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Abstract
Finding an optimal matching in a weighted graph
is a standard combinatorial problem. We consider
its semi-bandit version where either a pair or a full
matching is sampled sequentially. We prove that it
is possible to leverage a rank-1 assumption on the
adjacency matrix to reduce the sample complexity
and the regret of off-the-shelf algorithms up to
reaching a linear dependency in the number of
vertices (up to poly log terms).

1. Introduction
Finding matchings in graphs, i.e., subsets of edges without
common vertices, is a long standing problem (Lovász &
Plummer, 2009) with many different applications in eco-
nomics (Roth et al., 2004), operations research (Wheaton,
1990), and machine learning (Mehta, 2012). We consider
here its sequential variant where at each time step t, an
agent chooses a matching mt of some graph, defined by its
unknown weighted adjacency matrix W (with bounded ele-
ments in (0, 1)), and observes noisy evaluations of the cho-
sen entries {Xi,j,t : (i, j) ∈ mt}, with E[Xi,j,t] = Wi,j .
This problem obviously falls in the realm of combinato-
rial bandits (Cesa-Bianchi & Lugosi, 2012), but we aim at
leveraging a specific structural property: in many relevant
examples, W is a rank 1 matrix.
Two different types of graphs are relevant for matchings,
bipartite and monopartite, and we are going to consider
both of them (even though the latter is more intriguing, the
former, maybe more intuitive, will serve as a warm-up and
to convey insights). In the bipartite case, the set of vertices is
separated in two distinct subsets U and V (of respective sizes
N and M ) and edges only exist across subsets, not within.
The rank-1 adjacency matrix W is then a N ×M matrix,
that can be written as W = uv> for some u ∈ (0, 1)N and
v ∈ (0, 1)M . The canonical application of this setting is
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online advertising, where the probability that a user clicks
on an ad depends on both the position at which the ad
is displayed and its relevance to the user (Katariya et al.,
2017b). Other motivations come from two-sided markets,
where matching occurs between offers and demands, e.g.
in online labor markets, ui may represent the utility for a
user seeking a solution to a project and vj may represent the
expertise of a project solver.
On the other hand, monopartite graphs have 2N vertices
and their rank-1 adjacency matrix W can be written as
W = uu> for some u ∈ (0, 1)2N . This setting models col-
laborative activities that arise in teamwork, online gaming,
and online labor platforms (Johari et al., 2018). For instance,
some online gaming apps match players together (e.g. Go,
competitive quizzes, and drawings) but players will partic-
ipate only if they both want to. In a simple model, player
i decides to participate with probability ui, and matched
players i and j participate in a game with probability uiuj .
The expected number of played games from a proposed
matching m is then

∑
(i,j)∈m uiuj . The revenue of such

apps typically comes from ads displayed during games, so
the more games played the better. In these examples, the
app will match (say, everyday) as many pairs of players as
possible and not just one (as in the bipartite example).
We will consider the aforementioned two variants of these
sequential choices of matchings: either the matching has
to be “minimal”, i.e., it has to be a single pair of vertices,
or it has to be “maximal”, i.e., a choice of N distinct pairs.
We will refer the former to as pair selection and the latter
as matching selection problem. As standard in multi-armed
bandits, we shall investigate both the regret minimization
over an arbitrary given time horizon and the pure exploration
in a PAC learning setting.

1.1. Related work
The matching problems defined above are special classes of
combinatorial bandit problems with semi-bandit feedback
(Cesa-Bianchi & Lugosi, 2012) with many recent improve-
ments for regret minimization (Combes et al., 2015; Cuve-
lier et al., 2021; Degenne & Perchet, 2016; Perrault et al.,
2020; Wang & Chen, 2021) as well as pure exploration
(Garivier & Kaufmann, 2016; Chen et al., 2014). The com-
binatorial structure is quite clear, as the cardinality of the set
of matchings is equal to (2N)!/(2NN !) ∼

√
2
(
2N/e

)N
.
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Off-the-shelf combinatorial bandits algorithms would in-
cur a regret scaling as Õ(N2 log(T )/∆min), where ∆min

denotes the expected reward gap between an optimal match-
ing and the best sub-optimal matching. This has been re-
cently improved, but only in the aforementioned bipartite
case, where the rank-1 structure has been leveraged in the
line of work of stochastic rank-1 bandits (Katariya et al.,
2017b;a; Trinh et al., 2020), yet either with sub-optimal
parameter dependencies or with asymptotic performances.
This quadratic dependency would also appear in pure explo-
ration, as standard algorithms would require in the bipartite
case O(NM log(1/δ)) iterations to find the best pair with
probability at least 1− δ (Garivier & Kaufmann, 2016).
The classical matching problem has strong connections with
ranking/sorting; it is obviously the same with their sequen-
tial variants (Zoghi et al., 2017; Rejwan & Mansour, 2020)
even though they do not directly handle the bandit feedback.

