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One of the difficulties in monitoring an ongoing
pandemic is deciding on the metric that best describes
its status when multiple intercorrelated measurements
are available. Having a single measure, such as
the effective reproduction number R, has been a
simple and useful metric for tracking the epidemic
and for imposing policy interventions to curb the
increase when R > 1. While R is easy to interpret in
a fully susceptible population, it is more difficult to
interpret for a population with heterogeneous prior
immunity, e.g. from vaccination and prior infection.
We propose an additional metric for tracking the
UK epidemic that can capture the different spatial
scales. These are the principal scores from a weighted
principal component analysis. In this paper, we
have used the methodology across the four UK
nations and across the first two epidemic waves
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(January 2020–March 2021) to show that first principal score across nations and epidemic
waves is a representative indicator of the state of the pandemic and is correlated with the
trend in R. Hospitalizations are shown to be consistently representative; however, the precise
dominant indicator, i.e. the principal loading(s) of the analysis, can vary geographically and
across epidemic waves.

This article is part of the theme issue ‘Technical challenges of modelling real-life epidemics
and examples of overcoming these’.

1. Introduction
Throughout the SARS-CoV-2 pandemic, there have been consistent requirements from modellers
to ‘nowcast’ the pandemic, i.e. provide a quantitative assessment of the current state of the
pandemic and to ‘forecast’ the epidemic, i.e. predict the future trajectory at varying spatial and
temporal scales. There are inherent difficulties in modelling the current state of a pandemic,
with challenges associated with data censoring, reporting lags, uncertainty in cause of death,
asymptomatic cases and testing errors all contributing to possible biases in informed measures
of incidence [1,2]. While several metrics can be used to provide a quantitative evaluation of the
current state of an epidemic, the effective reproduction number, R, has been the most commonly
and widely used metric (see Pellis et al. [3] for further discussion of this). R is a measure of the
number of secondary infections stemming from a single infection and reflects the transmissibility
or infectiousness of the viral variant during an epidemic. It allows tracking of the status of
the epidemic with R < 1, suggesting that the epidemic is in the declining phase, whereas R > 1
describes increased transmission and a growing epidemic. In the UK, it is derived as a consensus
range from a number of different models and reported weekly by the UK Health Security Agency
[4]. Since the onset of the pandemic in the UK, this R consensus range has been used to track
the epidemic status and to inform and guide policy decision-makers in imposing and removing
interventions such as imposing reduced social interactions intervention, i.e. lockdowns. However,
while R is a useful measure, it is sensitive to, for example, the choice of data being used (e.g.
the number of tests being carried out and any delays in reporting of cases) or the method for
calculating it (e.g. the combination and the type of models used or the length of the time-slice
being used for the calculation). It can also be computationally demanding to provide accurate
estimates. Furthermore, once the population is partially or fully vaccinated defining population-
wide R may not suffice. There are also difficulties associated with the fact that the onset of
symptoms often happen a few days after the onset of infection, and hence, the current value
of R really represents the state of the pandemic at some point in the recent past; in the UK, the
consensus is that the current value of R is lagged by 2–3 weeks [4].

Other metrics such as the rate of daily hospital admissions have been suggested as alternative
metrics that can be used alongside R, especially in a very heterogeneous population with mixed
immunity from vaccination or from prior infection with a specific viral variant. In this article,
we develop and apply a statistical method to derive a different metric related to the daily cases,
hospitalizations, mechanical ventilation bed (MVB) admissions or deaths related to COVID-19
to track the national and regional epidemic status. For this purpose, we analyse the time series
of these metrics to determine the important temporal, spatial and mechanistic dimensions of the
data and highlight potential outliers in the time series.

