15 (1986), 101–107.



Vol. TBD, 2024 EQUILIBRIA IN MULTIPLAYER BLACKWELL GAMES 43

[50] S. Sorin, Repeated games with complete information, in Handbook of Game Theory

With Economic Applications. Vol. I, Handbooks in Economics, Vol. 11, North-Holland,

Amsterdam, 1992, pp. 71–107.

[51] M. Ummels, N. Markey, R. Brenguier and P. Bouyer, Pure Nash equilibria in concurrent

deterministic games, Logical Methods in Computer Science 11 (2015), Article no. 9.

[52] N. Vieille, Two-player stochastic games I: A reduction, Israel Journal of Mathematics

119 (2000), 55–91.

[53] N. Vieille, Two-player stochastic games II: The case of recursive games, Israel Journal of

Mathematics 119 (2000), 93–126.


	1. Introduction
	2. Blackwell games
	3. Regularity and approximation theorems
	4. Existence of equilibria
	5. Regularity and the folk theorem
	6. Blackwell games with tail-measurable payoffs
	7. Concluding remarks
	Appendix A. The proof of Theorems 3.1, 3.3, and 3.4
	References



