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Abstract
We introduce the problem of finding a set B of k points in [0, 1]n such that the expected cost of the
cheapest point in B that dominates a random point from [0, 1]n is minimized. We study the case
where the coordinates of the random points are independently distributed and the cost function
is linear. This problem arises naturally in various application areas where customers’ requests are
satisfied based on predefined products, each corresponding to a subset of features. We show that
the problem is NP-hard already for k = 2 when each coordinate is drawn from {0, 1}, and obtain an
FPTAS for general fixed k under mild assumptions on the distributions.
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1 Introduction

Let f : [0, 1]n → R be a continuous cost function and B ⊆ [0, 1]n be a finite set. We consider
the function

fB : [0, 1]n → R ∪ {∞}, fB(x) := min{f(b) : x ⩽ b, b ∈ B},

where we write x ⩽ b if x is less or equal than b in every coordinate and say that b covers x.
In other words, fB(x) is the smallest cost needed to cover x with a point from B. We say that
B is a Pareto cover1 of a probability measure µ on [0, 1]n if a random point can be covered
by at least one point from B almost surely, i.e., µ({x ∈ [0, 1]n : x ⩽ b for some b ∈ B}) = 1.
Note that B is always a Pareto cover if it contains the all-ones vector 1 (but for some
probability measures, B is not required to contain 1).

Given f , µ, and an integer k ⩾ 1, we study the problem of finding a Pareto cover B of µ

with |B| = k such that Eµ[fB ] is minimized. That is, we are searching for a Pareto cover B

of predefined size such that the expected cost of covering a random point with a point from
B is smallest possible.

As an illustration, imagine a city with tourist attractions [n] := {1, . . . , n} and suppose
that the city wants to design k books B of vouchers for subsets of these attractions. Each
tourist x will pick the cheapest book b ∈ B that covers all attractions that x wants to visit.
We can think of x as a binary vector in {0, 1}n. Assuming that we have some probability

1 In the context of multi-objective optimization, x ⩽ b is commonly referred to as b Pareto-dominates x.
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80:2 The Pareto Cover Problem

Figure 1 For the Lebesgue measure (uniform distribution) on [0, 1]2 with cost f(x1, x2) =
x1 + x2, the optimal Pareto covers of size k = 3 are {(12/23, 12/23), (18/23, 18/23), (1, 1)},
{(10/23, 18/23), (22/23, 12/23), (1, 1)}, and {(18/23, 10/23), (12/23, 22/23), (1, 1)}.

distribution over the tourists x, we want to determine k books that, in expectation, cover the
tourists requests in the cheapest way. Note that, in this example, µ is a discrete measure on
{0, 1}n. Defining an appropriate cost function, an optimal Pareto cover of size k is attained
by a set of vectors in {0, 1}n, each corresponding to a book.

Similar applications can be given for other areas where customer’s requests are satisfied
based on predefined products, each corresponding to a subset of features. Note that our
model also allows for non-binary requests x ∈ [0, 1]n \ {0, 1}n, which may correspond to
features that are available in different quality ranges.

For another application, imagine a gang of robbers that wants to steal paintings in an
art gallery. To this end, every gang member studies one painting i ∈ [n] and estimates the
probability pi of being able to steal it. Their boss decides in advance which subset S ⊆ [n]
of paintings to steal. If all corresponding gang members are successful (assuming that they
act independently), then the gang will receive a value v(S). Otherwise, they all get caught
and the gang receives v(∅) = 0. The problem of finding a subset of paintings that maximizes
the expected return can be modeled within the above framework as follows. Let µ be the
probability measure on {0, 1}n that corresponds to setting each coordinate independently to
1 with probability 1 − pi, and set f(x) := v([n]) − v({i ∈ [n] : xi = 0}) for all x ∈ {0, 1}n.
Denoting by B∗ = {b∗, 1} an optimal Pareto cover of size k = 2, it is easy to see that
S = {i ∈ [n] : b∗

i = 0} maximizes the expected return.
Determining optimal Pareto covers of a given size is a difficult problem. Finding an

analytical solution seems to be non-trivial even for very basic probability measures and
cost functions, see Figure 1. In this work, we study the problem from the point of view of
complexity theory. We particularly focus on product measures and linear cost functions, for
which the problem is already hard as our first results show.