We utilize multivariate projection methods, specifically methods of dimension reduction,
aiming to find lower-dimensional representations of multiple (correlated) measurements to
provide new measurement axes that are weighted as linear combinations of the original
measurements. Principal components analysis (PCA) is one such method, which also has the
added advantage of representing a geometric rotation of the data into orthogonal, or mutually
independent, axes that are maximal in terms of variance retention. Given there would a priori be
expected to be a high degree of correlation between the time series measuring varying dimensions
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of the pandemic status, dimension reduction techniques would be expected to project the data
matrix down into a much smaller number of uncorrelated bases. Larger numbers of infected
cases generally lead to higher numbers of those requiring medical intervention or mortality rates.
However, within a horizon of emerging variants that may be more transmissible but possibly less
severe, this relationship may not be linear or consistent across measurements and settings.

There appears to have been little attempt to account for these inherent correlations between
measurements thus far. The formal structures inherent in existing models are not always directly
applicable to simple statistical approaches and can often be computationally complex when
conducting inference. Methods that enable practitioners to obtain indicators of the current or
recent state of the pandemic in a quick and efficient manner are therefore highly desirable.

We aim to do this by developing an approach similar to Xiang & Swallow [5] in analysing
data from the UK COVID-19 dashboard [6] to study simpler representations of the multivariate
output of cases, deaths, hospitalizations and MVB occupancy. We use S-Mode and T-mode PCA,
with a temporal weight matrix calculated from median correlation in residuals following a
generalized additive model fitted to a smooth of date index. We conduct the PCA on deaths,
cases, hospitalizations and MVBs both at a UK level, and separately for the four UK nations. We
also conduct additional analyses looking for differences between the dynamics of the first two
principal COVID-19 waves. The analyses aim to explore whether a single epidemic metric or a
combination of metrics can be a useful indicator of the status of the epidemic across nations and
waves and hence be potentially useful to track in future alongside R and growth rate.

2. Methods

(a) Principal components analysis
Multivariate projection and decomposition methods, such as PCA, enable the extraction of
structures in multivariate data through an eigen-decomposition of the correlation or covariance
matrix. The eigenvectors form a rotated basis of the data, or equivalently a new set of uncorrelated
axes that are ordered by magnitude of their corresponding eigenvalues. This corresponds directly
to the proportion of variation in the original measurements that they explain.

For a data matrix X of dimension n × p, a PCA can be conducted through a singular value
decomposition (SVD) of the column mean-centred matrix. The SVD decomposes X into

X = UDVᵀ,

where U and V are the column matrices of left and right singular vectors, respectively, and D
a diagonal matrix of singular values. The objective is to find a linear transformation Y = UᵀX,
where Uᵀ = (U11, . . . , Up1)ᵀ is a matrix of constants such that the Var(Y1) is maximized, subject
to the normalizing constraint UᵀU = I. It can therefore be seen both as a variance-maximization
projection of the covariance matrix or a linear transformation into an orthogonal set of bases.
As the singular values are ordered by magnitude, or hence proportion of variation explained,
for highly collinear data, lower order approximations can be produced by setting these singular
values to zero.

Extensions to standard PCA relax the a priori assumption of unknown structure and allow
users to account for existing spatial and/or temporal structures inherent in the data through
the use of spatial and/or temporal weighting matrices [7]. Accounting for existent temporal
structures in the data allows the extraction of important residual joint structures that can be more
readily interpreted than if these known structures are not accounted for. In conventional PCA, it
is common practice to standardize the data matrix by column standard deviations. Standardizing
by a corresponding weight matrix ensures that the temporal structures are more comparable and
are not dominated by measurements that are in larger units or are leading lags.

Alternative rotations, often referred to as S-Mode or T-Mode PCA of the data, can lead to
different bases. Assuming the rows of the matrix correspond to the time points of the data and
the columns to the individual time series, the S-Mode PCA aims to find dominant temporal trends
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across the four data streams. Conversely, T-Mode PCA is conducted on the transpose of the matrix
and aims to find different patterns across the time series and the associated time points at which
they occur.

(b) Flow-directed PCA
(i) Weighted PCA

Adjusting PCA to account for known spatial and/or temporal structure in the data can support
the extraction of novel trends in the data, as well as account for spatial variability in units across
space or temporal lags in the time series. Assuming the data matrix is a n × p matrix, a p × p
column weight matrix Ω and n × n row weight matrix Φ can be constructed so that PCA is applied
to a transformed matrix X̃ = ΦXΩ .

