
(1 + ε)-Approximate Shortest Paths in Dynamic
Streams
Michael Elkin @ ORCID
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Chhaya Trehan @ ORCID
London School of Economics & Political Science, London, United Kingdom

Abstract
Computing approximate shortest paths in the dynamic streaming setting is a fundamental challenge
that has been intensively studied. Currently existing solutions for this problem either build a
sparse multiplicative spanner of the input graph and compute shortest paths in the spanner offline,
or compute an exact single source BFS tree. Solutions of the first type are doomed to incur a
stretch-space tradeoff of 2κ− 1 versus n1+1/κ, for an integer parameter κ. (In fact, existing solutions
also incur an extra factor of 1 + ε in the stretch for weighted graphs, and an additional factor of
logO(1) n in the space.) The only existing solution of the second type uses n1/2−O(1/κ) passes over
the stream (for space O(n1+1/κ)), and applies only to unweighted graphs.

In this paper we show that (1+ε)-approximate single-source shortest paths can be computed with
Õ(n1+1/κ) space using just constantly many passes in unweighted graphs, and polylogarithmically
many passes in weighted graphs. Moreover, the same result applies for multi-source shortest paths,
as long as the number of sources is O(n1/κ). We achieve these results by devising efficient dynamic
streaming constructions of (1 + ε, β)-spanners and hopsets.

On our way to these results, we also devise a new dynamic streaming algorithm for the 1-sparse
recovery problem. Even though our algorithm for this task is slightly inferior to the existing
algorithms of [26, 11], we believe that it is of independent interest.

2012 ACM Subject Classification Theory of computation → Streaming models; Theory of compu-
tation → Streaming, sublinear and near linear time algorithms; Theory of computation → Shortest
paths; Theory of computation → Sparsification and spanners

Keywords and phrases Shortest Paths, Dynamic Streams, Approximate Distances, Spanners, Hopsets

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2022.51

Category APPROX

Related Version Extended Version: https://arxiv.org/abs/2107.13309 [20]

Funding Michael Elkin: This research was supported by ISF grant 2344/19.

1 Introduction

Processing massive graphs is an important algorithmic challenge. This challenge is being met
by intensive research effort. One of the most common theoretical models for addressing this
challenge is the semi-streaming model of computation [22, 2, 36]. In this model, edges of an
input n-vertex graph G = (V,E) arrive one after another, while the storage capacity of the
algorithm is limited. Typically it should be close to linear in the number of vertices, n. One
usually allows space of Õ(n), though it is often relaxed to n1+o(1), sometimes to O(n1+ρ), for
an arbitrarily small constant parameter ρ > 0, or even to O(n1+η0), for some fixed constant
η0, 0 < η0 < 1. Generally, the model allows several passes over the stream, and the objective
is to keep both the number of passes and the space complexity of the algorithm in check.

The model comes in two main variations. In the first one, called static or insertion-only
model [22], the edges can only arrive, and never get deleted. If the algorithm employs

© Michael Elkin and Chhaya Trehan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 51; pp. 51:1–51:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:elkinm@cs.bgu.ac.il
https://orcid.org/ 0000-0003-2034-812X
mailto:c.trehan@lse.ac.uk
https://orcid.org/ 0000-0002-3249-3212
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.51
https://arxiv.org/abs/2107.13309
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 (1 + ε)-Approximate Shortest Paths in Dynamic Streams

multiple passes, then the streams of edges observed on these passes may be permutations
of one another, but are otherwise identical. In the more general dynamic (also known as
turnstile) streaming setting [2], edges may either arrive or get deleted.

1.1 Distances in the Streaming Model
An important thread of the literature on dynamic streaming algorithms for graph problems is
concerned with computing distances and constructing spanners and hopsets. This is also the
topic of the current paper. For a pair of parameters α ≥ 1, β ≥ 0, given an undirected graph
G = (V,E), a subgraph G′ = (V,H) of G is said to be an (α, β)-spanner of G, if for every
pair u, v ∈ V of vertices, it holds that dG′(u, v) ≤ α · dG(u, v) + β, where dG and dG′ are the
distance functions of G and G′, respectively. A spanner with β = 0 is called a multiplicative
spanner and one with α = 1 is called an additive spanner. There is another important variety
of spanners called near-additive spanners for which β ≥ 0 and α = 1 + ε, for an arbitrarily
small ε > 0. The near-additive spanners are mostly applicable to unweighted graphs, even
though there are some recent results about weighted near-additive spanners [14].

Spanners are very well-studied from both combinatorial and algorithmic viewpoints. It is
well-known that for any parameter κ = 1, 2, . . . , and for any n-vertex graph G = (V,E), there
exists a (2κ−1)-spanner with O(n1+1/κ) edges, and this bound is nearly-tight unconditionally,
and completely tight under Erdős-Simonovits girth conjecture [38, 4]. The parameter 2κ− 1
is called the stretch parameter of the spanner. Also, for any pair of parameters, ε > 0 and
κ = 1, 2, . . . , there exists β = βEP = β(κ, ε), so that for every n-vertex undirected graph
G = (V,E), there exists a (1 + ε, β)-spanner with Oκ,ε(n1+1/κ) edges [18]. The additive term

β = βEP in [18] behaves as β(κ, ε) ≈
(

logκ
ε

)logκ
, and this bound is the state-of-the-art. A

lower bound of Ω(1
ε·logκ)logκ for it was shown in [1].

Given an n-vertex weighted undirected graph G = (V,E, ω) and two parameters ε > 0
and β = 1, 2, . . ., a graph G′ = (V,H, ω′) is called a (1 + ε, β)-hopset of G, if for every pair of
vertices u, v ∈ V , we have

dG(u, v) ≤ d(β)
G∪G′(u, v) ≤ (1 + ε) · dG(u, v).

Here d(β)
G∪G′(u, v) stands for β-bounded distance (See Definition 3) between u and v in G∪G′.

The parameter β is called the hopbound of the hopset G′.
Just like spanners, hopsets are a fundamental graph-algorithmic construct. They are

extremely useful for computing approximate shortest distances and paths in various com-
putational settings, in which computing shortest paths with a limited number of hops is
significantly easier than computing them with no limitation on the number of hops. A partial
list of these settings includes streaming, distributed, parallel and centralized dynamic models.
Cohen [10] showed that for any undirected weighted n-vertex graph G, and parameters
ε > 0, ρ > 0, and κ = 1, 2, . . . , there exists a (1 + ε, βC)-hopset with Õ(n1+1/κ) edges, where

βc =
(

logn
ε

)O(logκ
ρ)

. Elkin and Neiman [16] improved Cohen’s result, and constructed hop-
sets with constant hopbound. Specifically, they showed that for any ε > 0, κ = 1, 2, . . ., and
any n-vertex weighted undirected graph, there exists a (1 + ε, βEN)-hopset with Õ(n1+1/κ)
edges, and βEN = βEP ≈ (logκ

ε)logκ. The lower bound of [1], β = Ω(1
ε·logκ)logκ is applicable

to hopsets as well. Generally, hopsets (see [10, 28, 16]) are closely related to near-additive
spanners. See a recent survey [17] for an extensive discussion on this relationship.

Most of the algorithms for computing (approximate) distances and shortest paths in
the streaming setting compute a sparse spanner, and then employ it for computing exact

M. Elkin and C. Trehan 51:3

shortest paths and distances in it offline, i.e., in the post-processing, after the stream is
over [23, 12, 7, 21, 15, 3, 32, 24, 25]. Specifically, in the dynamic streaming model, algorithms
for computing approximately shortest paths (with space Õ(n1+1/κ), for a parameter κ =
1, 2, . . .), can be divided into two categories. The algorithms in the first category build
a sparse multiplicative (2κ − 1)-spanner, and they provide a multiplicative stretch of at
least 2κ − 1 [3, 32, 24, 25]. Moreover, due to existential lower bounds for spanners, this
approach is doomed to provide stretch of at least 4

3κ [35]. The algorithms in the second
category compute exact single source shortest paths in unweighted graphs, but they employ
n1/2−O(1/κ) passes [9, 13]. In the current paper, we partially fill in the gap between these
two extremes, and devise a dynamic streaming (1 + ε)-approximate SSSP algorithm with
space Õ(n1+1/κ) that uses

(
κ
ε

)κ(1+o(1)) passes. Table 1 summarizes the existing algorithms
for the problem of computing approximate shortest paths in streaming setting on unweighted
graphs, and compares them to our results.

Table 1 Prior Work on the Problem

Citation Model Stretch Space No. of Passes Technique
[23] Static (2κ+ 1) Õ(n1+1/κ) 1 Multiplicative Spanner
[12, 7] Static (2κ− 1) Õ(n1+1/κ) 1 Multiplicative Spanner
[21, 15] Static (1 + ε, βEN) Õ(n1+1/κ) βEN Near-Additive Spanner
[29] Static (1 + ε) n1+o(1) ·O(log Λ

ε
) 2O(

√
logn log logn) = no(1) Hopsets

[16] Static (1 + ε) Õ(n1+ρ), for ρ > 0
(logn
ε·ρ

) 1
ρ

(1+o(1)) Hopsets
[13] Static Exact O(n · p), for 1 ≤ p ≤ n O(n/p) Hopsets
[3] Dynamic (2κ− 1) Õ(n1+1/κ) κ Multiplicative Spanner
[24] Dynamic (2κ− 1) Õ(n1+1/κ) bκ/2c+ 1 Multiplicative Spanner
[3] Dynamic O(κlog2 5) Õ(n1+1/κ) O(log κ) Multiplicative Spanner
[25] Dynamic O(κlog2 3) Õ(n1+1/κ) O(log κ) Multiplicative Spanner
[9] Dynamic Exact Õ(n+ p2), for 1 ≤ p ≤ n Õ(n/p) Exact BFS
(This Paper) Dynamic (1 + ε) Õ(n1+1/κ) Constant (unweighted Graphs) Near-Additive Spanners

polylog(n) (weighted graphs) and Hopsets

The algorithms of [23, 12, 7] apply to unweighted graphs, but they can be extended to
weighted graphs by running many copies of them in parallel, one for each weight scale. Let
Λ = Λ(G) denote the aspect ratio of the graph, i.e., Λ = maxu,v∈V dG(u,v)

minu,v∈V dG(u,v)
. Also, let ε ≥ 0 be a

slack parameter. Then by running O(log Λ
ε) copies of the algorithm for unweighted graphs

and taking the union of their outputs as the ultimate spanner, one obtains a one-pass static
streaming algorithm for 2(1 + ε)κ-spanner with Õ(n1+ 1

κ · (log Λ)/ε) edges [19].
In [21], the authors devised static streaming algorithms for building (1 + ε, βEZ)-spanners

where, βEZ = βEZ(ε, ρ, κ) =
(

logκ
ε·ρ

)O(logκ
ρ)

, for any parameters ε, ρ > 0 and κ = 1, 2,
This result was improved in [15], where a static streaming algorithm with similar properties,

but with β = βEN =
(

logκρ+1/ρ
ε

)logκρ+1/ρ
was devised. The algorithms of [21, 15] directly

give rise to β-pass static streaming algorithms with space Õ(n1+ρ) for (1 + ε, β)-APASP (All
Pairs Almost Shortest Paths) in unweighted graphs where β(ρ) ≈ (1/ρ)(1/ρ)(1+o(1)). They
can also be used for producing purely multiplicative (1 + ε)-approximate shortest paths and
distances in O(β/ε) passes and Õ(n1+ρ) space from up to nρ(1−o(1)) designated sources to
all other vertices. There are also a number of additional not spanner-based static streaming
algorithms for computing approximate shortest paths. Henzinger et al. [29] and Elkin and
Neiman [16] devised (1 + ε)-approximate single-source shortest paths (henceforth, SSSP)
algorithms for weighted graphs, that are based on hopsets.