1.2. Organization of the paper and our contributions
The remaining of the paper is divided in four main parts.
First, we formally introduce the general model in Section 2.
Then we investigate the pair selection problem (both for
regret minimization and pure exploration) in Section 3, and
afterwards the matching selection problem (again, for re-
gret and pure exploration) in Section 4. Finally, we present
numerical results in Section 5. They validate the tightness
of our results and demonstrate competitiveness and perfor-
mance gains obtained by our proposed algorithms over some
state-of-the-art baseline algorithms.
Our contributions can be summarized as follows:

i) For the pair selection problem in the bipartite case,
we introduce a new algorithm, called PAIR-ELIM, in
Section 3.1 with an optimal (up to a multiplicative
constant) regret bound: perhaps interestingly, the al-
gorithm eliminates sub-optimal rows and columns on
different timescales. This result is extended to the
monopartite case in the same Section 3.1.

For pure exploration, we simply adapt PAIR-ELIM;
it still leverages the rank-1 structure to find the opti-
mal pair with a linear (instead of quadratic) sampling
complexity in O((N +M) log(1/δ)).

ii) The monopartite case, still with pair sampling, is in-
vestigated in Section 3.2; we transform the above al-
gorithm into PAIR-ELIM-MONO, that can handle both
regret minimization and pure exploration. It is also
extended for best matching identification, with again
optimal bound (up to a multiplicative constant).

iii) Section 4.1 is dedicated to pure exploration with match-
ing sampling; a new algorithm is developed with opti-
mal sample complexity for non-degenerate ranges of

parameters (i.e., it equals the new lower bounds proved
up to multiplicative constants).

iv) Finally, regret minimization in the matching selection
problem is investigated in Section 4.2; we introduce a
new ADAPTIVE-MATCHING algorithm with a linear
(instead of quadratic) dependency in N since its regret
scales as Õ(N log(T )/∆min).

Roughly speaking, this algorithm relies on a divide and
conquer type of approach.

2. Objectives and problem statement
Noise model. We assume the noisy observation Xt of W
is generated as follow: for any (i, j, t), Xi,j,t = Wi,j +
εi,j,t where εi,j,t are independent, zero-mean, sub-Gaussian
random variables.

Optimal matching. The objective is to find a matching
m, either minimal or maximal depending on the setting,
that maximizes the expected reward E[

∑
(i,j)∈mXi,j,t] =∑

(i,j)∈mWi,j . It turns out that in both the bipartite case
and the monopartite one, under the rank-1 assumption, the
optimal matching is the one that pairs better items together.
More formally and without loss of generality, for the bi-
partite case (W = uv>), we assume that u1 ≥ · · · ≥ uN
and v1 ≥ · · · ≥ vM . The optimal matching is the one
that associates (u1, v1), then (u2, v2), and so on1. Simi-
larly, for the monopartite case (W = uu>), we assume that
u1 ≥ u1 ≥ · · · ≥ u2N and the optimal matching associates
any odd index with its successor, i.e. (u1, u2) then (u3, u4)
and so on. In both cases finding the optimal matching boils
down to finding the order of the entries of u and v.

Pure exploration. A first objective the agent can aim for
is to identify the best matching with high probability and as
fast as possible. Formally, given a confidence level 0 < δ <
1/2, the agent seeks to minimize the worst-case number of
samples τδ needed for the algorithm to finish and return the
optimal matching with probability at least 1− δ.