In our analyses here, we only consider the temporal column matrix, Ω , as the spatial aspect
is less evident when considering measurements of different patient status; however, we describe
the full process for completeness. Weighting or supervising the PCA by a temporal matrix should
transform the data matrix towards a standard multivariate normal, so that the subsequent PCA
selects eigenvectors with a high ratio of spatial or inter-measurement variability relative to
temporal variation. This reduces the potential of overfitting by prioritizing variation between
measurements, while still ordering the eigenvalues by maximal variance retention.

Let X̃ denote the scaled data matrix, weighted by spatial and/or temporal weight matrices as
follows.

X̃ = ΦXΩ = ŨD̃Ṽᵀ,

where the decomposed matrices generated on the scaled variables are denoted with a tilde. In this
instance, Φ is the spatial weight matrix and Ω is the temporal weight matrix. As only a temporal
matrix is used here, we remove dependence on Φ, concentrating only on the temporal matrix Ω .
Hence, the principal scores (PCs) of the new weighted variables become XΩṼ , and the loadings
are Ω−ᵀṼ .

The temporal weight matrix is constructed similar to that by Gallacher et al. [8] using
independent generalized additive models [9]. For measurement Y, we fit the model

E[Y] = g−1

(
β0 +

K∑
k=1

fk(x)

)
,

where the fk(.) are smooth functions, often represented as splines and g() is the link function
mapping to the scale of the response. These models are fitted by restricted maximum likelihood
in the mgcv package [10] to each of the time series with an intercept and an univariate smooth
function of date as predictor, i.e. a univariate x. As in the study by Xiang & Swallow [5], this
aims to remove trends specific to each stream, with residual variation used to determine the
PCs. Remaining correlation in the model residuals between time [1, . . . , (n − 1)] and [2, . . . , n]
is calculated for each stream and then the median value is used as an estimate of ρ, the
average global temporal correlation. The median residual temporal correlations ρ are estimated
for each of the output time series (these will vary in each analysis depending on the spatial
resolution/measurements used). The ith row and jth column element of the temporal weight
matrix Ti,j is then specified as ρ|i−j| for all time indices in the original data matrix. The weight
matrix Ω is then taken as the matrix square-root of T, i.e. Ω = T1/2. The temporal weight matrix
is applied to the data matrix, and dimension reduction is then conducted to create a new
uncorrelated set of bases. The method is identifiable up to a change in sign, so in some cases,
similar trends are apparent, only inverted.
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(ii) S-mode and T-mode PCA

Next we describe how these methods can be applied to explore important global spatial and
temporal trends in cases and deaths from COVID-19. To extract the important trends, PCA
and similar dimension reduction techniques are an obvious choice. PCA conducts an eigen-
decomposition of the covariance (or correlation) of a data matrix, with eigenvalues ordered by
magnitude to reduce a set of p correlated variables to a smaller set of k < p orthogonal variables.
Versions of PCA for spatio-temporal data were referred to by Richman [11] as S-mode and T-mode
PCA, the particular mode depending on whether the columns of are time points (T-mode) or time
series index (S-mode).

S-Mode PCA aims to find dominant temporal trends across the spatial locations, highlighting
a small number of dominant temporal trends across all countries and/or time series. Conversely,
T-Mode PCA aims to find different spatial patterns in the data and the associated time points
at which they occur. In general, however, PCA finds unsupervised structures in the data by
conducting an eigen-decomposition of the correlation of covariance matrix. While this can often
be useful in visualizing data in lower dimensions, it is not possible to guide the structure of the
new axes using prior information or independent data. To account for known spatio-temporal
correlations inherent in the data, we use spatio-temporally weighted S-mode and T-mode PCA,
which aim to find dominant temporal and spatial patterns, respectively. Gallacher et al. [8]
extended these approaches to account for known spatio-temporal structures in river flow systems
through the use of spatial and/or temporal weight matrices to inform spatio-temporal structure.
Analyses were conducted using the stpca package in R.

