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Abstract

This paper proposes a jackknife Lagrange multiplier (JLM) test for instrumental variable

regression models, which is robust to (i) many instruments, where the number of instruments

may increase proportionally with the sample size, (ii) arbitrarily weak instruments, and (iii)

heteroskedastic errors. In contrast to Crudu, Mellace and Sándor (2021) and Mikusheva and

Sun (2021) who proposed jackknife Anderson-Rubin tests that are also robust to (i)-(iii), we

modify a score statistic by jackknifing and construct its heteroskedasticity robust variance

estimator. Compared to the Lagrange multiplier tests by Kleibergen (2002) and Moreira

(2001) and their modification for many instruments by Hansen, Hausman and Newey (2008),

our JLM test is robust to heteroskedastic errors and may circumvent a possible decrease in

the power function. Simulation results illustrate the desirable size and power properties of

the proposed method.

1 Introduction

In empirical applications of instrumental variable (IV) regression methods, researchers often face

imprecise estimation results and so seek to employ many valid IVs to improve precision. However,

statistical inference procedures in IV regression models can be crucially affected by the quality

and number of the IVs. It has been known that when instruments are only weakly correlated

with the endogenous regressors, the standard asymptotic approximations to the finite sample

distributions of the conventional estimators and test statistics can be poor. The use of many
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instruments can improve efficiency of the estimators or their associated tests, but often leads the

usual inference procedures to have poor finite sample properties (see, e.g., Andrews and Stock,

2007a, for a review).

In order to overcome the weak IV problem, several robust inference methods have been

proposed. Kleibergen (2002) and Moreira (2001) proposed Lagrange multiplier (LM) type tests,

while Moreira (2003) proposed a conditional likelihood ratio test, both of which are shown to be

robust to the strength of the IVs.1 There have been a lot of studies on the properties of these

tests and their extensions (see, e.g., Kleibergen, 2005, and Andrews, Moreira and Stock, 2006).

We note that these tests were developed mainly in response to the weak IV problem, and as such

it is not clear how well (or how poorly) their tests perform with many instruments.

There have been many studies investigating the effects of many instruments. Linear models

and asymptotics with many instruments were introduced by Kunitomo (1980) and Morimune

(1983). Bekker (1994) pointed out that the many instruments asymptotic theory, where the

number of instruments K may grow proportionally to the sample size n, may be suited better

to applications, even when the number of instruments is moderate. Chao and Swanson (2005)

generalized the many instruments asymptotic theory to allow for weaker instruments, where the

concentration parameter may grow at a slower rate than n, and investigated conditions to achieve

consistency for the k-class IV estimators. Han and Phillips (2006) further extended the many

weak instruments asymptotic framework to study the asymptotic properties of the GMM esti-

mator for possibly nonlinear models. Andrews and Stock (2007b) showed that Anderson-Rubin,

LM, and conditional likelihood ratio statistics are robust to many weak instruments, where the

instruments are arbitrarily weak and K satisfies K3/n → 0. We also refer the reader to Newey

and Windmeijer (2009) for the GMM theory including the LM statistic under the many weak

moments asymptotics. Hansen, Hausman and Newey (2008) studied the case where K may be

proportional to n and the error term is homoskedastic, and developed a many instruments robust

standard error and modification for the LM test. Hausman et al. (2012) proposed a Wald test

based on heteroskedasticity and many instruments robust versions of the limited information

maximum likelihood and Fuller (1977) estimators. These papers make assumptions on the rates

of the concentration parameter or the number of instruments and/or homoskedasticity to achieve

consistency of the point estimators and associated tests on parameter hypotheses. This paper

complements these existing results by considering asymptotically valid tests under the null hy-

pothesis with arbitrarily weak instruments, even though such tests may be inconsistent under
1Here robustness refers to size control under the null hypothesis on structural parameters. Under arbitrarily

weak instruments, there is no consistent test in general (see Mikusheva and Sun (2021) and discussion below for
the case of many and weak instruments).
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the alternatives without further assumptions on the strength of instruments.

In this paper, we propose a jackknife Lagrange multiplier (JLM) test for IV regression mod-

els, which is robust to (i) many instruments, where the number of instruments may increase

proportionally with the sample size, (ii) arbitrarily weak instruments, and (iii) heteroskedastic

errors. Our idea is to modify the score statistic by jackknifing and to construct its heteroskedas-

ticity robust variance estimator. In particular, by applying the leave-one-out method introduced

by Phillips and Hale (1977) and Angrist, Imbens and Krueger (1999), we re-center a score-type

vector in the presence of many weak instruments and heteroskedasticity.2 Compared to the LM

tests by Kleibergen (2002) and Moreira (2001) and their modification for many instruments by

Hansen, Hausman and Newey (2008), our JLM test is robust to heteroskedastic errors and may

circumvent a possible decrease in the power function. In particular, the power of our test does

not decline asymptotically in any region under an additional requirement on strength of the

instruments. Furthermore, the Wald statistic introduced by Hausman et al. (2012) is not fully

robust to weak instruments because it relies on the consistency of their heteroskedastic limited

information maximum likelihood estimator. Our JLM test can be a useful complement to Haus-

man et al.’s (2012) Wald test if the researcher is primarily concerned with the size properties of

the tests. The JLM test is asymptotically valid under the null hypothesis with arbitrarily weak

instruments even though it is generally inconsistent under fixed alternatives without further re-

quirements on the strength of the instruments. Simulation results illustrate the desirable size

robustness properties of the proposed method.

Many papers in the econometrics literature have applied the idea of jackknifing for IV re-

gression models. Phillips and Hale (1977), Angrist, Imbens and Krueger (1999), and Blomquist

and Dahlberg (1999) proposed the jackknife IV estimator (JIVE), which aims at eliminating the

correlation between the first stage fitted values and structural equation errors. Hahn, Hausman

and Kuersteiner (2004) studied higher-order properties of the jackknife two-stage least squares

estimator. Davidson and MacKinnon (2006) conducted an extensive simulation study on the fi-

nite sample performance of the JIVE. Ackerberg and Devereux (2009) proposed a bias-corrected

JIVE and investigated its asymptotic properties under the many instruments asymptotics and

heteroskedastic errors. Chao et al. (2012) studied asymptotic properties of the JIVE under the

many-weak instruments asymptotics and heteroskedastic errors. Newey and Windmeijer (2009)

extended the JIVE to the GMM context. Hansen and Kozbur (2014) proposed a regularized

JIVE to deal with the case where the number of instruments may be larger than the sample size.
2In the context of overidentifying restriction testing, Chao et al. (2014) proposed a jackknife version of the

conventional overidentifying restriction test statistic, which is robust to many instruments and heteroskedastic
errors. In contrast, this paper is concerned with parameter hypothesis testing.
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Recently and independently, Crudu, Mellace and Sándor (2021) and Mikusheva and Sun

(2021) have proposed jackknife Anderson-Rubin tests, which are asymptotically size correct

under (i)-(iii). These tests use jackknifing to re-center the Anderson-Rubin statistic in the

presence of many weak instruments and heteroskedasticity. Furthermore, Mikusheva and Sun

(2021) developed a novel variance estimator based on cross-fitting in the spirit of Kline, Saggio

and Sølvsten (2020) to standardize the jackknifed Anderson-Rubin statistic. In contrast to these

recent papers, we apply jackknifing to the score statistic. Thus the construction and theoretical

developments for our statistic are different, and this paper may be considered as a complement

to the Anderson-Rubin approach in Crudu, Mellace and Sándor (2021) and Mikusheva and Sun

(2021). Simulation results indicate that our JLM statistic compares favorably with the jackknife

Anderson-Rubin statistic, even though a formal analysis to compare these statistics is beyond

the scope of this paper.