Here, for A = {a0, . . . , aM+1} with 0 = a0 < a1 < · · · < aM < aM+1 = 1 and a vector
p =

(
(pi

ℓ)
M+1
ℓ=0

)n

i=1 ∈ [0, 1](M+2)×n with
∑M+1

ℓ=0 pi
ℓ = 1 for all i ∈ [n], let µA,p denote the

discrete product measure on [0, 1]n where xi assumes aℓ with probability pi
ℓ, that is,

µA,p({(aℓi
)n
i=1}) =

n∏
i=1

pi
ℓi

for all (aℓi
)n
i=1 ∈ An. (1)

In addition, for A = {0, 1} and p ∈ [0, 1]n, we define the binary product measure µp := µ{0,1},q

where qi
0 = 1− pi and qi

1 = pi for i ∈ [n], that is, xi is set to a1 = 1 with probability pi, and
to a0 = 0 with probability 1− pi. Finally, for a linear cost function f given by f(x) = c⊺x

for some c ∈ Rn and a finite set B, we overload our notation cB := fB .
The Pareto cover problem turns out to be computationally difficult even in a setting

where we restrict ourselves to binary product measures and linear cost functions.
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▶ Theorem 1. Let k ∈ Z, k ⩾ 2. Given p ∈ ([0, 1] ∩ Q)n, c ∈ Qn, γ ∈ Q, the problem of
deciding whether there is some Pareto cover B of µp such that |B| = k and Eµp

[cB] ⩽ γ is
weakly NP-complete for k constant. Moreover, there are values of k ∈ Θ(n) for which it is
strongly NP-hard.

If the size of the Pareto cover is part of the input, we do not know whether the corresponding
problem is in NP. In fact, computing the objective value of a single Pareto cover is already
difficult:

▶ Proposition 2. Given a Pareto cover B for the uniform distribution µ on {0, 1}n, the
problem of computing Eµ[1B ] is #P-hard.

Even when k is constant, it is not immediate how to determine, in polynomial time, the
objective value Eµp

[cB ] a certain Pareto cover B = {b1, . . . , bk} attains for given probabilities
p ∈ ([0, 1]∩Q)n and a positive cost vector c ∈ Qn. In this respect, observe that it is infeasible
to simply sum over all vectors x ∈ {0, 1}n since there is an exponential number of them.
However, for constant k, we can afford to iterate over all subsets of [k] instead. Moreover,
it is not hard to see that for every J ⊆ [k], cB is constant on the set XJ consisting of all
vectors x ∈ [0, 1]n that are covered precisely by those vectors bj for which j ∈ J .

We show how to employ dynamic programming in order to compute the values µ(XJ )J⊆[k]
for arbitrary discrete product measures µ on [0, 1]n. Using this observation as a starting
point, we manage to derive a fully polynomial-time approximation scheme (FPTAS) for the
case where k is constant.

▶ Theorem 3. Let k ∈ N be fixed. Given a discrete product measure µ on [0, 1]n and c ∈ Qn
⩾0,

the problem of computing an optimal Pareto cover of size k with respect to µ and c admits
an FPTAS.

We further show how to extend our approach to general product measures that satisfy
some mild assumptions. Essentially, we will consider products of nice measures (µi)n

i=1 on
[0, 1] that allow us to efficiently query an approximation of µi((a, b]) for each a, b, i as well as
a positive lower bound on the expectation of the identity on [0, 1] with respect to each µi. A
more formal definition will be given later.

Our paper is structured as follows. In Section 2 we briefly discuss related work. The
proofs of Theorem 1 and Proposition 2 are given in Section 3, where we also derive results
for general discrete product measures that will be used in our FPTAS. The latter and hence
the proof of Theorem 3 is presented in Section 4. The full version of this paper shows how
to extend our FPTAS result to very general (product) measures. We close with some open
questions in Section 5.

2 Related Work

To the best of our knowledge our setting for the general case k > 2 has not been studied in
the literature. For the case k = 2 similar problems have been studied in the area of stochastic
optimization in the context of chance constrained optimization. Here one aims to find an
optimal solution to a problem with stochastic constraints. A solution to the problem then
needs to fulfill the constraints with probability 1− δ for some δ > 0.

Linear chance constrained problems are of the form

min{⟨c, x⟩ : x ∈ X,Pξ∼µ[Ax ⩾ ξ] ⩾ 1− δ} (2)

ESA 2022
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for a domain X, a distribution µ, matrix A and parameter δ. Note that our problem for
k = 2 with linear cost functions f can be formulated as such a problem under the assumption
that every Pareto cover has to contain 1. It remains to find the second vector in the optimal
Pareto cover, for which one can guess the probability that it covers an element drawn from
µ. This fits exactly into the framework of (2) where A is the identity matrix and X = [0, 1]n.
For an overview on the topic, we refer to the work of Nemirovski and Shapiro [4] and Luedtke,
Ahmed, and Nemhauser [3]. In principle, it is possible to extend this idea to the case k ⩾ 3,
for instance by using techniques from [3]. However, it is unclear whether theoretically efficient
(approximation) algorithms can be obtained by such an approach.

The Pareto cover problem has an interesting interpretation in the context of tropical
geometry. It can be equivalently phrased as a problem of partitioning [0, 1]n into k regions Ri.
For each region, one selects the tropical barycenter, which is the coordinate-wise maximum
of all its elements. This resembles a tropicalized version of classical Euclidean clustering
algorithms and barycenters.