Recently Chang et al. [9] devised a dynamic streaming algorithm for this problem in

APPROX/RANDOM 2022

51:4 (1 + ε)-Approximate Shortest Paths in Dynamic Streams

unweighted graphs. Their algorithm uses Õ(n/p) passes (for parameter 1 ≤ p ≤ n as above)
and space Õ(n+p2) for the SSSP problem, and space Õ(|S|n+p2) for the S×V approximate
shortest path computation.

Ahn et al. [3] devised the first dynamic streaming algorithm for computing approximate
distances. Their algorithm computes a (2κ−1)-spanner (for any κ = 1, 2, . . .) with Õ(n1+1/κ)
edges (and the same space complexity) in κ passes over the stream. This bound was recently
improved by [24]. Their algorithm computes a spanner with the same properties using
bκ/2c+1 passes. Ahn et al. [3] also devised an O(log κ)-pass algorithm for building O(κlog2 5)-
spanner with size and space complexity Õ(n1+1/κ). This bound was recently improved by
[25], whose algorithm produces O(κlog2 3)-spanner with the same pass and space complexities,
and the same size.

Another dynamic streaming algorithm was devised by Kapralov and Woodruff [32]. It
produces a (2κ− 1)-spanner with Õ(n1+1/κ) edges (and space usage) in two passes. Kapralov
et al. [25] improved the stretch parameter of the spanner to 2κ+3

2 −3, with all other parameters
the same as in the results of [32]. Kapralov et al. [25] also devised a general tradeoff in
which the number of passes can be between 2 and κ, and the stretch of the spanner decreases
gracefully from exponential in κ (where the number of passes is 2) to 2κ−1 (when the number
of passes is κ). They have also devised a single pass algorithm with stretch Õ(n 2

3 (1−1/κ)). As
was mentioned above, most of these spanner-based algorithms provide a solution for (2κ− 1)-
APASP for unweighted graphs with space Õ(n1+1/κ) and the number of passes equal to that
of the spanner-construction algorithm. Like their static streaming counterparts [23, 12, 7],
they can be extended to weighted graphs, at the price of increasing their stretch by a factor
of 1 + ε (for an arbitrarily small parameter ε > 0), and their space usage by a factor of
O
(

log Λ
ε

)
.

1.2 Our Results
In the current paper, we present the first dynamic streaming algorithm for SSSP with stretch
1 + ε, space Õ(n1+1/κ), and constant (as long as ε and κ are constant) number of passes
for unweighted graphs. For weighted graphs, our number of passes is polylogarithmic in
n. Specifically, the number of passes of our SSSP algorithm is (κε)κ(1+o(1)) for unweighted

graphs, and
(

(logn)κ
ε

)κ(1+o(1))
for weighted ones. Moreover, within the same complexity

bounds, our algorithm can compute (1+ε)-approximate S×V shortest paths from |S| = n1/κ

designated sources. Moreover, in unweighted graphs, all pairs almost shortest paths with
stretch (1 + ε,

(
κ
ε

)κ) can also be computed within the same space and number of passes.
(That is, paths and distances with multiplicative stretch 1 + ε and additive stretch

(
κ
ε

)κ.)
Note that our multiplicative stretch (1 + ε) is dramatically better than (2κ− 1), exhibited
by algorithms based on multiplicative spanners [3, 32, 24, 25], but this comes at a price of
at least exponential increase in the number of passes. Nevertheless, our number of passes
is independent of n, for unweighted graphs, and depends only polylogarithmically on n for
weighted ones.

1.3 Technical Overview
We devise algorithms for building near-exact hopsets and near-additive spanners in dynamic
streaming model. These structures help us compute almost shortest paths in the input
graph. The following theorem summarizes the resource usage and properties of our hopset
construction.

M. Elkin and C. Trehan 51:5

I Theorem 1. (Theorem 9 in Section 3.4) For any n-vertex graph G(V,E, ω) with aspect
ratio Λ, 2 ≤ κ ≤ (logn)/4, 1/κ ≤ ρ ≤ 1/2 and 0 < ε < 1, our dynamic streaming algorithm
computes whp, a (1 + ε, β) hopset H with expected size O(n1+1/κ · logn) and the hopbound

β given by, β = O
(

(logκρ+1/ρ) logn
ε

)logκρ+1/ρ
. It does so by making O(β · (log κρ + 1/ρ))

passes through the stream and using O(n · log3 n · log Λ) bits of space in the first pass and
O(βε · log2 1/ε · n1+ρ · log5 n) bits of space (respectively O(β

2

ε · log2 1/ε · n1+ρ · log5 n) bits of
space for path-reporting hopset) in each of the subsequent passes.

The hopset is then used (in Section 4) to compute almost shortest paths in weighted graphs.
In the extended version, we also show a similar algorithm for constructing near-additive

spanners. This result is summarized in the following theorem.

I Theorem 2. For any unweighted graph G(V,E) on n vertices, parameters 0 < ε < 1,
κ ≥ 2, and ρ > 0, our dynamic streaming algorithm computes a (1 + ε, β)-spanner with
Oε,κ,ρ(n1+1/κ) edges, in O(β) passes using O(n1+ρ log4 n) space with high probability, where

β is given by, β =
(

logκρ+1/ρ
ε

)logκρ+1/ρ
.

Our algorithms for spanner and hopset construction extend the results of [15, 16] from the
static streaming setting to dynamic streaming one. The algorithms of [15, 16], like their
predecessor, the algorithm of [18], are based on the superclustering-and-interconnection
(henceforth, SAI) approach. Our algorithms in the current paper also fall into this framework.
Algorithms that follow the SAI approach proceed in phases, and in each phase they maintain
a partial partition of the vertex set V of the graph. Some of the clusters of G are selected to
create superclusters around them. This is the superclustering step. Clusters that are not
superclustered into these superclusters are then interconnected with their nearby clusters.
The main challenge in implementing this scheme in the dynamic streaming setting is in the
interconnection step. Indeed, the superclustering step requires a single and rather shallow
BFS exploration, and implementing depth-d BFS in unweighted graphs in d passes over the
dynamic stream can be done in near-linear space (See, e.g., [3, 9]). For the weighted graphs,
we devise a routine for performing an approximate Bellman-Ford exploration up to a given
hop-depth d, using d passes and Õ(n) space.

On the other hand, the interconnection step requires implementing simultaneous BFS
(Bellman-Ford for the weighted case) distance explorations originated at multiple sources.
A crucial property that enabled [15, 16] to implement it in the static streaming setting is
that one can argue that with high probability, not too many distance explorations traverse
any particular vertex. Let us denote by N , an upper bound on the number of explorations
(traversing any particular vertex). In the dynamic streaming setting, however, at any point
of the stream, there may well be much more than N explorations that traverse a specific
vertex v ∈ V , based on the stream of updates observed so far. Storing data about all these
explorations would make the space requirement of the algorithm prohibitively large.

To resolve this issue (and a number of related similar issues), we incorporate a sparse
recovery routine into our algorithms. Sparse recovery is a fundamental and well-studied
primitive in the dynamic streaming setting [26, 11, 30, 5]. It is defined for an input which is a
stream of (positive and negative) updates to an n-dimensional vector →a = (a1, a2, . . . , an). In
the strict turnstile setting, which is sufficient for our application, ultimately each coordinate
ai (i.e., at the end of the stream) is non-negative, even though negative updates are allowed
and intermediate values of coordinates may be negative. In the general turnstile model
coordinates of the vector →a may be negative at the end of the stream as well. The support
of →a , denoted supp(→a), is defined as the set of its non-zero coordinates. For a parameter

APPROX/RANDOM 2022

51:6 (1 + ε)-Approximate Shortest Paths in Dynamic Streams

s, an s-sparse recovery routine returns the vector →a , if |supp(→a)| ≤ s, and returns failure
otherwise. (It is typically also allowed to return failure with some small probability δ > 0,
given to the routine as a parameter, even if |supp(→a)| ≤ s.)

Most of sparse recovery routines are based on 1-sparse recovery, i.e., the case s = 1.
The first 1-sparse recovery algorithm was devised by Ganguly [26], and it applies to the
strict turnstile setting. The space requirement of the algorithm of [26] is O(logn). The
result was later extended to the general turnstile setting by Cormode and Firmani [11] (See
also [37]). We devise an alternative streaming algorithm for this basic task in the strict
turnstile setting. The space complexity of our algorithm is O(logn), like that of [26]. The
processing time-per-item of [26]’s algorithm is however O(1), instead of polylog(n) of our
algorithm.1 Nevertheless, we believe that our new algorithm for this task is of independent
interest.

In the current paper paper we analyze our algorithm in terms of the aspect ratio Λ of the
input graph, given by Λ = maxu,v∈V dG(u,v)

minu,v∈V dG(u,v)
. (All dependencies are polylogarithmic in Λ.) In

the extended version [20], we also show that [34]’s weight reduction (see also [16]) can be
implemented in the dynamic streaming model. As a result, we replace all appearances of log Λ
in the hopset’s size, hopbound and number of passes of our construction by O(logn). However,
the space complexity of our algorithm still mildly depends on log Λ. Specifically, it is Õ(n1+ρ)+
Õ(n) · log Λ. In all existing dynamic streaming algorithms for computing multiplicative
spanners or computing approximate shortest paths in weighted graphs [3, 32, 24, 25], both
the spanner’s size and the space requirements are Õ(n1+1/κ · log Λ). But using our weight
reduction in conjunction with these algorithms, one can produce spanners of size Õ(n1+1/κ)
(without dependence on log Λ), using space Õ(n1+1/κ) + Õ(n) · log Λ. However, the number
of passes increases by an additive term of 1. Completely eliminating the dependence on log Λ
from these results is left as an open problem.

1.4 Outline

The rest of the paper is organized as follows. Section 2 provides necessary definitions and
concepts. Section 3 presents an algorithm for constructing hopsets with constant hopbound.
All the missing proofs and a more thorough analysis of our hopset construction are available
in the extended version [20]. Section 4 shows how we use the algorithm of Section 3 to
compute (1 + ε)-approximate shortest paths in weighted graphs. The spanner construction
algorithm is very similar to the hopset construction algorithm. The spanner construction
algorithm and details on its usage in computing approximate shortest paths in unweighted
graphs are available in the extended version [20] of this paper. The subroutine for performing
a limited depth Bellman-Ford exploration in the input graph is described in Appendix B.
Appendix appears after the references.

1 If the algorithm knows in advance the dimension n of the vector →a and is allowed to compute during
preprocessing, before seeing the stream, a table of size n, then our algorithm can also have O(1)
processing time per update. This scenario occurs in dynamic streaming graph algorithms, including
those discussed in the current paper.