The paper is organized as follows. Section 2 presents our main results. After introducing

our basic setup in Section 2.1, Section 2.2 proposes the JLM statistic and studies its asymptotic

property for a simple case where there is no included exogenous regressor, and then Section 2.3

discusses a general case. Section 3 conducts a simulation study and presents a real data example.

Finally, Section 4 concludes.

2 Main results

2.1 Setup

We first introduce our basic setup. Consider a single structural equation

y1i = y′2iβ + z′1iγ + ui, (1)

for i = 1, . . . , n, where y1i is a scalar dependent variable, y2i is a G-dimensional vector of

endogenous regressors, z1i is a K1-dimensional vector of (included) exogenous regressors in (1),

β and γ are G- and K1-dimensional vectors of unknown parameters, respectively, and ui is an

error term. We assume that (1) is the first equation in a simultaneous system of G + 1 linear

stochastic equations relating G + 1 endogenous variables yi = (y1i, y
′
2i)
′, and K = K1 + K2

exogenous variables zi = (z′1i, z
′
2i)
′, where z2i is a K2-dimensional vector of IVs for (1). The

number of instrumentsK2 = K2n may grow with the sample size n, and thus the joint distribution

of (y′i, z
′
i) is allowed to vary with n. We also assume that (u1, . . . , un) are mutually independent

conditional on (z1, . . . , zn) with E(ui|zi) = 0 almost surely for i = 1, . . . , n. The reduced form
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of yi is defined as

yi = Π′nzi + vi =

 π′1n

Π′2n

 zi +

 v1i

v2i

 , (2)

where π1n is a K-dimensional vector and Π2n is a K×G matrix of the reduced form coefficients,

and vi = (v1i, v
′
2i)
′ is a (1 +G)-dimensional vector of the disturbances. (v1, . . . , vn) are mutually

independent conditional on (z1, . . . , zn) with E(vi|zi) = 0 almost surely.

In this setup, we are interested in the following testing problem

H0 : β = b against H1 : β 6= b,

for a given b. In particular, we focus on the situation where (i) the number of instruments

may increase proportionally with the sample size (i.e., K/n → α ∈ [0, 1) as n → ∞), (ii) the

instruments are arbitrarily weak (i.e., Π2n may be zero), and (iii) the error term ui may be

heteroskedastic and non-normal. For this setting, we develop a new robust test statistic.

2.2 Simple case: No exogenous regressor

To present the basic idea, we begin with a simple case, where there is no included exogenous

regressor, i.e., y1i = y′2iβ + ui. A general case will be considered in the next subsection.

We introduce some notation to define our test statistic. Let Y2 = (y21, . . . , y2n)′, Z =

(z1, . . . , zn)′, and V2 = (v21, . . . , v2n)′ be matrices for the endogenous regressors, instruments,

and reduced form errors, respectively. Although the number of columns K of Z grows with the

sample size n, we suppress the dependence and denote ZKn by Z. We also define the observables

u0i = y1i − y′2ib and u0 = (u01, . . . , u0n)′. Finally, we define the matrix P ∗ by P ∗ij = Pij for i 6= j

and P ∗ii = 0 for all i, where P is the projection matrix Z(Z ′Z)−1Z ′.

We note that under the null hypothesis H0 : β = b, the score-type vector Y ′2Pu0 is not

necessarily centered, i.e., E(Y ′2Pu0) = E(V ′2Pu0) may not be zero. This is due to the fact that

E(V2iPiiu0i) may not be zero. Thus, we propose to construct our test statistic based on the

jackknife version of the score-type vector Y ′2P ∗u0, which satisfies E(Y ′2P
∗u0) = 0.

By inserting the reduced form y2i = Π′2nzi + v2i, the (conditional) variance of Y ′2P ∗u0 is

written as

Ψn = V ar(Y ′2P
∗u0|Z)

=
n∑

i,j,k,i 6=k,j 6=k
σ2kΠ

′
2nziPikPkjz

′
jΠ2n +

n∑
i 6=j

P 2
ij{E(v2iv

′
2i|Z)σ2j + E(v2iui|Z)E(v′2juj |Z)},

5



where σ2i = E(u2i |Z). The first and second terms come from the components Π′2nzi and v2i in the

reduced form, respectively. Under the conventional asymptotic framework with a fixed number

of strong instruments, the first term dominates. On the other hand, under the many and weak

instruments setup as in this paper, both terms may be of the same order. Note that this variance

formula allows for heteroskedastic errors. Observe that Ψn can be alternatively written as

Ψn = E

 n∑
i,j,k,i 6=k,j 6=k

y2iPiku
2
0kPkjy

′
2j +

n∑
i 6=j

y2iy
′
2ju0iu0jP

2
ij

∣∣∣∣∣∣Z
 .

Based on this expression, we estimate the variance Ψn by

Ψ̂n = Y ′2P
∗Σ0P

∗Y2 +
n∑

i,j=1

y2iy
′
2ju0iu0jP

∗2
ij , (3)

where Σ0 = diag(u201, . . . , u
2
0n). By standardizing the jackknife score vector by this variance

estimator, our JLM test statistic for testing H0 : β = b is defined as

JLM(b) = (u′0P
∗Y2)Ψ̂

−1
n (Y ′2P

∗u0). (4)

Compared to the standard LM statistic, (u′0PY2)
[
σ̂2(Y ′2PY2)

]−1
(Y ′2Pu0), for some homoskedas-

tic error variance estimator σ̂2 (Wang and Zivot, 1998), the major differences of our approach

are the use of the jackknife score Y ′2P ∗u0 instead of Y ′2Pu0 and the use of the heteroskedas-

ticity robust variance estimator Ψ̂n instead of σ̂2(Y ′2PY2). Note that Y ′2P ∗u0 and Y ′2Pu0 are

asymptotically equivalent under the conventional asymptotics with a fixed number of strong

instruments.

To study the asymptotic properties of the JLM statistic, we impose the following assumptions.

Assumption 1. (i) For each n, Z is of full column rank almost surely, and there exists a

constant c ∈ [Pii, 1) almost surely for all i = 1, . . . , n. (ii) For each n, conditional on Z,

{(ui, v′2i)}ni=1 are independent with E(ui|Z) = 0 and E(v2i|Z) = 0 almost surely. (iii) There exists

a positive constant C (which is independent of n) such that for each n, maxi=1,...,nE(u4i |Z) ≤ C,

maxi=1,...,nE(||v2i||4|Z) ≤ C, and maxi=1,...,n |z′iπ2s|4 < C for all s = 1, . . . , G almost surely,

where π2s is the s-th column of Π2n. (iv) There exists a positive constant C1 (which is independent

of n) such that for each n, maxi=1,...,n |corr(c′v2i, ui|Z)| < C1 < 1 almost surely for any c 6= 0.

We note that the distribution of the data (y′i, z
′
i) is allowed to vary with n. Assumption 1

(i)-(iii) are also imposed in existing papers on many weak IV regressions, such as Chao et al.,

(2012) and Hausman et al. (2012). Assumption 1 (i) is on Z and implies K < n. Assumption 1
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(ii) is a standard exogeneity condition for instruments, and Assumption 1 (iii) contains regularity

conditions for the fourth conditional moments of the error terms, which are used to apply central

limit theorems. Assumption 1 (iv) is a mild condition which guarantees positive definiteness of

Ψn (see Lemma 1 in Appendix).3 Under these assumptions, the limiting null distribution of the

JLM statistic is obtained as follows:

Theorem 1. Suppose Assumption 1 holds true, K → ∞, and K/n → α ∈ [0, 1) as n → ∞.

Then under H0 : β = b,

JLM(b)
d→ χ2

G.

