
Citation: Manzoor, S.A.; Griffiths,

G.H.; Robinson, E.; Shoyama, K.;

Lukac, M. Linking Pattern to Process:

Intensity Analysis of Land-Change

Dynamics in Ghana as Correlated to

Past Socioeconomic and Policy

Contexts. Land 2022, 11, 1070.

https://doi.org/10.3390/land11071070

Academic Editor: Hossein Azadi

Received: 17 May 2022

Accepted: 28 June 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Linking Pattern to Process: Intensity Analysis of Land-Change
Dynamics in Ghana as Correlated to Past Socioeconomic and
Policy Contexts
Syed Amir Manzoor 1 , Geoffrey Hugh Griffiths 2,* , Elizabeth Robinson 3 , Kikuko Shoyama 4

and Martin Lukac 2,5

1 Department of Forestry & Range Management, Bahauddin Zakariya University, Multan 61000, Pakistan;
samanzoor@bzu.edu.pk

2 School of Agriculture, Policy & Development, University of Reading, Reading RG6 6EU, UK;
m.lukac@reading.ac.uk

3 Grantham Research Institute on Climate Change and the Environment, London School of Economics and
Political Science (LSE), London WC2A 2AE, UK; e.j.z.robinson@lse.ac.uk

4 Department of Regional and Comprehensive Agriculture, College of Agriculture, Ibaraki University,
Ami 300-0393, Japan; kikuko.shoyama.sx68@vc.ibaraki.ac.jp

5 Department of Forest Management, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences,
16521 Prague, Czech Republic

* Correspondence: g.h.griffiths@reading.ac.uk

Abstract: Spatio-temporal analysis of transitions in land cover is critical to understanding many
ecological challenges, especially in environmentally vulnerable regions. For instance, in Sub-Saharan
Africa, large-scale cropland expansion is expected due to the increasing demand for fuel, food,
and fibre. Clearing land for cropland expansion is a driving factor in the degradation of natural
ecosystems. We present a spatio-temporal analysis of land-cover change in Ghana’s Northern, Upper
East, and Upper West provinces using Intensity Analysis on the periods from 1992 to 2003 and 2003 to
2015. The objectives of this study were to determine whether the intensity of land-use and land-cover
(LULC) change is consistent between the two periods and to investigate the direction and extent of
change for different LULC categories in northern Ghana. The methodology measures land-cover
changes at the interval, category, and transition levels. The results suggest that the annual rate of land
change was higher between 1992 and 2003 compared to that between 2003 and 2015. Furthermore, the
category-level analysis reveals that the gains in the arable land and tree/forest-cover classes during
both time intervals were higher than the uniform intensity. The transition-level analysis results
indicate that most of the gains in arable land and tree/forest-cover came at the cost of semi-arid
shrublands during both periods. There is also evidence of local increases in forest-cover, likely linked
to afforestation policies established by the Ghanian government; however, overall, there has been a
loss of natural habitat. The study provides data to improve our understanding of the magnitude and
direction of land-cover change, essential for the development of policies designed to mitigate the
impact of land-cover change on the livelihoods of local people and the environment at the national
and sub-national levels.

Keywords: land-cover change; Sub-Saharan Africa; arable expansion; ecosystem loss

1. Introduction

Anthropogenic changes in land use and land cover (LULC) have had significant
impacts on terrestrial ecosystems [1,2]. Cropland expansion is an important and widely
documented driver of LULC change [3–5]. The growing demand for fuel, fibre, and food has
resulted in forest clearance to bring more land under agricultural production. For example,
the global cropland area has expanded by 27% in the past four decades, supporting a
global grain production increase from 1.8 to 5.4 billion tons. Given the projected increase
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in the global human population, expansion of arable land is likely to continue mostly in
the low- and middle-income countries of the world [6]. Evidence suggests that the arable
area of developing countries will see a net increase of 120 million hectares over the years
from 1997/1999 to 2030; more than 80% of the projected land expansion is expected to
take place in Sub-Saharan Africa and Latin America [7]. Most of the global transition to
arable land is expected in Africa, where 200 million hectares of potential agricultural land
(including grasslands, shrublands, and woodlands) are still unexploited [5,6]. The LULC
transition from non-agricultural to agricultural land can precipitate significant ecological
consequences; loss of sequestered carbon, habitat fragmentation, loss of biodiversity, and
degradation of ecosystem functions and services [8,9].

