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Abstract

Although seasonal variation has a known influence on the transmission of several respira-

tory viral infections, its role in SARS-CoV-2 transmission remains unclear. While there is a

sizable and growing literature on environmental drivers of COVID-19 transmission, recent

reviews have highlighted conflicting and inconclusive findings. This indeterminacy partly

owes to the fact that seasonal variation relates to viral transmission by a complicated web of

causal pathways, including many interacting biological and behavioural factors. Since analy-

ses of specific factors cannot determine the aggregate strength of seasonal forcing, we side-

step the challenge of disentangling various possible causal paths in favor of a holistic

approach. We model seasonality as a sinusoidal variation in transmission and infer a single

Bayesian estimate of the overall seasonal effect. By extending two state-of-the-art models

of non-pharmaceutical intervention (NPI) effects and their datasets covering 143 regions in

temperate Europe, we are able to adjust our estimates for the role of both NPIs and mobility

patterns in reducing transmission. We find strong seasonal patterns, consistent with a

reduction in the time-varying reproduction number R(t) (the expected number of new infec-

tions generated by an infectious individual at time t) of 42.1% (95% CI: 24.7%—53.4%) from

the peak of winter to the peak of summer. These results imply that the seasonality of SARS-

CoV-2 transmission is comparable in magnitude to the most effective individual NPIs but

less than the combined effect of multiple interventions.
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Author Summary

Building on two state-of-the-art observational models and datasets, we adapt a fully Bayes-

ian method for estimating the association between seasonality and SARS-CoV-2 transmis-

sion in 143 temperate European regions. This approach overcomes limitations of previous

analyses that do not account for the implementation of non-pharmaceutical interventions

(NPIs) or mobility during the first year of the pandemic and hence may yield biased esti-

mates of seasonal effects. We find that the seasonality of SARS-CoV-2 transmission is

comparable in magnitude to the most effective individual NPIs but less than the combined

effect of multiple interventions. Our findings provide valuable insights for long-term

modelling and policy planning. As seasons change, it is vital that policymakers employ

accurate estimates of seasonal effects. In the summer, reductions in transmission that owe

to seasonality should not be misattributed to population immunity. In the winter, policy-

makers must avoid anticipating a greater reduction due to seasonality than will actually

occur.

1 Introduction

Since the onset of the COVID-19 pandemic, the role of seasonal variation in SARS-CoV-2

transmission has received significant scientific and political attention [1]. Understanding sea-

sonal patterns is vital, as it enables more accurate inferences about current trends in transmis-

sion and how they may change over the longer term. For example, a proper understanding of

seasonality can help policymakers avoid attributing declining incidence over the summer to

population immunity alone, when in fact seasonality may be playing a meaningful role.

While seasonal variation is well-established for many respiratory viral infections [2], and

some studies have suggested associations between temperature, humidity, and COVID-19

incidence [3–7], other analyses have failed to show a robust role of climate and weather [8, 9],

particularly when population immunity is low [10]. A recent review found that the evidence

remains inconclusive [11].

A further complication is that temperature, humidity, and UV radiation plausibly affect

transmission and incidence through a range of biological and epidemiological mechanisms [2,

12]. These include virus stability and viability [13, 14], host susceptibility and immune

response [15, 16], human behaviour [17, 18], and social factors such as holidays and school cal-

endars [19, 20]. This multitude of plausible causal pathways makes it exceedingly difficult to

disentangle the influence of various seasonal factors, particularly given the extensive multi-col-

linearities and interactions between environmental, biological, and behavioural elements [21,

22]. S1 Fig shows an overview of the various causal pathways, including existing literature and

evidence on the collinearities between various factors. As Lofgren et al. note in the context of

influenza, “the myriad theories accounting for seasonality (. . .) suggest that the elegant and pre-
dictable periodicity of nonpandemic influenza is caused by a less-than-straightforward interac-
tion of many different factors,” meaning that “recognition of this complexity, as well as the
likelihood that seasonality arises from many different factors, is essential for continued examina-
tion and elucidation of seasonality” [17].