This theorem proves the asymptotic pivotalness of the JLM statistic under the conditions that

allow for (i) arbitrarily weak instruments, (ii) many instruments in the sense that K/n → α ∈

[0, 1), and (iii) heteroskedasticity. By inverting JLM(b), the JLM-based 100(1− a)% confidence

set can be obtained as {b : JLM(b) ≤ χ2
G,a}, where χ2

G,a is the (1 − a)-th quantile of the χ2
G

distribution.4

We note that this theorem does not cover the case where K is fixed. In this case, we can still

obtain the same conclusion as far as the instruments are strong enough (in the sense that Π2n is

fixed or decays to zero slower than the
√
n-rate).

Furthermore, the LM test by Kleibergen (2002) and Moreira (2001) is not robust to many

instruments, in the sense of α > 0. Hansen, Hausman and Newey’s (2008) modified version is

robust to the case of α > 0, but not robust to heteroskedastic errors. The Wald test by Hausman

et al. (2012) is also robust to the case of α > 0, but not fully robust to weak instruments.

Recently and independently, Crudu, Mellace and Sándor (2021) and Mikusheva and Sun (2021)

have proposed jackknife Anderson-Rubin tests, which are asymptotically size correct under the

setup of Theorem 1. It is beyond the scope of this paper to compare our JLM test with these

tests under the many and weak instruments setup. However, under the conventional asymptotic

framework with a fixed number of strong instruments, we can see that the limiting null distribu-

tion of their jackknife Anderson-Rubin statistics is (χ2
K −K)/

√
2K, instead of χ2

G for the JLM

statistic. Therefore, under the conventional asymptotics, the JLM statistic will exhibit better

power properties when K > G.
3Although Ψn is shown to be positive definite for each n almost surely, its eigenvalues typically diverge.

Therefore, the argument based on the continuous mapping theorem for separately taking the limits for Ψ̂n and
Y ′2P

∗u0 is not applicable here if we want to derive the limiting distribution of JLM(b). As shown in Lemma 3,
we take the limit for the whole quadratic part of the dominant term of JLM(b), where the diverging eigenvalues
of Ψn are internally normalized.

4We note that Theorem 1 only guarantees pointwise asymptotic validity of the JLM test and confidence set by
using the χ2 critical value (i.e., the limit is taken under each null distribution). Although it is beyond the scope
of this paper, it is interesting to assess uniform asymptotic size or coverage properties based on our JLM statistic
by applying the generic results in Andrews, Cheng and Guggenberger (2020).
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We next study power properties of the JLM test. As indicated by the impossibility result in

Dufour (1997), we cannot achieve consistency of the JLM test under fixed alternatives without

further assumptions. Indeed based on Mikusheva and Sun (2021), there exists no consistent test

for the null H0 : β = b unless some condition on the concentration parameters, which guarantees

sufficiently strong instruments, is satisfied. As such, we derive the consistency of the JLM test

under this additional requirement.

Furthermore, we note that the LM statistic by Kleibergen (2002) and Moreira (2001) and

its modification by Hansen, Hausman and Newey (2008) may lose power in some regions for the

alternative hypotheses. This lack of power is caused by the fact that those LM statistics are equal

to zero at the maximum as well as the minimum of the concentrated log-likelihood, since they are

quadratic forms of the score of the concentrated likelihood (see, p. 1788 of Kleibergen, 2002). On

the other hand, the jackknife score for our JLM statistic is different from the (conventional) score

of the concentrated likelihood. Specifically, we can show that under an additional requirement

on strength of instruments, the power curve of the JLM statistic shows monotonicity in an

asymptotic sense.

The power properties of the JLM test discussed above are described as follows.

Theorem 2. Suppose Assumption 1 holds true, K → ∞, and K/n → α ∈ [0, 1) as n → ∞.

Additionally, assume that K
min{µ41,...,µ4G}

→ 0, where (µ1, . . . , µG) are the concentration parameters

defined in (10). Then under the alternative H1 : β = b+ ∆ for a fixed ∆ 6= 0,

(i) P{JLM(b) ≥ χ2
G,a} → 1 as n → ∞, where χ2

G,a is the (1 − a)-th quantile of the χ2
G

distribution,

(ii) there exists some C > 0 such that

P{JLM(b) ≥ C||b− β||2 for each b} → 1 as n→∞.

The additional assumption K
min{µ41,...,µ4G}

→ 0 is on the strength of the instruments. For

example, Chao and Swanson (2005) imposed this assumption to achieve consistency of point

estimators under their many weak instruments asymptotics. This theorem says that the JLM

test is consistent for any fixed ∆ 6= 0 and that the JLM statistic JLM(b) for testing H0 : β = b

increases monotonically as ||b− β|| increases with probability approaching to 1.

We note that the consistency and power monotonicity results presented in Theorem 2 do not

contradict the impossibility result given in Dufour (1997), which says that any valid confidence

set with level 1− α must be unbounded with probability close to 1− α in the neighborhood of
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nonidentification regions. The reason is that these power properties of the JLM test are derived

under the additional condition K
min{µ41,...,µ4G}

→ 0, which requires sufficiently strong instruments

relative to the number of instruments K. Indeed, based on Mikusheva and Sun (2021), unless
K

min{µ41,...,µ4G}
→ 0, we can conclude that there exists no consistent test for the null H0 : β = b.

2.3 Models with exogenous regressors

In this subsection, we extend our analysis to models with exogenous regressors in (1). Under the

null hypothesis H0 : β = b, the slope parameters γ for the exogenous regressors can be estimated

by

γ̂(b) = (Z ′1Z1)
−1Z ′1(y1 − Y2b),

where Z1 = (z11, . . . , z1n)′. We can construct the JLM test statistic in the same way as in the

previous section. Define û0i = y1i−y′2ib−z′1iγ̂(b) and û0 = (û01, . . . , û0n). Based on the projection

matrix P1 = Z1(Z
′
1Z1)

−1Z ′1, we define n×n matrices P2 = (I−P1)Z2(Z
′
2(I−P1)Z2)

−1Z ′2(I−P1)

and P# such that P#
ij = P2,ij for i 6= j and P#

ii = 0.

We can show that under H0,

(û′0P
#Y2)(Ψ

†
n)−1(Y ′2P

#û0) = (u′0P
†Y2)(Ψ

†
n)−1(Y ′2P

†u0) + op(1), (5)

where u0i = y1i − y′2ib − z′1iγ and u0 = (u01, . . . , u0n)′, P † is an n × n matrix such that P †ij =

[P2 + diag(P2)P1]i,j for i 6= j and P †ii = 0, and

Ψ†n =

n∑
i,j,k,i 6=k,j 6=k

σ2kΠ
′
2nziP

†
ikP
†
kjz
′
jΠ2n +

n∑
i 6=j
{P †ijP

†
jiE(v2iv

′
2i|Z)σ2j + P †2ij E(v2iui|Z)E(v′2juj |Z)}.

Thus, the score-type vector Y ′2P#û0 can be a proxy for the mean zero vector Y ′2P †u, and we can

construct the JLM statistic for this general case using the quadratic form:

JLM(b) = (û′0P
#Y2)Ψ̃

−1
n (Y ′2P

#û0), (6)

where

Ψ̃n = Y ′2P
†Σ̂0P

†′Y2 +

n∑
i,j=1

y2iy
′
2j û0iû0j(P

†
ij)

2, (7)

and Σ̂0 = diag(û201, . . . , û
2
0n).

The asymptotic property of this JLM statistic is obtained as follows.

Theorem 3. Suppose Assumption 1 holds true, K → ∞, and K/n → α ∈ [0, 1) as n → ∞.
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Then under H0 : β = b,

JLM(b)
d→ χ2

G.

Similar comments to Theorem 1 apply. For example, the JLM-based 100(1− a)% confidence

set for β in this setup can be constructed as {b : JLM(b) ≤ χ2
G,a}.