Sub-Saharan Africa (SSA), where the population is projected to double between 2020
and 2050, currently has the highest percentage of undernourished people, making it the
region with the highest food security risk [10]. Prevailing semi-arid climatic conditions
across much of the region combined with high population growth rates, low per-capita food
production, and vulnerability to climate change may severely constrain efforts to improve
food security [11]. Given that large-scale arable expansion in SSA appears inevitable, a clear
understanding of current LULC pressures and the future dynamics of cropland expansion
is vital to improving the sustainability of agricultural development in this region [11].

In recognition of these driving factors, the Sentinel Project (Social and Environmental
Trade-offs in African Agriculture; see https://www.sentinel-gcrf.org/; accessed 30 April 22)
was set up in part to explore the impact of agricultural expansion on biodiversity and other
ecosystem services delivered by the landscapes of three African countries, Ghana, Zambia
and Ethiopia. This requires the tools to predict the location and rate of LULC transitions in
response to policy, as well as to understand the historical LULC change patterns in relation
to the underlying socioeconomic and socio-political drivers of past change [12]. Aldwaik
and Pontius [13] proposed a method of land-use change assessment termed “Intensity
Analysis”. This is a mathematical framework designed to gain insights into the factors and
processes driving LULC changes by organising the change process into three hierarchical
levels [13]. The framework has been widely used to describe LULC changes [12,14] and
relate the observed changes to the likely causal processes [15]. Intensity Analysis can,
therefore, assess the evidence for a hypothesised process of change and, in some cases,
develop new hypotheses. For instance, researchers have used the Intensity Analysis
framework to assess LULC transitions in a protected area in Ghana to test the hypotheses
that logging is the primary driver of deforestation inside protected areas, whereas cropland
expansion is the leading cause of deforestation outside protected areas [16]. Another study
used Intensity Analysis to assess LULC change patterns (1985–2017) in three coastal urban
wetlands of international importance in Ghana to identify the fundamental processes
driving the wetland landscape transformation [17]. Similarly, researchers in China used
Intensity Analysis to analyse LULC change in the Ashi watershed from 1990 to 2014 [18].
Intensity Analysis computes deviations between the actual or observed land change and
a hypothetical uniform change to estimate the extent (magnitude) and rate (intensity)
of change in the land-cover classes in the study area, over two or more time intervals.
Consequently, this analytical framework assesses the consistency and variability of the
LULC patterns over different time intervals, to help improve our understanding of LULC
change processes [19–21].

Various macroeconomic interventions by the Ghanaian government in the 1980s had
a pronounced impact on cropland expansion in this region of Ghana [22]. Despite trade
liberalisation in the late 1980s, the accompanying currency devaluation made domes-
tic agricultural production more competitive, and people moved back into agriculture.
Area expansion for essential staples, such as maise, millet, rice, and sorghum, has been
recorded [22] and analysed, but only for a restricted area in northern Ghana [11,23]. In the
current study, we use the Intensity Analysis framework to identify the strongest signals of
LULC change in the entirety of northern Ghana. We test the potential of Intensity Analysis
to ascertain and interpret LULC change patterns over 23 years, from 1992 to 2015. The
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results from the analysis are interpreted against the backdrop of known socioeconomic
factors associated with LULC change over this period. We use three LULC maps, covering
the years 1992, 2003, and 2015, and we analyse LULC changes during two time intervals:
1992–2003 and 2003–2015.

The specific objectives of this study are (i) to determine whether the intensity of
LULC change is consistent between the two periods and (ii) to determine the direction
and extent of change for different LULC categories in northern Ghana. We then discuss
how the observed LULC changes relate to regional and national policy factors relevant
to each period. Finally, we discuss the implications of the findings from an ecosystem
management perspective.

2. Methodology
2.1. Study Area

We considered Ghana’s Upper West, Northern, and Upper East provinces as the study
area for this Intensity Analysis (Figure 1). These regions of Ghana represent the West
Sudanian Savanna ecoregion, an ecologically important, yet highly threatened, ecoregion
of West Africa. In the West Sudanian ecoregion, the climate is hot and semi-arid. Annual
rainfall ranges from 1000 mm in the south to 600 mm in the north at the edge of the Sahel.
The study area is characterised by a relatively dry and hot climate and mainly comprises
scattered, rainfed crop fields and open tree savanna. Further south, the Guinea Savanna
ecoregion is characterised by the extensive, wooded savanna characteristic of the Guinean
Region. The predominantly sandy soils of the region have low nutrient-holding capacity,
which must support an expanding population of more than 2.5 million people. Agriculture
is the main source of livelihood, with the bush–fallow system and the large-scale browsing
and grazing of goats, sheep, and cattle being the typical practices.
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2.2. Analysis of the Spatial Trend of Change