Given the severe methodological challenge of disentangling these interrelated factors, a

more tractable solution is to approach seasonality holistically with the purpose of understand-

ing its overall effects. In this study, we infer a single seasonality parameter, describing the

amplitude of the yearly variation in the time-varying reproduction number, R(t), for one cli-

mate region. While this single parameter does not disentangle the individual effects that
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comprise a seasonal profile, it accounts for the overall magnitude of the seasonal effect on

SARS-CoV-2 transmission and thereby provides valuable insights for long-term policy

planning.

Since both COVID-19 incidence and the presence of governmental non-pharmaceutical

interventions have waxed and waned in consecutive waves since early 2020, adjusting for NPI

effects is crucial for any effort to infer the influence of seasonality on transmission, yet early

analyses of environmental drivers have largely not done so [5, 7, 11].

Some studies of environmental factors have taken indirect approaches to avoiding the influ-

ence of NPIs on their environmental estimates. In a recent study of the association between

humidity, temperature, and SARS-CoV-2 transmission in Europe and North America, Landier

et al. exclude from their analysis any periods at least 28 days after the implementation of ‘lock-

down measures’ [4]. Ma et al. do include periods where measures are in place, however,

instead of directly utilising data on NPIs, they use smoothed spatial and temporal splines to

indirectly adjust for their influence [3]. Smith et al. compare the role of temperature in the

presence and absence of ‘lockdown’ in the United States but only include a binary measure of

whether stay-at-home orders were in place [22].

By contrast, we directly adjust for the influence of specific interventions by extending two

hierarchical Bayesian models of NPI effects from Brauner et al. [23] and Sharma et al. [24] to

include a term representing the multiplicative seasonal influence on the effective reproduction

number.

Employing a common technique in infectious disease modelling [25, 26], we assume the

seasonal variation itself is described by a sinusoidal modulation. We re-analyse data from the

aforementioned two studies [23, 24] while restricting the scope to European regions in the

temperate climate zone, where we assume the seasonality effect to be comparable both in its

environmental and behavioural causal components.

2 Methods

We build on two previously published, state-of-the-art NPI effectiveness models: Brauner et al.
[23] and Sharma et al. [24]. To estimate the seasonal variation in transmission while adjusting

for the effect of NPIs, we extend these “base models” to include a seasonality effect. We fit each

of the two resulting “seasonal models” separately, on separate data (see below); we thus obtain

two distinct estimates for the seasonality effect.

2.1 Models

2.1.1 Non-pharmaceutical intervention effectiveness models. In this section, we give a

short summary of the common core of both base models. Please refer to Brauner et al. [23]

and Sharma et al. [24] for more detailed descriptions of the models and their differences.

Additionally, see S2 Appendix for a schematic diagram of the model structures.

Both models use a data-driven, cross-region modelling approach, in which a Bayesian hier-

archical model is fitted jointly to a large set of regions. The models estimate NPI effects by

comparing the timing of interventions in each region to the subsequent numbers of cases or

deaths. Because each region deployed various combinations of interventions in different

orders and with different outcomes, this method can disentangle the effect of individual

interventions.

More concretely, the models use case and death data from each region to “backward” infer

the number of new infections at each point in time, which is then itself used to infer the repro-

duction numbers. The NPI effects are then estimated by relating the daily reproduction num-

bers to the active NPIs, across all days and regions. This relatively simple, data-driven
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approach makes it possible to sidestep the assumptions about contact patterns and intensity,

infectiousness of different age groups, and so forth, which are typically required in modelling

studies.

Fig 1 shows the basic model structure, including our adaptation to account for seasonality.

Both models assume the time-varying reproduction number R(t) to be a product of R0, the

“natural” reproduction number when no NPIs are in place, multiple terms representing the

effects of interventions, and noise terms modelling the influence of other, unobserved, factors

on R(t). The central model equation is thus:

RlðtÞ|ffl{zffl}
Reproduction number in location l at time t

¼ R0;l
|{z}

R0 in location l

NlðtÞ
zffl}|ffl{

R noise term
YI

i¼1

expð� ai xi;l;tÞ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Effect due to active NPIs

ð1Þ

where I is the number of NPIs, αi is the “effect parameter” of intervention i, and xi, l, t are indi-

cator variables, i.e. binary variables taking the value 1 if NPI i is active in location l at time t,
and 0 otherwise. The reduction in R(t) associated with each NPI (the “NPI effectiveness”) can

be computed as 1 − exp(−αi). In Brauner et al., but not Sharma et al., the NPI effect parameter

is allowed to vary slightly between different countries (partial pooling). The noise term Nl(t)
varies between the models; a log-normal multiplicative factor is used in Brauner et al. and a

random walk-based multiplicative factor in Sharma et al. The noise term can be intuitively

thought of as a random effect that accounts for residual variation in Rl(t) not captured by the

NPI effects.