For randomized algorithms, tools from statistical learning theory (sample complexity,
coresets, . . . ) can be used to study the Pareto cover problem. A natural approach would
be to replace µ by a probability distribution µ̃ that is a combination of polynomially many
Dirac-distributions such that µ̃ is “close” to µ, and reduce the problem to finding an optimal
Pareto cover for µ̃. In this work, however, we focus on deterministic algorithms and defer a
discussion of such techniques to the full version of our paper.

3 Hardness results

In this section, we show that finding optimal Pareto covers (of given sizes) is a computationally
hard problem, even for simple binary product measures and linear cost functions. In particular,
we prove Theorem 1 and Proposition 2.

In the first part, we focus on the case where µ is a binary product measure given by some
input vector p ∈ [0, 1]n such that µ = µp, see (1). We consider the following problem.

▶ Definition 4. The decision variant of the binary Pareto cover problem is defined as follows:
Given p ∈ ([0, 1] ∩Q)n, c ∈ Qn

⩾0, γ ∈ Q, and k ∈ Z⩾1, decide whether there is some Pareto
cover B of µp such that |B| = k and Eµp

[cB ] ⩽ γ.

We assume that p, c, and γ are given by their binary encodings. We leave open how
k is encoded since in our applications it will be always polynomially bounded in n (see
Proposition 2) or mostly be even a constant.

In Section 3.1, we show that the binary Pareto cover problem is weakly NP-hard if k is
a fixed constant. In addition, we show that for k = n+5

3 , the problem is strongly NP-hard.
For the case that k is part of the input, we prove Proposition 2 showing that the problem of
computing Eµp

[cB ] for a given Pareto cover B is #P-hard in Section 3.2. In view of this, it is
unclear whether the binary Pareto cover problem is in NP if k is part of the input. However,
for constant k, we establish in Section 3.3 that the problem is in NP, even for general discrete
product measures. This result completes the proof of Theorem 1 and plays an important
role in the design of our approximation algorithm.

3.1 NP-hardness
In this section, we consider the binary Pareto cover problem. Note that it can be solved
efficiently in the case k = 1 since then B = {b} is an optimal solution, where b ∈ {0, 1}n

with bi = 1 if and only if pi > 0. In the remainder, we show that the binary Pareto cover
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problem is weakly NP-hard for k = 2. Similar, but slightly different proofs for the cases
k = 3 and k ⩾ 4 can be found in the full version of this paper. Moreover, our reduction for
k ⩾ 4 proves strong NP-hardness for k = n+5

3 .

In order to show that the binary Pareto cover problem is NP-hard for k = 2, let us
recall the PARTITION problem [2], which is well-known to be (weakly) NP-hard: Given
a1, . . . , an ∈ Z⩾1 with

∑n
i=1 ai even, decide whether there is a subset I ⊆ [n] such that∑

i∈I ai = 1
2

∑n
i=1 ai. We provide a reduction from PARTITION to the binary Pareto cover

problem with k = 2.
Before defining it precisely, let us describe the idea first. Given a PARTITION instance

a1, . . . , an, set α := 2
a1+···+an

and consider an instance of the binary Pareto cover problem
with pi = 1− e−α·ai and ci = ai for all i ∈ [n]. Since all ci and pi are positive, every optimal
Pareto cover of µp is of the form B = {b, 1} where b ∈ {0, 1}n. Setting I := {i ∈ [n] : bi = 0},
we see that the cost Eµp

[cB ] of B satisfies

n∑
i=1

ai − Eµp [cB ] = 1⊺c− Eµp [cB ]

= 1⊺c− c⊺b · µp({x ∈ {0, 1}n : x ⩽ b})− c⊺1 · µp({x ∈ {0, 1}n : x ̸⩽ b})
= c⊺(1− b) · µp({x ∈ {0, 1}n : x ⩽ b})

=
∏

i∈I
(1− pi) ·

∑
i∈I

ai

= e−α
∑

i∈I
ai ·

∑
i∈I

ai

= h
(∑

i∈I
ai

)
,

where h : R → R, h(x) = x · e−α·x. Since h has its unique maximum at x = α−1, we
see that B = {b, 1} is a Pareto cover with Eµp

[cB] ⩽
∑n

i=1 ai − h(α−1) if and only if
I = {i ∈ [n] : bi = 0} satisfies

∑
i∈I ai = α−1 = 1

2
∑n

i=1 ai. In other words, if a1, . . . , an is a
“yes” instance for PARTITION, then there is a Pareto B cover of size k = 2 of µp with cost
Eµp

[cB ] ⩽
∑n

i=1 ai − h( 1
2

∑n
i=1 ai). If a1, . . . , an is a “no” instance, then every Pareto cover

of size k = 2 will have cost Eµp [cB ] >
∑n

i=1 ai − h( 1
2

∑n
i=1 ai).