We used the Change Analysis module in the TerrSet Geospatial Monitoring and Mod-
eling System (version 18.31, Clark Labs, Clark University, Worcester, MA, USA [24]) to
produce maps for assessing spatial trends of change on the basis of the patterns and dimen-
sions of LULC transitions. The maps of spatial trends generalise the patterns of change by
assigning a value of 0 to the areas of no change and a value of 1 to the areas of maximum
change observed in the area. To visualise major trends, we generated transition maps for
tree/forest-cover to arable land and for shrub/herb-cover to arable land for the first time
interval (1992–2003). This land cover category was created by merging all forest and tree-
related land classes in the ESA map. Thus, this category represents all types of tree cover, in-
cluding commercial plantations. (See: https://www.esa.int/Applications/Observing_the_
Earth/Space_for_our_climate/ESA_global_land_cover_map_available_online; accessed
on 30 April 2022). The patterns of shrub/herb-cover to tree/forest-cover and shrub/herb-
cover to arable land were visualised for the second time interval (2003–2015) since these
transitions accounted for most of the LULC changes in the study area.

2.3. Land-Change Analysis
2.3.1. Data Sources

We used a global land-cover product from the European Space Agency (ESA, https:
//www.esa.int/ESA; accessed on 30 April 2022), available under the Climate Change
Initiative (CCI) programme to generate LULC maps covering our study area. The ESA–CCI
land-cover map is the highest-resolution global LULC map with a consistent typology
that covers sufficient time for undertaking an Intensity Analysis [25,26]. The land-cover
map was validated using more than 3000 reference land-cover points and has an over-
all accuracy of 73%. The map consists of 22 land-cover classes adhering to the United
Nations Food and Agriculture Organisation’s (FAO) Land Cover Classification System
(LCCS). In our study area, we reclassified the map into seven classes: shrub/herb-cover,
bodies of water, arable land, tree/forest-cover, grassland, urban areas, and bare areas
(Supplementary Materials, Table S1). This re-classification of the original ESA LULC maps
was carried out in consultation with a panel of in-country experts; the aim was to simplify
the land-cover map typology to aid in the interpretation and accessibility of results. ESA–
CCI LULC maps from 1992, 2003, and 2015 were used to carry out the LULC change and
Intensity analyses during two periods: 1992–2003 and 2003–2015. We generated 250 random
points within the study area to verify the LULC classification using Google Earth imagery,
and we found a 76% classification accuracy.

2.3.2. Land-Cover Transition Matrix

We produced a cross-tabulation matrix for each of the two LULC transition periods
(1992–2003 and 2003–2015). The cross-tabulation matrices consist of seven rows represent-
ing the seven LULC classes at the first time point (t) and seven columns showing the LULC
classes at the second time point (t + 1). The value of Pij shows the percentage of the total
pixels that changed from one LULC class (i) at time t to another class (j) at time t + 1, where
∑ ∑Pij = 1. The values in the diagonal of the cross-tabulation table show the persistence of
each LULC class. The total area in LULC class i at the time t is shown in the column Pi+,
whereas the total area of the LULC class j at t + 1 is shown in the row P+j. P+j − Pjj yields
the gross gain, while Pj+ − Pjj gives the values of gross loss of LULC class j [27].

2.3.3. Intensity Analysis

We executed an Intensity Analysis using the two cross-tabulation matrices to assess
the magnitude and extent of LULC change at the interval, category, and transition levels
of change [13]. The interval-level analysis was carried out to measure the intensity (rate
of change) and extent (area of change) of overall land transitions for the seven land-cover
categories in each of the two time intervals. The interval-level analysis was followed by a
category analysis, where we examined the intensity: the area gained/lost for each category

https://www.esa.int/Applications/Observing_the_Earth/Space_for_our_climate/ESA_global_land_cover_map_available_online
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at both time intervals. The transition-level analysis assessed the transition intensity within
a specific pair of categories. The transition-level analysis has an inherent problem; the
intensity of the transition is dependent on the area occupied by a category at the end
of a time period. However, the area of the category will have been influenced by the
transitions during the assessed time interval [28]. We followed the recommended protocols
and excluded the transition-level analysis for “losing categories” [10] to solve this issue.
We used the equations proposed by Aldwaik and Pontius [13] to conduct the Intensity
Analysis at the three levels of change described below.