Regret minimization. Another objective for the agent is
to find the best matching while playing sub-optimally as few
times as possible in the process. Formally, her goal is to
minimize the regret, i.e., the difference between the cumu-
lative reward of the oracle (that knows the best pair or the
best matching) and her cumulative reward. Denoting byM
the set of matching considered – e.g. minimal matchings for
pair selection or maximal matchings for matching selection
– the regret after T steps is defined as:

R(T ) = T max
m∈M

∑
(i,j)∈m

Wi,j −
T∑
t=1

∑
(i,j)∈mt

Wi,j . (1)

1This is a direct consequence of the rearrangement inequality.
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Universal vs. parameter dependent constants. In order
to avoid cumbersomeness, we shall use the notations cu to
denote some universal constant and cp to denote constants
(w.r.t. T ) but that can depend on other problem parameters.
They might change from one statement to another, but they
are always defined explicitly in the proofs.

3. Pair selection problem
In this section we consider the pair selection problem. Even
though playing one pair (i, j) of items at each time step may
seem very similar to dueling bandits (Yue et al., 2012) in the
monopartite case, the reward information structure is very
different. In dueling bandits the information is competitive,
one observes which i or j is best (in expectation). Here,
the information is collaborative, the higher the parameters
of both i and j, the higher the observation (in expectation).
Thus, in our case, playing the pair (i, j) does not provide
information on the relative order of i and j. Instead, to get
information about the relative order of i and j, it is necessary
to use a third item j′ as a point of comparison and play both
(i, j′) and (j, j′). We will refer to this as comparing i with
j against j′. A crucial idea, that is key to several of the
algorithms presented in the paper, is that the fastest way to
compare two items i and j is to compare them against the
item j′ with the highest possible parameter value. It turns
out this last remark also holds in the bipartite case.

3.1. Bipartite case
As the bipartite case has already been studied and might be
simpler to grasp, we start with it and then extend the results
to the monopartite case. The fastest way to compare row
items is to compare them against the best column, and recip-
rocally for columns. Similarly to RANK1ELIM (Katariya
et al., 2017b), the algorithm maintains a list of active rows
(resp. columns) that are, with high probability, non-provably
dominated as defined by confidence sets computed from
the samples. As RANK1ELIM, PAIR-ELIM performs an
Explore Then Commit (ETC) strategy, playing all active
rows against randomly chosen active columns to collect
samples and update the confidence sets. Then it uses a sim-
ilar ETC strategy on columns. The main difference with
RANK1ELIM resides in PAIR-ELIM eliminating row and
columns at different timescales. PAIR-ELIM implements an
ETC policy with horizon T for rows. Simultaneously, it runs
an ETC policy for columns, but over shorter time windows
w (referred to as “blocks”) between steps Tw−1 and Tw − 1
where Tw := Tw−1 + 22w . Within a block, columns are
only temporarily eliminated. They are reinstated as active at
the beginning of the next block, when a new instance of the
ETC is run in the new horizon. The detailed pseudo-code is
given in Appendix B.
The key intuition is that the algorithm is more aggressive
in the elimination of columns (i.e. with lower confidence)

Algorithm Sketch 1 PAIR-ELIM

Set target precision to δ
for t = 0... do

Identify active rows and columns
Sample all active columns against a random active row
Sample all active rows against a random active column
if t >

∑w
s=0 22s then

Reset samples for columns
w = w + 1

end if
Update confidence sets on rows and columns
if Optimal pair detected with confidence≥ 1− δ then

Output optimal pair
end if

end for

as they are only temporarily eliminated. Thus, sub-optimal
rows will be eliminated after log(T ) samples while the num-
ber of samples of sub-optimal columns only increases loga-
rithmically in the current number of samples. This implies
that pairs (i, j) that are “doubly-suboptimal”, i.e. both i and
j are sub-optimal, are eliminated after log(log(T )) samples.
On the other hand, pairs that are only suboptimal, but not
doubly, are eliminated after log(T ) samples.
It is noteworthy that this cannot be achieved with a standard
Explore Then Commit (ETC) independent on rows and
columns, as the number of samples of sub-optimal decisions
would then scale linearly (not logarithmically) with the
number of samples – before elimination. This is the reason
why the algorithm RANK1ELIM is sub-optimal.
The complexity of bandit problems is characterized by the
gaps, i.e., the difference in expectation between basic item
performances. In this case, we need to differentiate gaps on
rows and columns, namely, ∆U

i = maxi′∈[N ] ui′ − ui and
∆V
j = maxj′∈[M ] vj′−vj that appear both in the regret and

in the sample complexity.