Unfortunately, the probabilities that we have used in the above argument cannot be
polynomially represented. However, we show that we can efficiently round them such that
the above strategy still works. More specifically, our probabilities and the threshold cost γ

will be defined as follows.

▶ Lemma 5. Given a1, . . . , an ∈ Z⩾1, we can compute p1, . . . , pn ∈ [0, 1] and γ ∈ Q in
polynomial time such that

1− β

eα·ai
⩽ 1− pi ⩽

1 + β

eα·ai
for all i ∈ [n], and (1− β)n+2

α · e ⩽
n∑

i=1
ai − γ ⩽

(1− β)n

α · e ,

where α := 2∑n

i=1
ai

and β := α2

48(n+1) .

Let p1, . . . , pn and γ be given as in the above statement. Note that we have 0 < pi ⩽ 1
for all i ∈ [n] since pi ⩽ 1− 1−β

eα·ai
⩽ 1 and

pi ⩾ 1− 1 + β

eα·ai
> 1− 1 + β

1 + α · ai
⩾ 1− 1 + β

1 + α
> 0.

Finally, set ci := ai for all i ∈ [n]. It remains to prove the following lemma.

ESA 2022



80:6 The Pareto Cover Problem

▶ Lemma 6. There is a subset I ⊆ [n] with
∑

i∈I ai = 1
2

∑n
i=1 ai if and only if there is a

Pareto cover B of µp with |B| = 2 and Eµp
[cB ] ⩽ γ.

The proves of the above lemmas can be found in the full version.
Note that we have shown that the binary Pareto cover problem is weakly NP-hard for

constant k. We remark that, unless P = NP , the problem cannot be strongly NP-hard, as
we derive an FPTAS in Section 4.

3.2 #P-hardness
In the previous section we have seen that the binary Pareto cover problem is NP-hard,
already for constant k. The next natural question is whether the problem is in NP. At
first sight, a Pareto cover B ⊆ {0, 1}n itself seems to be a canonical certificate for a “yes“
instance. However, with this choice, we should be able to compute the cost Eµp

[cB ] efficiently.
Unfortunately, if k is not part of the input, i.e., B is not of constant size, computing Eµp [cB ]
is hard. More precisely, let us prove Proposition 2, which states that, given a Pareto cover B

for the uniform distribution µ on {0, 1}n, the problem of computing Eµ[1B ] is #P-hard.

Proof of Proposition 2. We use the fact that the problem of computing the number of
vertex covers in a given undirected graph is #P-hard [5]. Given a graph G = (V, E), identify
V with [n] and for every edge e ∈ E, let be denote the characteristic vector of V \ e, the set
of nodes that are not part of e. Let µ denote the uniform distribution on {0, 1}n, i.e., µ = µp

with p = 1
2 · 1. Consider the Pareto cover B := {be : e ∈ E} ∪ {1}. Setting c = 1, the cost of

B is equal to

Eµ[cB ] = (n− 2) · µ({x ∈ {0, 1}n : x ⩽ be for some e ∈ E})
+ n · µ({x ∈ {0, 1}n : x ̸⩽ be for all e ∈ E})

= (n− 2) + 2 · µ({x ∈ {0, 1}n : x ̸⩽ be for all e ∈ E})

= (n− 2) + |{x ∈ {0, 1}n : x ̸⩽ be for all e ∈ E}|
2n−1

= (n− 2) + |{U ⊆ [n] : U ∩ e ̸= ∅ for all e ∈ E}|
2n−1 ,

and hence we see that 2n−1 · (Eµ[cB ]− (n− 2)) is the number of vertex covers in G. ◀

3.3 Membership in NP for constant k

For the binary Pareto cover problem, we have seen that computing the cost of a given Pareto
cover B is hard if B can be of any size. In this section, we show that the cost can be
computed efficiently if B is of constant size. In fact, we prove that this is the case for the
discrete version of our problem (see (1)).

We introduce the following notation: For probability measures (µi)n
i=1 defined on

(the Borel σ-algebra on) [0, 1], we define their product µ :=
∏n

i=1 µi to be given by
µ (I1 × · · · × In) =

∏n
i=1 µi(Ii), where (Ii)n

i=1 are intervals contained in [0, 1]. In partic-
ular, for A = {a0, . . . , aM+1} and p =

(
(pi

j)M+1
j=0

)n

i=1 as in (1), µ = µA,p is the product of
the measures µi = µi,A,p given by µi({aj}) = pi

j , i ∈ [n], j = 0, . . . , M + 1. We study the
following problem.