M. Elkin and C. Trehan 51:7

2 Preliminaries

2.1 Streaming Model
In the dynamic streaming model of computation, the set of vertices V of the input graph is
known in advance and the edge set E is revealed one at a time. The edges can be added
as well as removed. For a weighted input graph, the stream S arrives as a sequence of
edge updates S = 〈s1, s2, · · · 〉, where st = (et, eSignt, eWeightt), where et is the edge being
updated and eWeightt is its weight. The eSignt ∈ {+1,−1} value of an update indicates
whether the edge et is to be added or removed. A value of +1 indicates addition and a value
of −1 indicates removal.

For a weighted undirected graph G = (V,E, ω), we assume that the edge weights are
scaled so that the minimum edge weight is 1. Let maxW denote the maximum edge weight
ω(e), e ∈ E. For a non-edge (u, v) /∈ E, we define ω((u, v)) =∞.

I Definition 3. Given a weighted graph G(V,E, ω), a positive integer parameter t, and a
pair u, v ∈ V of distinct vertices, a t-bounded u-v path in G is a path between u and v
that contains no more than t edges (also known as hops), and t-bounded distance between
u and v in G denoted d(t)

G (u, v) is the length of a shortest t-bounded u-v path in G.

2.2 Samplers, Hash Functions and Vertex Encodings
The main technical tool in our algorithms is a space-efficient sampling technique which
enables us to sample a single vertex or a single edge from an appropriate subset of the vertex
set or the edge set of the input graph, respectively. Algorithms for sampling from a dynamic
stream are inherently randomized and often use hash functions as a source of randomness.
Appendix A is devoted to hash functions.

2.3 Vertex Encodings
We assume that the vertices have unique IDs from the set {1, . . . , n}. The maximum possible
ID (which is n) of a vertex in the graph is denoted by maxV ID. The binary representation
of the ID of a vertex v can be obtained by performing a name operation name(v). For an
integer k ≥ 1, [k] denotes the set {1, 2, . . . , k}.

We also need standard definitions of convex combination, convex hull and a convexly
independent set. We will use the following CIS-based encoding for the vertices of the graph:
CIS Encoding Scheme ν: We assign a unique code in Z2 to every vertex v ∈ V . The
encoding scheme works by generating a set of n convexly independent integer vectors in Z2.
Specifically, our encoding scheme uses as its range, the extremal points of the convex hull of
Ball2(R) ∩ Z2, where Ball2(R) is a two-dimensional disc of radius R centered at origin. A
classical result by [31], later refined by [6], states that the number of extremal points of the
convex hull of a set of integer points of a disc of radius R is Θ(R2/3). We set R = Θ(n3/2) to
allow for all the possible n = Θ(R2/3) vertices to be encoded in O(logn) bits. The encoding
of any vertex v can be obtained by performing an encoding operation denoted by ν(v).

We prove the following lemma in extended version which will be be useful in Section 3.2
to detect if the sampling procedure succeeded in sampling exactly one vertex from a desired
subset of the set V .

I Lemma 4. Let c1, c2, · · · , cn be non-negative integer coefficients of a linear combination

of a set P = {p1, p2, · · · pn} of n convexly independent points in Z2 such that
∑n

j=1
cj ·pj∑n

j=1
cj

= pi,

APPROX/RANDOM 2022

51:8 (1 + ε)-Approximate Shortest Paths in Dynamic Streams

for some pi ∈ P . Then cj = 0 for every j 6= i, and ci 6= 0.

3 Hopsets with Constant Hopbound in Dynamic Streaming Model

We adapt the insertion-only streaming algorithm of [16] for hopset construction to work
in the dynamic streaming setting. The algorithm is based on the SAI (Superclustering
and Interconnection) approach. (See [16] for more details.) The main ingredient of both
the superclustering and interconnection steps is a set of Bellman-Ford explorations (B-F
explorations, henceforth) up to a given distance in the input graph from a set of chosen
vertices. The insertion-only streaming algorithm of [16] identifies all the edges spanned by
Θ(β) iterations of certain B-F explorations up to a distance δ from a set of chosen vertices,
by making Θ(β) passes through the stream. Other parts of the hopset construction, such as
identifying the vertices of the graph from which to perform B-F explorations and subsequently
adding edges corresponding to certain paths traversed by these explorations to the hopset,
are performed offline.

We devise a technique to perform a given number of iterations of a B-F exploration
from a set of chosen vertices and up to a given distance in the graph in the dynamic
streaming setting, and as in [16], perform the rest of the work offline. The difference however
is that in the dynamic streaming setting, we do not perform an exact and deterministic
B-F exploration (as in [16]). A randomized algorithm for performing an approximate B-F
exploration originated at a subset of source vertices in a weighted graph, that succeeds whp,
is described in Appendix B. We use this algorithm as a subroutine in the superclustering
step of our main algorithm. The interconnection step is more challenging and involves
performing multiple simultaneous B-F explorations in a weighted graph, each from a separate
source vertex. Here, each vertex in the graph needs to identify all the B-F explorations it
is a part of, and to find its (approximate) distance to the source of each such exploration.
Due to the dynamic nature of the stream, a given vertex may find itself on a lot more
explorations than it finally ends up belonging to. This can be dealt with by combining a
delicate encoding/decoding scheme for the IDs of exploration sources with a space-efficient
sampling technique.

In the following section, we provide an overview of our hopset construction algorithm.

3.1 Overview
Our hopset construction algorithm takes as input an n-vertex weighted undirected graph
G = (V,E, ω) with aspect ratio Λ, and parameters 0 < ε′ < 1/10, κ = 1, 2, . . . and
1/κ < ρ < 1/2, and produces as output a (1 + ε′, β′)-hopset of G. The hopbound parameter

β′ is a function of ε′, Λ, κ, ρ and is given by β′ = O
(

log Λ
ε′ · (log κρ+ 1/ρ)

)logκρ+1/ρ
.

Let k = 0, 1, . . . , dlog Λe − 1. Given two parameters ε > 0 and β = 1, 2, . . ., a set of
weighted edgesHk on the vertex set V of the input graph is said to be a (1+ε, β)-hopset for the
scale k or a single-scale hopset, if for every pair of vertices u, v ∈ V with dG(u, v) ∈ (2k, 2k+1]
we have that

dG(u, v) ≤ d(β)
Gk

(u, v) ≤ (1 + ε) · dG(u, v),

where Gk = (V,E ∪Hk, ωk) and ωk(u, v) = min{ω(u, v), ωHk(u, v)}, for every edge (u, v) ∈
E∪Hk. Let ε > 0 be a parameter that will be determined later in the sequel. (See Section 3.3.)
Set also ` = blog κρc+ dκ+1

κρ e − 1. Let β = (1/ε)`.

M. Elkin and C. Trehan 51:9

The algorithm constructs a separate (1 + ε, β)-hopset Hk for every scale
(20, 21], (21, 22], . . . , (2dlog Λe−1, 2dlog Λe] one after another. For k ≤ blog βc−1, we set Hk = φ.
We can do so because for such a k, it holds that 2k+1 ≤ β, and for every pair of vertices u, v
with dG(u, v) ≤ 2k+1, the original graph G itself contains a shortest path between u and v
that contains at most β edges. (We remark that after rescaling, we will have β′ = β. See
Section 3.3.) In other words, dG(u, v) = d

(β)
G (u, v). Denote k0 = blog βc and kΛ = dlog Λe−1.

We construct a hopset Hk for every k ∈ [k0, kΛ].
During the construction of the hopsetHk for some k ≥ k0, we need to perform explorations

from certain vertices in V up to distance δ ≤ 2k+1 in G. An exploration up to a given
distance from a certain vertex in G may involve some paths with up to n− 1 hops. This can
take up to O(n) passes through the stream. We overcome this problem by using the hopset
edges H(k−1) =

⋃
k0≤ j ≤k−1Hj for constructing hopset Hk. The hopset Hk has to take

care of all pairs of vertices u, v with dG(u, v) ∈ (2k, 2k+1], whereas the edges in E ∪H(k−1)

provide a (1 + εk−1)-approximate shortest path with up to β hops, for every pair u, v with
dG(u, v) ≤ 2k. The value of εk−1 will be specified later in the sequel. (See Section 3.3.)
Denote by G(k−1) the graph obtained by adding the edge set H(k−1) to the input graph G.
Instead of conducting explorations from a subset S ⊆ V up to distance δ ≤ 2k+1 in the input
graph G, we perform 2β + 1 iterations of B-F algorithm on the graph G(k−1) up to distance
(1 + εk−1) · δ. The following lemma from [16] provides a justification for this approach.

I Lemma 5. [16] For u, v ∈ V with dG(u, v) ≤ 2k+1, the following holds:

d
(2β+1)
G(k−1) (u, v) ≤ (1 + εk−1) · dG(u, v) (1)

3.2 Constructing Hk

We now proceed to the construction of the hopset Hk for the scale (2k, 2k+1], for some
k ∈ [k0, kΛ]. We start by initializing the hopset Hk as an empty set and proceed in phases
0, 1, . . . , `. All phases of our algorithm except for the last one consist of two steps, a
superclustering step and an interconnection step. In the last phase, we go directly to the
interconnection step. Throughout the algorithm, we build clusters of nearby vertices. The
input to phase i ∈ [0, `] is a set of clusters Pi, a distance threshold parameter δi and a degree
parameter degi. For phase 0, the input P0 is a partition of the vertex set V into singleton
clusters. Every cluster created by our algorithm has a designated center vertex. We denote
by rC the center of cluster C. In particular, each singleton cluster C = {v} is centered
around v. For a cluster C, we define Rad(C) = max{dG(C)(rC , v) | v ∈ C}. For a set of
clusters Pi, Rad(Pi) = max

C∈Pi
{Rad(C)}.

The degree threshold parameter degi of phase i is used to define the sampling probability
with which the centers of clusters in Pi are selected to grow superclusters around them. We
partition the phases of the algorithm into two stages based on how the degree parameter
grows in each stage. The two stages are the exponential growth stage and the fixed grown
stage. In the exponential growth stage, which consists of phases 0, 1, . . . , i0 = logbκρc, we set
degi = n

2i
κ . In the fixed growth stage, which consists of phases i0+1, i0+2, . . . , i1 = i0+dκ+1

κρ e,
we set degi = nρ. Observe that for every index i, we have degi ≤ nρ.

The distance threshold parameter increases by a factor of 1/ε in every phase. The sequence
of the distance threshold parameters for the centralized construction as defined in [16] is given
by α = α(k) = ε` ·2k+1, δi = α(1/ε)i+4Ri, where R0 = 0 and Ri+1 = Ri+δi = α(1/ε)i+5Ri
for i ≥ 0. Here α can be perceived as a unit of distance. To adjust for the fact that
explorations are performed on the graph G(k−1), and not on the input graph G, we multiply

APPROX/RANDOM 2022

51:10 (1 + ε)-Approximate Shortest Paths in Dynamic Streams

all the distance thresholds δi by a factor of 1+εk−1, the stretch guarantee of the graph G(k−1).
We further modify this sequence to account for the fact that our B-F explorations in the
dynamic stream are not exact and incur a multiplicative error. Throughout the construction
of Hk, we set the multiplicative error of every approximate B-F Exploration we perform to
1 + χ, for a parameter χ > 0 which will be determined later (in Section 3.3). Therefore we
multiply all the distance thresholds by a factor of 1 +χ. We define R′i = (1 +χ) · (1 + εk−1)Ri
and δ′i = (1 + χ) · (1 + εk−1)δi for every i ∈ [0, `]. In the centralized setting, Ri serves as
an upper bound on the radii of the input clusters of phase i. As a result of rescaling, R′i
becomes the new upper bound on the radii of input clusters of phase i.