3 Numerical illustrations

3.1 Simulation

In this section, we conduct a simulation study to evaluate the finite sample properties of the

proposed JLM test. We consider the data generating process:

y1i = y2iβ0 + z1iγ0 + ui,

y2i = z′iπ2 + v2i, (8)

for i = 1, . . . , n, where π2 = (d, . . . , d)′, zi = (z1i, z
′
2i)
′, z1i = 1, and z2i = (z21i, z

2
21i, z

3
21i, z

′
22i)
′

with z21i ∼ N(0, 1) and z22i ∼ N(0, IK−4). The error terms are generated by (ui, v2i) = ((1 +

φz21i)ε1i, ρui +
√

1− ρ2ε2i), where ε1i and ε2i are independent and drawn from N(0, 1).5 We set

n = 200 for the sample size in all cases, and set β0 = γ0 = 1, ρ ∈ {0.2, 0.6}, and φ ∈ {0, 0.2}

for the cases of homoskedastic and heteroskedastic errors, respectively. For each Monte Carlo

replication, we set the value of d to fix the value of the concentration parameter (given the

realized values of {zi})

δ2 =
π′2

[∑n
i=1 z2iz

′
2i −

∑n
i=1 z2iz

′
1i (
∑n

i=1 z1iz
′
1i)
−1∑n

i=1 z1iz
′
2i

]
π2

V ar(v2i)
.

We investigate size properties of eleven tests for H0 : β = β0: (i) the standard t-test with

the two-stage least squares estimator (tTS), (ii) the standard t-test with the limited information

maximum likelihood estimator (tLI), (iii) the t-test with the heteroskedasticity robust limited

information maximum likelihood estimator by Hausman et al. (2012) (tHLI), (iv) the Anderson-

Rubin test (AR) using the asymptotic χ2 critical value, (v) the conditional likelihood ratio test

by Moreira (2003) (CLR), (vi) the Lagrange multiplier test by Kleibergen (2002) (KLM), (vii)

the modified Lagrange multiplier test by Hansen, Hausman and Newey (2008) (mKLM), (viii)
5In our preliminary simulation, we also consider the cases of (a) the t5 and χ3 distributions for error terms as

examples of fat-tailed and skewed errors, (b) truncated support of zi to satisfy Assumption 1 (iii), (c) {zi} kept
fixed throughout Monte Carlo replications, and (d) identification failure by setting d = 0. For (a)-(c), the results
are overall similar to the ones in Table 2. For (d), the size properties are also similar to the ones in Table 2.
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the heteroskedasticity robust version of KLM by Kleibergen (2005) (HKLM), (viiii) the het-

eroskedasticity robust version of CLR by Kleibergen (2005) (HCLR), (x) the heteroskedasticity

robust version of AR by Mikusheva and Sun (2021) (HAR), and (xi) the proposed JLM test

(JLM). The number of Monte Carlo repetitions in each experiment is 10,000.

Tables 2 and 3 report the null rejection frequencies of the tests at the nominal 5% significance

level for the cases of homoskedastic and heteroskedastic errors, respectively. Our findings are

summarized as follows.

i) The size distortions of both tTS and tLI are large except when δ2 is large, K is small, and

the errors are homoskedastic. The distortions tend to be quite large when δ2 is small, and

K and ρ are large (see the case of δ2 = 2, K = 30, and ρ = 0.6) even in the case of

homoskedastic errors.

ii) The size distortions of tHLI are smaller for both the cases of homoskedastic and heteroskedas-

tic errors compared to tTS and tLI . However, the distortions tend to be large when δ2 is

small (see the case of δ2 = 2). More precisely, tHLI under-rejects when ρ is small and

over-rejects when ρ is large.

iii) AR, CLR, and KLM work well even when δ2 is small in the case of homoskedastic errors.

However, they tend to over-reject when K is large. The size distortions are severe in the

case of heteroskedastic errors. These findings are consistent with lack of robustness of these

tests against heteroskedastic errors and relatively large K, as shown in Andrews and Stock

(2007b).

iv) mKLM works well for all the cases of homoskedastic errors. However, it tends to over-reject

in the case of heteroskedastic errors. This result is also sensible because mKLM is derived

under homoskedastic errors.

v) HCLR, HKLM, and HAR work relatively well for both the cases of homoskedastic and het-

eroskedastic errors. However, HCLR and HKLM tend to under- or over-reject when δ2 is

small. HAR works best among these although it tends to mildly over-reject for all cases.

vi) Compared to the other tests we consider, the rejection frequencies of JLM are overall close

to the nominal level for all cases. The JLM test is robust to many instruments, weak

instruments and heteroskedastic errors, as we would expect from our theoretical results in

Section 2.

We also investigate the power properties of the tests for H0 : β = β0 under the alternative

hypotheses H1 : β = β0 + ∆. We focus on HAR, mKLM, and JLM since the size distortions of
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the other tests are severe when the errors are heteroskedastic and/or the number of instruments is

large. Figures 1-3 display the calibrated power curves at 5% significance level (i.e., the rejection

frequencies of these tests, where the critical values are given by the Monte Carlo 95th percentiles

of these test statistics under H0). Among various cases tried in preliminary simulations, we

present the cases of n = 200, K = 30, and ρ = 0.2 for δ2 = 60, 30, 10 as typical examples.

First, JLM and mKLM are more powerful when |∆| is small but less powerful when |∆| is large

compared to HAR. Although it is beyond the scope of this paper, we conjecture that the power

property of JLM for large |∆| can be improved by using a cross-fit variance estimator as in

Mikusheva and Sun (2021). Second, mKLM exhibits declines of power in some regions for the

alternative hypotheses while the power curves of JLM and HAR are monotone for all cases. This

result is consistent with our theoretical finding in Theorem 2.

3.2 Real data example

We compare the confidence sets of the effect of schooling on log weekly wage with the specification

underlying Table VII Column (6) of Angrist and Krueger (1991) using their original data. We

focus on the specification with 180 and 1,530 instruments as in Mikusheva and Sun (2021). Table

1 reports the 95% confidence sets based on the HAR statistic by Mikusheva and Sun (2021), and

the proposed JLM statistic. In this application, the confidence sets based on JLM are narrower

than those based on HAR. We conjecture that this is due to the better power property of the

JLM test for small values of |∆| as illustrated in the simulation study above.

HAR JLM
180 instruments [0.008, 0.201] [0.067, 0.133]
1530 instruments [-0.047, 0.202] [0.025, 0.123]

Table 1: 95% confidence sets of the effect of schooling on log weekly wage using Angrist and
Krueger’s (1991) data

4 Conclusion

By modifying the score statistic based on jackknifing combined with heteroskedasticity robust

estimation for its variance component, we propose a new jackknife Lagrange multiplier test for

parameter hypotheses on instrumental variable regression models. Our test is easy to implement

and robust not only to many and arbitrarily weak instruments but also to heteroskedastic er-

rors. Simulation results endorse desirable size and power properties of the proposed test. It is

interesting to adapt our idea of jackknifing to other tests, such as Moreira’s (2003) conditional

likelihood ratio test and its heteroskedasticity and autocorrelation robust version by Moreira and

12



Moreira (2019), to robustify these tests under many instruments asymptotics. Such extensions

are currently under investigation by the authors.
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ρ δ2 K tTS tLI tHLI AR CLR KLM mKLM HKLM HCLR HAR JLM
0.2 30 5 0.045 0.048 0.048 0.056 0.055 0.053 0.052 0.040 0.048 0.085 0.044

30 10 0.056 0.064 0.036 0.055 0.057 0.055 0.053 0.038 0.048 0.074 0.051
30 30 0.123 0.132 0.027 0.075 0.066 0.063 0.051 0.032 0.047 0.078 0.050
30 90 0.391 0.342 0.024 0.129 0.146 0.127 0.052 0.112 0.132 0.087 0.053