Theorem 3.1 For any time horizon T > 0, the expected
regret of PAIR-ELIM with δ = (1/T ) is upper bounded as,

E[R(T )] ≤ cuA(u, v) log(T ) + cp log(log(T ))

where

A(u, v) =
∑

i∈[N ]:∆U
i >0

1

v1∆U
i

+
∑

j∈[M ]:∆V
j >0

1

u1∆V
j

.

The proof of Theorem 3.1 is available in Appendix B.

Theorem 3.2 For any δ ∈ (0, 1), PAIR-ELIM outputs the
best pair with probability at least 1− δ at stage τδ s.t.

E[τδ] ≤ cuA(u, v) log(1/δ) + cp log log(1/δ)



Matching bandits

where

A(u, v) =
∑

i∈[N ]:∆U
i >0

1

(v1∆U
i )2

+
∑

j∈[M ]:∆V
j >0

1

(u1∆V
j )2

which is tight up to a multiplicative constant.

Proofs of the upper bound of Theorem 3.2 is in Appendix
B. The lower was proven in previous work (Katariya et al.,
2017b).
The improvement compared to RANK1ELIM is visible, as
the leading term of the regret scales as the inverse of the
parameters mean for RANK1ELIM, while it only scales as
the inverse of the best parameter, for PAIR-ELIM.

3.2. Monopartite case
We introduce a new algorithm, PAIR-ELIM-MONO, that
generalizes the main ideas of PAIR-ELIM. Instead of work-
ing on monopartite graph (of size 2N ), it first duplicates
items and create a bipartite graph with U = V = [2N ].
Then, as in the previous section, an elimination policy is run
over rows with horizon T and over columns by blocks.
The major difference between the mono and bipartite case
is that, in the former, two items of U and V are optimal
(instead of only one, because of the initial duplication). As
a consequence, active pairs are tracked instead of active
rows and columns. Pairs containing item i are all eliminated
after they have been deemed smaller than two other distinct
items. If i is deemed smaller than another item j, all pairs
containing item i are eliminated except (i, j). If entry (i, j)
is eliminated as a consequence of row i’s sub-optimality,
entry (j, i) is also eliminated.
Note that the fastest way to compare item 1 with item i > 2
is to compare them against item 2 and the fastest way to
compare item 2 with item i > 2 is to compare them against
item 1. Similarly, it is harder to identify the second best
item than the best item, as simple computations yield

u1∆2,i ≤ u2∆1,i.

where ∆i,j = ui − uj .
Apart from the algorithm itself, another difference with
the bipartite case is the way to measure the gaps, but the
guarantees are very similar to the bipartite case.

Theorem 3.3 The expected regret of PAIR-ELIM-MONO
satisfies, for any time horizon T > 0,

E[R(T )] ≤ cuA(u) log(T ) + cp log log(T ) (2)

where
A(u) =

∑
i∈{3,...,2N}:∆2,i>0

1

u1∆2,i
.

The proof is provided in Appendix C.

Algorithm Sketch 2 PAIR-ELIM-MONO

Set target precision to δ
Initiate rows U = [2N ] and columns V = [2N ]
for t = 0, 1, . . . do

Identify active pairs
Sample all active pairs
if t >

∑w
s=0 22s then

Reset samples for columns
w = w + 1

end if
Update confidence sets on rows and columns
if Optimal pair detected with confidence≥ 1− δ then

Output optimal pair
end if

end for

Theorem 3.4 For any δ ∈ (0, 1), the sample complexity of
the PAIR-ELIM-MONO algorithm satisfies

τδ ≤ cuA(u) log(1/δ) + cp log log(1/δ)

with probability at least 1− δ, where

A(u) =
∑

i∈[2N ]:∆i>0

1

(u1∆2,i)2

which is tight up to a multiplicative constant.

The proof is provided in Appendix C.

Towards maximal matchings. The matching selection
setting can be seen as a constrained versions of pair selec-
tion where the agent has the constraint that N consecutively
sampled pairs should form a maximal matching instead of
being chosen freely. Hence, before diving in this setting,
we can wonder what would be the sample complexity to
identify the best maximal matching, but by freely choosing
the pairs, which is arguably a simpler problem than match-
ing selection. This can be done in two steps: 1) identify
the two best items using PAIR-ELIM-MONO, 2) sample
all unranked items against them until the full best match-
ing is identified. We refer to this two-step algorithm as
PAIR-SELECT. There again, the sample complexity of the
algorithm is optimal up to a multiplicative constant, proofs
are deferred to Appendix D.