Fig 1. High-level overview of the common structure of both models used in this study. Dark nodes are observed, light nodes are inferred. See S2

Appendix for a detailed model graph for each individual model

https://doi.org/10.1371/journal.pcbi.1010435.g001
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The time-varying reproduction number Rl(t) is then used to compute the change in the

number of daily new infections Dl(t). This relation between reproduction number and new

infections is modelled differently in the two models. The Brauner et al. model uses a one-to-

one correspondence between R(t) and daily growth rates that holds early in a pandemic, and

models separately the infections that will later become confirmed cases, and the infections that

will become deaths. In contrast, the Sharma et al. model links Rl(t) to Dl(t) with a renewal pro-

cess and models infections that will lead to cases/deaths jointly. The Sharma et al. model addi-

tionally includes additive noise on the number of infections, to account for the more fine-

grained regions, and thus smaller regional infection numbers, in the data. In both models, the

relation between Rl(t) and Dl(t) is moderated by the generation interval distribution (the gen-

eration interval is the time between successive infections in a chain of transmission).

New infections are then observed as confirmed cases or deaths, after some delay. For

instance, the expected number of observed cases �yðCÞl ðtÞ in location l at time t is computed as:

�yðCÞl ðtÞ ¼
X31

t¼0

Dlðt � tÞ � PCðdelay ¼ tÞ � IAR ð2Þ

where PC is the distribution over the delay between infection and case confirmation (truncated

after 31 days because delays longer than this cutoff are very rare) and “IAR” is the infection

ascertainment rate (i.e. the fraction of infected individuals that later test positive). The number

of new COVID deaths is computed similarly, drawing on the delay between infection and

death, and the infection fatality rate.

Finally, the observed cases yðCÞl ðtÞ follow a negative binomial distribution with mean �yðCÞl ðtÞ
and an inferred dispersion parameter. This distribution reflects that small case numbers are

more noisy and should therefore receive less weight. The number of observed deaths also fol-

lows a negative binomial distribution with a separate inferred dispersion parameter. Having

separate dispersion parameters for cases and deaths ensures that they can be weighted differ-

ently if there is a difference in their output variance.

Both models require assumptions about priors for various variables, such as the NPI effec-

tiveness or delay distributions. We use the same priors as in Brauner et al. [23] and Sharma
et al. [24], where they have been justified (whenever possible) by reference to meta-analyses or

patient line-list data.

2.1.2 Estimating seasonality effects. To account for seasonality, we substitute Rl(t) with

R0lðtÞ (adjusted for seasonality) and let each model infer a single seasonality amplitude parame-

ter γ along with its other parameters. This minimal modification aims to preserve the demon-

strated robustness of the original models [23, 24, 27]. We can thus estimate two separate

seasonality effects; the final seasonality amplitude estimate is then pooled from the two models,

equally sampling from their posterior distributions. Note the seasonal adjustment to Rl(t) is

shared across all locations l and therefore captures common dynamics between locations not

explained by the location specific noise terms or NPIs.

We model seasonality as a sinusoidal multiplicative factor Γ(t) to R(t):

GðtÞ ¼ 1þ g sin 2p
t þ d0 � dg

365
þ
p

2

� �

; ð3Þ

where γ is the intensity (amplitude) of the seasonal effect, dγ is the day of the year of the highest

seasonal effect on R, and d0 is the first day of the respective dataset. Note that only γ is a ran-

dom variable, but dγ is assumed fixed (see below) and d0 is a fixed property of the dataset. Our

choice of the sinusoidal function for seasonality is motivated by an assumption that this func-

tion is a good fit for several of the upstream causal factors of seasonal forcing (S1 Appendix) in
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temperate Europe, such as temperature and humidity. The sinusoidal function, and the equiv-

alent cosine function, are commonly employed for mathematical modelling of seasonal trans-

mission dynamics [28–30]. In S6 Appendix, section 1.6, we examine the sensitivity of our

results to using Fourier series models of varying degrees as an alternative function for seasonal

forcing.

