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Abstract Dose escalation trials are crucial in the development of new pharmaceuti-
cal products to optimize the amount of drug administered while avoiding undesirable
side effects. We adopt the framework established by Bailey (2009) where the indi-
viduals are grouped into cohorts, to the subjects in which the placebo or previously
defined doses are administered and responses measured. Successive cohorts allow
testing higher doses of drug if negative responses have not been observed in earlier
cohorts. We propose Mixed Integer Nonlinear Programming formulations for system-
atically computing optimal experimental designs for dose escalation. We demonstrate
its application with i. different optimality criteria; ii. standard and extended designs;
and iii. non-constrained (or traditional), strict halving and uniform halving designs.
Additionally, we address the allocation of the individuals in a cohort considering
previously known prognostic factors. To handle the problem we propose i. an enu-
merative algorithm; and ii. a Mixed Integer Nonlinear Programming formulation. We
demonstrate the application of the enumeration scheme for allocating individuals on
an individual arrival basis, and of the latter formulation for allocation on a within
cohort basis.
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1 Motivation1

A major focus of Phase I clinical trials is the establishment of the maximum safe2

dose of a new drug or drug combination. It is customary to use a series of cohorts3

of subjects, who may be patients or healthy volunteers (Senn, 2007). Some subjects4

in successive cohorts are allocated a higher dose of the drug than was applied in any5

previous cohort. A careful discussion of one family of such designs is given by Bailey6

(2009), who derives designs that can be simply described, and are: i. rational in terms7

of implementation; and ii. optimal or nearly optimal in terms of the amount of infor-8

mation produced. Unlike Bailey (2009) we use the methods of optimal experimental9

design to provide designs optimal under three design criteria. We can then establish10

the efficiency of any proposed design. In addition, we use the methods of sequen-11

tial optimal design to provide schemes that allow for the presence of any prognostic12

factors of the individuals, such as age, weight, blood pressure and medical history,13

that may be available before treatment allocation. The resulting partial balance over14

prognostic factors leads to increased precision in estimation of treatment differences.15

There is a large literature on dose-escalation methods, particularly in cancer trials16

(Le Tourneau et al., 2009). Algorithm-based methods, often basing decisions only17

on the results of the current cohort offer negligible toxic death rates (Storer, 1989).18

Model-based designs such as the continual reassessment method (CRM) (O’Quigley19

et al., 1990) and its variations (Babb et al., 1998; Cheung, 2005; Neuenschwander20

et al., 2008) and others, offer significant advantages but assume a generic response21

model which is sometimes inadequate. Dette et al. (2008) develop designs robust to22

the specific true model.23

We avoid the specification of a relationship between toxicity and dose by assum-24

ing that cohorts are homogeneous and are analogous to blocks so that there may be25

systematic differences between cohorts (Bailey, 2009). The intra-block analysis iden-26

tifies the difference in responses caused by different doses. The aim is to minimize a27

specified function of the variances of the estimated differences, which is an optimal28

design problem maximizing a function of the Fisher Information Matrix (FIM).29

Dror et al. (1995) provides a survey of sequential treatment allocation methods30

in the absence of cohorts and Haines and Clark (2014) and Rosa and Harman (2017)31

consider designs for dose escalation with cohorts. We are the first to provide an algo-32

rithm that works in reasonable time and that extends straight forwardly to sequential33

allocation using the prognostic factors in the decision. The use of optimal design the-34

ory for finding such designs was suggested by Begg and Iglewicz (1980) were the first35

to suggest the use of optimal design theory for finding such designs, although they36

used an approximation to the FIM. Atkinson (1982, 2002) proposed methods based37

on optimal design theory, specifically the DA-optimal criterion for treatment alloca-38

tion; treatments are allocate sequentially to one subject at a time in the absence of co-39

horts. For allocation within cohorts in dose escalation studies, the objective remains40

the maximization of the information measured by the FIM resulting from optimally41

allocating the individuals of the same cohort to doses using prognostic information.42

The final allocation sequence must conform to the dose escalation optimal design.43
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1.1 Novelty statement and organization44

This paper contains four elements of novelty: i. optimization-based formulations to45

systematically construct optimal designs for dose escalation studies where the indi-46

viduals are grouped in cohorts for different kinds of exact designs. These include the47

designs with “strict halving” and “uniform halving” constraints described by Bai-48

ley (2009) and designs in which these constraints are absent; ii. optimization-based49

formulations to systematically allocate the individuals to doses in a cohort on an in-50

dividual arrival basis; iii. optimization-based formulations to systematically allocate51

the individuals to doses on a within cohort basis, and iv. flexibility in design construc-52

tion. Cohorts can be constructed sequentially in response to variations in the number53

of subjects available. Importantly, allocations in later cohorts can be adjusted to allow54

for loss of subjects to the trial before responses are measured.55

The paper is organized as follows. Section 2 introduces the background and the56

notation used to formulate the optimal design problem as well as the fundamentals of57

Mixed Integer Nonlinear Programming (MINLP). Section 3 introduces the formula-58

tions used to solve the optimal design problem for standard and extended dose escala-59

tion studies, and the modifications required to handle constrained designs, specifically60

those of the strict halving and uniform halving types. Comparisons for different se-61

tups including standard, extended, unconstrained, strict and uniform halving designs62

are presented in §4 and Appendix A of the Supplementary Material (SM). Section 563

addresses the problem of allocating the individuals to doses using the additional in-64

formation from prognostic factors and introduces algorithms for: i. sequentially allo-65

cating them as they enter the study; and ii. simultaneously allocating all individuals66

within a cohort. Section 6 demonstrates the application of optimal design-based al-67

location strategies and analyzes its efficiency relative to random allocation using a68

measure of the information content for comparison. Section 7 reviews the formula-69

tion and offers a summary of the results obtained. Finally, in Appendices A and B of70

SM, we provide additional results for a more challenging design setups, i.e. setups71

with more cohorts, doses and individuals to allocate.72

2 Optimal designs for cohort-based dose escalation trials73

This Section establishes the nomenclature used in the representation of the models.74

In Section 2.1 we present the experimental design problems outlined above. Then,75

in Section 2.2, we give an overview of the fundamentals of MINLP which serves to76

solve the dose escalation design problem as well as the optimal allocation problem in77

cohorts.78

2.1 Optimal experimental design79

In our notation bold face lowercase letters represent vectors, bold face capital let-80

ters stand for continuous domains, blackboard bold capital letters are used to denote81

discrete domains and capital letters are adopted for matrices. Finite sets containing82
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ι elements are compactly represented by JιK � t1, � � � , ιu. The transpose operation83

of a matrix or vector is represented by “⊺”. The cardinality of a vector is represented84

by cardp
q, the trace of a matrix by tr, ldetp
q represents lnrdetp
qs, and pinvp
q is85

for the generalized Moore-Penrose inverse of a matrix. Z0 is the set of non-negative86

integer numbers.87

Exact designs are experimental plans where the relative effort of each experi-88

mental condition is a ratio ni{N satisfying the conditions: i. all ni’s that represent89

the number of experiments at the ith design point are integer (or null); and ii. the90

ni’s sum to N . The optimization problem to construct exact designs is not convex,91

and so finding them is computationally more challenging than finding equivalent ap-92

proximate optimal designs (Boer and Hendrix, 2000), requiring global optimizers to93

assure that global optima are attained. This paper focuses on exact designs for dose94

escalation studies. For simplicity in the remaining sections we use the term designs95

to indicate exact designs for dose escalation.96

Consider the formulation established by Bailey (2009) for design of dose esca-97

lation experiments. Suppose that we consider n � 1 doses order labeled plus the98

placebo which is given for simplification the number 1; i.e., the vector of treatments99

is d � pd1, d2, � � � , dnq
⊺ P Rn where d1p� 0q   d2   � � �   dn. That is, we have100

a set of n possible treatments which include the placebo. We also have nc cohorts,101

each with mk, k P t1, � � � , ncu individuals. A cohort is a group with similar char-102

acteristics to which one dose of d is administered at a previously set time instant.103