Theorem 3.5 For any δ ∈ (0, 1), the sample complexity of
the PAIR-SELECT algorithm satisfies

τδ ≤ cuA(u) log(1/δ) + cp log log(1/δ)

with probability at least 1− δ, where

A(u) =
∑

i∈[2N ]:∆i>0

1

(u1∆i)2
,
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with ∆2,i = u2i − u2i+1 and ∆2i−1 = u2i−2 − u2i−1

which is tight up to a multiplicative constant.

Surprisingly, identifying the full order of the items rather
than simply the top two ones does not require N times more
samples. Rather the degradation appears in the gap, that are
not anymore the gap to the second-best item, but rather the
gap between consecutive matched pairs.
In the following section, we investigate if similar guarantees
hold in the matching selection setting or if the constraints
on the choice of consecutive pairs have a stronger impact.

4. Matching selection problem
In this section, we present our results for the matching selec-
tion problem, where recall at each iteration step a maximal
matching of items needs to be selected. We first consider the
objective of pure exploration, and then consider the regret
minimization objective. In this section, pair i refers to the
ith pair of consecutive items (u2i−1, u2i), the pair with the
ith highest expected reward in the optimal matching.
Contrarily to the pair selection setting, where the same al-
gorithm has tight guarantees for both regret minimization
and pure exploration, the matching selection setting requires
different algorithms. This can be understood from a simple
example where the smallest gap between consecutive items
i, i+ 1 appears at the bottom of the ranking (between low
quality items). From a pure exploration point of view, the
fastest way to rank them is to compare them against the top
ranked item. However, this is sub-optimal from a regret
point of view as misranking i and i+ 1 incurs a low regret,
while playing (1, i) or (1, i + 1) incurs a high regret. The
pure exploration objective and the regret minimization ob-
jective are treated separately in the following as they require
the use of different algorithms.

4.1. Pure exploration for matching
The algorithm for matching selection with an objective of
pure exploration, referred to as MATCHING-ID, is based on
this idea of comparing items with the top ones to rank them
quickly (remember finding an optimal matching amounts
to finding an order over the items). It makes use of two
non-exclusive sets of items: S ⊆ [2N ] is the set of un-
ranked items (their exact rank is unknown) and B the set
of items that are still potentially amongst the |S| best items.
The algorithm proceeds through iterations, in each iteration
sampling matchings from B∪S such that all distinct pairs of
items are sampled once. Items from S are ranked by using
the samples collected from matches with items in B. This
procedure continues until the rank of all items is known.
We introduce the following notations

µ[2N ]\{2k,2k+1} =
1

2N

∑
i∈[2N ]\{2k,2k+1}

ui.

Algorithm Sketch 3 MATCHING-ID

S = [2N ]
while S 6= ∅ do

Compute the set S of unranked items
Compute the set B of candidate |S| best items
Sample each item in B ∪ S once against each other
item in that set
Update confidence intervals for the items in S using
observed outcomes of matches with items in B

end while

Let s and h denote the indices of the smallest and the sec-
ond smallest gap, i.e. s = arg mink∈[2,N−1] ∆2k,2k+1 and
h = arg mink∈[N−1]\{s}∆2k,2k+1µ[2N ]\{2k,2k+1}. We
also define

γmin = min
k∈[N−1]

{µ[2N ]\{2k,2k+1}∆2k,2k+1}.

To simplify the exposition of the result, we assume that
the smallest gap is not between the two best pairs (general
version of the result is given in Appendix H).

Theorem 4.1 [upper bound] For any δ > 0, the sample
complexity of the MATCHING-ID algorithm satisfies

τδ ≤ cu
1

γ2
min

log(1/δ) + cp

with probability at least 1− δ. Moreover, by denoting,

α := min
{1

2

(u1 + u2)∆2s,2s+1

µ[2N ]\{2h,2h+1}∆2h,2h+1
, 1
}
,

the following holds with probability at least 1− δ

τδ ≤ cu
1

(1− α)2(u2
1 + u2

2)∆2
2s,2s+1

log(1/δ) + cp.

The proof of these upper-bounds is deferred to Appendix H.
These upper bounds are tight, up to multiplicative factors,
for some interesting regimes of parameters, as stated below.