▶ Definition 7. The decision variant of the discrete Pareto cover problem is the following:
Given A = {a0, . . . , aM+1} with 0 = a0 < a1 < · · · < aM < aM+1 = 1, p =

(
(pi

j)M+1
j=0

)n

i=1
with pi

j ∈ [0, 1] and
∑M+1

j=0 pi
j = 1 for all i, c ∈ Qn

⩾0, γ ∈ Q, and k ∈ Z⩾1, decide whether
there is some Pareto cover B of µA,p such that |B| = k and Eµp

[cB ] ⩽ γ.



B. Natura, M. Neuwohner, and S. Weltge 80:7

Again, we assume that A, p, c, and γ are given by their binary encodings. In our
applications, k will be always constant.

Note that it is easy to check whether a finite set B ⊆ [0, 1]n is feasible for the above
problem, i.e., that it is a Pareto cover of µA,p. In fact, let x∗ ∈ [0, 1]n be given by
x∗

i := max{aj : pi
j > 0} for i ∈ [n]. Then B is a Pareto cover of µA,p if and only if |B| = k

and B contains at least one point that covers x∗.
Moreover, note that if B is feasible for the above problem, then we may assume that

B ⊆ An holds since otherwise we may lower entries of points in B without changing the set
of points they cover and without increasing their cost.

▶ Proposition 8. Let k ∈ Z⩾1 be fixed. Given A, p, c as in the discrete Pareto cover problem
and a Pareto cover B ⊆ An for µ = µA,p with |B| = k, we can compute Eµ[cB ] in polynomial
time.

Note that this shows that the discrete Pareto cover problem (and hence also the binary
Pareto cover problem) is in NP if k is constant.

In order to prove Proposition 8, we make use of the following notation. For i ∈ [n] vectors
b1, . . . , bk, x ∈ [0, 1]n, we define J i(x) to consist of all indices j ∈ [k] such that bj covers x, if
we restrict both vectors to the first i coordinates. More precisely, we set

J i(x) :=
{

j ∈ [k] : x1 ⩽ bj
1, . . . , xi ⩽ bj

i

}
for i ∈ [n], and let J(x) := Jn(x).

Whenever we refer to J(x), J1(x), . . . , Jn(x), the vectors b1, . . . , bk will be clear from the
context. Observe that for i ∈ [n] and J ⊆ [n], the set {x ∈ [0, 1]n : J i(x) = J} is a Borel set.

Note that {b1, . . . , bk} is a Pareto cover for µ if and only if µ({x ∈ [0, 1]n : J(x) = ∅}) = 0.
Let us rephrase the cost of a Pareto cover using this new notation:

▶ Lemma 9. Let µ be a probability measure on (the Borel σ-algebra on) [0, 1]n and let
B = {b1, . . . , bk} be a Pareto cover of µ. Then for every c ∈ Rn we have

Eµ[cB ] =
∑

∅̸=J⊆[k]

µ({x ∈ [0, 1]n : J(x) = J}) ·min
j∈J

c⊺bj .

Proof. For J ⊆ [k], note that cB(x) = minj∈J c⊺bj holds for all x ∈ [0, 1]n with J(x) = J .
The claim follows since the sets ({x ∈ [0, 1]n : J(x) = J})J⊆[k] are disjoint. ◀

Thus, in order to prove Proposition 8, it suffices to show that we can compute the values
µA,p({x ∈ [0, 1]n : J(x) = J}) for all J ⊆ [k] in polynomial time. To this end, we show how
to iteratively compute the values µA,p({x ∈ [0, 1]n : J i(x) = J}) for all J ⊆ [k] and i ∈ [n].
Lemma 10 takes care of the base case i = 1, whereas Lemma 11 explains how to proceed
from i to i + 1.

▶ Lemma 10. Let µ1, . . . , µn be probability measures on [0, 1] and let b1, . . . , bk ∈ [0, 1]n.
For µ =

∏n
i=1 µi and J ⊆ [k] we have

µ({x ∈ [0, 1]n : J1(x) = J}) = µ1 ((α, β] ∩ [0, 1]) ,

where α = maxj∈[k]\J bj
1 and β = minj∈J bj

1.

Here, we use the convention max ∅ := −∞ and min ∅ := +∞.

Proof of Lemma 10. We have J1(x) = J if and only if x1 ⩽ bj
1 for all j ∈ J and x1 > bj

1 for
all j ∈ [k] \ J . That is, {x ∈ [0, 1]n : J1(x) = J} = {x ∈ [0, 1]n : x1 ∈ (α, β]}. ◀

ESA 2022



80:8 The Pareto Cover Problem

▶ Lemma 11. Let µ1, . . . , µn be probability measures on [0, 1] and let b1, . . . , bk ∈ [0, 1]n.
For µ =

∏n
i=1 µi, J ⊆ [k], and i ∈ {2, . . . , n} we have

µ({x ∈ [0, 1]n : J i(x) = J}) =
∑

J⊆L⊆[k]

µ({x ∈ [0, 1]n : J i−1(x) = L}) ·µi((αL, βL]∩ [0, 1]),

where αL = maxj∈L\J bj
i and βL = minj∈J bj

i .