2.3.4. Interval-Level Analysis

At the first level of analysis (the interval level), we assessed the annual rate and
extent of land transition (change intensity) for the seven land-cover classes during the two
intervals. The proportion of land that changed in each of the two time periods, St, was
measured (Equation (1)). We also measured the uniform rate (U) for the whole time period
included in this analysis (1992–2015, Equation (2)). U is the hypothetical rate of LULC
change which would have been observed had the rate of land-change remained consistent
during the two time intervals. It is equal to the average of the rates of change of selected
land-cover categories in the two time intervals. The actual (observed) rates of change per
year were then compared to the uniform rate.

The annual percentage of the study area that changed during each time interval, St, is
calculated by:

St =
(Change during [Y t, Yt+1])

(Duration of [Y t, Yt+1])(Extent size) 100%

=
∑J

j=1[( ∑J
i=1 Ctij)−Ctij

[Y t+1−Yt])∑J
j=1 ∑J

i=1 Ctij
100%

(1)

where J = number of categories, Yt = year at time point t, and Ctij = number of pixels that
changed from category i to j between time t and t + 1.

The uniform rate U for the entire temporal extent represents the hypothetical rate
of LULC change, which would exist if the changing pattern had remained stationary or
consistent in its rate during the two time intervals. U is calculated by:

U = (Change during all intervals)
(Duration of all intervals)(Extent size) 100%

=
∑T−1

t=1 { ∑J
j=1

[
∑J

j=1 Ctij]}

(YT−Y1)∑J
j=1 ∑J

i=1 Ctij
100%

(2)

where T = number of time points.

2.3.5. Category-Level Analysis

At this level of Intensity Analysis, we examined the rate and extent of gross gains
and gross losses in the seven LULC classes. The gross gain intensities, Gtj, were calculated
using Equation (3), and the gross loss intensities, Lti, were calculated using Equation (4).
For a given category, if the gross gain is greater than the annual percentage of the study
area that changed over each time interval (St, Equation (1)), the category is an active gainer.
When the gross loss for a given category is greater than St, the category is designated as an
active loser.

The gross gain intensities, Gtj, were calculated by:

Gtj =
(Annual gain of category j during [Yt,Yt+1])

Size of category j at time Yt+1
100%

=
[( ∑J

i=1 Ctij)−Ctjj]/(Y t+1−Yt)

∑J
i=1 Ctij

100%
(3)
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The gross loss intensities, Lti, were calculated by:

Lti =
(Annual loss of category i during [Y t, Yt+1])

Size of category i at time Yt
100%

=
[( ∑J

j=1 Ctij)− Ctii]/(Y t+1−Yt)

∑J
j=1 Ctij

100%
(4)

2.3.6. Transition-Level Analysis

Transition-level analysis examines the variation in the area and intensity of land-
change among LULC classes in the study area. The aim is to evaluate which land-cover
categories transition to which other land-cover categories in a process expressed as either
“targeting” or “avoidance”. The total gain represents the observed intensity of land change
from category i to n (Equation (5)). For category n, the uniform intensity (Wtn) is the
hypothetical intensity of change which divides or distributes the annual gain intensity for
n uniformly across the study area. The Wtn was measured using Equation 6. If the value
of Rtin (Equation (5)) is greater than the value of Wtn (Equation (6)), the gain of category
n is considered to target category i at time t. In the case that it is not greater, the gain of
category n is seen as avoiding the category i at time t.

The total gain of categories represents the observed intensity of transition to category n
from each category i, where i 6= n. It is calculated by:

Rtin =
(Annual transition from category i to n during [Y t, Yt+1])

Size of category i at time Yt
100%

= Ctin/Yt+1−Yt

∑J
j=1 Ctij

100%
(5)

The uniform intensity for category n, Wtn, which distributes the intensity of annual
transition gains to category n uniformly across the study area, is calculated by:

Wtn =
Annual gain of category n during Yt+1−Yt

∑J
j=1[( ∑J

i=1 Ctij)−Ctnj]
100%

=
[( ∑J

i=1 Ctin)−Ctnn]/Yt+1−Yt

∑J
j=1[( ∑J

i=1 Ctij)−Ctnj]
100%

(6)

If Rtin > Wtn, the gain of category n was considered to target category i at time t. If
Rtin < Wtn, the gain of category n was considered to avoid category i at time t.