In general we can allow the number of individuals in each cohort to be different but104

there are practical advantages of having cohorts of equal size. Dose escalation stan-105

dard designs have the number of cohorts equal to n�1 (i.e., nc � n�1), whereas in106

extended designs there is an extra cohort so that nc � n. Let c � pc1, c2, � � � , cnc
q⊺107

be a lexicographic ordered vector containing the designation of the cohorts where ci108

refers to cohort i. The number of subjects of cohort k allocated to dose i is sk,i, and109

matrix S � tsk,iukPt1,��� ,ncu, iPt1,��� ,nu P Znc�n
0 summarizes the design.110

In the first cohort the subjects receive only placebo (dose 1) or dose 2. In cohort111

k (2 ¤ k ¤ nc) the individuals may receive the placebo (d1) or dose i (di, 2 ¤ i ¤112

k � 1) but no individuals receive higher doses (i P tk � 2, � � � , nu). Practically, the113

design is characterized by having sk,k�1 ¡ 0 and sk,i � 0 for i P tk�2, � � � , nu. The114

values of sk,i for i P t1, � � � , ku may be null but the application of Bailey’s diversity115

principle minimizes the number of null elements in S (also see Huang and Chapell116

(2008)). Let the replication of dose i in cohorts 1 to k be rk,i �
°k

κ�1 sκ,i, here called117

the partial replication of size k. Further, the total replication of dose i is denoted by118

ϱi �
°nc

κ�1 sκ,i. The number of subjects in each cohort k is mk �
°k

i�1 sk,i, and the119

total number of individuals in the trial is N . Consequently,
°nc

k�1 mk � N .120

For simplicity in establishing the fundamentals we consider standard designs but121

the extension to extended designs is straightforward. The individual responses are122

measured on a scale such that the model123

Epyk,iq � τi � βk, i P JnK, k P JncK (1)

holds. Here, yk,i is the response of the individuals of cohort k P JncK that received124

dose i P JnK and Ep
q stands for the expectation. The parameters βk, k P JncK are125
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the cohort effects with τi, i P JnK being the dose effects. The aim of the design is to126

estimate the differences τi� τj , i, j P JnK, i ¡ j. The responses are assumed uncor-127

related and the observational noise follows a normal distribution with zero mean.128

Experimental designs are sought to minimize a function of the variances of the129

least square estimates of τi�τj . For cohort k the model for the differences of response130

is131

Epyk,i � yk,jq � τi � τj , i P t2, � � � , nu, j P t1, � � � , i� 1u. (2)

Throughout the paper we consider that the effects of cohorts are fixed, and constants132

βk cancel each other when the differences due to dose effects are of interest. Random133

cohort effects setups assume each cohort has a different impact on response, and were134

considered by Haines and Clark (2014); O’Brien (2017) among others.135

Let the matrix of parameter differences be θθθ � tτi � τj : i P t2, � � � , nu, j P136

t1, � � � , i� 1uu, i.e137

θθθ �

�
������

θ2,1 0 � � � 0 0
θ3,1 θ3,2 � � � 0 0

...
... � � �

...
...

θn�1,1 θn�1,2 � � � θn�1,n�2 0
θn,1 θn,2 � � � θn,n�2 θn,n�1

�
�����
�

�

�
������

τ2 � τ1 0 � � � 0 0
τ3 � τ1 τ3 � τ2 � � � 0 0

...
... � � �

...
...

τn�1 � τ1 τn�1 � τ2 � � � τn�1 � τn�2 0
τn � τ1 τn � τ2 � � � τn � τn�2 τn � τn�1

�
�����
.

where θθθ P Θ � Rpn�1q2 ; Θ is the domain of dose effect differences.138

The experimental design ξ is described by matrix S, the Fisher Information Ma-139

trix (FIM) of ξ being Mpξq. For simplicity let m � mk, k P JncK (i.e. replication is140

equal for all cohorts). Then,141

Mpξq � Rn �
S⊺ S

m
, (3)

where Rn is the n � n diagonal matrix containing the replications of cohorts on142

its diagonal. The FIM is a circulant matrix, with Moore-Penrose generalized inverse143

(Anderson, 1972; Pearce, 1983; Searle, 1979)144

pinvrMpξqs �

�
Mpξq �

Jn
n

��1

�
Jn
n
, (4)

where Jn is the n � n matrix of ones. The optimal experimental design is obtained145

by minimizing an appropriate function of the confidence region of the parametric es-146

timates of contrasts τi � τj . This is equivalent to minimizing a convex function of147

pinvrMpξqs by choice of S or equivalently to maximizing a concave function of its148

inverse as for ldetp
q. The most commonly used criteria for measuring the amount149

of information resulting from dose escalation trials are: A–optimality (minimizes the150
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average variance of the estimated treatment variances); E–optimality (minimizes the151

maximum of these variances, see Hedayat et al. (1988)) and D–optimality (minimiz-152

ing the volume of the confidence region of the estimated differences). That is, A–, E–153

and D–optimal designs each respectively minimize one of the following criteria:154

ξA � arg min
ξPΞA

trtpinvrMpξqsu, (5a)

ξE � arg min
ξPΞE

λmaxtpinvrMpξqsu, (5b)

ξD � argmax
ξPΞD

ldettrpinvpMpξqqs�1u, (5c)

where Ξp is the space of p�optimal feasible designs, p P tA–, E–, D–u, and λmaxt
u155

represents the maximum eigenvalue of a matrix. The A–, E– and D–optimality effi-156

ciencies of a design ξ are defined, respectively, by157

effApξq �
trtpinvrMpξ�Aqsu

trtpinvrMpξAqsu
(6a)

effEpξq �
λmaxtpinvrMpξ�E qsu

λmaxtpinvrMpξEqs
(6b)

effDpξq �

�
detrpinvpMpξDqq

�1s

detrpinvpMpξ�Dq
�1s


1{nθ

, (6c)

where ξp, p P tA–, E–, D–u is the p�optimal design obtained for the specified crite-158

rion, ξ�p is the p�optimal design used for reference and nθ the number of parameters159

to be estimated. Here, we consider nθ � nc�1 which is equal to the number of eigen-160

values of pinvrMpξqs and use it for extended and standard designs; consequently, the161

D–optimality criterion becomes positively homogeneous (see Pukelsheim 1993, §6.2162

and §8.18) which, in turn, allows the comparison of standard and extended designs.163

2.2 Mixed-Integer Nonlinear Programming164

In this Section we introduce the fundamentals of Mixed-Integer Nonlinear Program-165

ming.166

MINLP is used for solving the exact design problems introduced in Section 3.167

MINLP is a class of mathematical programming problems where the objective or168

some of the constraints are nonlinear and some of the decision variables are con-169

strained to integer values. To optimize a function of nx continuous variables, x, and170

ny discrete variables, y, the general form of a MINLP is171

min
x,y

fpx,yq (7a)

s.t. gpx,yq ¤ 0 (7b)
hpx,yq � 0 (7c)
x P X, y P Y. (7d)
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The function (7b) represents a set of ri inequalities and (7c) a set of equality con-172

straints, X is a compact set containing continuous variables x, Y contains the dis-173

crete variables y and (7a) is the objective function. In our design context the vector174

x includes the elements of the FIM and its Moore-Penrose generalized inverse and175

other auxiliary variables used in the Cholesky decomposition which provides fast176

and accurate calculation of determinants and inverses of information matrices. The177

vector y is for the number of individuals allocated to each dose, i.e., the elements178

sk,i of design matrix S. Finally, the equality constraints are for the FIM computation179

and its algebraic treatment required to generalize the computation of the information180

measures outlined above, see Section 3. Here, Y P Znc�n
0 is the design domain and181

is formed by the set of possible non-negative integer values of the elements in the182

design matrices S.183

Exact optimal design problems are typically nonconvex. To guarantee that a184

global optimum is found, a global solver must be employed. However, global op-185

timization solvers continue to require a long computational time compared to lo-186

cal solvers (Lastusilta et al., 2007), and this may limit their utilization to small and187

average sized problems. The conditions required for applying deterministic global188