Proof. The claim follows from the fact that {x ∈ [0, 1]n : J i(x) = J} is equal to⋃
J⊆L⊆[k]

[
{x ∈ [0, 1]n : J i−1(x) = L}

∩ {x ∈ [0, 1]n : xi ⩽ bj
i for all j ∈ J, xi > bj

i for all j ∈ L \ J}
]

and the observation that the above sets are disjoint. ◀

Note that for measures µ = µA,p =
∏n

i=1 µi and α, β ∈ Q ∪ {±∞}, we can compute
µi((α, β] ∩ [0, 1]) in polynomial time. Moreover, for constant k, the sum in Lemma 11 only
has a constant number of summands. This yields Proposition 8.

4 Approximation algorithm

The goal of this section is to develop an FPTAS (see [1]) for the discrete Pareto cover
problem, see Theorem 3. More precisely, we provide an algorithm that receives an instance
I of the discrete Pareto cover problem and a parameter γ ∈ (0, 1) ∩ Q, and computes a
(1 + γ)-approximate solution to I in time polynomial in γ−1 and the encoding length of I.
All proofs and an extension of our FPTAS to more general product measures can be found
in the full version.

Let A, p, c, k define an instance of the discrete Pareto cover problem, where k is a constant.
For every i ∈ [n] let li := max{l : pi

l > 0} and define a∗ := (al1 , . . . , aln). Recall that every
Pareto cover B of µ = µA,p must contain a point that covers a∗. Conversely, every finite set
B ⊆ [0, 1]n containing a∗ is a Pareto cover of µ. Since the costs are non-negative, we can
restrict ourselves to Pareto covers that contain a∗.

Next, we discuss how to determine a cover of approximately minimum cost. Recall that
in Section 3.3, Lemma 9, given a Pareto cover B = {b1, . . . , bk}, we have seen that we can
express our objective as

Eµ[cB ] =
∑

∅̸=J⊆[k]

µ({x ∈ [0, 1]n : J(x) = J}) ·min
j∈J

c(bj).

Even more, we know that we can iteratively compute the values µ({x ∈ [0, 1]n : J i(x) = J})
for i ∈ [n] and J ⊆ [k] in polynomial time, see Lemma 11. In doing so, the only information
we need to proceed from i to i + 1 are the probabilities µ({x ∈ [0, 1]n : J i(x) = J}) for
J ⊆ [k] and the values (bj

i+1)k
j=1, but no further information on the values bj

l for l ∈ [i] and
j ∈ [k]. What is more, by definition, the values µ({x ∈ [0, 1]n : J i(x) = J}) for J ⊆ [k] and∑i

l=1 cl · bj
l for j ∈ [k] do not depend on the coordinates bj

l , l = i + 1, . . . , k, j ∈ [k]. All in
all, these are the best preconditions for a dynamic programming approach and motivate the
following definition:

▶ Definition 12. For a Pareto cover B = (bj)k
j=1 with bk = a∗ and i ∈ [n] let

Candi(B) := (i, (PJ)J⊆[k], (Cj)k
j=1),

where PJ = µ({x ∈ [0, 1]n : J i(x) = J}) for J ⊆ [k] and Cj =
∑i

l=1 cl · bj
l for j ∈ [k].
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▶ Definition 13. A candidate is a triple C = (i, (PJ)J⊆[k], (Cj)k
j=1).

The cost of the candidate C is given by Cost(C) :=
∑

∅̸=J⊆[k] PJ ·minj∈J Cj .

We call C valid if there exists a Pareto cover B = (bj)k
j=1 with bk = a∗ such that

C = Candi(B), and say that B witnesses the validity of the candidate.

Note that the definition of the cost of a candidate is in accordance with Lemma 9.
A naive approach to tackle the discrete Pareto cover problem would now be to iteratively

enumerate all valid candidates for i = 1, . . . , n, select a candidate for i = n that yields
the minimum objective value, and then back-trace to compute a corresponding cover. The
problem with this idea is of course that we do not have a polynomial bound on the number
of candidates we generate. To overcome this issue, we round the candidates appropriately to
ensure a polynomial number of possible configurations, whilst staying close enough to the
original values to obtain a good approximation of the objective for i = n. Observe that for
constant k, the number of entries of each candidate is constant, which means that it suffices
to polynomially bound the number of values each of them may attain.