S-Mode PCA will be conducted with the columns of matrix in each formulation being the
particular data stream and the rows corresponding to time points (day). For T-Mode PCA,
the columns correspond to the time points and the rows are the data streams. In S-Mode,
the output of interest will be a series of time-indexed points projected into the dimensions
of principal variance, denoted the PCs. In T-mode, the scores will be a projection of the
time points into a single score for each of the data streams. In both cases, the PCs will be
a linear combination of the original higher-dimensional data with loadings representing the
contribution of each of the original measurements to the corresponding score. It would be
expected that these scores are centred around zero, with approximately symmetric variation
around this. Any deviations from this would suggest outliers or patterns that warrant further
consideration.

(c) Data
Data used in this study are extracted from the UK COVID-19 Dashboard [6] and consist of
daily measurements of reported cases, deaths, hospitalizations and MVBs occupied (representing
hospital occupancy where ventilation support was required) from 2 April 2020 to 22 February
2021 (327 days of 16 measurements). This time period spans the first two waves of the pandemic
in the UK and terminates at the point that the vaccination programme was rolled out on a
wide scale. Numbers were available at the level of the four individual UK nations, as well as
aggregated across the UK as a whole. The nationally segregated data were used for all analyses,
with some analyses run both jointly across all nations and independently for each nation, to
determine differences in results depending on spatial scale. Data were checked for inconsistencies
and outliers that may have impacted results, although none were found.

For additional analyses, the data were also stratified into nation-specific data matrices and
matrices corresponding to the two individual waves, namely, March to May 2020 (59 days)
representing the first epidemic wave and September 2020 to April 2021 (175 days) representing
the second epidemic wave (as per ONS, [12]), were also constructed. All matrices are column
mean-centred before analysis to ensure easier comparison between dimensions.

The data and computer code used to run the analyses and generate figures reported in this
article are openly available at https://doi.org/10.5281/zenodo.6078749.
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Figure 1. First two PC scores for temporally weighted S-Mode PCA for pooled UK data, with the corresponding proportion of
variance explained above each. Data correspond to April 2020 to March 2021.

3. Results

(a) Combined UK analysis
As a result of the PCA analysis, we derived the first and second PCs. The initial results obtained
at the UK-wide scale suggest that a single combined index of the four different measurements
from each of the four nations is able to explain approximately 42% of variation, with the second
PC accounting for a further 18% (figure 1), with loadings being roughly equal. The observed
trend in PC1 is incredibly smooth, with an initial peak very early in the studied period before
a steep decline in the state of the pandemic towards the summer months. The overall state then
worsened from early September through to early November, when a lockdown was implemented.
The release of restrictions over the Christmas period from late December leads to a drastic increase
in the overall observed trend until early January, when further interventions were introduced as
well as the initialization of the vaccination roll-out. Following this point, there is a steep linear
reduction in the observed overall state to the end of the modelled period in March.

In addition, there is a further trend observed in the second PC, which shows a general increase
in the pandemic state from April through to September, after which it remains relatively stable.
Given the relatively smooth nature of this second score and its asymptotic behaviour, this would
suggest a more subtle and smooth change in the observed behaviour. The change in testing
capacity over this time frame increased significantly, particularly up until the autumn/winter
period. The Spearman correlation coefficient was calculated as 0.36 between the second score and
the reported number of new tests [6], giving some support to the idea this second score could be
associated with an underlying change in the data collection, rather than necessarily a change in
the pandemic.

Figure 2 shows the first PC for the T-mode analysis. The aim of this approach is to detect time
series that deviate significantly from each other. In this analysis, only a single PC is required to
explain over 90% of the variation in the data, suggesting that further PCs are not informative.
Following temporal standardization, it would be expected that these follow approximately a
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Figure 3. First two PCs for temporally weighted S-Mode PCA across the different UK nations.

multivariate normal distribution. Most of the scores lie around zero, with some small deviations
for hospitalizations and MVBs in England. What is particularly noteworthy, however, is the
significant deviation for cases away from the central trend, suggesting that case numbers in
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England, and to a lesser extent hospitalization and MVBs, deviated markedly away from trends
in the other nations and other time series.