MINLP solvers are fairly general - typically they only require bounded variables.189

In our formulations, these assumptions are satisfied by construction as all decision190

variables are bounded, and we use a global solver.191

3 Formulations for computing dose escalation optimal designs of experiments192

In this Section we introduce optimization formulations for finding standard and ex-193

tended optimal designs for dose escalation trials. In Section 3.1 we consider formu-194

lations for unconstrained designs, that is those that have no constraints on the allo-195

cations other than those required by the optimization problem itself. These are also196

called traditional designs. In Section 3.2 we present specific algebraic operations em-197

ployed to simplify the numerical computation. In Section 3.3 we consider constrained198

designs, namely strict and uniform halving designs, and present the modifications to199

the optimization formulations required for their computation. Finally, in Section 3.4200

we introduce the numerical tools used for solving the optimal design problems. In201

all the problems we assume that n, nc and N are known and the cohorts have equal202

replication; i.e., m � mk � N{nc, k P JncK.203

3.1 Unconstrained optimal designs for dose escalation trials204

This Section introduces the optimization formulations for finding unconstrained de-205

signs of both standard and extended type.206

First, we consider the formulation for the A–optimality criterion and then we207

extend it to E– and D–optimality. The problem for finding A–optimal exact designs208

on ΞA is defined in (5a). The formulation to handle the optimization problem is as209

follows:210
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min
S,Rn

trtpinvrMpξqsu (8a)

s.t. pinvrMpξqs �

�
Rn �

S⊺ S

m
�

Jn
n

��1

�
Jn
n

(8b)

mk �
ķ

i�1

sk,i, k P JncK (8c)

nç

k�1

ķ

i�1

sk,i � N (8d)

nç

k�1

sk,i � Rn,i,i, i P JnK (8e)

Rn,i,j � 0, i, j P JnK, i � j (8f)
sk,i � 0, i ¡ k � 1, k P JncK, i P JnK (8g)
sk,i P Z0, i ¤ k � 1, k P JncK, i P JnK (8h)

Equation (8a) is the objective function, (8b) is to compute the Moore-Penrose211

generalized inverse of the FIM, (8c) is to ensure the replication for each cohort, (8d)212

ensures that the sum of subjects allocated to the experiment is exactly N , (8e) is to213

calculate the diagonal elements of Rn corresponding to dose replication, (8f) sets214

non-diagonal elements to 0, (8g) imposes the constraint that no subjects are allocated215

to more than one dose not tested before and, finally, (8h) sets the domain of decision216

variables. The problem (8) falls into the general class of MINLP problems; the com-217

plexity of evaluating the objective function is notorious. Further, the problem may218

have multiple optima.219

The inversion of Rn�S⊺ S{m�Jn{n in (8b) is carried out using an algebra based220

procedure involving three steps: 1. the matrix is decomposed applying the Cholesky221

decomposition taking advantage of its semidefinite positiveness; 2. the resulting up-222

per diagonal matrix, Upξq, is inverted, and produces U�1pξq; 3. U�1pξq is then used223

to compute rRn � S⊺ S{m� Jn{ns
�1 � rU�1pξqs⊺ U�1pξq; 4. finally, the Moore-224

Penrose inverse is formed; i.e. pinvrMpξqs � rRn � S⊺ S{m � Jn{ns
�1 � Jn{n.225

This procedure also allows computing the set of eigenvalues of pinvrMpξqs, here226

represented by λλλtpinvrMpξqsu as they are the set of diagonal elements of U�1pξq.227

For non-singular FIMs all the eigenvalues of the inverse are nonzero and we designate228

them as λi, i P JnK; for singular FIMs we use instead the positive eigenvalues of the229

Moore-Penrose generalized inverse. For a detailed analysis of the matrix inversion230

procedure see Duarte et al. (2021, 2020).231

Now, we consider the formulation (8) and adapt it for the E–optimality criterion232

(5b). The MINLP problem is,233

min
S,Rn

t (9a)

s.t. Equations (8b-8h) (9b)
t ¥ λi, λi P λλλtpinvrMpξqsu, i P JnK, (9c)
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where t is the maximum eigenvalue of the Moore-Penrose generalized inverse, and234

(9c) is to ensure that t is equal or exceeds all eigenvalues of pinvrMpξqs.235

Finally, for the D–optimality criterion (5c), the design problem becomes236

max
S,Rn

ldettrpinvpMpξqqs�1u (10a)

s.t. Equations (8c-8h), (10b)

where the computation of ldettrpinvpMpξqqs�1u is also addressed in Duarte et al.237

(2021, 2020); specifically it is formulated as the sum of the logarithms of the diagonal238

elements of the inverse of the upper diagonal matrix resulting from the Cholesky239

decomposition of Mpξq. Cases where Mpξq is singular are addressed in §3.2.240

3.2 Algebraic simplifications241

This Section presents algebraic strategies used to simplify the solution of optimal242

design problems (8–10).243

The calculation of pinvrMpξqs in problems (8-10) is challenging, and we adopt244

specific algebraic simplifications for reducing the complexity. First, we note that the245

trace of the sum of matrices is equal to the sum of the traces (Kaye and Wilson, 1998)246

in problem (8):247

tr

#�
Rn �

S⊺ S

m
�

Jn
n

��1

�
Jn
n

+
� tr

#�
Rn �

S⊺ S

m
�

Jn
n

��1
+
� tr

�
Jn
n




� tr

#�
Rn �

S⊺ S

m
�

Jn
n

��1
+
� 1, (11)

Thus, the objective function of (8) is reduced to trt
�
Rn �

S⊺ S
m � Jn

n

��1
u which248

replaces (8a).249

When all the eigenvalues of pinvrMpξqs are positive which, for standard250

designs generally holds because of the semidefinite positiveness of the FIM,251

ldettrpinvpMpξqqs�1u is computed as the sum of logarithms of all elements of the252

diagonal of U�1pξq. We note that the designs addressed herein, especially the ex-253

tended designs, lead to singular FIMs; thus, ranktpinvrMpξqsu ¤ nc � 1. When254

this occurs, the determinant of Mpξq is null as is one of the eigenvalues. To over-255

come this issue we replace the determinant by the pseudo-determinant of the Mpξq256

which is given as the product of the non-zero eigenvalues (Holbrook, 2018). Simi-257

larly, the maximum eigenvalue included in the E–optimality problem is chosen in the258

set of non-zero values of λλλtpinvrMpξqsu. No additional modifications in the pro-259

cedure are required since the semi-definite positiveness of the FIM guarantees that260

λλλtpinvrMpξqsu ¥ 0.261
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3.3 Constrained optimal designs for dose escalation trials262

This Section considers constrained designs and introduces the modifications to opti-263

mal design problems (8–10) required for their construction, see Bailey (2009). The264

constraints result from imposing desirable characteristics on the design in terms of265

safety, equity and diversity. We consider two constrained designs: i. strict halving266

designs (Senn et al., 2007); and ii. uniform halving designs.267

We first consider the strict halving design which requires halving the number of268

individuals allocated to the same dose in two consecutive cohorts (k � 1 and k). The269

constraints used for representing this setup are:270

sk,i �
sk�1,i

2
, k P t2, � � � , logpRn,i,iq{ logp2qu, i P t1u, (12a)

sk,i � 1, k P tlogpRn,i,iq{ logp2q � 1, � � � , ncu, i P t1u, (12b)

sk,i �
sk�1,i

2
, k P ti, � � � ,minri� logpRn,i,iq{ logp2q � 2, ncsu, i P t2, � � � , nu,

(12c)

sk,i � 1, k P ti, � � � ,minri� logpRn,i,iq{ logp2q � 1, ncsu, i P t2, � � � , nu,
(12d)