10 5 0.033 0.034 0.023 0.051 0.053 0.054 0.051 0.031 0.035 0.080 0.047
10 10 0.058 0.061 0.019 0.058 0.057 0.052 0.046 0.032 0.032 0.077 0.050
10 30 0.161 0.156 0.014 0.071 0.076 0.068 0.047 0.030 0.040 0.076 0.050
10 90 0.447 0.370 0.015 0.126 0.158 0.140 0.047 0.110 0.131 0.082 0.049

2 5 0.018 0.015 0.008 0.054 0.056 0.055 0.048 0.016 0.013 0.082 0.049
2 10 0.054 0.042 0.008 0.058 0.060 0.059 0.047 0.019 0.014 0.079 0.050
2 30 0.179 0.152 0.009 0.067 0.073 0.072 0.047 0.026 0.029 0.072 0.051
2 90 0.484 0.371 0.012 0.126 0.158 0.145 0.049 0.105 0.131 0.086 0.052

0.6 30 5 0.086 0.055 0.055 0.059 0.052 0.052 0.052 0.042 0.051 0.085 0.049
30 10 0.176 0.062 0.049 0.057 0.055 0.053 0.052 0.039 0.049 0.075 0.050
30 30 0.696 0.097 0.046 0.072 0.063 0.059 0.049 0.034 0.048 0.075 0.046
30 90 0.999 0.253 0.069 0.128 0.136 0.119 0.049 0.112 0.139 0.088 0.051

10 5 0.131 0.073 0.068 0.052 0.053 0.052 0.050 0.035 0.040 0.082 0.048
10 10 0.312 0.099 0.064 0.055 0.055 0.055 0.050 0.034 0.036 0.078 0.049
10 30 0.879 0.201 0.081 0.073 0.070 0.063 0.046 0.031 0.042 0.076 0.048
10 90 1.000 0.349 0.097 0.129 0.154 0.136 0.046 0.109 0.143 0.086 0.050

2 5 0.210 0.114 0.075 0.052 0.051 0.050 0.045 0.018 0.016 0.080 0.042
2 10 0.497 0.197 0.092 0.055 0.058 0.050 0.042 0.024 0.016 0.075 0.042
2 30 0.945 0.324 0.104 0.070 0.079 0.069 0.046 0.029 0.032 0.074 0.047
2 90 1.000 0.448 0.125 0.124 0.161 0.148 0.050 0.110 0.151 0.082 0.051

Table 2: Empirical rejection frequencies at 5% significant level: Homoskedastic errors
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ρ δ2 K tTS tLI tHLI AR CLR KLM mKLM HKLM HCLR HAR JLM
0.2 30 5 0.091 0.098 0.050 0.088 0.113 0.110 0.108 0.035 0.044 0.095 0.045

30 10 0.096 0.107 0.044 0.080 0.099 0.097 0.093 0.037 0.040 0.081 0.045
30 30 0.139 0.155 0.025 0.076 0.083 0.076 0.062 0.030 0.043 0.070 0.046
30 90 0.408 0.351 0.024 0.124 0.152 0.132 0.051 0.114 0.136 0.082 0.048

10 5 0.068 0.067 0.029 0.088 0.108 0.102 0.098 0.025 0.026 0.096 0.045
10 10 0.083 0.085 0.019 0.077 0.091 0.087 0.078 0.025 0.026 0.087 0.050
10 30 0.172 0.168 0.017 0.082 0.088 0.076 0.054 0.028 0.036 0.076 0.045
10 90 0.458 0.378 0.016 0.129 0.162 0.147 0.049 0.104 0.128 0.082 0.050

2 5 0.030 0.026 0.008 0.082 0.085 0.073 0.063 0.013 0.012 0.091 0.044
2 10 0.066 0.052 0.008 0.078 0.081 0.067 0.054 0.018 0.013 0.081 0.047
2 30 0.197 0.167 0.009 0.081 0.090 0.078 0.050 0.025 0.027 0.077 0.048
2 90 0.493 0.380 0.012 0.128 0.161 0.146 0.047 0.107 0.127 0.083 0.053

0.6 30 5 0.128 0.097 0.064 0.091 0.116 0.112 0.111 0.040 0.049 0.098 0.046
30 10 0.201 0.095 0.057 0.081 0.099 0.096 0.093 0.039 0.046 0.088 0.049
30 30 0.708 0.130 0.056 0.082 0.088 0.081 0.068 0.031 0.044 0.075 0.050
30 90 0.999 0.263 0.071 0.130 0.148 0.126 0.055 0.116 0.136 0.086 0.050

10 5 0.170 0.112 0.076 0.092 0.107 0.104 0.100 0.028 0.033 0.098 0.044
10 10 0.329 0.134 0.077 0.079 0.094 0.089 0.082 0.032 0.035 0.081 0.046
10 30 0.883 0.213 0.080 0.081 0.087 0.076 0.057 0.029 0.043 0.075 0.047
10 90 0.999 0.356 0.098 0.124 0.151 0.134 0.046 0.111 0.142 0.081 0.045

2 5 0.248 0.149 0.091 0.087 0.095 0.086 0.077 0.014 0.014 0.092 0.032
2 10 0.515 0.214 0.095 0.077 0.083 0.069 0.058 0.020 0.015 0.082 0.043
2 30 0.948 0.338 0.107 0.083 0.089 0.075 0.052 0.026 0.031 0.077 0.050
2 90 1.000 0.446 0.124 0.131 0.165 0.149 0.049 0.108 0.148 0.083 0.047

Table 3: Empirical rejection frequencies at 5% significant level: Heteroskedastic errors
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Figure 1: Calibrated power curves: n = 200, K = 30, ρ = 0.2, δ2 = 60, Heteroskedastic errors.
Readers are referred to the online version of the paper for colored graphics.

Figure 2: Calibrated power curves: n = 200, K = 30, ρ = 0.2, δ2 = 30, Heteroskedastic errors.
Readers are referred to the online version of the paper for colored graphics.
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Figure 3: Calibrated power curves: n = 200, K = 30, ρ = 0.2, δ2 = 10, Heteroskedastic errors.
Readers are referred to the online version of the paper for colored graphics.
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A Proof

Notation: Hereafter C means a generic positive constant. Lemma 1 below guarantees that Ψn

is positive definite almost surely. Thus, by the spectral decomposition, there exists an orthogonal

matrix Qn = (q1, . . . , qG) such that QnQ′n = I and

Q′nΨnQn = Λn = diag(λ1, . . . , λG). (9)

Also define u0i = y1i − y′2ib, and

Aijk = σ2kΠ
′
2nziPikPkjz

′
jΠ2n, Bij = P 2

ij{E(v2iv
′
2i|Z)σ2j + E(v2iui|Z)E(v′2juj |Z)},

Âijk = u20ky2iPikPkjy
′
2j , B̂ij = P 2

ij(y2iy
′
2iu

2
0j + y2iy

′
2ju0iu0j),

so that Ψn =
∑n

i,j,k,i 6=k,j 6=k Aijk +
∑n

i 6=j Bij and Ψ̂n =
∑

i 6=j 6=k Âijk +
∑n

i 6=j B̂ij under H0. Based

on Qn = (q1, . . . , qG), denote

µ2g =
n∑
i=1

q′gΠ
′
2nziz

′
iΠ2nqg, (10)

for g = 1, . . . , G.

A.1 Proof of Theorem 1

By Lemma 1, Ψn is positive definite, and then we have

JLM(b) = u′P ∗Y2QnΛ−1n Q′nY
′
2P
∗u+ op(1)

d→ χ2
G,

under H0 : β = b, where the equality follows from Lemma 2 and the convergence follows from

Lemma 3.