We assume a single, common seasonal effect for countries in similar climates and relative

proximity along dimensions such as income, political structure, and culture. While average

temperatures clearly are different between countries within the region, with a strong depen-

dence on latitude, the amplitude of the seasonal variation is assumed to be similar. For both

models, the time and location-specific Rl(t) is replaced with seasonal R0lðtÞ:

R0lðtÞ ¼ RlðtÞ
GðtÞ
Gð0Þ

: ð4Þ

Note that we divide Γ(t) by Γ(0) to have Γ(t)/Γ(0) = 1 at t = 0 and R0lð0Þ ¼ Rlð0Þ, i.e. the sea-

sonality multiplier is normalised to 1 at the start of the window of analysis. This implies that

the priors over ~Rlð0Þ need not be adjusted in either model. For both models, we assume an

uniform prior γ* U (−0.95, 0.95). (Sinusoidal seasonality is well-defined only for amplitudes

−1� γ� 1. We restrict γ to −0.95� γ� 0.95 to ensure model numerical stability).

The amplitude of the cyclical seasonal variation (γ) can be converted to the reduction in

transmission associated with going from the peak of winter to the peak of summer (i.e., peak-

to-trough) as R(trough)/R(peak) = (1 − γ)/(1 + γ). Similarly, the amplitude can be directly con-

verted to the expected reduction between adjacent seasons such as peak winter to mid-spring

or mid-spring to peak summer (i.e., peak-to-mid).

Our analysis utilises January 1 as the seasonal peak day dγ, as this date is both close to the

center of a stable range of dγ in the sensitivity analysis of S6 Appendix, as well as close to Janu-

ary 3, the median peak date inferred by a model with variable dγ in S6 Appendix. Note that

while we show January 1 to be a robust choice of dγ, we are not aiming at determining its exact

value.

2.1.3 Inference. We infer the unobserved variables in our models using the No-U-Turn

Sampler (NUTS) [31], a standard Markov chain Monte Carlo sampling algorithm; we use 250

tuning samples per chain. As explained in Eqs 3 and 4, we add γ as a fully-pooled (global) hid-

den variable to each of the two models and inferred in the same way as other variables. We fit

each model separately, on different data (see below). For each model we obtain 5000 posterior

samples in 4 independent chains (1250 in each chain). The Gelman-Rubin’s R̂ statistic across

the 4 chains was under 1.02 for all variables in both models, with no divergences.

2.3 Data

We fit each model separately, on the data and time period for which the model was originally

created. Brauner et al. includes data on the implementation and lifting of several NPIs in 41

countries between 22nd January and 30th May 2020. We restrict the dataset of Brauner et al.
to the 29 countries in the temperate European region (see S2 Appendix). Sharma et al. contains

data on 17 NPIs in 114 subnational regions in 7 European countries (Austria, Czech Republic,

England, Germany, Italy, Netherlands, Switzerland), and covers the period from 1st August

2020 to 9th January 2021. We use the Sharma et al. dataset without any modifications, for a

total of 143 regions of analysis. We follow the same pre-processing steps as in the original data-

sets. In particular, for Brauner et al, we mask case numbers before a country had reached 100

confirmed cases and fatality numbers before a country had reached 10 deaths, to prevent bias

from case/death importation (this is not necessary for the Sharma et al. model due to its noise
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on infections). For Sharma et al., we exclude any data points where the prevalence of variants

of concern exceeded 10% during a given day, to mitigate potential bias introduced by more

transmissible strains.

Data on confirmed cases and deaths were taken from the Johns Hopkins CSSE COVID-19

Dataset [32] and government websites (see Supplementary Table S4 in [24]).

3 Results

Using two model structures and datasets on non-pharmaceutical interventions covering 72%

of the 2020–2021 period in Europe, we estimate the seasonality parameter γ and the time-vary-

ing seasonal multiplier Γ(t) (Fig 2). See S3 Appendix for details.