2.3.7. Hypothetical Error in the Intensity Analysis

Intensity Analysis compares the observed land-use change intensity to a hypothetical
uniform intensity change for individual land-cover classes within the study area. Since
there are known classification errors in the land-cover data, the LULC change detected
could be one of two types: actual change or misclassification (mapping errors). To account
for mapping errors, we followed recommended protocols to calculate the hypothetical
errors in the classification of land-cover maps to account for the deviation from the value
of uniform change intensity [29]. Intensity Analysis assumes that the rate of change
is uniform across time intervals (the interval level), among all categories (the category
level), and in all transitions (the transition level). This assumed uniform rate of change
(intensity) is called the hypothetical uniform intensity. If the observed intensity exceeds the
value of uniform intensity, we assume a positive commission error (incorrect identification
of change). The errors of commission account for change greater than the hypothetical
uniform change. Conversely, where the observed intensity value is lower, we assume an
omission error (incorrect identification of no change). If the hypothetical errors are greater
than the reported accuracy of the land-cover maps used, the result implies that the real
changes are non-uniform. We calculated these hypothetical errors for this study following
recommended protocols [29].
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For the Intensity Analysis at the category level, the annual change is calculated by
adding the uniform change value to the commission error. If, for a given category, the
uniform intensity exceeds the observed annual land change (gain/loss) intensity, this
implies that the category is dormant. In this case, the magnitude of the annual land change
(loss/gain) is calculated by adding the value of the hypothetical error of omission to the
observed gain/loss in that category.

For the transition-level analysis, if the uniform intensity falls behind the value of the
annual rate of change, it implies that the category which experienced gain has targeted
the category losing its area. In this situation, the annual transition is calculated by adding
the value of the error of commission to the value of the uniform change. If the case is vice
versa, i.e., the uniform intensity exceeds the value of the annual rate of change, it would
indicate that the category that gains avoids the category that loses land area. Under this
circumstance, we calculate the annual change by adding the hypothetical error of omission
to the actual or observed change.

3. Results
3.1. Land-Cover Transitions

Arable land, shrub/herb-cover, and tree/forest-cover were the dominant land-cover
classes in 1992, accounting for nearly 99% of the study area (Table 1). Overall, arable land
steadily increased over time, whereas tree/forest-cover experienced a major expansion in
the first time interval, followed by a slower rate of expansion in the second interval. Arable
land increased by 1.48% and 1.35% during the first and second time intervals, respectively.
Shrub/herb-cover experienced loss in both time intervals: −6.42% in the first and −2.49%
in the second time interval. Tree/forest-cover increased by 4.92% in the first time interval
and by just +0.96% in the second. Urban areas experienced a steady increase during both
intervals, while bare areas and bodies of water did not change.

Table 1. Land-cover proportions of the study area in 1992, 2003, and 2015 and the changes in
land-cover proportions during the two time intervals.

Category 1992
(%)

2003
(%)

1st Time
Interval

2015
(%)

2nd Time
Interval

Arable Land 20.79 22.27 1.48 23.62 1.35
Shrub/Herb-Cover 39.03 32.61 −6.42 30.12 −2.49
Tree/Forest-Cover 39.36 44.28 4.92 45.24 0.96

Grassland 0.01 0.00 0.00 0.01 0.00
Urban Areas 0.02 0.02 0.01 0.08 0.05
Bare Areas 0.00 0.00 0.00 0.00 0.00

Water Bodies 0.79 0.81 0.02 0.94 0.13
Total 100 100 100

Among the major LULC transition, 145,176 hectares of land were converted from
shrub/herb-cover to arable land, while 1484 ha of arable land was lost to tree/forest-
cover during the first time interval. In the second time interval, 136,569 hectares under
shrub/herb-cover were converted to arable land, while 3338 hectares of arable land were
converted to urban areas, and another 2397 hectares of arable land shifted to
tree/forest-cover.

The proportion of the study area that experienced change during the two intervals
included in this study is presented in Table 2. Gross change accounted for 6.65% of the
study area from 1992 to 2003 but for only an additional 2.99% from 2003 to2015. During the
first interval, nearly all gross loss was at the expense of shrub/herb-cover. An area equal to
6.65% of the study area was lost from shrub herb cover and was gained by; (i) tree/forest-
cover (5%) and (ii) arable land (1.5%). In the second time interval, although the rate of LULC
change was half that of the first interval, shrub/herb-cover again experienced the majority
of the gross loss (2.92% of the study area) while arable land (1.5%) and tree/forest-cover
(1.08%) showed major gross gains.
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Table 2. Land-cover transition matrix for two time intervals: 1992–2003 and 2003–2015.