A.2 Lemmas for Theorem 1

Lemma 1. Under Assumption 1, Ψn is positive definite almost surely for each n > K.

Proof: Pick any n > K and nonzero G-dimensional vector c. Then c′Ψnc = A + B, where

A =
∑n

i,j,k,i 6=k,j 6=k c
′Aijkc and B =

∑n
i 6=j c

′Bijc. For A, note that

A = c′
n∑
k=1

σ2k

 n∑
i=1,i 6=k

Pkiz
′
iΠ2n

′ n∑
j=1,j 6=k

Pkjz
′
jΠ2n

 c ≥ 0.
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For B, we have

B =

n∑
i<j

P 2
ij{E[(c′v2i)

2|Z]σ2j + E[(c′v2j)
2|Z]σ2i + 2E(c′v2iui|Z)E(c′v2juj |Z)}

≥ 1

2

n∑
i 6=j

P 2
ij{E[(c′v2i)

2|Z]σ2j + E[(c′v2j)
2|Z]σ2i − |2E(c′v2iui|Z)E(c′v2juj |Z)|}. (11)

Also, the Cauchy-Schwarz inequality combined with Assumption 1 (iv) implies

|E(c′v2iui|Z)E(c′v2juj |Z)| <
√
E[(c′v2i)2|Z]E[(c′v2j)2|Z]σ2i σ

2
j ,

almost surely. Thus, by 1
2(a2 + b2) ≥ ab, we have

E[(c′v2i)
2|Z]σ2j + E[(c′v2j)

2|Z]σ2i − |2E(c′v2iui|Z)E(c′v2juj |Z)| > 0, (12)

almost surely. Since
∑n

i,j=1 P
2
ij =

∑n
i=1 Pii = K, we have

∑
i 6=j

P 2
ij = K −

n∑
i=1

P 2
ii ≥ K

(
1− max

1≤i≤n
Pii

)
> 0, (13)

almost surely, where the last inequality follows from Assumption 1 (i).

Combining (11)-(13), we obtain B > 0 almost surely, and the conclusion follows.

Lemma 2. Under Assumption 1 and H0 : β = b,

JLM(b) = u′P ∗Y2QnΛ−1n Q′nY
′
2P
∗u+ op(1).

Proof: By Lemma 1 and (9), the LM statistic can be written as

JLM(b) = u′0P
∗Y2{Ψn + (Ψ̂n −Ψn)}−1Y ′2P ∗u0

= u′0P
∗Y2{QnQ′nΨnQnQ

′
n +QnQ

′
n(Ψ̂n −Ψn)QnQ

′
n}−1Y ′2P ∗u0

= u′0P
∗Y2QnΛ−1/2n {I + Λ−1/2n Q′n(Ψ̂n −Ψn)QnΛ−1/2n }−1Λ−1/2n Q′nY

′
2P
∗u0.

Pick any g, h = 1, . . . , G. Then it follows from Lemma 4 that

1√
λgλh

q′g(Ψ̂n −Ψn)qh
p→ 0.

Thus, we obtain Λ
−1/2
n Q′n(Ψ̂n −Ψn)QnΛ

−1/2
n

p→ 0, and Slutsky’s lemma yields the conclusion.
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Lemma 3. Under Assumption 1,

u′P ∗Y2QnΛ−1n Q′nY
′
2P
∗u

d→ χ2
G.

Proof: Without loss of generality, we assume that K
µ21

9 ∞, . . . , K
µ2G1

9 ∞ and K
µ2G1+1

→

∞, . . . , K
µ2G
→∞. Pick any nonzeroG2-dimensional vector ξ, and define Sn = diag(µ1, . . . , µg,

√
K, . . . ,

√
K).

Observe that

(ξ′ξ)−1/2ξ′Λ−1/2n Q′nY
′
2P
∗u

= (ξ′ξ)−1/2

ξ′Λ−1/2n SnS
−1
n Q′n

n∑
i=1

Π′2nzi(1− Pii)ui + ξ′Λ−1/2n

√
K

1√
K
Q′n

n∑
i 6=j

v′2iPijuj

 .

Here we apply Chao et al. (2012, Lemma A.2) by setting “Ui, εi, Win, c1n, and c2n” in their

notation as v2i, ui, S−1n Q′nΠ′2nzi(1−Pii)ui, SnΛ
−1/2
n ξ, and

√
KΛ

−1/2
n ξ, respectively. It is straight-

forward to verify that the conditions of Chao et al. (2012, Lemma A.2) are satisfied.6 Thus, by

the Cramér-Wold device, we have

Λ−1/2n Q′nY
′
2P
∗u

d→ N(0, IG),

which implies the conclusion.

Lemma 4. Under Assumption 1, it holds that

1√
λgλh

q′g(Ψ̂n −Ψn)qh
p→ 0.

for g, h = 1, . . . , G.
6Conditions (i)-(iii) of Chao et al. (2012, Lemma A2) are directly verified from Assumption 1. Condition (iv)

of Chao et al. (2012, Lemma A2) can be verified as

n∑
i=1

E(||Win||4|Z) ≤ C

n∑
i=1

{
G1∑
g=1

1

µ4
g

(z′iΠ2nqg)
4 +

G∑
g=G1+1

1

K2
(z′iΠ2nqg)

4

}

≤ C

{
max
1≤i≤n

(z′iΠ2nqg)
2

}{ G1∑
g=1

1

µ2
g

+

G∑
g=G1+1

µ2
g

K2

}
→ 0,

almost surely for some C > 0, where the first inequality follows from the definition ofWin = S−1
n Q′nΠ′2nzi(1−Pii)ui

and Assumption 1 (i) and (iii), and the convergence follows from µ2
g →∞ for g = 1, . . . , G1 (because of K →∞),

the assumption K
µ2
g
→∞ for g = G1 + 1, . . . , G, and boundedness of max1≤i≤n(z′iΠ2nqg)

2 (by Assumption 1 (iii)).
Furthermore, Chao et al. (2012, Lemma A2) require ||c1n|| ≤ C and ||c2n|| ≤ C for some C > 0. In our case,
c1n = SnΛ

−1/2
n ξ and c2n =

√
KΛ

−1/2
n ξ satisfy these requirements because of the fact that λg = Ag + Bg ≥ Ag

and µ2
g = O(Ag) by the proof of Lemma 4.
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Proof: Pick any g, h = 1, . . . , G. Decompose

1√
λgλh

q′g(Ψ̂n −Ψn)qh =
1√
λgλh

∑
i 6=j 6=k

q′g(Âijk −Aijk)qh +
1√
λgλh

∑
i 6=j

q′g(B̂ij −Aiij −Bij)qh

≡ M1 +M2.

It is enough to show that M1,M2
p→ 0. Based on (9), let λg = Ag + Bg, where Ag =∑n

i,j,k,i 6=k,j 6=k q
′
gAijkqg and Bg =

∑n
i 6=j q

′
gBijqg. We note that

√
λgλh ≥ max{

√
AgAh,

√
BgBh}

since Ag, Ah ≥ 0 and Bg, Bh > 0 from Lemma 1. We consider two cases: (I) K
µ2gµ

2
h
→ 0, and (II)

K
µ2gµ

2
h
9 0.