(b) Nation-specific analysis
For the nation-specific analyses, the first S-mode PC was able to explain between 65% and 70%
of the total variation in the data, with around 25% explained by PC2. This suggests that there is a
single dominant trend, with a second less-dominant independent trajectory occurring (figure 3).
The corresponding loadings show that the dominant contributor to the principal axis varies across
nations (figure 4). For England, it was cases; Northern Ireland deaths; Scotland showed roughly
equal contributions; and Wales hospitalizations.

All analyses showed peaks in April 2020 and January 2021, with a smaller peak in November
2021 that showed initial signs of reduction before increasing again to the major peak in January
2021. The lockdown that was introduced in November 2020 seems to have been particularly
beneficial in Scotland, which showed a reduction down to similar low levels as over the summer
months in 2020. The subsequent significant growth up to January 2021 follows temporary
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Figure 5. First PC for temporally weighted T-Mode PCA—(a) England, (b) Northern Ireland, (c) Scotland and (d) Wales.

Christmas reductions in distancing measures and may be a result of this. A combined impact
of strict intervention measures after the Christmas holidays and in the New Year, combined with
the rolling out of the vaccination programme for susceptible individuals, led to a reduction across
all trends, and this is highlighted in the first PC.

While Scotland, Wales and Northern Ireland show a short sharp peak in April 2020 that drops
sharply down to September, the first PC in England showed a much shallower change over the
initial months in 2020 before similar dynamics over the winter 2020 to the other nations. The
change in the early months observed in the other three nations is relegated to PC2 in England,
suggesting that overall changes were less dramatic than in other areas of the UK. This pattern in
PC2 for England relative to the other nations suggests that the earlier wave was distinctly different
from the first wave.

The T-mode analysis by nation (figure 5) suggests that hospitalizations are consistently close
to zero when projected into the new axes. Cases vary markedly from this, suggesting that they are
very different and therefore caution should be taken when considering them as representative of
the epidemic state.

(c) Comparison of waves
We also rerun the unified S-Mode analysis to compare dynamics of trends separately for the two
principal waves of COVID-19 over the studied period (figures 6 and 7). We denote wave 1 to
consist of data between 20 January 2020 and 31 May 2020 and wave 2 to correspond to data from
1 September 2020 to the end of March 2021 [12]. The results were consistent with the full analysis
in terms of which variables dominated the first principal component; however, there were clearly
different general temporal trends in each of these periods. Particularly noteworthy is the principal
linearly increasing trend seen in PC1 for wave 1 dynamics. PC2 for this analysis explains little of
the variance, so is not worth focusing on. Wave 2 shows more variation through time, including
an interrupted linear growth that temporarily decreases at the time of a national lockdown in
November. A similar linear reduction is seen at the end of wave 2. Both of these time periods
correspond to strict lockdown periods in the UK.
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Figure 6. First two PCs for temporally weighted S-Mode PCA covering dates in COVID-19 Wave 1, April to June 2020.
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Figure 7. First two PCs for temporally weighted S-Mode PCA covering dates in COVID-19 Wave 2 spanning September 2020 to
March 2021.

The loadings between the two analyses, which represent the contribution of an individual
measurement to each linear transformation, showed some interesting trends. Specifically, in wave
2, the loadings decreased for hospitalizations in all nations; deaths in England and cases in Wales
and Northern Ireland. All other measurements were more dominant in wave 1.
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Figure 8. First PC from figure 1 coloured by strata of the upper bound of the estimated UK reproductive number upper bound
from [4] in the same week. Red is R< 1; green is R= 1 and teal is R> 1. Purple corresponds to weeks in which no estimate
was provided. (Online version in colour.)
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Figure 9. First PC from S-Mode PCA in England coloured by strata of the upper bound of the estimated UK reproductive number
upper bound from [4] in the same week. Red is R< 1; green is R= 1 and teal is R> 1. Purple corresponds to weeks in which
no estimate was provided. (Online version in colour.)
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(d) Relationship with R
Finally, we compare the results from the full S-mode analysis in figure 1 and the England-
specific analysis with the corresponding estimates of UK-wide reproductive number from
[13]. Comparable data from the other nations were not publicly available. Both upper and
lower bounds of the reproduction number R were available, generated from an ensemble of
epidemiological models with the upper bound being used in figure 1. During periods of increased
R, there is very good agreement in the trend between the time series of R and the corresponding
observed increase in the first PC (figures 8 and 9). Similarly, when R drops and remains
below one, we also observe a inflection in the first PC. This agreement suggests that the PC is
strongly correlated with R (Spearman’s coefficient ρ = 0.84 and ρ = 0.72 for the UK and England,
respectively), and hence, PC may feasibly provide a viable additional quantity for fast nowcasting
of the pandemic.