Eqs. (12a) and (12c) halve the number of individuals allocated to the same dose in271

two cohorts (k � 1 and k) and hold whenever the values of sk,i ¥ 1. Eqs. (12b)272

and (12d) are for values of sk,i � 1 occurring when halving would lead to fractional273

values below 1. Here, the operator minra, bs is used to represent the minimum value274

between a and b, nk is the number of doses tested in a cohort with nk � k � 1275

for all the cohorts except for the last in extended designs where nk � k. The halving276

procedure cannot be applied to the extra cohort in extended designs since the resulting277

optimization problem is infeasible; consequently, we limit its application to standard278

designs and to all the cohorts but the last in extended designs.279

We now consider the uniform halving design. Here, the constraints are that the280

number of individuals allocated to an eligible dose in a cohort is at least one and the281

partial replication of order k for dose i is larger (or equal) to that for dose i� 1. The282

constraints describing these designs are:283

sk,i ¥ 1, k P t2, � � � , ncu, i P Jk � 1K, (13a)
rk,i ¥ rk,j , k P t2, � � � , ncu, i, j P Jk � 1K, i   j, (13b)

where (13a) is to have sk,i ¡ 0 for i ¤ k � 1 and (13b) is to make the partial284

replication of size k non-decreasing.285

In summary, strict halving optimal designs are obtained solving the optimal de-286

sign problems (8–10) coupled with the constraints (12), and uniform halving designs287

are obtained solving (8–10) with the constraints (13).288

3.4 Numerical strategy and solvers289

The formulations in previous sections are coded in the GAMS environment (GAMS290

Development Corporation, 2013a). GAMS is a general modeling system that sup-291

ports mathematical programming applications in several areas. Upon execution, the292
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code describing the mathematical program is automatically compiled, symbolically293

transcribed into a set of numerical structures; all the information regarding the gradi-294

ent and matrix Hessian is generated using the automatic differentiation tool and made295

available to the solver. We provide a sample of such a code in the Supplementary Ma-296

terial, see Appendix C.297

Our design problems may have multiple local optima and to guarantee that a298

global optimum is found, a global solver must be employed. An example of a299

global solver is BARON. It implements deterministic global optimization algorithms300

that combine spatial branch-and-bound procedures and bound tightening methods301

via constraint propagation and interval analysis in a branch-and-reduce technique302

(Tawarlamani and Sahinidis, 2002). However, global optimization solvers require a303

long computational time compared to local solvers and this may limit their utilization304

to small and average sized problems. To reduce the CPU required we, instead, used305

a local MINLP solver – SBB (GAMS Development Corporation, 2013b) – to handle306

design problems addressed in §4 and §6.2. SBB uses CONOPT as a NLP solver to307

handle the relaxed nonlinear programs (Drud, 1985) and CPLEX to solve the mixed308

integer linear programs (GAMS Development Corporation, 2013b).309

To reduce the CPU time, we provide an consistent initial solution to the MINLP310

solver; by consistent we mean an initial solution that satisfies all the (equality and311

inequality) constraints of the design problem. To construct a initial consistent design,312

we first allocate the individuals to cohorts using equality constraints (12). Next, we313

compute the design matrix, the FIM and its Moore-Penrose generalized inverse (when314

required) and let the solver iterate until it converges to the optimum.315

All computations in this paper were carried using an AMD 8-Core processor ma-316

chine running 64 bits Windows 10 operating system with 3.80GHz. In all problems,317

the relative and absolute tolerances used to solve the MINLP problems were set to318

1� 10�5.319

4 Optimal designs for dose escalation trials320

Here we present A–, E– and D–optimal designs obtained for dose escalation trials.321

As a first example we consider a standard design with 5 doses (one of them being322

placebo), 4 cohorts and 32 subjects, i.e. n � 5, nc � 4 and N � 32. The corre-323

sponding extended designs are solved for n � 5, nc � 5 and N � 40. For simpli-324

fication we call this scenario Setup 1. It was first used by Haines and Clark (2014)325

to demonstrate their proposed algorithms. For both standard and extended dose esca-326

lation experiments we determine unconstrained, strict and uniform halving optimal327

designs.328

To submit our formulations to a more challenging problem we consider the ex-329

periment that includes, for standard designs, 8 doses (including placebo), 7 cohorts330

and 112 subjects, i.e. n � 8, nc � 7 and N � 112. The equivalent extended design331

has n � 8, nc � 8 and N � 128. This is Setup 2, and we again find traditional,332

strict and uniform halving optimal designs. To improve the readability of our paper333

we postpone the presentation of the results for Setup 2 to Appendix A of SM, but334

incorporate the trends observed in earlier discussions.335
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The absolute and relative tolerances imposed on the MINLP solver were set to336

1 � 10�6 and 1 � 10�7, respectively, in all design calculations. All computations in337

this paper were carried out using an AMD 8-Core processor machine running a 64338

bits Windows 10 operating system with 3.80GHz.339

Table 1 presents the results obtained for standard traditional designs for Setup 1340

obtained with the formulations (8–10) for A–, E– and D–optimality criteria, respec-341

tively. Table 4 is for extended traditional designs. For clarification, in Tables “C” is342

to designate cohort and “T” for treatment (or dose). The integer values forming the343

design correspond to S matrices that optimize the design criteria. Three aspects are344

noticeable from comparisons of the designs: i. the results obtained with our formula-345

tions are in good agreement with those prescribed by Bailey (2009); ii. they are also346

in good agreement with those of Haines and Clark (2014, Figure 2); iii. for most of347

the criteria the standard designs are not equal to extended designs without the last348

cohort, see Tables 1 and 4. That is, studies with more individuals and an additional349

cohort may lead to different allocation in the first nc cohorts. This possibility was not350

explored by Bailey (2009). However, we note that when standard designs are equal351

to extended designs without the last cohort flexibility in implementation is increased;352

the decision to have an additional cohort is postponed. This increment of flexibility353

is provided by A–optimal designs for 4 and 5 cohorts, as well as by some standard354

strict halving designs in Tables 2 and 5. These trends extend to Setup 2; compare the355

results in Tables S1 and S4 in Appendix A of SM.356

Tables 2 and 5 present the standard and extended strict halving designs for357

Setup 1. They show similar trends to those emerging from traditional designs. Ta-358

bles 3 and 6 are for the standard and extended uniform halving designs. Practically,359

in most of the cases the trends again coincide with those of the traditional designs.360

Similar findings are observed for Setup 2, where Tables S1 and S4 present the re-361

sults for standard and extended traditional designs, respectively; Tables S2 and S5362

are for standard and extended strict halving designs, respectively, and Tables S3 and363

S6 for standard and extended uniform halving designs. The comparison of the de-364

signs reveals several noticeable aspects: i. for most of the cases A– and D–optimal365

designs coincide, whereas the E–optimal designs are different (see Table 1); ii. the366

standard designs, with the exception of those obtained for the E–optimality criterion367

(see Table 1), do not include values sk,i � 0 in the design matrix; contrarily, extended368

E–optimality designs of traditional kind include doses not administered in some co-369

horts (see Table 4); iii. the strict and uniform halving designs avoid the occurrence of370

zeros in the design matrix by construction, see Tables 5 and 3.371

Table 7 displays the optima for each of the design problems solved. The efficiency372

is determined from optima with Eq. (6); the reference designs, ξ�p , p P tA–, E–, D–u,373

are the traditional designs as they are unconstrained. To simplify the interpretation of374

the results, the first column is for the number cohorts and the second for the number of375

treatments, and we recall that standard designs have nc � n�1 and extended designs376

assume nc � n with the placebo being one of the treatments. The third column377

indicates the type of design resulting from the presence of additional constraints. The378

fourth column lists the number of the table containing the experimental design found.379