Superclustering: The phase i begins by sampling each cluster C ∈ Pi independently at
random with probability 1/degi. Let Si denote the set of sampled clusters. We now have
to conduct (approximate) distance exploration up to depth δ′i in G(k−1) rooted at the set
CSi =

⋃
C∈Si{rC}. By Lemma 5, this can be achieved by 2β + 1 iterations of B-F algorithm

on the graph G(k−1). For this, we invoke the approximate B-F exploration algorithm of
Appendix B on graph G(k−1) with set CSi as the set S of source vertices and parameters
η = 2β + 1, ζ = χ. We slightly modify the algorithm of Appendix B and then invoke the
modified version. In the modified version, at the end of each pass through the stream, for
every vertex v ∈ V , we scan through the edges incident to v in the set H(k−1) and update
its distance estimate d̂(v) as:

d̂(v) = min{d̂(v), min
(v,w)∈H(k−1)

{d̂(w) + ωH(k−1)(v, w)}}.

The parent of v, p̂(v) is also updated accordingly. Note that this modification does not
affect the space complexity, stretch guarantee or the success probability of the algorithm of
Appendix B. This provides us with a (1 + χ)-approximation of d(2β+1)

G(k−1) (v, CSi), for all v ∈ V .
Hence, by Theorem 14, an invocation of modified version of approximate B-F algorithm of
Appendix B during the the superclustering step of phase i generates whp, an approximate
B-F exploration of the graph G(k−1), rooted at the set CSi ⊆ V in 2β + 1 passes. It outputs
for every v ∈ V an estimate d̂(v) of its distance to set CSi such that:

d
(2β+1)
G(k−1) (v, CSi) ≤ d̂(v) ≤ (1 + χ) · d(2β+1)

G(k−1) (v, CSi). (2)

Moreover, the set of parent variables p̂(v) of every v ∈ V with d̂(v) <∞ spans a forest F of
G(k−1) rooted at the set of sampled centers CSi.

For every cluster center rC′ , C ′ ∈ Pi \ Si, such that d̂(rC′) ≤ δ′i, the algorithm adds
an edge (rC , rC′) of weight d̂(rC′) to the hopset Hk, where rC is the root of the tree in
F to which rC′ belongs. We also create a supercluster rooted at rC which contains all
the vertices of C ′ as above. Note that if dG(rC , rC′) ≤ δi, then by equations (1) and (2),
d̂(rC′) ≤ (1 + χ) · (1 + εk−1)dG(rC , rC′) = δ′i. Therefore, edge (rC , rC′) will be added to the
hopset and the cluster C ′ will be superclustered into a cluster centered at rC .

Interconnection: Next we describe the interconnection step of each phase i ∈ {0, 1, . . . , `}.
Let Ui be the set of clusters of Pi that were not superclustered in phase i. Let CUi =⋃
C∈Ui{rC}. In the interconnection step of phase i ≥ 0, we want to connect every cluster

C ∈ Ui to every other cluster C ′ ∈ Ui that is close to it. To do this, we want to perform
2β+1 iterations of a (1+χ)-approximate B-F exploration from every cluster center rC ∈ CUi
separately in G(k−1). These explorations are, however, conducted to a bounded depth (in
terms of number of hops), and to bounded distance. Specifically, the hop-depth of these
explorations will be at most 2β+ 1, while the distance to which they are conducted is roughly
δi/2. For every cluster center rC′ , C ′ ∈ Ui within distance δi/2 from another center rC in

M. Elkin and C. Trehan 51:11

G, we want to add an edge e = (rC , rC′) of weight at most (1 + χ) · d(2β+1)
G(k−1) (rC , r′C) to the

hopset Hk. To do so, we turn to the stream to find an estimate of d(2β+1)
G(k−1) (v, rC) for every

v ∈ V and every center rC ∈ Ui. We cannot afford to invoke the algorithm of Appendix B
multiple times in parallel to conduct a separate exploration from every center rC in CUi,
due to space constraints. As shown in [16] (See Lemmas 3.2 and 3.3 of [16]), the following
lemma holds in the interconnection step of our (single-scale) hopset construction:

I Lemma 6 ([15]). For any vertex v ∈ V , the expected number of explorations that visit v
in the interconnection step of phase i is at most degi. Moreover, for any constant c′1, every
vertex v is explored by at most c′1 · lnn · degi explorations in phase i with probability at least
1− 1/nc′1−1.

Specifically, if one conducts B-F explorations to depth at most δ′i/2 in G(k−1) to hop-depth
at most 2β + 1, then, whp, every vertex is traversed by at most O(degi lnn) explorations.
Therefore, we devise a randomized technique to efficiently identify for every v ∈ V , the
sources of all the explorations it gets visited by in phase i. Moreover, for every vertex v ∈ V
with a non-empty subset Uvi ⊆ Ui of explorations that visit v, we find for every cluster
C ∈ Uvi , an estimate of d(2β+1)

G(k−1) (v, rC).
Throughout the interconnection step of phase i, we maintain for every vertex v ∈ V , a

set LCurrentv (called estimates list of v) of sources of B-F explorations that visited v so far.
Each element of LCurrentv is a tuple (s, d̂(v, s)), where s is the center of some cluster in Ui,
and d̂(v, s) is the current estimate of d(2β+1)

G(k−1) (v, s). For any center s′ ∈ CUi, for which we do
not yet have a tuple in LCurrentv, d̂(v, s′) is implicitly defined as ∞. Initially, the estimates
lists of all the vertices are empty, except for the centers of clusters in Ui. The estimates list
of every center rC ∈ CUi is initialized with a single element (rC , 0) in it. The interconnection
step of phase i is carried out in 2β + 1 sub-phases. Next, we describe the purpose of each of
the 2β + 1 sub-phases of the interconnection step and the way they are carried out.

Sub-phase p of the interconnection step: Denote ζ ′ = χ
2·(2β+1) . Our goal is to

ensure that by the end of sub-phase p, for every vertex v ∈ V and every exploration source
s ∈ CUi with a p-bounded path to v in G(k−1) , there is a tuple (s, d̂(v, s)) in the estimates
list LCurrentv such that

d
(p)
G(k−1)(v, s) ≤ d̂(v, s) ≤ (1 + ζ ′)p · d(p)

G(k−1)(v, s).

To accomplish this, in every sub-phase p, we search for every vertex v ∈ V , a better (smaller
than the current value of d̂(v, s)) estimate (if exists) of its (2β + 1)-bounded distance to
every source s ∈ CUi, by keeping track of edges e = (u, v) incident to v in G(k−1). In each of
the 2β + 1 sub-phases, we make two passes through the stream. For a given vertex v ∈ V ,
an exploration source s ∈ CUi is called an update candidate of v in sub-phase p, if a better
estimate of d(2β+1)

G(k−1) (v, s) is available in sub-phase p through some edge e = (u, v) on the
stream. (Recall that the current estimate of d(2β+1)

G(k−1) (v, s′) for some source s′ ∈ CUi for
which we do not yet have an entry in LCurrentv is ∞.) We go through the edge set H(k−1)

offline at the end of every sub-phase and update all our estimates lists with the best available
estimates in H(k−1).

In the first pass of sub-phase p, we identify for every v ∈ V , all of v’s update candidates
in sub-phase p. All of these update candidates are added to a list called the update list of
v, denoted LUpdatev. Each element of LUpdatev is a tuple (s, range, r), where s is the ID
of an exploration source in CUi for which a better estimate of d(2β+1)

G(k−1) (v, s) is available,
range is the distance range I = (low, high] in which the better estimate is available, and r

APPROX/RANDOM 2022

51:12 (1 + ε)-Approximate Shortest Paths in Dynamic Streams

is the number of vertices u ∈ ΓG(v), such that d̂(u, s) + ω(u, v) ∈ range. The second pass of
sub-phase p uses the update list of every vertex v ∈ V to find a better estimate of d(2β+1)

G(k−1) (v, s),
for every update candidate s in LUpdatev. The new better estimate of d(2β+1)

G(k−1) (v, s) for every
source s in LUpdatev is then used to update the estimates list LCurrentv of v.

First pass of sub-phase p of phase i: By Lemma 6„ the number of update candidates
of v in any sub-phase of interconnection step of phase i is at most c′1 · lnn · degi whp. (Recall
that all the explorations are restricted to distance at most δ′i/2.) We denote Ni = c′1 ·lnn·degi
and µi = 16 · c4 · Ni · lnn, where c4 ≥ 1 is a sufficiently large positive constant. At a high
level, in the first pass of every sub-phase, we want to recover, for every vertex v ∈ V , a vector
(containing sources of explorations that visit v in sub-phase p) with at most Ni elements in
its support. In other words, we want to perform an s-sparse recovery for every vertex v ∈ V ,
where s = Ni. We do so by performing multiple simultaneous invocations of a procedure
called FindNewCandidate, for every v ∈ V . The pseudocode for procedure FindNewCandidate
is given in Algorithm 1. The procedure FindNewCandidate enables us to sample an update
candidate s of v (if exists), with a better (than the current) estimate of d(2β+1)

G(k−1) (v, s) in a
specific distance range.

Algorithm 1 Pseudocode for procedure FindNewCandidate

1: Procedure FindNewCandidate(v, h, I)
2: . Initialization
3: slots← ∅ . An array with λ = dlog ne elements indexed from 1 to λ.
. Each element of slots is a tuple (sCount, sNames). For a given index 1 ≤ τ ≤ λ, fields sCount
and sNames of slots[τ] can be accessed as slots[τ].sCount and slots[τ].sNames, respectively.
. slots[τ].sCount counts the update candidates u seen by v with hash values h(u) ∈ [2τ]. It is
set to 0 initially.
. slots[τ].sNames is an encoding of the names of candidate sources seen by v with hash values
in [2τ]. It is set to φ initially.

. Update Stage
4: while (there is some update (et, eSignt, eWeightt) in the stream) do
5: if (et is incident on v and some u ∈ V) then
6: for each (s, d̂(u, s)) ∈ LCurrentu do
7: if ((d̂(u, s) + eWeightt) ∈ I and
8: d̂(u, s) + eWeightt < d̂(v, s)) then
9: τ ← dlog h(s)e
10: repeat . Update slots[τ] for all dlog h(s)e ≤ τ ≤ λ
11: slots[τ].sCount← slots[τ].sCount+ eSignt
12: slots[τ].sNames← slots[τ].sNames+ ν(s) · eSignt
13: . The function ν is described in Section 2.3.
14: . The addition in line 12 is a vector addition.
15: τ = τ + 1
16: until τ > λ

. Recovery Stage
17: if (slots vector is empty) then
18: return (φ, φ)
19: else if (∃ index τ s.t. slots[τ].sNames

slots[τ].sCount = ν(s) for some s in V) then
20: return (s, slots[τ].sCount)
21: else
22: return (⊥,⊥)

For every vertex v ∈ V , we divide the possible range of better estimates of v’s (2β + 1)-
bounded distances to its update candidates, into sub-ranges on a geometric scale. We then
invoke the procedure FindNewCandidate repeatedly in parallel to perform an Ni-sparse

M. Elkin and C. Trehan 51:13

recovery for v on every sub-range. Specifically, we divide the search space of potential better
estimates, [1, δ′i/2], into sub-ranges Ij =

(
(1 + ζ ′)j , (1 + ζ ′)j+1], for j ∈ {0, 1, . . . , γ}, where

γ = dlog1+ζ′ δ
′
i/2e − 1. For j = 0, we make the sub-range I0 =

[
(1 + ζ ′)0, (1 + ζ ′)1] closed

to include the value 1. Note that we are only interested in distances at most δ′i/2. Therefore
we restrict our search for distance estimates to the range [1, δ′i/2].