Case (I). First, consider the case where K
µ2gµ

2
h
→ 0. It follows |M1| ≤ 1√

AgAh

∣∣∣∑i 6=j 6=k q
′
g(Âijk −Aijk)qh

∣∣∣ p→

0 from Chao et al. (2012, Lemma A4) by setting “Wi, Yj , and ηk” in their notation as 1√
Ag
q′gy2i,

1√
Ah
q′hy2j , and u

2
k, respectively. Let µ

2
g =

∑n
i=1(q

′
gΠ
′
2nzi)

2. Note that µ2g = O(Ag) because

µ2g
Ag

≤
µ2g

C
∑n

i,j,k,i 6=k,j 6=k q
′
gΠ
′
2nziPikPkjz

′
jΠ2nqg

=
µ2g

C
{∑n

i=1(q
′
gΠ
′
2nzi)

2 − 2
∑n

i,k PikPki(q
′
gΠ
′
2nzi)

2 +
∑n

i=1 P
2
ii(q
′
gΠ
′
2nzi)

2
}

=
µ2g

C
{∑n

i=1(1− 2Pii + P 2
ii)(g

′
qΠ
′
2nzi)

2
} ≤ C ′,

where the first equality follows from
∑n

i,j,k=1 ziPikPkjz
′
j =

∑
i=1 ziz

′
i, the second equality follows

from
∑n

k=1 PikPki = Pii, and the second inequality follows from Assumption 1 (i). This allows

us to verify the conditions in Chao et al. (2012, Lemma A4).

ForM2, we first apply Chao et al. (2012, Lemma A3) by setting “Wi and Yi” in their notation

as 1√
AgAh

(q′gy2iy
′
2iqh) and u2i , respectively. Note that

E(Wi|Z) =
1√
AgAh

(q′gΠ
′
2nziz

′
iΠ2nqh) +

1√
AgAh

q′gE(v2iv
′
2i|Z)qh,

so that

max
1≤i≤n

|E(Wi|Z)| ≤ C

[
1√
AgAh

max
1≤i≤n

|q′gΠ′2nziz′iΠ2nqh|+
1√
AgAh

]
,
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almost surely. Moreover, for ṽig = g′qv2i, it holds that

max
1≤i≤n

V ar(Wi|Z) = max
1≤i≤n

V ar

(
1√
AgAh

{
q′g(Π

′
2nzi + v2i)(Π

′
2nzi + v2i)

′qh
}∣∣∣∣∣Z

)
= max

1≤i≤n

1

AgAh

{
(q′gΠ

′
2nzi)

2E(ṽ2ig|Z) + (q′hΠ′2nzi)
2E(ṽ2ih|Z) + 2|q′gΠ′2nziz′iΠ2nqh|E(ṽigṽih|Z)

+2(q′gΠ
′
2nzi)E(ṽigṽ

2
ih|Z) + 2(q′hΠ′2nzi)E(ṽ2igṽih|Z) + V ar(ṽigṽih|Z)

}
≤ C

AgAh
max
1≤i≤n

{(q′gΠ′2nzi)2 + (q′hΠ′2nzi)
2 + |q′gΠ′2nzi|+ |q′hΠ′2nzi|+ 1},

almost surely. Thus, by applying Chao et al. (2012, Lemma A3) (with Wi = 1√
AgAh

(q′gy2iy
′
2iqh)

and Yi = u2i ), we obtain

∥∥∥∥∥∥ 1√
AgAh

∑
i 6=j

P 2
ijq
′
gy2iy

′
2iu

2
jqh −

1√
AgAh

∑
i 6=j

P 2
ij{q′gΠ′2nziz′iΠ2nqhσ

2
j + q′gE(v2iv

′
2i|zi)σ2j qh}

∥∥∥∥∥∥
2

L2,Z

≤ CK

{
max
1≤i≤n

V ar(Wi|Z) max
1≤i≤n

V ar(Yi|Z) + max
1≤i≤n

V ar(Wi|Z)

(
max
1≤i≤n

E(Yi|Z)

)2

+

(
max
1≤i≤n

E(Wi|Z)

)2

max
1≤i≤n

V ar(Yi|Z)

}

≤ CK

AgAh
max
1≤i≤n

{
(q′gΠ

′
2nzi)

2(q′hΠ′2nzi)
2 + (q′gΠ

′
2nzi)

2 + (q′hΠ′2nzi)
2 + |q′gΠ′2nzi|+ |q′hΠ′2nzi|+ 1

}
,

almost surely. Taking the expectation with respect to the distribution of Z and using Billingsley

(1986, Theorem 16.1), we have that

E

 1√
AgAh

∑
i 6=j

P 2
ijq
′
gy2iy

′
2iu

2
jqh −

1√
AgAh

∑
i 6=j

P 2
ij{q′gΠ′2nziz′iΠ2nqhσ

2
j + q′gE(v2iv

′
2i|zi)σ2j qh}


2

= EZ

∥∥∥∥∥∥ 1√
AgAh

∑
i 6=j

P 2
ijq
′
gy2iy

′
2iu

2
jqh −

1√
AgAh

∑
i 6=j

P 2
ij{q′gΠ′2nziz′iΠ2nqhσ

2
j + q′gE(v2iv

′
2i|zi)σ2j qh}

∥∥∥∥∥∥
2

L2,Z

≤ CK

AgAh
EZ

[
max
1≤i≤n

{(q′gΠ′2nzi)2(q′hΠ′2nzi)
2 + (q′gΠ

′
2nzi)

2 + (q′hΠ′2nzi)
2 + |q′gΠ′2nzi|+ |q′hΠ′2nzi|+ 1}

]
= O

(
K

AgAh

)
= o(1),

where the last equality follows from µ2g = O(Ag) and µ2h = O(Ah). Thus, the Markov inequality

yields

1√
AgAh

∑
i 6=j

P 2
ijq
′
gy2iy

′
2iu

2
jqh =

1√
AgAh

∑
i 6=j

P 2
ij{q′gΠ′2nziz′iΠ2nqhσ

2
j + q′gE(v2iv

′
2i|Z)σ2j qh}+ op(1).

(14)
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Secondly, by a similar argument as in Chao et al. (2012, Lemma A3) and setting “Wi and Yi” in

their notation as 1√
Ag
q′gy2iui and

1√
Ah
q′hy2iui, respectively, we can show that

1√
AgAh

∑
i 6=j

P 2
ijq
′
gy2iy

′
2juiujqh =

1√
AgAh

∑
i 6=j

P 2
ijq
′
gE(v2iui|Z)E(v′2juj |Z)qh + op(1). (15)

Combining (14), (15) and the fact that |M2| ≤ 1√
AgAh

∣∣∣∑i 6=j(B̂ij −Aiij −Bij)
∣∣∣, we have that

M2
p→ 0.

Case (II). Next, we consider the case where K
µ2gµ

2
h
9 0. It follows that

|M1| ≤ 1√
BgBh

∣∣∣∑i 6=j 6=k q
′
g(Âijk −Aijk)qh

∣∣∣ p→ 0 from Chao et al. (2012, Lemma A4) by setting

“Wi, Yj , and ηk” in their notation as 1√
Bg
q′gy2i,

1√
Bh
q′hy2j , and u2k, respectively. Note that

1√
BgBh

∑
i 6=j 6=k q

′
gAijkqh

p→ 0 in this case.

For M2, we apply Chao et al. (2012, Lemma A3) by setting “Wi and Yi” in their notation

with 1√
BgBh

(q′gy2iy
′
2iqh) and u2i , respectively (and 1√

Bg
q′gy2iui and 1√

Bh
q′hy2iui, respectively),

and it follows |M2| ≤ 1√
BgBh

∣∣∣∑i 6=j(B̂ij −Aiij −Bij)
∣∣∣ p→ 0 by the same argument as in Case (I).

A.3 Proof of Theorem 2

Proof of (i)

To simplify the presentation, we consider the case of a single included endogenous regressor (i.e.,

G = 1). The case of multiple endogenous regressors is shown in a similar way using the spectral

decomposition as in the proof of Theorem 1.