The remaining columns present the optima for A–, E– and D–optimality criteria and380

the respective efficiencies.381
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The comparison of efficiencies in Table 7 reveals that i. the traditional designs are382

systematically more efficient than strict and uniform halving designs, as expected;383

ii. the uniform halving designs are more efficient than strict halving designs and in384

some cases they coincide with the traditional designs. Thus, strict halving designs385

are the most restrictive as they require halving the numbers of individuals allocated386

in successive cohorts; iii. all the strict and uniform halving designs have efficiencies387

above 90%, and for D–optimal designs the efficiencies are above 99% which indi-388

cates that the loss of information is small if constrained designs are implemented.389

The comparison of CPU times in Table 7 shows that: i. D–optimal designs are390

faster to calculate; ii. constrained designs are easier to find because the constraints391

(12) and (13) avoid the need of deepening the branch and bound; and iii. consistent392

initialization of the design problem is crucial to reduce the CPU time.393

5 Optimal allocation of individuals in cohorts using prognostic factors394

In this Section we address the problem of allocating the individuals to doses in a395

cohort using prognostic factors, i.e. additional covariates that might influence the396

response. We note that the optimal design for dose escalation is already available,397

i.e., the number of individuals to be allocated to each dose in each cohort. The interest398

now is in maximizing the amount of information gathered from optimally allocating399

doses to patients taking into account the prognostic factors.400

In §5.1 we develop the model and the optimal design problem for allocation of401

the individuals. Then, in §5.2 we consider the sequential allocation of the individuals402

of cohorts as they enter the trial. This setup considers that the individuals of the same403

cohort enter the trial at different time instants but the lags can be infinitesimal. In404

Section 5.3 we consider the allocation of the complete set of individuals of a cohort;405

they are considered to enter the trial at the same time instant. The dose escalation406

optimal designs obtained with the formulations in §3 are assumed to be known and407

the individuals of each cohort are allocated with the goal of maximizing the amount408

of information extracted.409

5.1 Model and FIM for individual allocations based on optimal design criteria410

Here we establish the fundamentals for allocating individuals to doses using prognos-411

tic factors and a previously known dose escalation design. The approach relies on the412

ideas of Atkinson (1982, 2002) for allocating individuals in sequential designs using413

optimal design criteria.414

Let the vector of prognostic factors be z P Rnf and γγγ P Rnf be the coefficients415

quantifying the effect of factors z on individual responses; nf is the number of prog-416

nostic factors. We first consider the generic linear response model for an individual’s417

response, i.e.,418

y � x� γγγ z⊺ � ϵϵϵ, (14)

where x represents the effect of the dose on the response, the second term of the419

model is for the effect of the prognostic factors, and ϵϵϵ is the observational noise.420



14 B.P.M. Duarte et al.

Ta
bl

e
1

St
an

da
rd

tr
ad

iti
on

al
op

tim
al

de
si

gn
s

fo
rd

os
e

es
ca

la
tio

n
(n

�
5

,n
c
�

4
an

d
N

�
3
2

).

A
–o

pt
im

al
ity

E
–o

pt
im

al
ity

D
–o

pt
im

al
ity

T
1

T
2

T
3

T
4

T
5

T
1

T
2

T
3

T
4

T
5

T
1

T
2

T
3

T
4

T
5

C
1

4
4

0
0

0
3

5
0

0
0

4
4

0
0

0
C

2
2

3
3

0
0

4
0

4
0

0
3

2
3

0
0

C
3

2
1

2
3

0
1

2
1

4
0

1
2

2
3

0
C

4
1

1
1

2
3

1
1

1
1

4
1

1
1

2
3

Ta
bl

e
2

St
an

da
rd

st
ri

ct
ha

lv
in

g
op

tim
al

de
si

gn
s

fo
rd

os
e

es
ca

la
tio

n
(n

�
5

,n
c
�

4
an

d
N

�
3
2

).

A
–o

pt
im

al
ity

E
–o

pt
im

al
ity

D
–o

pt
im

al
ity

T
1

T
2

T
3

T
4

T
5

T
1

T
2

T
3

T
4

T
5

T
1

T
2

T
3

T
4

T
5

C
1

4
4

0
0

0
4

4
0

0
0

4
4

0
0

0
C

2
2

2
4

0
0

2
2

4
0

0
2

2
4

0
0

C
3

1
1

2
4

0
1

1
2

4
0

1
1

2
4

0
C

4
1

1
1

2
3

1
1

1
2

3
1

1
1

2
3

Ta
bl

e
3

St
an

da
rd

un
if

or
m

ha
lv

in
g

op
tim

al
de

si
gn

s
fo

rd
os

e
es

ca
la

tio
n

(n
�

5
,n

c
�

4
an

d
N

�
3
2

).

A
–o

pt
im

al
ity

E
–o

pt
im

al
ity

D
–o

pt
im

al
ity

T
1

T
2

T
3

T
4

T
5

T
1

T
2

T
3

T
4

T
5

T
1

T
2

T
3

T
4

T
5

C
1

4
4

0
0

0
4

4
0

0
0

4
4

0
0

0
C

2
3

2
3

0
0

3
1

4
0

0
3

2
3

0
0

C
3

1
2

2
3

0
2

1
1

4
0

1
2

2
3

0
C

4
1

1
1

1
4

1
1

1
1

4
1

1
1

1
4



Optimal designs for dose-escalation trials in cohorts 15

Ta
bl

e
4

E
xt

en
de

d
tr

ad
iti

on
al

op
tim

al
de

si
gn

s
fo

rd
os

e
es

ca
la

tio
n

(n
�

5
,n

c
�

5
an

d
N

�
4
0

).

A
–o

pt
im

al
ity

E
–o

pt
im

al
ity

D
–o

pt
im

al
ity

T
1

T
2

T
3

T
4

T
5

T
1

T
2

T
3

T
4

T
5

T
1

T
2

T
3

T
4

T
5

C
1

4
4

0
0

0
4

4
0

0
0

4
4

0
0

0
C

2
2

3
3

0
0

3
3

2
0

0
2

3
3

0
0

C
3

2
1

2
3

0
1

2
1

4
0

2
1

2
3

0
C

4
1

1
1

2
3

2
1

0
1

4
1

1
2

2
2

C
5

1
1

1
2

3
0

1
2

1
4

1
1

1
2

3

Ta
bl

e
5

E
xt

en
de

d
st

ri
ct

ha
lv

in
g

op
tim

al
de

si
gn

s
fo

rd
os

e
es

ca
la

tio
n

(n
�

5
,n

c
�

5
an

d
N

�
4
0

).

A
–o

pt
im

al
ity

E
–o

pt
im

al
ity

D
–o

pt
im

al
ity

T
1

T
2

T
3

T
4

T
5

T
1

T
2

T
3

T
4

T
5

T
1

T
2

T
3

T
4

T
5

C
1

4
4

0
0

0
4

4
0

0
0

4
4

0
0

0
C

2
2

2
4

0
0

2
2

4
0

0
2

2
4

0
0

C
3

1
1

2
4

0
1

1
2

4
0

1
1

2
4

0
C

4
1

1
1

2
3

1
1

1
2

3
1

1
1

2
3

C
5

1
1

1
2

3
1

1
1

1
4

1
1

1
2

3

Ta
bl

e
6

E
xt

en
de

d
un

if
or

m
ha

lv
in

g
op

tim
al

de
si

gn
s

fo
rd

os
e

es
ca

la
tio

n
(n

�
5

,n
c
�

5
an

d
N

�
4
0

).