Our combined estimates from the two models are consistent with a reduction in R of 24.7%

to 53.4% (95% CI) from January 1, the peak of winter to July 1, the peak of summer, with a

median reduction of 42.1% (Fig 3 and detailed results in S3 Appendix). The combined estimate

distribution is an equal-weight mixture of the posterior distributions of the two models.

Modelling seasonality alongside non-pharmaceutical interventions allows us to gain a sense

of the epidemiological importance of environmental factors. We find that the transition from

winter to summer is associated with a reduction in transmission that is comparable to or

greater than the effects of individual interventions, but less than the total effect of combined

interventions (Fig 4).

Fig 4 compares our seasonality estimates to the original effect estimates from Brauner et al.,
as their robustness is well-established [23, 27]. Although these estimates are based on analysis

that included countries outside temperate Europe, we find that restricting our analysis to tem-

perate regions has little effect on the inferred total effect of NPIs and thus should not invalidate

the comparison (S6 Appendix, section 1.4).

Fig 2. The inferred seasonal R multiplier Γ(t) of the combined models estimate, with 50% and 95% credible

intervals. Gray boxes indicate data range of each dataset, i.e. 22nd January to 30th May 2020 for Brauner et al. and 1st

August 2020 to 9th January 2021 for Sharma et al. The zero-width credible intervals around April 1 and October 1 owe

to the fact that we model Γ(t) as a seasonal multiplier for R relative to the mid-spring and mid-fall, respectively, which

implies that Γ(t) is assumed to be exactly equal to one for these dates.

https://doi.org/10.1371/journal.pcbi.1010435.g002
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Beyond NPIs, voluntary changes in behaviour and contact patterns constitute important

influences on the reproduction rate. As noted, seasonal variation in behavioual patterns such

as time spent indoors are an important component of our holistic conception of seasonality

(S1 Fig; S1 Appendix). However, if there are behavioural changes over time that are causally

Fig 3. Posterior distributions of the R reduction on July 1 relative to January 1 with median, 50% and 95%

credible intervals.

https://doi.org/10.1371/journal.pcbi.1010435.g003

Fig 4. Comparison of the inferred peak-to-trough R reduction effect of seasonality (combined from both models)

to the NPI reductions inferred by Brauner et al. [23], with 50% and 95% CIs. The seasonal effect is lower than the

combined NPI effect but higher than or comparable to the individual NPI effects.

https://doi.org/10.1371/journal.pcbi.1010435.g004
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unrelated with the transition between seasons, these may be mistakenly attributed to a causal

effect of seasonal forcing. If, for example, voluntary personal protective behaviours beyond

compliance with NPIs increased during the spring and decreased during the autumn, this

would provide an alternative explanation of the respective fall and rise in transmission during

those seasons. To examine whether behavioural changes over the course of the pandemic influ-

enced our results, we incorporated country-level mobility scores into the model as an addi-

tional independent variable (see S4 Appendix). We find that our seasonality estimates are

robust to adjusting for mobility trends. Specifically, our estimate of γ changes by less than

1.64% with the adjustment for mobility. While this finding strongly suggests that the observed

seasonal pattern cannot be explained by unrelated changes in behaviour, it should be noted

that data on mobility may not capture every relevant aspect of behavioural trends and that we

therefore cannot conclusively rule out the possibility that our estimates are influenced by

changes in behaviour.

Another important consideration is that the effect of seasonality on transmission can be

mediated through many causal pathways (see S1 Fig), such as the interaction between season-

ality and active interventions. For example, colder seasons may lead to increased transmission

via more gatherings occurring indoors relative to outdoors. Notably, this phenomenon would

be less pronounced when gatherings are banned, leading to a potential interaction between

seasonality and NPI implementation. Our results provide the average seasonality effect across

European countries in the first year of the pandemic. If countries implement very different

NPIs (or none), the seasonality effect may be different as well. S6 Appendix, section 1.5, exam-

ines how our results are affected by including a term for the interaction between seasonality

and NPIs; we find that neither our estimates for seasonality nor for NPIs are very sensitive to

the inclusion of this interaction.