1992–2003 Arable
Land

Shrub/
Herb-Cover

Tree/Forest-
Cover Grassland Urban

Areas
Bare

Areas
Water
Bodies Total Gross Loss

Arable Land 20.741 0.020 0.026 0.000 0.003 0.000 0.002 20.791 0.050

Shrub/Herb-Cover 1.517 32.520 4.978 0.000 0.000 0.000 0.016 39.032 6.512

Tree/Forest-Cover 0.011 0.072 39.274 0.000 0.001 0.000 0.004 39.361 0.087

Grassland 0.000 0.000 0.000 0.003 0.002 0.000 0.000 0.005 0.002

Urban Areas 0.000 0.000 0.000 0.000 0.019 0.000 0.000 0.019 0.000

Bare Areas 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000

Water Bodies 0.000 0.000 0.001 0.000 0.000 0.000 0.788 0.790 0.001

Total 22.269 32.611 44.279 0.004 0.025 0.001 0.810 99.998

Gross Gain 1.528 0.092 5.005 0.000 0.005 0.000 0.022 6.652 6.652

2003–2015

Arable Land 22.114 0.094 0.025 0.000 0.034 0.000 0.001 22.269 0.155

Shrub/Herb-Cover 1.503 29.976 1.052 0.003 0.003 0.000 0.075 32.611 2.635

Tree/Forest-Cover 0.001 0.051 44.158 0.000 0.014 0.000 0.057 44.279 0.122

Grassland 0.000 0.000 0.000 0.002 0.001 0.000 0.000 0.004 0.001

Urban Areas 0.000 0.000 0.000 0.000 0.025 0.000 0.000 0.025 0.000

Bare Areas 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000

Water Bodies 0.000 0.002 0.003 0.000 0.000 0.001 0.806 0.812 0.006

Total 23.618 30.123 45.237 0.006 0.077 0.001 0.939 100.000

Gross Gain 1.504 0.147 1.080 0.003 0.052 0.001 0.133 2.919 2.919

3.2. Intensity Analysis
3.2.1. Interval Level

Figure 2 shows the observed annual rate of change in the two time periods and the
hypothetical uniform rate of change (the average of the observed rates of change over both
time intervals). The change intensity (rate of change) per year was higher in the first interval
than the assumed uniform intensity. In the second interval, however, this relationship
had reversed. These results suggest that the rate of LULC was significantly slower in the
second interval.
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Figure 2. Intensity Analysis for interval-level changes of land category during the 1992–2003 and
2003–2015 time intervals for the study area showing (a) the observed change intensity (annual change
averaged over the interval), and (b) the percentage of area that changed category over the interval.

Figure 2b shows the total change over the interval in terms of the percentage of the
area of the total study area, based on the critical assumption that the hypothesis of uniform
intensity is true. In Figure 2b, the observed change derived from the two LULC maps for
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each interval, represented by the black bars, is contrasted with the hypothetical commission
(grey bars) and omission errors (pink) during each interval.

3.2.2. Category Level

In the first time interval, the category-level analysis indicates that tree/forest-cover,
urban areas, and arable land were the active gainers (Figure 3a) In contrast, grassland and
shrub/herb-cover were active losers (i.e., the gain in the category was less than the uniform
gain intensity) (Figure 3c). In the second time interval, all classes except tree/forest-cover
and shrub/herb-cover, were active gainers (i.e., the gain in the category was greater than
the uniform gain intensity) (Figure 3b) while shrub/herb-cover, grassland, and bare areas
were active losers (Figure 3d).
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Arable land experienced gains during both time intervals; its gain intensity was more
than the uniform intensity. Based on the data shown in the Figure 3, if the expansion of
arable land had conformed to the uniform intensity, we would have seen an increase of
1361 pixels (12,944 ha) in the first interval and 577 (5487 ha) pixels in the second interval.
However, there was an increase of 1407 (13,382 ha) and 1275 pixels (12,126 ha) in the
two intervals, respectively. The difference of 46 (437 ha) and 698 pixels (6638 ha) can
be explained by the hypothetical error of commission. The tree/forest-cover category
was an active gainer during 1992–2003, and a dormant gainer during 2003–2015. The
gain intensity was bigger than the uniform intensity in the first interval but not in the
second interval. Assuming the hypothesis of uniform intensity to be true, the additional
1941 pixels (18,461 ha) gained during the first interval can be explained as a hypothetical
error of commission. The difference of 181 pixels in the second interval can be explained
with a hypothetical error of omission. The shrub/herb category remained an active loser
during both time intervals. If the hypothesis of uniform intensity is considered true, the
loss of an additional 3660 (34,810 ha) and 1429 pixels (13,591 ha) in the two time intervals,
respectively, can be explained by a hypothetical error of commission. Among other land
cover-classes, urban areas were active gainers in both the intervals, while grassland was an
active loser in both intervals. However, these categories constitute only a fraction of the
total study area (Table 1).