A
–o

pt
im

al
ity

E
–o

pt
im

al
ity

D
–o

pt
im

al
ity

T
1

T
2

T
3

T
4

T
5

T
1

T
2

T
3

T
4

T
5

T
1

T
2

T
3

T
4

T
5

C
1

4
4

0
0

0
5

3
0

0
0

4
4

0
0

0
C

2
3

2
3

0
0

3
1

4
0

0
3

2
3

0
0

C
3

1
2

2
3

0
1

1
1

5
0

1
2

2
3

0
C

4
1

1
1

2
3

1
1

1
1

4
1

1
1

2
3

C
5

1
1

1
2

3
2

1
1

1
3

1
1

2
2

2



16 B.P.M. Duarte et al.

Ta
bl

e
7

R
es

ul
ts

fo
rs

ta
nd

ar
d

an
d

ex
te

nd
ed

de
si

gn
s

pr
es

en
te

d
in

Ta
bl

es
1-

6
an

d
S1

-S
6

in
A

pp
en

di
x

A
of

SM
.

O
pt

im
al

ity
cr

ite
ri

a

A
–o

pt
im

al
ity

E
–o

pt
im

al
ity

D
–o

pt
im

al
ity

n
c

n
D

es
ig

n
Ta

bl
e

O
pt

E
ff

A
(%

)
C

PU
(s

)
O

pt
E

ff
E

(%
)

C
PU

(s
)

O
pt

E
ff

D
(%

)
C

PU
(s

)

4
5

Tr
ad

1
1.

96
84

10
0.

00
4.

56
0.

72
11

10
0.

00
8.

78
-3

.0
84

6
10

0.
00

1.
20

4
5

St
ri

cH
2

1.
97

47
99

.6
8

3.
78

0.
73

88
97

.6
0

7.
82

-3
.0

46
2

99
.7

3
0.

66
4

5
U

ni
fH

3
1.

97
81

99
.5

1
1.

67
0.

72
11

10
0.

00
5.

42
-3

.0
37

4
99

.6
6

0.
82

5
5

Tr
ad

4
1.

64
59

10
0.

00
4.

08
0.

60
00

10
0.

00
12

.3
7

-3
.7

33
8

10
0.

00
1.

43
5

5
St

ri
cH

5
1.

65
28

99
.5

8
3.

10
0.

60
50

99
.1

7
8.

98
-3

.6
95

1
99

.8
0

1.
05

5
5

U
ni

fH
6

1.
64

59
10

0.
00

3.
21

0.
60

47
99

.2
2

11
.0

2
-3

.7
33

8
10

0.
00

1.
51

7
8

Tr
ad

S1
1.

79
40

10
0.

00
16

.2
1

0.
56

33
10

0.
00

34
.5

0
-8

.1
12

8
10

0.
00

3.
08

7
8

St
ri

cH
S2

1.
86

12
96

.3
9

10
.8

9
0.

58
14

96
.8

9
23

.5
6

-7
.9

10
5

99
.4

2
1.

35
7

8
U

ni
fH

S3
1.

80
24

99
.5

3
6.

75
0.

56
33

10
0.

00
26

.4
5

-8
.0

40
0

99
.7

9
1.

68
8

8
Tr

ad
S4

1.
59

27
10

0.
00

26
.4

7
0.

39
91

10
0.

00
35

.6
5

-8
.8

83
5

10
0.

00
3.

65
8

8
St

ri
cH

S5
1.

60
87

99
.0

1
12

.5
4

0.
42

01
95

.0
0

16
.7

8
-8

.7
60

1
99

.7
1

1.
86

8
8

U
ni

fH
S6

1.
59

31
99

.9
7

13
.0

9
0.

41
37

96
.4

7
19

.3
2

-8
.8

82
2

10
0.

00
3.

44
Tr

ad
-t

ra
di

tio
na

ld
es

ig
n;

St
ri

cH
-s

tr
ic

th
al

vi
ng

de
si

gn
;U

ni
fH

-u
ni

fo
rm

ha
lv

in
g

de
si

gn
;O

pt
-o

pt
im

um
.



Optimal designs for dose-escalation trials in cohorts 17

Without loss of generality, we present the fundamental ideas supposing there is a421

single prognostic factor, i.e. nf � 1, z is a single element vector, z � pz1q, as is422

γγγ, i.e., γγγ � pγ1q. Here, we consider the prognostic factor follows a discrete uniform423

distribution; however, without loss of generalization other setups can be considered,424

such as continuously distributed factors and factors represented by skewed underlying425

distributions.426

The model for the response of individual i in cohort k is427

Epyk,iq � xk,i � γ1 z1,i, k P JncK, i P JmkK, (15)

where yk,i is the response, xk,i is the effect of the dose administered to individual428

i of cohort k, γ1 is a nuisance parameter and z1,i is the (first) prognostic factor for429

individual i. In practice xk,i is the effect of a dose chosen from the set that can be430

administered in cohort k, i.e.431

xk,i �
nķ

j�1

vk,i,j τj , k P JncK, i P JmkK, (16)

where vk,i,j is a binary variable used to represent the allocation of the individual to a432

given dose and nk is the number of treatments available for cohort k, with nk � k�1433

the number of different treatments available for that cohort. That is, vk,i,j is 1 if434

individual i is given dose j and 0 otherwise. The allocation must also ensure that435 °nk

j�1 vk,i,j � 1 for each individual. The variables vk,i,j provide a mathematical rep-436

resentation of the allocation decisions, see Williams (1999). The model (15) becomes437

Epyk,iq �
nķ

j�1

vk,i,j τj � γ1 z1,i, k P JncK, i P JmkK. (17)

The FIM of model (17) for cohort k is438

Mkpξq �

�
Dk hpzq

rhpzqs⊺ ζpzq



, (18)

where the nk � nk diagonal matrix Dk has elements sk,i obtained from the optimal439

dose escalation design. The vector rhpzqs⊺ has nk elements of the form440

rhpzqs⊺ �
�°nk

j�1 vk,i,1z1,i � � �
°nk

j�1 vk,i,nk
z1,i

�looooooooooooooooooooooomooooooooooooooooooooooon
nk elements

.

Furthermore, ζpzq �
°mk

i�1

°nk

j�1 vk,i,1z
2
1,i is element pnk�1, nk�1q of the FIM and441

contains the sum of squares of the prognostic factor for all individuals to be allocated442

within cohort k.443

The allocation aims at maximizing the information for estimating the contrasts444

τi � τj in the presence of the nuisance parameter γ. When interest is in estimation of445

linear combinations of parameters as we have for (17) the DA-optimality criterion is446

appropriate (Atkinson et al., 2007; Sibson, 1974). The experimental design minimizes447

ldettL rMkpξqs
�1 L⊺uwhere L is a constant matrix. In our case this matrix contains448

the coefficients of the combinations of covariates determined by the minimization449
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and Mkpξq is given by Eq. (18). The generalization for the AA–optimality criterion450

is straightforward.451

Here, interest is in determining the effects of the contrasts τi � τj , ignoring the452

effects of the nuisance factors z, so that the coefficients of γ in the contrasts are zero.453

That is, L is a pnk � 1q � pnk � nf q matrix454

L �
�
A 0pnk�1q�nf

�
(19)

where A is a pnk � 1q � nk matrix. One form of A has elements of the diagonal455

equal to �1, the elements of the line above the diagonal being �1 and all others zero.456

From Fedorov (1972, Theorem 2.2.4a) D–optimal designs are invariant with respect457

to any non-degenerate linear transformation of the parameters to be estimated. Let458

the contrasts specified by A above be represented as θi � τi � τi�1; then Fedorov’s459

result applies to DA–optimal designs under linear transformations of the θi. Further,460

in (19) 0pnk�1q�nf
designates a pnk � 1q �nf matrix of 0’s. The DA-optimal design461

satisfies462

ξDA � arg min
ξPΞDA

ldettL rMpξqs�1 L⊺u. (20)