In more detail, we make for for each v ∈ V and for each sub-range Ij , µi = Θ(Ni · lnn)
attempts in parallel. In a specific attempt for a given vertex v and a given sub-range Ij ,
we make a single call to procedure FindNewCandidate which samples an update candidate
s (if exists) of v with a better estimate of d(2β+1)

G(k−1) (v, s) in the sub-range Ij . Henceforth,
we will refer to an update candidate s of a vertex v with a better estimate of d(2β+1)

G(k−1) (v, s)
in a given distance range I, as the update candidate of v in the range I. A single call to
procedure FindNewCandidate succeeds only with a constant probability. Hence multiple
parallel calls are required to boost the probability of success. In the extended version we
show that making µi parallel attempts ensures that a specific update candidate s for some
input vertex v and a distance subrange Ij gets sampled whp (assuming that it exists).

The procedure FindNewCandidate takes as input the ID of a vertex, a hash function
h chosen at random from a family of pairwise independent hash functions and an input
range I = (low, high]. (The input range may be closed as well.) A successful invocation
of FindNewCandidate for an input vertex v and a distance range I returns a tuple (s, cs),
where s is the ID of an update candidate of v in the range I, and cs is the number of edges
(v, u) ∈ E such that d̂(u, s) + ω(v, u) ∈ I. If there is no update candidate of v in the input
range I, procedure FindNewCandidate returns a tuple (φ, φ). If there are update candidates
of v in the input range, but procedure FindNewCandidate fails to isolate an ID of such a
candidate, it returns (⊥,⊥). Before we start making our attempts in parallel, we sample
uniformly at random a set of functions Hp (|Hp| = µi) from a family of pairwise independent
hash functions h : {1, . . . ,maxV ID} → {1, . . . , 2λ}, where λ = dlogmaxV IDe = dlogne.
Then, for every vertex v ∈ V and every distance sub-range Ij , j ∈ {0, 1, . . . , γ}, we make µi
parallel calls to procedure FindNewCandidate(v, h, Ij), one call for each h ∈ Hp.

Procedure FindNewCandidate: Procedure FindNewCandidate uses the input hash
function h to sample for the input vertex v, an update candidate of v in the input range I.
Let d(I)

v be the number of update candidates of v in the input range I. If we knew the exact
value of d(I)

v , we could sample every new update candidate witnessed by v with probability
1/d(I)

v to extract exactly one of them in expectation. However, all we know about d(I)
v is that

it is at most degi in expectation (Lemma 6) and at most O(degi · lnn) whp. We therefore
sample every new update candidate seen by v on a range of probabilities. We use an array
slots of λ elements, indexed by slot-levels from 1 to λ = dlogne, to implement sampling on a
range of probabilities. We want a given update candidate s to be sampled into slot-level τ
with probability 1/2λ−τ . When d(I)

v ≈ 2λ−τ , with a constant probability there is exactly one
exploration source that gets mapped to slots[τ].

Each element of slots is a tuple (sCount, sNames). The field sCount of element at
slot-level τ counts the new update candidates seen by v with hash values in [2τ]. It is set to 0
initially. The field sName of element at slot-level τ is an encoding of the names of candidate
sources seen by v with hash values in [2τ]. It is set to φ initially.

The update stage of the procedure for an input vertex v and an input distance range I
(See lines 4-16 of Algorithm 1) proceeds as follows. For every update (et, eSignt, eWeightt)
to an edge et incident to v and some vertex u, we look at every exploration source s in the
estimates list LCurrentu of u, (see line 6 of Algorithm 1) and check whether the distance
estimate of v to s via edge et = (v, u) is better than the current value of d̂(v, s), and whether

APPROX/RANDOM 2022

51:14 (1 + ε)-Approximate Shortest Paths in Dynamic Streams

it falls in the input distance range I. (See line 8 of Algorithm 1.) If this is the case, then, we
sample s (on a range of probabilities) by updating the elements of slots array from slot-levels
dlog h(s)e to λ. (See Lines 11 and 12.) We use the CIS-based encoding scheme ν described in
Section 2.3 to encode the names of the exploration sources we sample, and use Lemma 4 to
check (See line 19 of Algorithm 1), if we have successfully isolated the ID of a single update
candidate in the desired distance range.

We need to make sure that for some 1 ≤ τ ≤ λ, only one exploration source will get
mapped to slots[τ]. By Corollary 13 (see Appendix A), only one exploration source gets
mapped to slots[τ] for τ = λ− dlog d(I)

v e − 1, with at least a constant probability. Therefore,
a single call to FindNewCandidate succeeds with at least a constant probability. For a vertex
v ∈ V , if there are no update candidates of v in sub-phase p, all the calls to procedure
FindNewCandidate in all the attempts return (φ, φ). For every such vertex, we do not need
to add anything to its update list LUpdatev. At the end of the first pass, if no invocation of
procedure FindNewCandidate returns as error, we extract for every vertex v ∈ V and every
distance range Ij (j ∈ {0, 1, . . . , γ}), all the distinct update candidates of v in the range Ij
sampled by µi attempts made for v and sub-range Ij . For a given update candidate s of v,
let j = jv,s be the smallest index in {0, 1, . . . , γ}, such that a tuple (s, cs) (for some cs > 0)
is returned by a call to procedure FindNewCandidate(v, h, Ij). We add a tuple (s, Ij , cs)
to the list of update candidates LUpdatev of v. Recall that the set LUpdatev of vertex v
contains tuples (s, range, rs), where s is the ID of an update candidate of v, range is the
distance range in which a better estimate of d(2β+1)

G(k−1) (v, s) lies, and r is the number of edges
(u, v) ∈ ΓG(v) such that d̂(u, s) + ω(u, v) ∈ range.

Second pass of sub-phase j of phase i: The second pass of sub-phase p starts
with the update lists LUpdatev of every v ∈ V . We find for every tuple (s, range, r) in
LUpdatev, a better estimate of d(2β+1)

G(k−1) (v, s) in the sub-range range, by invoking procedure
GuessDistance (described in Appendix B.1) O(logn) times. We sample uniformly at random
a set of c1 log7/8 n = O(logn) pairwise independent hash functions H ′p from the family
h : {1, . . . ,maxVID} → {1, 2, . . . , 2λ} (λ = dlogne), to be used by invocations of procedure
GuessDistance.

Note that the current estimate d̂(v, s) of input vertex v’s distance to its update candidate
s is either available in its estimates list LCurrentv or is implicitly set to ∞. The latter
happens if v has not yet been visited by the exploration rooted at source s. At the end
of the second pass, we have the results of all the invocations of procedure GuessDistance,
for a given vertex v corresponding to the tuple (s, range, r) ∈ LUpdatev. We update the
corresponding tuple (s, d̂(v, s)) in the estimates list LCurrentv of v with the minimum value
returned by any invocation of GuessDistance for vertex v. If an entry corresponding to s is
not present in the estimates list LCurrentv at this stage (i.e., d̂(v, s) =∞ as above), then
we add a new tuple to the estimates list of v. Finally, the updates lists of all the vertices are
cleared to be re-used in the next sub-phase. At the end of second pass of sub-phase p, we
go through the edges of the lower level hopsets and check for each v ∈ V whether a better
estimate of d(2β+1)

G(k−1) (v, s) for any source s ∈ CUi is available through one of the hopset edges.
If this is the case, then we update the estimates lists accordingly.

Finally, after 2β + 1 sub-phases of the interconnection step of phase i, we go through the
estimates list of every center rC ∈ CUi to check for every center r′C ∈ CUi, whether, there is
a tuple (r′C , d̂(rC , r′C)) ∈ LCurrentrC and d̂(rC , r′C) ≤ δ′i/2. Then, for every such center r′C
found, we add an edge (rC , r′C) of weight d̂(rC , r′C) into hopset Hk.

Next, we analyze the properties of our final hopset H.

M. Elkin and C. Trehan 51:15

3.3 Size, Stretch and Hopbound Anlaysis
Size: The size of our hopset H is the same as that of the insertion-only algorithm of [16],
since we follow the same criteria (as in [16]), when deciding which cluster centres to connect
via a hopset edge during our construction. Thus, the overall size of the hopset produced by
our construction is O(n1+1/κ · log Λ) in expectation.

Stretch and Hopbound: Recall that εk is the value such that the graph G(k) (which
is a graph obtained by adding the edges of hopset H(k) =

⋃
k0≤j≤kHj to the input graph

G) provides stretch at most 1 + εk. Also, recall that k0 = blog βc and kΛ = dlog Λe. Write
c5 = 2. We need the following lemma from [16] regarding the stretch of a single scale hopset
Hk, k ∈ [k0, kΛ] produced by the insertion-only algorithm. We refer the reader to Lemma
3.10 and preamble of Theorem 3.11 of [16] for the proof.
I Lemma 7. [16] Let x, y ∈ V be such that 2k ≤ dG(x, y) ≤ 2k+1, then it holds that

d
(h`)
G∪Hk(x, y) ≤ (1 + εk−1)(1 + 16 · c5 · ` · ε)dG(x, y), (3)

and h` = O(1
ε)` is the hopbound. (Here c5 is a fixed constant.)

Rescaling: Define ε′′ = 16 · c5 · ` · ε. Therefore, the stretch of a single scale hopset Hk,
k ∈ [k0, kΛ], produced by the insertion-only algorithm of [16] becomes (1+εk−1)(1+ε′′). After
rescaling, the hopbound h` becomes O(`

ε′′)
`. Recall that ` = `(κ, ρ) = blog(κρ)c+dκ+1

ρκ e−1 ≤
log(κρ) + d1/ρe, is the number of phases of our single-scale hopset construction. It follows
that the hopbound of the insertion-only algorithm is

βEN = O

(
log κρ+ 1/ρ

ε′′

)logκρ+1/ρ
. (4)

Observe that for k = k0, graph G(k−1) is the input graph G itself, since Hk for all k < k0 is an
empty set. (See Section 3.1 for details.) Therefore, 1+εk−1 for k = k0 is equal to 1. It follows
therefore that the stretch 1+εk = 1+εkEN , of the insertion-only algorithm follows the following
sequence: 1 + εk0EN = (1 + ε′′) and for the higher scales, 1 + εk+1EN = (1 + ε′′) · (1 + εkEN).