4. Conclusion
Overall across nations, our results suggest that hospitalizations are consistently important as a
representative indicator of the state of the pandemic at any given time point, being highlighted
as outside the standard linear combinations of the other variables in most analyses. This matches
the fact that these are likely to be relatively unbiased compared with cases [14] and less age- or
health status-specific than MVBs. MVBs are also expected to be limited by capacity, unlike the
overall hospital admissions, the former of which policy has changed significantly over the course
of the pandemic [15]. The combination of results from S-mode and T-mode analyses at different
scales allow for a greater understanding of the pandemic at different levels.

Elsewhere in this issue, alternative approaches have been proposed for calculation or R from
cases only [16,17]; however, our approach utilizes all available data streams and is also able to
find additional second-order structures in the data.

In some analyses, the epidemic trends can also be driven by the number of reported
cases, notably in Scotland, where non-pharmaceutical interventions (NPIs), particularly in the
populated central belt incorporating Glasgow and Edinburgh, were maintained much longer over
the study period so that the dynamics would be expected to be different guided by these NPIs’
impact. For example, Greater Glasgow and neighbouring authorities remained under varying
levels of restrictions between early September 2020 and May 2021, which were particularly severe
between November and December. However, reported numbers of cases can be highly variable
and subject to possible underreporting and are strongly dependent on testing, contact tracing and
isolation behaviour and policies.

For the nation-specific analyses, variation was observed in the dominant contributor to
the principal axis, suggesting that simple averages of different measures are not appropriate.
Numbers of hospitalized patients appear to be consistently highlighted as outliers in the data,
however. This is aligned with hospitalizations and especially occupancy levels, being a trend
that, together with R, has been important in driving policy decisions over the first and second
epidemic waves, i.e. over the study period here.

Deaths and MVBs as a proxy for hospital occupancy have also been used as epidemic
indicators by policy decision-makers. In our analysis, however, they do not appear to be a
significant indicator of the epidemic status. We note that this could be due to possible bias in these
as reported death figures have been challenging during the pandemic due to delays in reporting
and uncertainty over the exact cause of death. For instance, there have been several different
figures adopted, e.g. mortality within 28 days of a positive test, deaths with COVID-19 on the
death certificate and deaths with rather than from COVID-19. All of these metrics represent deaths
related to COVID-19, but all have aspects of the data that can cause biases and give uncertainty in
reporting deaths related to COVID-19. The number of MVBs, while perhaps slightly less biased
than the reported numbers of cases and deaths, is likely to be susceptible to changes in policy
and is severely limited by the carrying capacity at each hospital and movement of patients in and
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out of these wards depending on need. Hospitalization figures indicating admission to hospital
with COVID-19 and are less susceptible to either of these biases [14]. Hence, our suggestion that
overall hospitalizations may be a good epidemic indicator and an additional potential metric to
track alongside R and growth rate is sensible.

The good agreement between our approach and independent estimates of the reproduction
number in England gives support to our approach as a complementary fast, real-time method
for determining the state of the pandemic from multivariate noisy data. As we had mentioned
previously, tracking R in a highly heterogeneous population with an imprinted prior immunity
from vaccination and prior infection with different variants is very different to R in a unvaccinated
population or fully susceptible one at the onset of the epidemic or after immunity has fully
waned. Furthermore, the current tracking of the epidemic status via the nowcasting process
by the modelling team at the UKHSA is reliant on a combination of mathematical models that
are calibrated to the vast amount of currently available data from the UK COVID-19 dashboard
[4]. Looking towards a situation where less data may be produced daily, e.g. when potentially
only hospitalizations may be tracked rather than also cases and deaths related to COVID-19, an
alternative method to assess epidemic status such as the one proposed here will be of great value.