In (20), ΞDA is the set of feasible DA–optimal designs. The criterion is minimized by463

choice of the binary variables vk,i,j , k P JncK, i P JmkK representing the allocation464

of individuals to treatments in a cohort.465

5.2 Allocation of individuals on a per arrival basis466

In this Section we formalize the algorithm for allocating the individuals to treatments467

as they enter the trial. They are allocated sequentially and their treatment may start468

before the cohort is completed. The goal is to maximize the information obtained469

from each new entry given knowledge of the prognostic factors. For simplicity we470

again consider a single prognostic factor; the dose escalation experimental design is471

already available, and the matrices Dk, k P JncK can be formed.472

To distinguish between prognostic factors of the individual arriving (to be allo-473

cated a treatment) and individuals already allocated, we use z1,i, P JmkK for the474

former, and designate the latter by ωk,i,j , where k is the cohort identifier, i the indi-475

vidual identifier, and j the identifier of the dose which they were allocated.476

To demonstrate the mechanics of the procedure we consider that cohort k is ini-477

tially empty, i.e.,478

rhpzqs⊺ �
�
0 � � � 0

�loooomoooon
nk

and ζpzq � 0. The first individual arrives. Allocation to dose j is represented by479

setting vk,i,j � 1 and all other vk,i,ℓ � 0 for ℓ � j, j, ℓ P JnkK. For each pos-480

sible allocation pi, jq, rhpzqs⊺ and ζpzq are updated with the value of z1,i. Then,481

the respective FIMs are computed (via Eq. (18)), and inverted. Next, the metrics482

φ � ldettL rMpξqs�1 L⊺u for each one are determined and saved. When all possible483

doses have been considered, a vector with nk values of φφφ is available. The minimum484
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value of φφφ is chosen and the individual is allocated to dose j � tℓ : φℓ � minφφφu.485

Next, the variablesωωω containing the sums of prognostic factors of individuals already486

allocated are updated with z1,i . The procedure is iterated for all individuals of the co-487

hort and in each iteration rhpzqs⊺ and ζpzq are updated to accumulate the prognostic488

factors of individuals already allocated to each treatment, i.e.489

rhpzqs⊺ �
�
ωk,i,1 � � � ωk,i,nk

�
.

Similarly, ζpzq is updated with the new information and becomes
°i�1

ι�1

°nk

j�1 ω
2
k,ι,j�490

z21,i. Then, the FIM is also updated with the new information. Finally, the procedure491

is iterated for all cohorts. Algorithm 1 presents the pseudo-code for the numerical492

implementation of this enumeration procedure.493

Algorithm 1 Algorithm: allocation on arrival for individuals in a cohort.
procedure ALLOCATEINDIVIDUALINCOHORT(S, z,m, nc, n)

for k P JncK do � Iterate cohorts
Set elements p1 : k � 1, 1 : k � 1q of Mpξq Ð diagpskq � Initialize the FIM
Set L
for j P JmkK do � Iterate individuals

for i P Jk � 1K do � Iterate treatments
Allocate individual j to ithe treatment
Set elements pk � 2, iq of Mpξq Ð

°
j ωk,i,j � z1,i

Set elements pi, k � 2q of Mpξq Ð
°

j ωk,i,j � z1,i

Set element pk � 2, k � 2q of Mpξq Ð
°

j

°
i ω

2
k,j,i � z21,i

φk,i,j Ð detpL rMpξqs�1 L⊺q
end for
Find j � tℓ : φℓ � minφφφu
Allocate ith individual of kth cohort to jth treatment
Update rhpzqs⊺, ζpzq and Mpξq

end for
end for

end procedure

5.3 Allocation of individuals on a per cohort basis494

Now we address the problem of allocating all the individuals within a cohort, assum-495

ing they enter the trial at the same time and the knowledge of their prognostic factors496

is available. As in §5.2, we consider that the dose escalation design is available, so497

that the diagonal matrices Dk, k P JncK in (18) as well as the contrast matrices L can498

be constructed.499

The problem of finding DA–optimal allocation schemes on ΞDA for each cohort500

is defined in (20). The formulation of the optimization problem is501

min
v

ldettL rMpξqs�1 L⊺u (21a)
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s.t. Mkpξq �

�
�����

sk,1 � � � 0
°mk

i�1 vk,i,1z1,i

0
. . . 0

...
0 � � � sk,nk

°mk

i�1 vk,i,nk
z1,i°mk

i�1 vk,i,1z1,i � � �
°mk

i�1 vk,i,nk
z1,i

°mk

i�1

°nk

j�1 vk,i,jz
2
1,i

�
����

(21b)

nķ

j�1

vk,i,j � 1, i P JmkK (21c)

mķ

i�1

vk,i,j � sk,j , j P JnkK (21d)

vk,i,j P t0, 1u. (21e)

Equation (21a) is the objective function, (21b) is to form the FIM for each co-502

hort, (21c) ensures that each individual is allocated to a single dose, (21d) that the503

dose escalation optimal design previously determined is satisfied, and (21e) is to set504

the decision variables v as binary variables. The design ξ is formed by the alloca-505

tion variables vk,i,j that maximize the objective function. The inversion of Mpξq is506

handled algebraically using the approach described in §3.1, see Duarte et al. (2021,507

2020). Specifically, the algebraic operations as well as conditions assuring the sta-508

bility of the Cholesky decomposition are included in the optimal design problem as509

constraints. The problem falls into the MINLP class and is solved with the global510

solver used for the construction of dose escalation designs.511

6 Optimal allocation of individuals to doses512

In this Section we demonstrate the application of the methodologies introduced in513

§5. First, in Section 6.1 we consider the allocation within cohorts on a per individual514

arrival basis. Then, in Section 6.2 we consider the simultaneous allocation of the515

complete set of individuals belonging to a cohort. In both scenarios we use the dose516

escalation traditional D–optimal designs obtained for Setups 1 and 2 as a basis for517

analysis. These appear in Tables 1, 4, S1, and S4 (the last two are in Appendix A of518

SM). Tables 1 and S1 display standard designs, and the other two are for extended519

designs.520

For demonstration we consider a single discrete prognostic factor which takes the521

values 1, 2 or 3, simulated using a uniform integer random number generator.522

6.1 Allocation of individuals in cohorts on arrival at different times523

In this Section we exploit Algorithm 1 in §5.2 to allocate the individuals as they524

sequentially enter the trial.525

Figure 1 shows the optimal allocation for the D–optimal standard design for526

Setup 1 (i.e., n � 5, nc � 4 and N � 32). We notice that the allocation rule527

based on individual arrivals may not satisfy the dose escalation optimal design as528
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it aims at maximizing the information available which is partial when building the529

cohort. An individual with a particular prognostic factor is allocated to a given dose530

because the amount of information they bring, integrated with that already available,531

is maximized. However, once more individuals have been enrolled, the amount of532

information available is higher, which will influence the allocation to doses. In ad-533

dition, Figure S1 in Appendix B of SM presents the sequential optimal allocation534

obtained for extended traditional D–optimal design (n � 8, nc � 8 and N � 128),535

see Table S4.536

Figure 1 Sequential allocation of individuals to doses on arrival for the standard traditional D–optimal
design obtained for n � 5, nc � 4 and N � 32, see Table 1. Symbols: � - prognostic factor=1; � -
prognostic factor = 2; and � - prognostic factor = 3.