The stretch of our single scale hopset construction (Section 3.2) for any scale (2k, 2k+1],
k0 ≤ k ≤ kΛ is (1 + χ) times the stretch of the corresponding hopset produced by the
insertion-only algorithm. We set χ = ε′′. Incorporating the additional stretch incurred by
our algorithm into the stretch analysis of [16], we get the following lemma about the stretch
of our dynamic streaming algorithm.
I Lemma 8. For k ∈ [k0, kΛ], we have

1 + εk0 = (1 + ε′′)2

1 + εk = (1 + ε′′)2(1 + εk−1) for k > k0

Observe that Lemma 8 implies that the overall stretch of our hopset H is at most (1+ε′′)2 log Λ.
Recall that the desired stretch of our hopset construction is 1 + ε′ (see Section 3.1), where
ε′ > 0 is an input parameter of our algorithm. We set ε′′ = ε′

4·log Λ , and it follows that our

overall stretch is
(

1 + ε′

4 log Λ

)2 log Λ
≤ 1 + ε′. It follows that ε = ε′

64·c5·`·log Λ .

Plugging in ε′′ = ε′

4·log Λ in (4), we get the following expression for the hopbound of our
dynamic streaming hopset:

β′ = O

(
log Λ
ε′

(log κρ+ 1/ρ)
)logκρ+1/ρ

. (5)

Also recall that we had defined β = (1
ε)` for using 2β+1 as the hop-depth of our explorations.

After the two rescaling steps as above, we get that β = β′.

APPROX/RANDOM 2022

51:16 (1 + ε)-Approximate Shortest Paths in Dynamic Streams

3.4 Summary

A detailed analysis of the resource usage of the hopset construction algorithm is provided in
extended version. In the extended version we also generalize our result to path-reporting
hopsets, and integrate it with a weight reduction that eliminates most of the dependencies
on log Λ. We summarize the results below.

I Theorem 9. For any n-vertex graph G(V,E, ω) with aspect ratio Λ, 2 ≤ κ ≤ (logn)/4,
1/κ ≤ ρ ≤ 1/2 and 0 < ε′ < 1, our dynamic streaming algorithm computes whp, a (1 + ε′, β′)
hopset H with expected size O(n1+1/κ · logn) and the hopbound β′ given by

β′ = O

(
(log κρ+ 1/ρ) logn

ε′

)logκρ+1/ρ

It does so by making O(β′·(log κρ+1/ρ)) passes through the stream and using O(n·log3 n·log Λ)
bits of space in the first pass and O(β

′

ε′ · log2 1/ε′ · n1+ρ · log5 n) bits of space (respectively
O(β

′2

ε′ · log2 1/ε′ ·n1+ρ · log5 n) bits of space for path-reporting hopset) in each of the subsequent
passes.

4 (1 + ε)-Approximate Shortest Paths

Consider the problem of computing (1 + ε)-approximate shortest paths (henceforth (1 + ε)-
ASP) for all pairs in S × V , for a subset S, |S| = s, of designated source vertices, in a
weighted undirected n-vertex graph G = (V,E, ω) with aspect ratio Λ. Let ε, ρ > 0 be
parameters, and assume that s = O(nρ). Our dynamic streaming algorithm for this problem
computes a path-reporting (1 + ε, β)-hopset H of G with β = O(logn

ερ)1/ρ using our hopset
construction algorithm, with κ = 1/ρ. Once the hopset H has been computed, we conduct
(1 + ε)-approximate Bellman-Ford explorations in G ∪H to depth β from all the sources of
S. (See the algorithm from Appendix B.) By Theorem 14, this requires O(β) passes of the
stream, and space O(|S| · n · poly(logn, log Λ)), and results in (1 + ε)-approximate distances
d

(β)
G∪H(s, v), for all (s, v) ∈ S × V . (Note that following every pass over G, we do an iteration

of Bellman-Ford over the hopset H offline, as H is stored by the algorithm.) In addition, for
every pair (s, v) ∈ S × V , we also get the parent of v on the exploration rooted at source
s. We compute the path πG∪H(s, v) between s and v in graph G ∪ H from these parent
pointers. The path-reporting property of our hopset H enables us to replace any hopset
edge e = (x, y) ∈ H on the path πG∪H(s, v) with a corresponding path πG(x, y) in G. In
the extended version we also argue that these replacements can be performed using Õ(n1+ρ)
space. By definition of the hopset, we have dG(s, v) ≤ d(β)

G∪H(s, v) ≤ (1 + ε) · dG(s, v), and the
estimates d̂(s, v) computed by our approximate Bellman-Ford algorithm satisfy d(β)

G∪H(s, v) ≤
d̂(s, v) ≤ (1 + ε) · d(β)

G∪H(s, v). Thus, we have, dG(s, v) ≤ d̂(s, v) ≤ (1 + ε)2 · dG(s, v). By
rescaling ε′ = 3ε, we obtain (1 + ε)-approximate S × V paths, the total space complexity
of the algorithm is O(n1+ρ · poly(logn, log Λ)), and the number of passes is poly(logn). We
derive the following theorem:

I Theorem 10. For any parameters ε, ρ > 0, and any n-vertex undirected weighted graph
G = (V,E, ω) with polynomial in n aspect ratio, and any set S ⊆ V of nρ distinguished
sources, (1 + ε)-ASP for S × V can be computed in dynamic streaming setting in Õ(n1+ρ)
space and log

1
ρ+O(1) n = polylog(n) passes.

M. Elkin and C. Trehan 51:17

References
1 Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. In Proceedings

of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages
351–361, New York, NY, USA, 2016. Association for Computing Machinery. URL: https:
//doi.org/10.1145/2897518.2897555, doi:10.1145/2897518.2897555.

2 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’12, pages 459–467, USA, 2012. Society for Industrial and Applied
Mathematics.

3 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: Sparsification, spanners,
and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS’12, pages 5–14, New York, NY, USA, 2012. Association
for Computing Machinery. URL: https://doi.org/10.1145/2213556.2213560, doi:10.1145/
2213556.2213560.

4 Ingo Althofer, Gautam Das, David Dobkin, and Deborah A Joseph. Generating sparse
spanners for weighted graphs. Technical report, University of Wisconsin-Madison Department
of Computer Sciences, 1989.

5 Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds for sparse
recovery. In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,
pages 1190–1197. SIAM, 2010. URL: https://doi.org/10.1137/1.9781611973075.95, doi:
10.1137/1.9781611973075.95.

6 Antal Balog and Imre Bárány. On the convex hull of the integer points in a disc. In Proceedings
of the Seventh Annual Symposium on Computational Geometry, pages 162–165, New York,
NY, USA, 1991. Association for Computing Machinery. URL: https://doi.org/10.1145/
109648.109666, doi:10.1145/109648.109666.

7 Surender Baswana. Streaming algorithm for graph spanners - single pass and constant
processing time per edge. Information Processing Letters, 106(3):110 – 114, 2008. URL:
http://www.sciencedirect.com/science/article/pii/S002001900700302X, doi:https://
doi.org/10.1016/j.ipl.2007.11.001.

8 J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143 – 154, 1979. URL: http://www.sciencedirect.com/
science/article/pii/0022000079900448, doi:https://doi.org/10.1016/0022-0000(79)
90044-8.

9 Yi-Jun Chang, Martin Farach-Colton, Tsan-sheng Hsu, and Meng-Tsung Tsai. Streaming
complexity of spanning tree computation. In Christophe Paul and Markus Bläser, editors, 37th
International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March
10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 34:1–34:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.
34, doi:10.4230/LIPIcs.STACS.2020.34.

10 Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest
paths. In STOC ’94, 1994.

11 Graham Cormode and D. Firmani. A unifying framework for ?0-sampling algorithms. Distrib-
uted and Parallel Databases, 32:315–335, 2013.

12 Michael Elkin. Streaming and fully dynamic centralized algorithms for constructing and
maintaining sparse spanners. ACM Trans. Algorithms, 7(2), March 2011. URL: https:
//doi.org/10.1145/1921659.1921666, doi:10.1145/1921659.1921666.

13 Michael Elkin. Distributed exact shortest paths in sublinear time. In Hamed Hatami,
Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23,
2017, pages 757–770. ACM, 2017. URL: https://doi.org/10.1145/3055399.3055452, doi:
10.1145/3055399.3055452.

APPROX/RANDOM 2022

https://doi.org/10.1145/2897518.2897555
https://doi.org/10.1145/2897518.2897555
http://dx.doi.org/10.1145/2897518.2897555
https://doi.org/10.1145/2213556.2213560
http://dx.doi.org/10.1145/2213556.2213560
http://dx.doi.org/10.1145/2213556.2213560
https://doi.org/10.1137/1.9781611973075.95
http://dx.doi.org/10.1137/1.9781611973075.95
http://dx.doi.org/10.1137/1.9781611973075.95
https://doi.org/10.1145/109648.109666
https://doi.org/10.1145/109648.109666
http://dx.doi.org/10.1145/109648.109666
http://www.sciencedirect.com/science/article/pii/S002001900700302X
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2007.11.001
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2007.11.001
http://www.sciencedirect.com/science/article/pii/0022000079900448
http://www.sciencedirect.com/science/article/pii/0022000079900448
http://dx.doi.org/https://doi.org/10.1016/0022-0000(79)90044-8
http://dx.doi.org/https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.4230/LIPIcs.STACS.2020.34
https://doi.org/10.4230/LIPIcs.STACS.2020.34
http://dx.doi.org/10.4230/LIPIcs.STACS.2020.34
https://doi.org/10.1145/1921659.1921666
https://doi.org/10.1145/1921659.1921666
http://dx.doi.org/10.1145/1921659.1921666
https://doi.org/10.1145/3055399.3055452
http://dx.doi.org/10.1145/3055399.3055452
http://dx.doi.org/10.1145/3055399.3055452

51:18 (1 + ε)-Approximate Shortest Paths in Dynamic Streams

14 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Improved weighted additive spanners. CoRR,
abs/2008.09877, 2020. URL: https://arxiv.org/abs/2008.09877, arXiv:2008.09877.

15 Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse spanners
and emulators. ACM Trans. Algorithms, 15(1), November 2018. URL: https://doi.org/10.
1145/3274651, doi:10.1145/3274651.

16 Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and applications to
approximate shortest paths. SIAM Journal on Computing, 48(4):1436–1480, 2019. doi:
10.1137/18M1166791.

17 Michael Elkin and Ofer Neiman. Near-additive spanners and near-exact hopsets, A unified view.
Bull. EATCS, 130, 2020. URL: http://bulletin.eatcs.org/index.php/beatcs/article/
view/608/624.

18 Michael Elkin and David Peleg. (1 + ε, β)-spanner constructions for general graphs. In
Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC
’01, pages 173–182, New York, NY, USA, 2001. Association for Computing Machinery. URL:
https://doi.org/10.1145/380752.380797, doi:10.1145/380752.380797.

19 Michael Elkin and Shay Solomon. Fast constructions of light-weight spanners for general
graphs. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
2013, pages 513–525. SIAM, 2013. URL: https://doi.org/10.1137/1.9781611973105.37,
doi:10.1137/1.9781611973105.37.

20 Michael Elkin and Chhaya Trehan. (1+ε)-approximate shortest paths in dynamic streams.
CoRR, abs/2107.13309, 2021. URL: https://arxiv.org/abs/2107.13309, arXiv:2107.
13309.

21 Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1 + ε, β)-spanners in
the distributed and streaming models. Distributed Computing, 18(5):375–385, 2006. URL:
https://doi.org/10.1007/s00446-005-0147-2, doi:10.1007/s00446-005-0147-2.