Theorem 4.2 Assume that stochastic rewards of item pairs
have Gaussian distribution with unit variance. Then, for
any δ-PAC algorithm, we have

E[τδ] ≥ cu
∑

i∈[2N ]:∆i>0

1∑2N
j=1 u

2
j

1

∆2
i

log(1/δ)

and
E[τδ] ≥ cu

1

u2
1 + u2

2

1

∆2
2s,2s+1

log(1/δ).

In particular, if all gaps are equal, the first lower bound of
Theorem 4.2 matches the first upper bound of Theorem 4.1
up to a multiplicative constant. On the other hand, in the
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opposite regime where one gap is substantively smaller than
all others, then it is the second bounds that are equivalent.
These results with matching matching should be put into
perspective with their pendant, Theorem 3.5, for pair se-
lection. In this case, the sample complexity of the latter
is N times bigger than the one of the former. This might
seem surprising at first sight as pair selection is an “eas-
ier” problem (without constraints). The reason is that with
matching selection, the algorithm gets to observe N pairs
at each iteration (and not just one). As a consequence, the
overall number of pairs evaluation Xi,j,s are actually of the
same order.
This is quite surprising as selection matchings is much more
constrained than selecting batches of N arbitrary pairs (pos-
sibly with repetitions and/or single items sampled more than
just once in a batch). The main consequence is that the
matching identification problem is as difficult with mini-
mal than maximal matchings selection (and therefore in any
intermediate case).

4.2. Regret minimization
We first describe and analyze a simplified matching divide
and conquer algorithm, which is correct for problem in-
stances satisfying a condition on model parameters intro-
duced shortly. This simplified algorithm allows us to convey
the key idea that underlies the design of a more complicated
algorithm. Having described this simplified algorithm and
shown the regret upper bound, we will remove the afore-
mentioned condition and show a regret upper bound that
holds for a matching divide and conquer algorithm.

4.2.1. SIMPLE ADAPTIVE MATCHING

We consider problem instances under the following assump-
tion on model parameters:

Assumption 1 The model parameters u1, . . . , u2N are as-
sumed to satisfy u2i−1 = u2i, for all i ∈ [N ].

Under Assumption 1, there exists an optimal matching such
that every pair of matched items have equal parameter val-
ues. This assumption avoids some complications that arise
due to uneven clusters in the divide and conquer procedure.
The Simple Adaptive Matching (SIMPLE-ADAPTIVE-
MATCHING) successively partitions items into an ordered
sequence of clusters (ranked clusters), such that all items
in a cluster have a higher rank than all items in any lower-
ranked cluster with a high probability. Items in a cluster S
of size |S| = 2K are matched according to a round-robin
tournament, which runs over 2K − 1 iterations.
A cluster is split into two sub-clusters as soon as the upper
bound for the reward of each item in one of the sub-clusters
is smaller than the lower bound for the reward of each item
in the other sub-cluster. Assumption 1 guarantees that, with
high probability, at each iteration step, all clusters contain

an even number of items, so it is always possible to match
all items within each cluster.
Functions sample matching and conf bound of Al-
gorithm 4 are detailed in Appendix E. At the high level,
sample matching samples matchings that ensure that
each |S|−1 iterations, any given item in S has been matched
once with any other item in S. conf bound builds confi-
dence intervals for the total reward of each item per match
with items in the same cluster or in lower ranked cluster.

Algorithm 4 SIMPLE-ADAPTIVE-MATCHING

Input: set of items [2N ] and horizon T
t = 0, C = X = C̃ = X̃ = [0]2N×2N ,S = {[2N ]}
for t = 1 . . . T do
mt ← sample matching(S, t)
for (i, j) ∈ mt do
X̃(i, j)← X̃(i, j) +Xi,j,t

C̃(i, j)← C̃(i, j) + 1
end for
for S ∈ S do

if ∃i ∈ S s.t.
∑
j∈S C̃(i, j) = |S| − 1 then

X([s], :), C([S], :)+ = X̃([S], :), C̃([S], :)
X̃([S], :), C̃([S], :) = 0

end if
end for
Q+, Q− ← conf bound(X,C, T,Q+, Q−,S)
for S ∈ S do

Order items in S according to Q+

for i ∈ {2, . . . , |S|} do
if Q+[i] < Q−[i− 1] then

Split S between i− 1 and i
end if

end for
end for

end for

The regret of SIMPLE-ADAPTIVE-MATCHING can be
bounded by using the following additional notation

∆min = min
m∈M:m 6=m∗

{ ∑
(i,j)∈m∗

uiuj −
∑

(i,j)∈m

uiuj

}
and the proof is again deferred to Appendix E.