3.2.3. Transition Level

In the transition-level analysis, we focused on the transitions between arable land,
tree/forest-cover, and shrub/herb-cover because these categories were of sufficient area
to verify whether the map errors accounted for the deviations from uniform intensity.
We observed that the pixels gaining arable land targeted (i.e., gained at the expense of)
shrub/herb-cover in both time intervals, while the pixels gaining tree/forest-cover targeted
shrub/herb-cover (Figure 4). Although the gain in shrub/herb-cover was only very small,
it mainly came from arable land and tree/forest-cover in both intervals.
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3.3. Spatial Trends of Change

As shown in Figure 5, some of the tree/forest-cover land was converted to arable
land in the south-eastern part of the study area during 1992–2003, while a sizeable area
under shrub/herb-cover in the eastern and northern regions also changed to arable land.
Similarly, more shrub/herb-cover transformed into arable land in the eastern belt in the
second time interval, while some new tree/forest-cover appeared in the western region at
the cost of shrub/herb-cover.
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4. Discussion
4.1. Interpretation of Change Intensities

The gross change rates indicated by our analysis (Figure 5) showed that these changes
were not consistent during the two time intervals (Table 1), suggesting that the factors
influencing the rate and type of change had changed over time. The overall change intensity
declined in the second interval (Figure 2), and cropland expanded into shrub/herb-cover
in both time intervals (Figure 4), indicating that the dynamics of arable land change were
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consistent between the two time intervals. The results also suggest that shrub/herb-cover
loss could be the most ecologically significant change; this semi-natural and very diverse
habitat experienced the greatest loss relative to its original area during both time intervals.
The intensity of shrub/herb-cover loss was higher at the beginning, but the shrub/herb
habitat continues to be the vegetation type most vulnerable to cropland expansion.

4.2. Linking Pattern to Process: Local Drivers of Land Change and Implications on
Land Management

The reduction of shrub/herb-cover is likely a result of pressures from agricultural
expansion in Ghana [30,31]. With little evidence of an “agricultural transformation” in
the country, it is not surprising that increased crop production has been delivered by area
expansion, rather than by increases in productivity [32]. This dynamic is typical of Ghana’s
Upper East Region with high population density, where around 80% of the population is
involved in small-scale, rain-fed agriculture. As a result, the one key change in the studied
landscape has been the expansion of cropland at the expense of natural herbaceous and
shrubland vegetation [33].

In addition, the unrestricted and intensive wood-cutting for commercial and domestic
uses [30] and the extraction of fuelwood and charcoal production have been identified as
major drivers of land-use change in Ghana [23]. Wood accounts for over two-thirds of
domestic energy use in the country, particularly so in the Guinea Savanna ecoregion [34].
We show that, in this region, the LULC category of shrub/herb-cover extends over most
of the area, and its decline can be seen in both study periods (Figure 3c,d). Logging is
more prevalent in areas near human settlements, and the increasing human population
is likely to have increased the demand for more fuelwood [11]. Figure 5 illustrates this
trend: Land near major urban settlements is often the first to experience transitions due to
ease of access [11]. The effect of Tamale and the other major urban centres of this region is
clearly detected by our analysis. Much of Ghana’s northern region (including the Upper
East, Upper West, and Northern regions) comprises farms interspersed with ‘bush’, which
traditionally employ a bush–fallow system. This landscape tends to be treated as an open-
access resource, particularly for charcoal production [35]. Given the demand for charcoal in
urban areas, the rapid loss of natural vegetation under such circumstances is unsurprising.

Interestingly, in both periods, the Intensity Analysis shows an overall increase in
tree/forest-cover (Figure 4a,b). The rate of tree/forest-cover expansion was higher in the
first period, and its expansion came at the cost of land under shrub/herb-cover, which
is a broad land-cover class including land with marginal soils and sparse herbaceous
cover [36]. The Ghanaian government launched policies to reduce the pressure on natural
woodlands, including a tree planting programme in Northern Ghana in the 1980s. Under
this programme, trees were planted mainly on marginal lands unsuitable for agriculture.
Under this tree-planting campaign, the majority of trees were planted only after 1991 [36].
Alongside afforestation, there may be several other reasons why tree-cover is increasing in
specific areas of Ghana, despite the continuing net deforestation across the country. Our
observations of the transition from shrub/herb- to tree/forest-cover in the south-western
part of our study area (Figure 5) are consistent with the following:

1. The “modified Taungya” system, introduced in 2002, encourages tree planting in
degraded forests. Much of this planting occurs in the transitional zone, which is a
degraded and environmentally vulnerable area in Northern Ghana that is experiencing
a shift from forest to savanna vegetation [37]. While the trees are growing, farmers
are allowed to intercrop food crops [38].