22 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. In Josep Díaz, Juhani Karhumäki, Arto Lepistö,
and Donald Sannella, editors, Automata, Languages and Programming, pages 531–543, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

23 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the data-stream model. SIAM Journal on Computing, 38(5):1709–1727,
2009. doi:10.1137/070683155.

24 Manuel Fernandez, David P. Woodruff, and Taisuke Yasuda. Graph spanners in the message-
passing model. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science
Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of
LIPIcs, pages 77:1–77:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL:
https://doi.org/10.4230/LIPIcs.ITCS.2020.77, doi:10.4230/LIPIcs.ITCS.2020.77.

25 Arnold Filtser, Michael Kapralov, and Navid Nouri. Graph Spanners by Sketching in Dy-
namic Streams and the Simultaneous Communication Model, pages 1894–1913. 2021. URL:
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.113, arXiv:https://epubs.
siam.org/doi/pdf/10.1137/1.9781611976465.113, doi:10.1137/1.9781611976465.113.

26 S. Ganguly. Counting distinct items over update streams. Theor. Comput. Sci., 378:211–222,
2007.

27 David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic graph connectivity
with improved worst case update time and sublinear space. CoRR, abs/1509.06464, 2015.
URL: http://arxiv.org/abs/1509.06464, arXiv:1509.06464.

28 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Improved algorithms
for decremental single-source reachability on directed graphs. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and
Programming, pages 725–736, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

https://arxiv.org/abs/2008.09877
http://arxiv.org/abs/2008.09877
https://doi.org/10.1145/3274651
https://doi.org/10.1145/3274651
http://dx.doi.org/10.1145/3274651
http://dx.doi.org/10.1137/18M1166791
http://dx.doi.org/10.1137/18M1166791
http://bulletin.eatcs.org/index.php/beatcs/article/view/608/624
http://bulletin.eatcs.org/index.php/beatcs/article/view/608/624
https://doi.org/10.1145/380752.380797
http://dx.doi.org/10.1145/380752.380797
https://doi.org/10.1137/1.9781611973105.37
http://dx.doi.org/10.1137/1.9781611973105.37
https://arxiv.org/abs/2107.13309
http://arxiv.org/abs/2107.13309
http://arxiv.org/abs/2107.13309
https://doi.org/10.1007/s00446-005-0147-2
http://dx.doi.org/10.1007/s00446-005-0147-2
http://dx.doi.org/10.1137/070683155
https://doi.org/10.4230/LIPIcs.ITCS.2020.77
http://dx.doi.org/10.4230/LIPIcs.ITCS.2020.77
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.113
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611976465.113
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611976465.113
http://dx.doi.org/10.1137/1.9781611976465.113
http://arxiv.org/abs/1509.06464
http://arxiv.org/abs/1509.06464

51:19

29 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-
tight distributed algorithm for approximating single-source shortest paths. In Proceedings
of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, page
489?498, New York, NY, USA, 2016. Association for Computing Machinery. URL: https:
//doi.org/10.1145/2897518.2897638, doi:10.1145/2897518.2897638.

30 Piotr Indyk, Eric Price, and David P. Woodruff. On the power of adaptivity in sparse
recovery. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 285–
294. IEEE Computer Society, 2011. URL: https://doi.org/10.1109/FOCS.2011.83, doi:
10.1109/FOCS.2011.83.

31 Vojtěch Jarník. Über die gitterpunkte auf konvexen kurven. Mathematische Zeitschrift,
24:500–518, 1926.

32 Michael Kapralov and David Woodruff. Spanners and sparsifiers in dynamic streams. In
Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC
’14, pages 272–281, New York, NY, USA, 2014. Association for Computing Machinery. URL:
https://doi.org/10.1145/2611462.2611497, doi:10.1145/2611462.2611497.

33 Valerie King, Shay Kutten, and Mikkel Thorup. Construction and impromptu repair of an
MST in a distributed network with o(m) communication. CoRR, abs/1502.03320, 2015. URL:
http://arxiv.org/abs/1502.03320, arXiv:1502.03320.

34 Philip N Klein and Sairam Subramanian. A randomized parallel algorithm for single-
source shortest paths. Journal of Algorithms, 25(2):205–220, 1997. URL: https://www.
sciencedirect.com/science/article/pii/S0196677497908889, doi:https://doi.org/10.
1006/jagm.1997.0888.

35 Felix Lazebnik and Vasiliy A. Ustimenko. Some algebraic constructions of dense graphs of large
girth and of large size. In Joel Friedman, editor, Expanding Graphs, Proceedings of a DIMACS
Workshop, Princeton, New Jersey, USA, May 11-14, 1992, volume 10 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 75–93. DIMACS/AMS, 1992.
URL: https://doi.org/10.1090/dimacs/010/07, doi:10.1090/dimacs/010/07.

36 Andrew McGregor. Graph stream algorithms: A survey. SIGMOD Rec., 43(1):9–20, May
2014. URL: https://doi.org/10.1145/2627692.2627694, doi:10.1145/2627692.2627694.

37 Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error lp-sampling with
applications. In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19,
2010, pages 1143–1160. SIAM, 2010. URL: https://doi.org/10.1137/1.9781611973075.92,
doi:10.1137/1.9781611973075.92.

38 David Peleg and Alejandro A. Schaffer. Graph spanners. Journal of Graph Theory, 13(1):99–
116, 1989. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190130114,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.3190130114, doi:https:
//doi.org/10.1002/jgt.3190130114.

Appendix
A Hash Functions

A hash function h maps elements from a given input domain to an output domain of bounded
size. Ideally, we would like to draw our hash function randomly from the space of all possible
functions on the given input/output domain. However, since we are concerned about the
space used by our algorithm, we will rely on hash functions with limited independence. A
family of functions H = {h : U → [m]}, from a universe U to [m], for some positive integers
m and k, is said to be k-wise independent, if it holds that, when h is chosen uniformly at

APPROX/RANDOM 2022

https://doi.org/10.1145/2897518.2897638
https://doi.org/10.1145/2897518.2897638
http://dx.doi.org/10.1145/2897518.2897638
https://doi.org/10.1109/FOCS.2011.83
http://dx.doi.org/10.1109/FOCS.2011.83
http://dx.doi.org/10.1109/FOCS.2011.83
https://doi.org/10.1145/2611462.2611497
http://dx.doi.org/10.1145/2611462.2611497
http://arxiv.org/abs/1502.03320
http://arxiv.org/abs/1502.03320
https://www.sciencedirect.com/science/article/pii/S0196677497908889
https://www.sciencedirect.com/science/article/pii/S0196677497908889
http://dx.doi.org/https://doi.org/10.1006/jagm.1997.0888
http://dx.doi.org/https://doi.org/10.1006/jagm.1997.0888
https://doi.org/10.1090/dimacs/010/07
http://dx.doi.org/10.1090/dimacs/010/07
https://doi.org/10.1145/2627692.2627694
http://dx.doi.org/10.1145/2627692.2627694
https://doi.org/10.1137/1.9781611973075.92
http://dx.doi.org/10.1137/1.9781611973075.92
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190130114
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.3190130114
http://dx.doi.org/https://doi.org/10.1002/jgt.3190130114
http://dx.doi.org/https://doi.org/10.1002/jgt.3190130114

51:20

random from H then for any k distinct elements x1, x2, · · · , xk ∈ U , and any k elements
z1, z2, · · · , zk ∈ [m], x1, x2, · · · , xk and mapped by h to z1, z2, · · · , zk with probability 1/mk,
i.e., as if they were perfectly random. Such functions can be described more compactly,
but are sufficiently random to allow formal guarantees to be proven. The following lemma
summarizes the space requirement of limited independence hash functions:

I Lemma 11 ([8]). A function drawn from a family of k-wise independent hash functions
can be encoded in O(k logn) bits.

Specifically, we will be using pairwise independent hash functions.
The following lemma, a variant of which has also been proved in [27, 33] in a different

context, is proved in the extended version.

I Lemma 12. Let h : U → [2λ] be a hash function sampled uniformly at random from a
family of pairwise independent hash functions H. If we use h to hash elements of a given set
S ⊆ U such that |S| = s, then a specific element d ∈ S hashes to the set [2t], t = λ−dlog se−1
and no other element of S does so with probability at least 1

8s .

Lemma 12 implies the following corollary:

I Corollary 13. Let h : U → [2λ] be a hash function sampled uniformly at random from a
family of pairwise independent hash functions H. If we use h to hash elements of a given set
S ⊆ U with |S| = s, then exactly one element in S hashes to the set [2t], t = λ− dlog se − 1,
with probability at least 1

8 .

B Approximate Bellman-Ford Explorations

In this section, we describe an algorithm for performing a given number of iterations of an
approximate B-F (Bellman-Ford) exploration from a given subset S ⊆ V of source vertices
in a weighted undirected graph G(V,E, ω) with aspect ratio Λ. For a given vertex v ∈ V
and a set S ⊆ V , the t-bounded distance between v and S in G, denoted d(t)

G (v, S), is the
length of a shortest t-bounded path between v and some s ∈ S (See Definition 3) such that
d

(t)
G (v, s) = min{d(t)

G (s′, v) | s′ ∈ S}.
Given an n-vertex weighted graph G(V,E, ω), a set S ⊆ V of vertices, an integer parameter

η > 0 and an error parameter ζ ≥ 0, an (η, ζ)-B-F exploration of G rooted at S outputs for
every vertex v ∈ V , a (1 + ζ)-approximation of its η-bounded distance to to the set S.

Throughout the execution of our algorithm, we maintain two variables for each vertex
v ∈ V . One of them is a current estimate of v’s η-bounded distance to set S, denoted d̂(v),
and the other is the ID of v’s neighbour through which it gets its current estimate, denoted
p̂(v), and called the parent of v. We start by initializing d̂(s) = 0, p̂(s) =⊥, for each s ∈ S
and d̂(v) =∞, d̂(v) =⊥ for each v ∈ V \ S. As the algorithm proceeds, d̂(v) and p̂(v) values
of every vertex v ∈ V \ S are updated to reflect the current best estimate of d(η)

G (v, S). The
final value of d̂(v) for each v ∈ V is such that d(η)

G (v, S) ≤ d̂(v) ≤ (1 + ζ) · d(η)
G (v, S), and the

final value of p̂(v) for each v ∈ V contains the ID of v’s parent on the forest spanned by
(η, ζ)-B-F exploration of G rooted at the set S. The algorithm proceeds in phases, indexed
by p, 1 ≤ p ≤ η. We make one pass through the stream in each phase.

Phase p: In every phase, we search for every vertex v ∈ V \ S, a better (smaller than
the current value of d̂(v)) estimate (if exists) of its η-bounded distance to the set S, by
keeping track of updates to edges e = (v, u) incident to v. Specifically, we divide the search
space of potential better estimates, [1, 2 · Λ], into sub-ranges Ij =

(
(1 + ζ ′)j , (1 + ζ ′)j+1],

51:21

for j ∈ {0, 1, . . . , γ}, where γ = dlog1+ζ′ 2 · Λe − 1 and ζ ′ is set to ζ/2η for technical reasons.
For j = 0, we make the sub-range I0 =

[
(1 + ζ ′)0, (1 + ζ ′)1] closed to include the value 1.