Incorporating seasonality into models of NPI effectiveness may also improve their estimates

by explaining residual variation in the inferred reproduction rate. A key advance in the model

proposed by Sharma et al. was the incorporation of a stochastic random walk process on the

basic reproduction number to flexibly account for trends in transmission due to unobserved

factors [24]. We find that including the seasonality term reduces the magnitude and asymme-

try of the random walk considerably, thereby reducing the internal model variation (S5

Appendix). Specifically, we find that the mean square displacement (MSD) of the random

walk in log-space is 0.131 for the non-seasonal model and 0.072 for the seasonal model. These

results suggest a considerable amount of the residual variation can be explained by a common

seasonality profile. S5 Appendix compares the NPI effects from Brauner et al. and Sharma

et al. with and without the inclusion of seasonality in the model.

Estimates of seasonality and NPI effects are sensitive to modelling choices [23, 24, 27]. It is

therefore vital to include a sensitivity analyses of free parameters and inputs to ensure consis-

tent results. Relying on the demonstrated robustness of the original models, we focus primarily

on the parameter that we introduce in the form of peak seasonality day. We find that the

inferred mean peak-to-trough reduction in R varies by less than 5% across all the analysed

peak seasonality dates in December and January (S6 Appendix, section 1.2). Although the sea-

sonality magnitude is somewhat sensitive to setting the winter peak to different dates in Febru-

ary, these dates are considerably later in the year than the median peak date inferred in our

sensitivity analysis, January 3 (see S6 Appendix, section 1.1).

Since the seasonality term we introduce is directly related to Rl(t) through Eq (4), we also

examine the sensitivity of our results the mean initial R0 prior. We find that our results are

robust to univariate variation in this parameter, with the seasonal Sharma et al. model being

the most sensitive (S6 Appendix, section 1.3).
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4 Discussion

In this study, we sidestepped the intractable methodological challenge of evaluating various

highly interrelated seasonal factors, and instead provide a precise estimate for the overall sea-

sonal variation in SARS-CoV-2 transmission in temperate Europe, while adjusting for both

non-pharmaceutical interventions and overall changes in mobility patterns. The strong associ-

ations we observe match the clear seasonal patterns of other respiratory viruses [2]. While

reductions in reproduction rates and case numbers are not directly comparable, another recent

analysis by Chen et al. [7] infers a 64% reduction in cases from one season to the next based on

a cross-sectional regression at a single point in time, similarly suggesting a significant role of

environmental factors. The general magnitude of our results is also in line with previous

assumptions about the magnitude of SARS-CoV-2 seasonal forcing. For example, Kissler et al.
assume that the reduction of SARS-CoV-2 R0 between winter and summer peaks ranges from

10% to 40% [1], while Neher et al. [33] assume values of γ between 0.3 and 0.7. Moreover,

recent analyses have suggested a role of environmental factors in the B.1.1.7 lineage transmis-

sion intensity and that such factors may differentially affect the transmission of different vari-

ants of concern [6].

It is important to note that our results are not inconsistent with widespread outbreaks in

warmer regions, nor do they imply that temperate regions cannot face surges in transmissions

during summer periods. Despite moderate seasonal forcing, the time-varying reproduction

number can remain well above 1 during the peak of the summer, particularly given high inci-

dence of more transmissible variants such as lineage B.1.617.2 [34]. Indeed, in certain parts of

Europe, R remained above 1 even during the warmer periods of the study window and trans-

mission intensity currently remains high in several warmer regions across the world. Previous

modelling has suggested that population immunity limits the role of environmental factors

[10]. Consequently, vaccination rates, non-pharmaceutical interventions, and the prevalence

of more transmissible variants will continue to be important determinants of transmission

throughout the year.

Moreover, this study utilised variation in environmental and behavioural factors across

time while holding the climate zone constant, and the observed results may not directly trans-

late to comparisons across regions holding the season constant. In other words, the relation-

ship between cooler periods and transmission within the temperate zone does not necessarily

imply an exactly similar association between regional climate and transmission rates at any

given point in time. This is because latitude is correlated with a wide range of epidemiological,

demographic, and societal factors, each of which may affect transmission.