To this end, consider Algorithm 1. The gray lines are not part of the algorithm itself, but
only needed for its analysis. Before diving into the analysis of Algorithm 1, we would like
to provide some intuition about what is happening. We start by enumerating all possible
values (bj

1)k
j=1 may attain in a solution B with bk = a∗ and use this information to compute

Cand1(B) according to Definition 12. (Recall that this is independent of the values bj
l for

l ⩾ 2, j = 1, . . . , k.) Then, we round all non-zero entries of Cand1(B) (except for the first
one, which is 1) down to the next power of 1 + δ, δ = ϵ

4n . Each rounded candidate C is
added to our table T , and for back-tracing purposes, we store a cover B that leads to C
as Witness(C). For the analysis, we further maintain an imaginary map AllWits mapping
each rounded candidate C ∈ T to the set of all possible witness covers that result in C after
(iterative) rounding.

After dealing with the base case i = 1, we enumerate possible values of (bj
i )k

j=1 for
i = 2, . . . , n, loop over all rounded candidates for i− 1 and compute new rounded candidates
for i according to Lemma 11. Moreover, we deduce witnesses for our new candidates for i

from those stored for the candidates for i− 1 and the values (bj
i )k

j=1. This might of course
lead to an exponential growth of the size of the imaginary map AllWits. However, the fact
that the Witness-map only memorizes one witness per candidate keeps the total running
time under control, provided we can come up with a polynomial bound on the number of
candidates we generate. Lemma 14 takes care of this, and is the main ingredient of the proof
of Theorem 15, which guarantees a polynomial running time.

▶ Lemma 14. At each point during the algorithm, we have |T | ⩽ α2k · βk · n, where

α = n + 2− n ·min
{

log1+δ(pi
l) : i ∈ [n], l ∈ {0, . . . , M + 1}, pi

l > 0
}

,

β = n + 2 + log1+δ(c1 + · · ·+ cn)− log1+δ(a1)−min{log1+δ(ci) : i ∈ [n]}.

In particular, for constant k, |T | is polynomially bounded in the encoding length of the given
instance of the discrete Pareto cover problem and ϵ−1.

▶ Theorem 15. Given an instance I of the discrete Pareto cover problem and a parameter
ϵ ∈ (0, 1) ∩Q as input, Algorithm 1 runs in time polynomial in size(I) and ϵ−1.

Denote the set of all candidate in T starting with i by Ti. In order to finally obtain an
FPTAS for the discrete Pareto cover problem, our goal for the remainder of this section is to
prove the following result:

▶ Theorem 16. Running Algorithm 1 and choosing the witness of a candidate of minimum
cost in Tn yields a (1 + ϵ)-approximation.

ESA 2022
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Algorithm 1 Dynamic program to compute rounded candidates.

Input: (al)M+1
l=0 , ((pi

l)
M+1
l=0 )n

i=1, (ci)n
i=1, k, ϵ ∈ Q ∩ (0, 1)

Output: a table T of rounded candidates
1

2 For i = 1, . . . , n compute li := max{l : pi
l > 0}.

3 a∗ ← (ali
)n
i=1, A← {a0, . . . , aM+1},T ← ∅

4 AllWits(−)← ∅
5 δ ← ϵ

4n

6 foreach (βj)k
j=1 ∈ Ak with βk = a∗

1 do
7 Define (PJ)J⊆[k] by PJ ← µ1((maxj∈[k]\J βj , minj∈J βj ] ∩ [0, 1])

8 PJ ←

{
(1 + δ)⌊log1+δ PJ ⌋ , PJ > 0
0 , PJ = 0

9 Define (Cj)k
j=1 by Cj ←

{
(1 + δ)⌊log1+δ(c1·βj)⌋ , c1 · βj > 0
0 , c1 · βj = 0

10 T ← T ∪ {(1, (PJ)J⊆[k], (Cj)k
j=1)}

11 bj
1 ← βj , j = 1, . . . , k, bj

i ← 0, i = 2, . . . , n, j = 1, . . . , k − 1, bk
i ← a∗

i , i = 2, . . . , n

12 Witness((1, (PJ)J⊆[k], (Cj)k
j=1))← (bj)k

j=1
13 AllWits((1, (PJ)J⊆[k], (Cj)k

j=1))← AllWits((1, (PJ)J⊆[k], (Cj)k
j=1)) ∪ {(bj)k

j=1}
14 for i = 2 to n do
15 foreach (i− 1, (P i−1

J )J⊆[k], (Ci−1
j )k

j=1) ∈ T do
16 foreach (βj)k

j=1 ∈ Ak with βk = a∗
i do

17 Define (P i
J)J⊆[k] by

P i
J ←

∑
L:

J⊆L⊆[k]
P i−1

L · µi((maxj∈L\J βj , minj∈J βj ] ∩ [0, 1])