Theorem 4.3 The expected regret of SIMPLE-ADAPTIVE-
MATCHING satisfies, for any horizon T > 0,

E[R(T )] ≤ cu
N log(N)

∆min
log(T ) + cp.

4.2.2. ADAPTIVE-MATCHING ALGORITHM

In general, when Assumption 1 does not hold, some of the
clusters may have odd sizes. In these odd-size clusters,
uniform sampling within a cluster is infeasible, and we need
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to match items residing in different clusters. In order to
deal with these complications, we use a new ADAPTIVE-
MATCHING algorithm.
ADAPTIVE-MATCHING is defined as an extension of
SIMPLE-ADAPTIVE-MATCHING. It uses the same policy
for splitting clusters. The SAMPLE-MATCHING procedure
extends that of the previous algorithm to unevenly split
clusters. This procedure ensures that any two mutually un-
ranked items are matched similarly to other items, which
guarantees that the expected rewards for those items are
scaled similarly. At the high level, it defines a list of match-
ings that respect the desired item sampling proportion, then
samples the matchings in this list in a round-robin.
A detailed description of SAMPLE-MATCHING, and the
proof of the following result, are given in Appendix F.

Theorem 4.4 The expected regret of ADAPTIVE-
MATCHING is bounded, for any horizon T > 0, as

E[R(T )] ≤ cu
N log(N)

∆min
log(T ) + cp.

4.2.3. COMPARISON WITH AN EXPLORATION POLICY

The ADAPTIVE-MATCHING algorithm matches high pa-
rameter value items together as soon as they are identified
in order to exploit this for accruing reward. On the other
hand, our algorithms, for the pair sampling problem and
the pure exploration matching identification problem, used
the detected high parameter value items to explore the un-
ranked ones. Without a comparison, it is unclear which of
the two strategies will lead to a smaller regret in the end. For
this reason, we consider an exploration-first algorithm that
matches identified high parameter value items with other
items to speed up the learning of the rank of these other
items, and compare it with ADAPTIVE-MATCHING.
We do this under assumption that both algorithms are given
as input the two best items, as well as a set of 2(N − 1) un-
ranked items. We chose as a comparison metric the upper
bound on the total regret incurred by the two algorithms
until the un-ranked items can be partitioned into two or
more ranked clusters of items. We denote with UI the upper
bound on the regret RI for the exploration-first strategy
and with UD the upper bound on the regret RD for the
ADAPTIVE-MATCHING algorithm.
The following Lemma 4.5 states that unless the second best
item is sufficiently worse than the best item, the regret of the
ADAPTIVE-MATCHING algorithm is at most of the same
order as that of the exploration-first algorithm, and can be
arbitrarily smaller depending on the problem parameters.
If the ratio between the parameter values of the first and
the second best item goes to zero, then the exploration-first
algorithm becomes infinitely better than the ADAPTIVE-
MATCHING algorithm.

Figure 1: Regret comparison for PAIR-ELIM vs
RANK1ELIM: (top) regret versus T for fixed ∆ = 0.75
and (bottom) regret versus the gap parameter ∆ for fixed
T = 2, 000, 000. We used 20 independent runs. The shaded
areas show the range between the 5% and 95% percentile.

Lemma 4.5 If u2/u1 > 1/2, then UD/UI ≤ cuN , and
it can be arbitrarily close to 0 depending on the problem
parameters. If u3/u2 > 1/2, then this ratio is smaller than
a constant independent from the parameters of the problem.
On the other hand, limu2/u1→0RD/RI = +∞.

In summary, the lemma tells that ADAPTIVE-MATCHING
is essentially as good as the exploration-first strategy for
any problem instance such that the parameter value of the
second best item is at least a constant factor of the best item.