A major limitation of our analysis is that it relies on data from only one complete period of

seasonality. We present the inferred seasonality estimates as the best estimate given the avail-

able data. Moreover, since our analysis focused exclusively on European regions in the temper-

ate climate zone, the findings may not generalise to other climates, particularly as we have not

identified the relative contributions of different causal mechanisms. Other respiratory infec-

tions show less seasonality in tropical regions relative to temperate regions as well as seasonal

patterns with different peak timings, for example, during the monsoon season [2, 35]. Further

research can shed light on the extent to which this is the case for SARS-CoV-2, and on the

interaction between seasonality and latitude within climate regions. Moreover, further

research can shed light on whether and how changes in population immunity outside our win-

dow of analysis may interact with seasonal effects.

More generally, this observational study demands caution when drawing conclusions about

causality. Our analysis did not attempt to disentangle the various plausible causal pathways

through which seasonality may affect transmission, and both environmental and behavioural

PLOS COMPUTATIONAL BIOLOGY Seasonality of SARS-CoV-2 in temperate climates

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010435 August 26, 2022 10 / 14

https://doi.org/10.1371/journal.pcbi.1010435


factors can vary over the years. For example, behavioural patterns throughout the first year of

the pandemic were likely exceptional, and while some behavioural changes are closely tied to

modelled NPIs and thus do not bias our analysis, other relevant behavioural aspects may differ

in subsequent years. Consequently, a granular focus on specific factors such as temperature,

humidity, and behaviour is required for short-term prediction to inform policy.

Notwithstanding these limitations, a parsimonious form for seasonality may be adequate to

understand variations over time and aid long-term policy planning. Even without disentangl-

ing the underlying factors, our approach to incorporating seasonality can augment modelling

efforts to anticipate changes in transmission patterns more reliably, particularly when adjust-

ing for important factors such as non-pharmaceutical interventions.

For such forward-looking analyses of SARS-CoV-2 seasonality, it should be noted that our

inferred seasonal associations do not include two factors that play significant roles in the sea-

sonality of other respiratory viruses. First, we treat school closures, including for holidays, as

NPIs in our model due to the role of closing educational institutions in the epidemic responses

of many countries. This means that any effects of closing schools are attributed to the school

NPI, rather than to seasonality. This is noteworthy considering that school calendars are con-

sidered an important driver of seasonality for other respiratory viruses [19, 36]. Consequently,

the full extent of seasonality would likely be greater if it is construed to include school calen-

dars. Second, the seasonal variation of some respiratory viruses, such as influenza, owes to a

combination of both the direct seasonal forcing from biological and behavioural factors as well

as the indirect influence of waning population immunity [37]. Given what is known about the

robustness of acquired immunity within the first year of SARS-CoV-2 infection [38], the pat-

terns we observe likely owe almost entirely to seasonal forcing. Going forward, the long-term

seasonality of SARS-CoV-2 will depend in part on developments in population immunity as

well as on the emergence of variants.

Failing to account for seasonality may lead to a Panglossian outlook causing grave policy

errors. For instance, a reduction in transmission over the summer could be misinterpreted as

the result of population immunity alone [39], rather than the more plausible combination of

immunity, seasonality, and other factors. Such an interpretation may lead to diminished sup-

port for continued vaccination efforts and booster vaccine uptake, or the premature discontin-

uation of non-pharmaceutical interventions. Each of these outcomes could ultimately result in

an inadequate preparation for a resurgence during the colder months. At the same time, over-

estimating the role of environmental factors may be equally perilous. If policymakers antici-

pate a greater reduction in the summer months due to seasonality than will actually occur,

such an interpretation could similarly lead to inadequate policy- and behavioural measures.

We hope that our approach to modelling seasonality will allow for better calibrated policy

responses for seasonal endemic and epidemic pathogens alike.

Supporting information

S1 Fig. Diagram of potential causal pathways for SARS-CoV-2 seasonality. A complex web

of environmental, biological, and behavioural factors contribute to the seasonality of respira-

tory viruses. Note that this diagram excludes school calendars, as these are subsumed under

non-pharmaceutical interventions for the purposes of our analysis.

(PDF)

S1 Appendix. Causal pathways for SARS-COV-2 seasonality.

(PDF)
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Visualization: Tomáš Gavenčiak, Gavin Leech.
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Writing – review & editing: Tomáš Gavenčiak, Joshua Teperowski Monrad, Gavin Leech,
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