2. Mining companies have engaged in reforestation to restore mined lands, as evidenced
in southern Ghana [35]. However, although tree cover may increase, the original
natural ecosystems and biodiversity have been lost.

3. Ghana has embarked on a number of reforestation schemes. The 1994 Forest and
Wildlife Policy included a reforestation program that encouraged individuals, commu-
nities, and organisations to set up plantation forests [39]. Efforts have also been made
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to encourage private investment in plantations, with varying degrees of success [38].
More recently, there has been a move to “regreen” northern Ghana [40].

4. The global focus on mitigating climate change through afforestation and reduced for-
est loss may also be contributing to localised increases in tree-cover. At the individual
or household level, the decision to plant trees is influenced by the duration of land
tenure and land- and tree-ownership rights [38]. For example, the Forest Plantation
Development Fund Act 2000, for the first time, gave farmers the rights to trees and
timber on their land, which has also encouraged on-farm tree planting [38].

5. Our recorded change in tree-cover may also reflect the increased planting of tree
crops, including mango and cashew, which in Ghana can bestow semi-permanent
land rights to the farmer, in addition to providing a source of income [41]. The ESA
mapping does not discriminate between natural forest, forest tree plantations, and
fruit tree orchards.

4.3. Effects of Map Classification Errors

We interpreted the results of the Intensity Analysis, assuming that the land transitions
observed in the study are actual changes. However, map classification errors may lead to
false change-detection. The Intensity Analysis computes hypothetical map classification
errors to account for the deviations from the uniform intensities of change. According
to this framework, if the hypothetical error is greater than the suspected errors, then the
actual land transitions deviate from the uniform change intensity [29]. For this study, the
suspected rate of classification error in the 1992, 2003, and 2015 land-cover maps is 25%
for each period. Furthermore, the hypothetical errors of commission sum up to the total
hypothetical errors of omission (Figures 2–4). The results suggest that the errors on 2.07% of
the areal extent could potentially explain the deviation from the uniform change (Figure 3).
Errors on 0.20% of the 2003 map (Figure 3a) and errors on 0.1% of the 2015 map (Figure 3b)
could potentially explain all deviations from uniform gains. Similarly, errors on 0.38% of
the 1992 map (Figure 3c) and errors on 0.14% of the 2003 map (Figure 3d) could potentially
explain all deviations from uniform losses. Errors of less than 0.20% of the 2003 map
could potentially explain all deviations from uniform transitions to each gaining category
(Figure 4a–c). Errors amounting to less than 0.10% of the 2015 map could potentially explain
all deviations from uniform transitions to each gaining category (Figure 4d–f).

The results indicate that the hypothetical errors are smaller than the suspected errors
in the maps. Thus, the map classification errors could potentially explain the observed
deviations from uniform changes; the evidence for deviations from uniform intensities is
weak. However, evidence suggests that, even when hypothetical errors are smaller than
suspected classification errors, it should not be assumed that map classification errors can
explain all deviations from uniform change [42]. This is the case because the observed
changes are consistent with our understanding of the drivers of change; thus, the map
classification errors may only partly explain the observed deviations.

5. Limitations of the Study

One of the main limitations of this study is the default spatial resolution of 300 m× 300 m
of the Global Land Cover product of the European Space Agency. Since we targeted the
whole of the Northern, Upper East, and Upper West regions Ghana, the use of a global
land-cover product was inevitable as no other comparable product is available for this
region. Should high-resolution land-cover maps become available, it would be possible to
capture minor details of LULC change to better understand the complex dynamics of land-
cover change. Moreover, the land-cover maps used in this study had a reported accuracy
of only about 75%; a customised image classification to produce regional land-cover maps
could achieve a much higher classification accuracy.
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6. Conclusion

Our Intensity Analysis of LULC changes in the Northern, Upper East, and Upper West
regions of Ghana shows that the area under arable land and tree/forest-cover expanded
between 1992 and 2015. The overall rate of LULC change was greater at the beginning
and then declined. Shrub/herb-cover remained vulnerable in both periods, as most of the
arable expansion and increase in tree/forest-cover came from this land-use class. We saw
evidence of the local expansion of forest-cover, but the continuous, large-scale clearing of
shrub/herb natural habitats may negatively impact agroecosystems and the livelihoods
of the local communities that are heavily dependent on the limited availability of those
natural resources.
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