5. Numerical results
In this section we present numerical results, which demon-
strate tightness of our theoretical bounds and compare our
proposed algorithms with some state-of-the-art baseline al-
gorithms. We first consider the pair selection problem and
then the matching selection problem. In summary, our nu-
merical results validate our theoretical results and demon-
strate that significant performance gains can be achieved
against some previously proposed algorithms.
All the code used for obtaining the results in this section is
available from this public Gitlab repository: [anonymized]

5.1. Pair selection
We consider RANK1ELIM as a baseline for comparison. As
noted in the introduction, RANK1ELIM has a regret upper
bound that is sub-optimal with respect to the problem pa-
rameters, which is in contrast to our algorithm, PAIR-ELIM
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that has optimal regret bound up to a multiplicative constant.
We demonstrate that significant performance gains that can
be achieved by using PAIR-ELIM versus RANK1ELIM for
some problem instances.
In all experiments, the variables considered are Bernoulli
variables. We consider the bipartite case with N = M .
Each problem instance is defined by a tuple (N, u1,∆),
where 0 ≤ ∆ ≤ u1 ≤ 1, and assuming that u1 = v1. The
row parameter values u2, . . . , uN are defined as sorted val-
ues of independent random variables according to uniform
distribution on [0, 2(u1 −∆)], where ∆ is the expected gap
between the value of the best item and the value of any other
item. Note that we have µU = u1− (1− 1/N)∆. For fixed
value of parameter u1 and increasing expected gap ∆, we
have problem instances with fixed maximum row parameter
value and decreasing mean row parameter value µU . We
similarly define the column parameter values, and all the
observations above made for row parameter values hold for
column parameter values. According to our regret analysis,
PAIR-ELIM algorithm will outperform RANK1ELIM when
∆ is large for fixed u1. To confirm this claim, we ran the
two algorithms on a set of problem instance with N = 8
and u1 = 0.9. The results are shown in Figure 1. We
have further evaluated the effects of varying u1 which is
discussed in Appendix A.1.

5.2. Matching selection
In this section we evaluate the performance of our algo-
rithm for the matching selection problem. Our goal is
twofold. We first demonstrate numerical results accord-
ing to which our proposed algorithm has expected regret
that scales proportionally to N log(N)/∆min for a fixed
horizon T . We then compare its performance with that
of ESCB, which, as discussed in the introduction, has the
expected regret bound O(N2 log2(N)/∆min) for fixed T .
We demonstrate that our algorithm can achieve significant
performance gains over ESCB. In our evaluations. We use
our SIMPLE-ADAPTIVE-MATCHING algorithm, for prob-
lem instances such that there is a unique optimum matching
with matched items having equal parameter values.
We first show that the regret of our proposed algorithm
scales in the order of N log(N)/∆min. We consider a set of
problem instances, each is defined by a tuple (N, ∆̃), where
0 < (N − 1)∆̃ ≤ 1 and ∆̃ is the gap between parameter
values of adjacent matched pairs in the optimum matching,
so that ∆̃ =

√
∆min. The parameter values are defined by

u2i−1 = u2i = (N−i)∆̃ for i ∈ [N ]. We run our algorithm
on problem instances with ∆̃ = 0.1. The results shown in
Figure 2 suggest that the cumulative regret of SIMPLE-
ADAPTIVE-MATCHING scales as (1/∆min)N log(N) as
established in Theorem 4.3.
We next compare the performance of our algorithm and
ESCB. We consider problem instances defined by a tuple

Figure 2: Normalized regret of SIMPLE-ADAPTIVE-
MATCHING versus N for u2i−1 = u2i = (N − i)∆̃, for
i ∈ [N ], with ∆̃ = 0.1 and T = 200, 000.

Figure 3: Regret comparison for SIMPLE-ADAPTIVE-
MATCHING (SAM) vs ESCB: (top) regret versus T for fixed
µ = 0.5 and (bottom) regret vs µ for fixed T = 200, 000.

(N,µ, ∆̃) where µ is the mean of parameter values and ∆̃
is the gap between parameter values. The values of item
parameters are set as u2i−1 = u2i = µ+(N+1−2i)∆̃/2 ∈
[0, 1] for i ∈ [N ]. Such problem instances allow us to vary
µ while keeping other parameters fixed; we fix N = 4 and
∆̃ = 0.1. In Figure 3 (top) we show the regret versus the
time horizon T for fixed µ = 1/2, which shows that our
algorithm outperforms ESCB for large enough values of T .
We expect our algorithm to perform better than ESCB as
we increase µ. The results in Figure 3 (bottom) confirm
this claim. We have performed these experiments for a
small value of N because of the computation complexity of
ESCB. ESCB requires solving an NP-hard problem in each
iteration, and has overall computation complexityO(|M|T )
whereM is the set of all arms. For the matching selection
problem, |M| scales as

√
2(2N/e)N .
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