Pick any b 6= β. In the case of G = 1, the JLM statistic is written as JLM(b) = (N1 +N2 +

N3)/Ψ̂n, where

N1 =

 n∑
i 6=j

Pijy2iy2j

2

(β−b)2, N2 = 2

n∑
i 6=j

n∑
k 6=l

PijPkly2iujy2ky2l(β−b), N3 =

 n∑
i 6=j

Pijy2iuj

2

.

For N1, observe that

N1 =


n∑
i=1

(1− Pii)Π′2nziz′iΠ2n +

n∑
i 6=j

Pijv2iv2j + 2

n∑
i=1

(1− Pii)Π′2nziv2i


2

(β − b)2

≥

C1µ
2
1 +

n∑
i 6=j

Pijv2iv2j + 2

n∑
i=1

(1− Pii)Π′2nziv2i


2

(β − b)2

≡ (N11 +N12 +N13)
2(β − b)2, (16)
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for some C1 > 0, where the inequality follows from Assumption 1 (i). For N12 and N13, similar

arguments as those in Chao et al. (2012, Lemma A2) yield

N2
12 = 2

n∑
i 6=j

P 2
ijE[v22i|Z]E[v22j |Z]{1 + op(1)},

N2
13 = 4

n∑
i=1

(1− Pii)2(Π′2nzi)2E[v22i|Z]{1 + op(1)}.

Then N12 = op(N11) follows from the facts that
∑n

i 6=j P
2
ij ≤

∑n
i,j=1 P

2
ij =

∑n
i=1 Pii = K and

the assumption K
min{µ41,...,µ4G}

→ 0, and N13 = op(N11) follows from Assumption 1 (i) and (iii).

Hence, by applying similar arguments to the cross terms, we have

N1 ≥ C1µ
4
1{1 + op(1)}.

Similarly, for N2 and N3, we obtain

N2 = 4


n∑

i,j,k,i 6=j 6=k
PikPkj(Π

′
2nzi)(Π

′
2nzj)E[v2kuk|Z](β − b) +

n∑
i 6=j

P 2
ijE[v22i|Z]E[v2juj |Z](β − b)

 {1 + op(1)}

= op(N1),

and

N3 =


n∑

i,j,k,i 6=k,j 6=k
PikPkj(Π

′
2nzi)(Π

′
2nzj)E[u2k|Z] +

n∑
i 6=j

P 2
ijE[v2iui|Z]E[v2juj |Z]

+

n∑
i 6=j

P 2
ijE[v22i|Z]E[u2j |Z]

 {1 + op(1)}

= op(N1).
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For the denominator, similar arguments as in the proof of Lemma 4 yield

Ψ̂n =

n∑
i,j,k,i 6=k,j 6=k

y2iPik{uk + y2k(β − b)}2Pkjy2j +

n∑
i 6=j

P 2
ijy2iy2j{ui + y2i(β − b)}{uj + y2j(β − b)}

=

 n∑
i,j,k,i 6=k,j 6=k

y2iPiky
2
2kPkjy2j +

n∑
i 6=j

P 2
ijy

2
2iy

2
2j

 (β − b)2

+2

 n∑
i,j,k,i 6=k,j 6=k

y2iPikuky2kPkjy2j +
n∑
i 6=j

P 2
ijy2iy2juiy2j

 (β − b)

+

 n∑
i,j,k,i 6=k,j 6=k

y2iPiku
2
kPkjy2j +

n∑
i 6=j

P 2
ijy2iy2juiuj


≤ C3 max{µ21,K}{(β − b)2 + 2(β − b) + 1},

for some C3 > 0 by applying Chao et al. (2012, Lemmas A3 and A4) and Assumption 1 (iii).

By using the above results, it holds that

P{JLM(b) < C} = P

{
N1 +N2 +N3

Ψ̂n

< C

}
≤ P

{
C1µ

4
1(1 + op(1))

C3 max{µ21,K}{(β − b)2 + 2(β − b) + 1}
< C

}
→ 0, (17)

for any C > 0, where the convergence follows from the assumption that K/µ41 → 0. Therefore,

the conclusion follows.

Proof of (ii)

By using (17), there exists some C ′ > 0 such that

P{JLM(b) < C ′(β − b)2} = P

{
N1 +N2 +N3

Ψ̂n

< C ′(β − b)2
}

≤ P

{
µ41
Ψ̂n

< (1− ε)C
′

C1
(β − b)2

}
+ o(1)→ 0,

for all ε > 0 small enough, where C1 is a positive constant defined in (16), and the convergence

follows from the assumption that K/µ41 → 0. Therefore, the conclusion follows.
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A.4 Proof of Theorem 3

We show the theorem in the same way as in Theorem 1:

JLM(b) = (û′0P
#Y2)(Ψ

†
n)−1(Y ′2P

#û0) + op(1)

= (u′0P
†Y2)(Ψ

†
n)−1(Y ′2P

†u0) + op(1)

d→ χ2
G, (18)

under H0 : β = b, where the first equality in (18) follows by the same argument as in Lemma 2,

i.e., apply Chao et al. (2012, Lemmas A3 and A4) with Pij replaced by P †ij . Indeed, by noting

that

(P †ij)
2 = P 2

2,ij + 2P2,iiP2,ijP1,ij + P 2
2,iiP

2
1,ij ≤ P 2

2,ij + 2|P2,ijP1,ij |+ P 2
1,ij ,

and y2iP
†
ij = y2iP2,ij + (y2iP2,ii)P1,ij , we can show the same results as in Chao et al. (2012,

Lemmas A3 and A4) with Pij replaced by P †ij .

The second equality in (18) follows from the relation in (5), which is shown as follows. Note

that under H0,

Y ′2P
#û0 = Y ′2P

#(y1 − Y2b2 − Z1γ̂(b))

= Y ′2P
#u− Y ′2P#Z1(γ̂(b)− γ)

= Y ′2P
#u− Y ′2P#P1u

= Y ′2P
#u+ Y ′2diag(P2)P1u

= Y ′2P
†u+ Y ′2diag(P2)diag(P1)u,

where the fourth equality follows from P2P1 = 0. Pick any G-dimensional vector c and let

µ2c =
∑n

i=1(c
′Π′2nzi)

2. Since

V ar
(
c′Y ′2diag(P2)diag(P1)u|Z

)
=

n∑
i=1

P 2
2iiP

2
1iiV ar(c

′y2iui|Z) ≤ C
n∑
i=1

P 2
1iiV ar(c

′y2iui|Z)

≤ C
n∑
i=1

P1iiV ar(c
′y2iui|Z) = O(K1) = O(1),

we have (I) c′Y ′2diag(P2)diag(P1)u = op(µc) whenK/µ2c is bounded, and (II) c′Y ′2diag(P2)diag(P1)u =

op(
√
K) when K/µ2c → ∞. Hence we have that c′Y ′2diag(P2)diag(P1)u = op(c

′Y ′2P
†u). There-

fore, the relation in (5) follows.

Finally, the convergence in (18) follows from the same argument as in Lemma 3. We note
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that

c′Y ′2P
†u =

n∑
j=1


n∑

i=1,i 6=j
c′Π′2nzi(P2,ij + P2iiP1ij)

uj +
n∑
i 6=j

c′v2iP2,ijuj +
n∑
i 6=j

c′v2iP2iiP1ijuj ,

and
∑n

i 6=j c
′v2iP2iiP1ijuj = Op(

√
K1) = op(c

′Y ′2P
†u). Then we apply Chao et al. (2012, Lemma

A2) by setting “Ui, εi, Win, c1n, and c2n” in their notation as v2i, ui,

S−1n Q′n

{∑n
j=1,j 6=i Π′2nzj(P2,ji + P2jjP1ji)

}
ui, SnΛ

−1/2
n ξ, and

√
KΛ

−1/2
n ξ, respectively.
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