Recall that we are doing a (1 + ζ)-approximate B-F exploration (and not an exact one).
Due to this, some of the better estimates we get in a given phase may be between Λ and
(1 + ζ) · Λ ≤ 2 · Λ, where Λ is the aspect ratio of the input graph. We therefore keep our
search space from 1 to 2Λ instead of Λ. In more detail, we make for for each v ∈ V \ S, γ
guesses, one for each sub-range. In a specific guess for a vertex v corresponding to sub-range(
(1 + ζ ′)j , (1 + ζ ′)j+1] for some j, we make multiple simultaneous calls to a randomized
procedure called GuessDistance which samples an edge (if exists) between v and some vertex
u such that

d̂(u) + ω(v, u) ∈ Ij .

The exact number of calls we make to procedure GuessDistance in each guess will be
specified later in the sequel. The smallest index j ∈ [0, γ], for which the corresponding guess
denoted Guess(j)

v successfully samples an edge which gives a distance estimate better than
the current estimate of v, is chosen to update d̂(v).

The pseudocode for procedure GuessDistance is given in Algorithm 2.

Algorithm 2 Pseudocode for Procedure GuessDistance

1: Procedure GuessDistance(x, h, I) . Initialization
2: slots← ∅ . An array with λ elements indexed from 1 to λ, where λ = dlogne.
. Each element of slots is a tuple (xCount, xDist, xName). For a given index 1 ≤ τ ≤ λ, fields
xCount, xDist and xName of slots[τ] can be accessed as slots[τ].xCount, slots[τ].xDist and
slots[τ].xName, respectively.
. slots[τ].xCount is the number of sampled edges (x, y) with h(y) ∈ [2τ]. Initially, it is set to 0.
. slots[τ].xDist is the distance estimate for x provided by an edge (x, y) with h(y) ∈ [2τ].
Initially, it is set to 0.
. slots[τ].xName is encoding of the names of the endpoints y of sampled edges (x, y) with
h(y) ∈ [2τ]. Initially, it is set to φ.

. Update Stage
3: while (there is some update (et, eSignt, eWeightt) in the stream) do
4: if (et is incident on x and some y such that d̂(y) + eWeightt ∈ I) then
5: τ ← dlog h(y)e
6: repeat . Update slots[τ] for all dlog h(y)e ≤ τ ≤ λ.
7: slots[τ].xCount← slots[τ].xCount+ eSignt
8: slots[τ].xDist← slots[τ].xDist+ (d̂(y) + eWeightt) · eSignt
9: slots[τ].xName← slots[τ].xName

⊕
name(y) .

⊕
stands for bitwise XOR.

10: τ = τ + 1
11: until τ > λ

. Recovery Stage
12: if (slots array is empty) then
13: return (∞,∞)
14: else if (∃ index τ | slots[τ].xCount = 1) then
15: return (slots[τ].xDist, slots[τ].xName)
16: else
17: return (⊥,⊥)

The procedure GuessDistance takes as input the ID of a vertex, a hash function h

chosen at random from a family of pairwise independent hash functions and an input range
I = (low, high]. The input range may be closed as well.

A successful invocation of procedure GuessDistance for an input vertex x and input
range I, returns a tuple (dist, parent), (if there is at least one edge (x, y) in G such that

APPROX/RANDOM 2022

51:22

d̂(y) + ω(x, y) ∈ I, and (∞,∞) otherwise), where dist is an estimate of x’s η-bounded
distance to the set S in the range I, and parent is the parent of x in the forest spanned by
(η, ζ)-B-F exploration of G rooted at the set S. The procedure GuessDistance may fail to
return (with a constant probability) a distance estimate in the desired range, even when such
an estimate exists. It returns an error, denoted by (⊥,⊥), in that case.

Before we start making calls to procedure GuessDistance, we sample uniformly at random
a set of functions Hp of size c1 log8/7 n from a family of pairwise independent hash functions
h : {1, . . . ,maxV ID} → {1, . . . , 2λ}, where λ = dlogne and c1 is an appropriate constant.
For every guess for a given vertex x ∈ V \ S and a given subrange Ij , we make |Hp| parallel
calls to procedure GuessDistance, one for each h ∈ Hp, to get an estimate of d(η)

G (x, S) in
the given subrange. The multiple parallel calls are required since a single call to procedure
GuessDistance succeeds only with a constant probability, while we need to succeed with high
probability.

Additionally, before we start the phase p, we create for each v ∈ V \ S, a copy d̂′(v) of its
current distance estimate d̂(v). Any update to the distance estimate of a vertex v during
phase p is made to its shadow distance estimate d̂′(v). On the other hand, the variable d̂(v)
for vertex v ∈ V \S remains unchanged during the execution of phase p. At the end of phase
p, we update d̂(v) as d̂(v) = d̂′(v). The purpose of using the shadow variable is to avoid any
issues arising due to simultaneous reading from and writing to the distance estimate variable
of a vertex by multiple parallel calls to procedure GuessDistance.

B.1 Procedure GuessDistance
For a given vertex x, and a given distance range I, let y ∈ ΓG(x) be such that

d̂(y) + ω(x, y) ∈ I.

In what follows, we will refer to such a vertex y ∈ ΓG(x) as a candidate neighbour and
the corresponding edge (x, y) as a candidate edge in the range I. For a given vertex x, let
c
(p,j)
x be the number of candidate neighbours of x in the sub-range Ij . A call to procedure

GuessDistance for vertex x with input range I = Ij works by sampling a candidate neighbour
with probability 1

c
(p,j)
x

. We use the input hash function h to assign hash values to the
candidate edges in the range {1, . . . , 2λ}, where λ = dlogne. We only know an upper bound
of n and not the exact value of c(p,j)x . Therefore, we try to guess c(p,j)x on a geometric scale of
values 2λ−τ , τ = 1, 2, . . . , λ, and sample every candidate neighbour on a range of probabilities
corresponding to our guesses of c(p,j)x .

To implement sampling on a range of probabilities, we use an array slots of λ elements in-
dexed by slot-levels from 1 to λ. Every new candidate neighbour y witnessed by x is assigned a
hash value h(y) by h. In every element of slots, we maintain a tuple (xCount, xDist, xName),
and xCount, xDist and xName of slots[τ] can be accessed as slots[τ].xCount, slots[τ].xDist
and slots[τ].xName, respectively. The variable xCount ∈ Z at slot-level τ maintains the
number of candidate neighbours with hash values in [2τ]. It is initialized to 0 at the beginning
of the stream. Every time an update to a candidate edge et = (x, y) with h(y) ∈ [2τ] appears
on the stream, slots[τ].xCount is updated by adding the eSignt value of et to its current
value. The variable xDist at slot-level τ is an estimate of η-bounded distance of x limited to
the input distance range I provided by edge (x, y) with h(y) ∈ [2τ]. Initially, it is set to 0.
Every time an update to a candidate edge et = (x, y) with h(y) ∈ [2τ] appears on the stream,
slots[τ].xDist is updated by adding the value of the expression (d̂(y) + eWeightt) · eSignt
to its current value. (Recall that it is initialized as 0.) The variable xName is encoding of

51:23

the names of endpoints y of the sampled edges (x, y) with h(y) ∈ [2τ]. It is set to φ initially.
Every time an update to a candidate edge et = (x, y) with h(y) ∈ [2τ] appears on the stream,
slots[τ].xName is updated by performing a bitwise XOR of its current value with name(y).

At the end of the stream, if the slots array is empty, then there are no candidate neighbours
in ΓG(x) and the procedure GuessDistance returns (∞,∞). If there is a slot-level τ such that
slots[τ].xCount = 1, then only one candidate neighbour is mapped to slot-level τ . In this
case, slots[τ].xDist gives us an estimate of x’s η-bounded distance to the set S in the input
distance range I, and slots[τ].xName gives us the name of x’s parent on the forest spanned
by the (η, ζ)-B-F exploration of G rooted at set S. Indeed, if no smaller scale estimate will be
discovered, the vertex recorded in slots[τ].xName will become the parent of x in the forest.
The procedure GuessDistance returns (slots[τ].xDist, slots[τ].xName). If the slots vector is
not empty but there is no slot level with xCount = 1, then the procedure GuessDistance
has failed to find a distance estimate in the input range I for x, and thus it returns an error
(⊥,⊥).

If the input vertex x has some candidate neighbours in the input distance range, we
need to make sure that for some 1 ≤ τ ≤ λ, only one candidate neighbour will get mapped
to slots[τ]. By Corollary 13, only one of the c(p,j)x candidate neighbours gets mapped to
the set [2τ], for τ = λ − dlog c(p,j)x e − 1, with at least a constant probability. Therefore, a
single invocation of procedure GuessDistance for a given vertex x and a given distance range
succeeds with at least a constant probability. Since we are running |Hp| parallel invocations
of procedure GuessDistance for a given input vertex x and a given distance range I, we pick
the output of a successful invocation of procedure GuessDistance as an estimate for x in the
input range. In the case that all the invocations of GuessDistance in a guess return an error,
the algorithm terminates with an error. In the extended version, we show that when the set
Hp is appropriately sized, the event of all the invocations of procedure GuessDistance in a
given guess failing has a very low probability.

Once all the γ = O(log Λ
ζ′) guesses for a given vertex x have completed their execution

without failure, we pick the smallest index j for which the corresponding guess guess(j)
x

has returned a finite (non-failure) value, and compare this value with d̂(x). If this value
gives a better estimate than the current value of d̂(x), we update the corresponding shadow
variable d̂′(x), and the parent variable p̂(x). At the end of phase p, if the algorithm has not
terminated with an error, for every vertex x ∈ V \S, we update its current distance estimate
variable with the value in the corresponding shadow variable as d̂(x) = d̂′(x).

A detailed analysis of the algorithm is available in the extended version. The following
theorem summarizes the results.

I Theorem 14. For a sufficiently large positive constant c, given an integer parameter η, an
error parameter ζ, an input graph G(V,E, ω), and a subset S ⊆ V , our distance exploration
algorithms performs, with probability at least 1− 1

nc , a (1 + ζ)-approximate Bellman-Ford
exploration of G rooted at the set S to depth η, and outputs for every v ∈ V , an estimate d̂(v)
of its distance to set S and v’s parent p̂(v) on the forest spanned by this exploration such
that d(η)

G (v, S) ≤ d̂(v) ≤ (1 + ζ) · d(η)
G (v, S) in η passes through the dynamic stream using

Oc(η/ζ · n · log2 n · log Λ(logn+ log Λ)) space in every pass.

Note also that the space used by the algorithm on different passes can be reused, i.e., the
total space used by the algorithm is Oc(η/ζ · n · log2 n · log Λ(logn+ log Λ)).

APPROX/RANDOM 2022

	1 Introduction
	1.1 Distances in the Streaming Model
	1.2 Our Results
	1.3 Technical Overview
	1.4 Outline

	2 Preliminaries
	2.1 Streaming Model
	2.2 Samplers, Hash Functions and Vertex Encodings
	2.3 Vertex Encodings

	3 Hopsets with Constant Hopbound in Dynamic Streaming Model
	3.1 Overview
	3.2 Constructing Hk
	3.3 Size, Stretch and Hopbound Anlaysis
	3.4 Summary

	4 (1+)-Approximate Shortest Paths
	Appendix
	A Hash Functions
	B Approximate Bellman-Ford Explorations
	B.1 Procedure GuessDistance