Via our step-by-step statistical analysis, we highlight the care that must be taken when
choosing the level of aggregation of data for statistical analysis [18,19]. For example, our results
highlight that aggregating the data to UK level changes the dynamics of the data streams and
masks important local dynamics.

There were limited differences in general trends between the first and second wave of COVID-
19 across the UK, with both waves showing linear reductions post-lockdown interventions. MVBs
generally became less dominant while hospitalizations emerged as more dominant in the second
wave. Deaths in England were also more dominant in wave 1. This could relate to a change
in policy of only intervening in the most serious cases, or an improvement in outcomes due
to an improved understanding of the disease and the impact from the large-scale vaccination
programme from December 2020.

The fact that most analyses of spatial trends show two major principal components, while
temporal analyses tend to show only one dominant trend in space, is worth highlighting. The
principal spatial trend will generally show the dominant trend over larger regions, while the
second spatial trend could relate to an increase in testing capacity over the time period, showing
an overall increase in numbers detected over the whole, whereas early in the emergence of
SARS-CoV-2, only those with severe symptoms would likely be detected. It could also highlight
second-order structure in the data, corresponding to higher variability in times of policy changes
(e.g. lockdowns, reopening of schools, reopening of public services) or local variations in trends
not picked up by the main principal component.

One of the drawbacks of conventional PCA is that as an unsupervised method, it is often
challenging to interpret the often abstract outputs that it produces. Also, in many scenarios,
known structures in the data can be readily available and are not themselves of interest. One of the
interests in these scenarios is finding latent structures in the data that explain hidden correlations
between measured quantities. The study of these structures can then inform further on possible
important mechanisms within the system under study.

In the study by Xiang & Swallow [5], the authors analysed data from global trends relating
to reported cases of, and deaths resulting from, SARS-CoV-2. Their analyses found that a
single temporal trend dominated the global spread of the disease. This suggests that there
are multi-scale processes occurring, namely, a general spread across countries that happens
smoothly and consistently, and more local dynamics within a country that occur at a finer
resolution. This again highlights the importance of considering appropriate scales when looking
at dynamics of infectious diseases (e.g. Garabed et al. [20]). Aggregation of data may be beneficial
computationally or in terms of reducing the impact of biases and errors in the data; however, it
will inevitably change results.

Removing common temporal correlation from the data through a temporal weight matrix
reduced the amount of variation explained in all analyses, but had little impact on the overall
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conclusions. This supports the idea that there is a great deal of similarity across nations within
the UK in terms of seasonal dynamics and principal trends; however it is not sufficient to treat the
streams as either independent or entirely analogous.

There appear to have been few attempts to look at the structures inherent in multiple
measurements of the pandemic and how to reduce these down to single measures, other than
the R value widely applied. Rahman et al. [21] constructed a structural equation model, in which
dimension reduction is included, and a variable relating to ‘pandemic severity’ is generated as
one of their dimensions of interest. However, this is not the main focus of their research, and
they only include cases and deaths in their analysis. Their analyses support the idea that treating
the measurements as independent is clearly erroneous, as they clearly have large amounts of
correlation. Also, errors and biases in each stream will be compounded if independent models
are fitted. Using dimension-reduction techniques, such as directed PCA, allows for the correlation
to be incorporated into the methodology and reduces the impact of any single stream bias by
integrating over them all.

In summary, in this study, we have used an established statistical technique to generate an
alternative, yet complementary, indicator of the epidemic status to R and growth rate. We have
used the PCA methodology described here to show that overall, across nations and epidemic
waves, the level of hospitalizations with COVID-19 is a good indicator of the epidemic status.
However, the precise best indicator, i.e. the PC(s) of the PCA, vary geographically and across
epidemic waves.
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