To analyze the performance of the optimal sequential allocation strategy proposed537

we compare its efficiency with randomized allocation, equivalent to allocation in ig-538

norance of the values of the covariate. We consider a set of individuals with the same539

prognostic factors and randomly vary the order of allocation in each cohort. Then,540

we determine dettL rMpξqs�1 L⊺u for each cohort as well as the efficiency using541

Eq. (6c) and the optimal sequential allocation produced by Algorithm 1 for refer-542

ence. Finally, we computed the overall efficiency of the randomized allocation as543

the geometric mean of the efficiencies for all the cohorts. To eliminate the effects544

of biased randomized allocations we simulate the procedure 1000 times and in each545

one a different randomly chosen allocation order is used. The results are in Table 8546

(columns 6-7), and the optimal sequential allocation (used for reference in efficiency547
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computations) is advantageous; the per individual efficiencies of the randomized al-548

location schemes are below 100%.549

The measure of efficiency effDpξq responds like the variance of the estimate of550

a single parameter to an increase in sample size, e.g. halving when N is doubled.551

The effective number of trials for some allocation relative to the optimum design is552

N effDpξq. As a measure of the loss after N trials due to departure from optimality553

we therefore use554

LN � N r1� effDpξqs, (22)

a definition which stresses dependence of the loss on N . For randomized designs555

LN is a random variable. The results of Smith (1984a,b) provide asymptotic values556

L8 for the expected value of the loss for sequential allocation to two treatments.557

The loss in using random allocation as against the optimal experimental design is558

the number of covariates nf . Burman (1996) and Atkinson (2002) used simulation559

to study small sample properties of the expected value of loss. In the initial stages560

of a sequential trial, imbalance may be relatively high and the loss may be far from561

its asymptotic value. It is not clear whether this asymptotic relationship holds for our562

designs in cohorts when the number of cohorts increases with N . Simulations briefly563

mentioned in Atkinson (2002) show that, for random allocation to three treatments,564

the loss is again asymptotically nf .565

For the results in the first line of Table 8 for Setup 1 with N � 32 the two566

efficiencies give losses of 1.40 and 2.14. In line 3 for Setup 2 with N � 112 the567

losses are 1.66 and 2.81. In this example there is a slight increase of loss with N .568

6.2 Simultaneous allocation of individuals within cohorts569

Now, we consider the allocation of individuals within cohorts assuming they enter570

the trial simultaneously, and use the formulation (21) in §5.3 to solve the problem.571

We also limit our analysis to a single prognostic factor, its generation following the572

same strategy as before. Before the allocation, the prognostic factors of all individuals573

are known. The allocation should maximize the information produced by the cohort,574

given the optimal dose escalation design previously obtained.575

Figure 2 presents the optimal allocation for standard traditional D–optimal de-576

signs obtained for Setup 1, see Table 1. Figure S2 in Appendix B of SM is for the577

allocation in extended traditional designs obtained for Setup 2, see Table S4. To ana-578

lyze the performance of the allocation scheme we use the approach described above579

for sequential allocation. We compared its efficiency with that of a randomized al-580

location and used 1000 simulated random allocation scenarios for comparison. The581

results are in Table 8 (columns 8-9) and show the advantages of simultaneous alloca-582

tion based on optimal design criteria. Another indirect finding is that the simultane-583

ous allocation in cohorts is more efficient than allocation on arrival. This conclusion584

emerges through use of the randomized allocation as reference in our comparisons.585

The CPU time required by both algorithms to carry out the allocation for the var-586

ious design setups is shown in Table 8. We note that: i. the CPU time required is587

below 15 s for both algorithms; ii. the problem of allocating the individuals assuming588

they enter simultaneously is more sensitive to the number of cohorts and doses. This589
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Figure 2 Simultaneous allocation within cohorts of individuals to doses for the standard traditional D–
optimal design obtained for n � 5, nc � 4 and N � 32, see Table 1. Symbols: � - prognostic factor=1;
� - prognostic factor = 2; and � - prognostic factor = 3.

trend was expected as the allocation scheme proposed in §6.1 is handled via simu-590

lation (see Algorithm 1) using MATLAB® and the simultaneous allocation problems591

were solved using the GAMS environment, employing the solver SBB as described592

in §3.4. In the former algorithm the optimization corresponds to the choice of the593

best allocation for each individual entering the trial in each cohort given the informa-594

tion available at the time. In the latter scheme the numerical solution is obtained by595

solving (21) to convergence.596

For simultaneous optimal allocation problems, the solver easily finds a local op-597

timum, and most of the CPU time is required to prove the global optimality because598

one may have multiple optima. This trend may occur especially when the prognostic599

factor(s) is(are) represented by integer values as we have here. Continuous prognos-600

tic factors with different values characterizing the individuals lead to problems with a601

single optimum; consequently global optimality is easier to ensure with reduced CPU602

time.603

We also note that the constrained designs include additional conditions that allow604

breaking the symmetry of the optimal design problems as in Vo-Thanh et al. (2018)605

and so reducing CPU time. In general, the imposition of extra constraints simpli-606

fies optimization problems and reduces CPU time. The traditional design is typically607

more efficient but requires more CPU time since the feasibility region to be explored608

is larger.609
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Finally, to test the impact of skewed/rare prognostic factors on allocation algo-610

rithms, we considered a setup where the occurrence of z1,i in t1, 2, 3u is random but611

the probability of sampling 1 is 50%, the probability of getting 2 is 35%, and the612

probability of 3 is 15%. This procedure was implemented by sampling from a dis-613

crete trinomial function, and this new set of data did not show significant impact on614

the CPU time required by both algorithms.615

7 Conclusions616

We have considered the optimal design of experiments for dose escalation in cohort617

based experiments – a problem conceptualized by Bailey (2009) – and have proposed618

general formulations for finding exact A–, E– and D–optimal designs, see §3. The619

problems fall into the MINLP class of problems and we use a global solver to handle620

them. Our formulations adapt to standard and extended (including an extra cohort)621

designs as well as non-constrained (traditional) and constrained (of strict and uni-622

form halving type) designs. We demonstrate the application of the formulation with623

a wide battery of cases, see §4 and Appendix A of SM. Traditional designs are more624

efficient than constrained designs of strict and uniform halving kind but the difference625

is small. However, the latter have better properties such as diversity and the absence626

of individuals tested with a specific treatment in a cohort.627

We have also considered the problem of optimally allocating the individuals to628

doses within the cohorts taking into account prognostic factors and the prescribed629

optimal dose escalation design. From our knowledge, this problem has never been630

addressed, and we again formalized it as an MINLP problem, where the goal is to631

maximize the information obtained from judiciously allocating the individuals. Two632

distinct strategies are proposed for its solution: i. a sequential allocation scheme in633

cohorts where the individuals enter the experiment at different time instants; and ii. a634

simultaneous allocation scheme in cohorts. The former problem was solved with an635

enumeration algorithm, see §5.2. An MINLP formulation is used to systematically636

handle the second problem, see Section 5.3. Then, in Section 6 and Appendix B of637

SM, we demonstrate its application and analyze the advantages of optimal allocation638

schemes using simulation. Both allocation strategies are more efficient than random-639

ized allocation in terms of the amount of information produced; the allocation on a640

per cohort basis is more efficient than sequential allocation.641

The implementation of dose escalation experiments with cohorts of different size642

may be more complex than equally replicated cohorts. However, numerical tests not643

reported in this paper show they are slightly more efficient. Typically, these plans644

require fewer individuals in the first cohorts who are included in cohorts where a645

larger number of treatments is administered.646

Finally, we note that, in a thoughtful discussion at the end of Bailey (2009), there647

is a justification of the choice of analytical design construction as being more likely648

to be widely applied than a computer program. We wonder whether the balance has649

changed over the last 15 years. In particular, due to advances in computing software,650

we produce exact designs rather than the continuous designs suggested by Bailey. We651

have answered a further comment by providing designs for two criteria Bailey men-652
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tions (and one that is not mentioned). It is also suggested that designs found by her653

methods are (possibly) slightly sub-optimal. We have provided a method of checking654

their optimality. Indeed, in standard cases, the sub-optimality is slight. We believe that655

the importance of our computer-based contribution is that it allows the assessment of656

any proposed design as well as being useful for the kind of non-standard situations657

listed above. These include forms of allocation allowing for prognostic factors.658
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