18 P i
J ←

{
(1 + δ)⌊log1+δ P i

J ⌋ , P i
J > 0

0 , P i
J = 0

19 Define (Ci
j)k

j=1 by Ci
j ← Ci−1

j + ci · βj

20 Ci
j ←

{
(1 + δ)⌊log1+δ Ci

j⌋ , Ci
j > 0

0 , Ci
j = 0

21 T ← T ∪ {(i, (P i
J)J⊆[k], (Ci

j)k
j=1)}

22 (bi−1,j)k
j=1 ←Witness((i− 1, (P i−1

J )J⊆[k], (Ci−1
j )k

j=1))

23 Define (bi,j)k
j=1 by bi,j

l :=
{

bi−1,j
l , l ̸= i

βj , l = i

24 Witness((i, (P i
J)J⊆[k], (Ci

j)k
j=1))← (bi,j)k

j=1
25 foreach (b̃i−1,j)k

j=1 ∈ AllWits((i− 1, (P i−1
J )J⊆[k], (Ci−1

j )k
j=1)) do

26 Define (b̃i,j)k
j=1 by b̃i,j

l :=
{

b̃i−1,j
l , l ̸= i

βj , l = i

27 AllWits((i, (P i
J)J⊆[k], (Ci

j)k
j=1))←

AllWits((i, (P i
J)J⊆[k], (Ci

j)k
j=1)) ∪ {(b̃i,j)k

j=1}

28 return T
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The proof of Theorem 16 consists of two main steps. Lemma 17 shows that any rounded
candidate C̃ we store in T invokes similar costs to those of any of its witness covers.
Proposition 18 ensures that every cover B = (bj)k

j=1 with bk = a∗ occurs as a possible
witness for some candidate. In particular, this holds for an optimum cover B∗ (with
b∗,k = a∗) and by Lemma 17, we can therefore infer that the costs of the solution we return
can only be by a factor of 1 + ϵ larger than the optimum.

▶ Lemma 17. Let C̃ ∈ Tn and let B ∈ AllWits(C̃). Then Cost(C̃) ⩽ Eµ[cB ] ⩽ (1+ϵ)·Cost(C̃).

▶ Proposition 18. Let an instance of the discrete Pareto cover problem be given. For each
i ∈ [n] and each cover B = (bj)k

j=1 such that bk = a∗ and bj
l = 0 for j = 1 . . . , k − 1 and

l = i + 1, . . . , n, there exists C ∈ Ti such that B ∈ AllWits(C).

Combining Theorem 16, Lemma 14 and Theorem 15 and observing that we can compute
the cost of a candidate in polynomial time for constant k, we obtain Theorem 3, which we
restate once again:

▶ Theorem 3. Let k ∈ N be fixed. Given a discrete product measure µ on [0, 1]n and c ∈ Qn
⩾0,

the problem of computing an optimal Pareto cover of size k with respect to µ and c admits
an FPTAS.

5 Conclusion

In this paper, we have introduced the Pareto cover problem and studied the case of product
measures and linear cost functions. For fixed k, we have come to a pretty good understanding
of its complexity: On the one hand, we could show weak NP-hardness of the problem. On
the other hand, we have established the existence of an FPTAS.

However, there are several questions that remain open and constitute an interesting
subject for future research. To begin with, we have seen that even in a very restricted
setting such as the uniform probability distribution on [0, 1]n, it seems non-trivial to find
an optimum cover (see Figure 1). Consequently, in order to obtain a better feeling for the
problem at hand, it can be worthwhile to examine the structure of optimum solutions for
such special cases.

When dealing with the binary problem variant, another question that comes up is for
which subsets of {0, 1}n, there exists an instance they are optimum for. Any insights towards
this question may lead to new, perhaps more efficient strategies to tackle the Pareto cover
problem.

In addition to these rather concrete questions, there are also several more fundamental
issues one may want to address. For instance, even though we have seen that computing the
objective value attained by an arbitrary solution is #P-hard in general (i.e., for non-fixed k),
this does not resolve containment in NP since there might be another choice of a certificate
that does the trick. More generally, it would be interesting to fully understand the dependence
of the problem complexity on the parameter k. To this end, note that the complexity does
not simply “increase” with larger values of k, given that in the discrete setting, the problem
is weakly NP-hard for constant k ⩾ 2, and strongly NP-hard, e.g., for k = n+5

3 , but once
k is at least as large as the number of all possible discrete vectors b, it is obvious what an
optimum solution should look like (and we can output it in polynomial time, assuming an
appropriate output encoding is chosen). Hence, it seems interesting to further investigate
the hardness transition of the problem: When exactly does the problem become strongly
NP-hard? When does it become easier again?

ESA 2022
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Finally, as all of our results apply to the case of product measures, it appears natural to
ask what can be done for general probability measures. To this end, as alluded to in Section 2,
it could be fruitful to explore connections to existing results from statistical learning theory.
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