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Abstract

This paper proposes a jackknife Lagrange multiplier (JLM) test for instrumental variable
regression models, which is robust to (i) many instruments, where the number of instruments
may increase proportionally with the sample size, (ii) arbitrarily weak instruments, and (iii)
heteroskedastic errors. In contrast to Crudu, Mellace and Sandor (2021) and Mikusheva and
Sun (2021) who proposed jackknife Anderson-Rubin tests that are also robust to (i)-(iii), we
modify a score statistic by jackknifing and construct its heteroskedasticity robust variance
estimator. Compared to the Lagrange multiplier tests by Kleibergen (2002) and Moreira
(2001) and their modification for many instruments by Hansen, Hausman and Newey (2008),
our JLM test is robust to heteroskedastic errors and may circumvent a possible decrease in
the power function. Simulation results illustrate the desirable size and power properties of

the proposed method.

1 Introduction

In empirical applications of instrumental variable (IV) regression methods, researchers often face
imprecise estimation results and so seek to employ many valid I'Vs to improve precision. However,
statistical inference procedures in IV regression models can be crucially affected by the quality
and number of the IVs. It has been known that when instruments are only weakly correlated
with the endogenous regressors, the standard asymptotic approximations to the finite sample

distributions of the conventional estimators and test statistics can be poor. The use of many
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instruments can improve efficiency of the estimators or their associated tests, but often leads the
usual inference procedures to have poor finite sample properties (see, e.g., Andrews and Stock,
2007a, for a review).

In order to overcome the weak IV problem, several robust inference methods have been
proposed. Kleibergen (2002) and Moreira (2001) proposed Lagrange multiplier (LM) type tests,
while Moreira (2003) proposed a conditional likelihood ratio test, both of which are shown to be
robust to the strength of the IVs.! There have been a lot of studies on the properties of these
tests and their extensions (see, e.g., Kleibergen, 2005, and Andrews, Moreira and Stock, 2006).
We note that these tests were developed mainly in response to the weak IV problem, and as such
it is not clear how well (or how poorly) their tests perform with many instruments.

There have been many studies investigating the effects of many instruments. Linear models
and asymptotics with many instruments were introduced by Kunitomo (1980) and Morimune
(1983). Bekker (1994) pointed out that the many instruments asymptotic theory, where the
number of instruments K may grow proportionally to the sample size n, may be suited better
to applications, even when the number of instruments is moderate. Chao and Swanson (2005)
generalized the many instruments asymptotic theory to allow for weaker instruments, where the
concentration parameter may grow at a slower rate than n, and investigated conditions to achieve
consistency for the k-class IV estimators. Han and Phillips (2006) further extended the many
weak instruments asymptotic framework to study the asymptotic properties of the GMM esti-
mator for possibly nonlinear models. Andrews and Stock (2007b) showed that Anderson-Rubin,
LM, and conditional likelihood ratio statistics are robust to many weak instruments, where the
instruments are arbitrarily weak and K satisfies K3/n — 0. We also refer the reader to Newey
and Windmeijer (2009) for the GMM theory including the LM statistic under the many weak
moments asymptotics. Hansen, Hausman and Newey (2008) studied the case where K may be
proportional to n and the error term is homoskedastic, and developed a many instruments robust
standard error and modification for the LM test. Hausman et al. (2012) proposed a Wald test
based on heteroskedasticity and many instruments robust versions of the limited information
maximum likelihood and Fuller (1977) estimators. These papers make assumptions on the rates
of the concentration parameter or the number of instruments and/or homoskedasticity to achieve
consistency of the point estimators and associated tests on parameter hypotheses. This paper
complements these existing results by considering asymptotically valid tests under the null hy-

pothesis with arbitrarily weak instruments, even though such tests may be inconsistent under

!Here robustness refers to size control under the null hypothesis on structural parameters. Under arbitrarily
weak instruments, there is no consistent test in general (see Mikusheva and Sun (2021) and discussion below for
the case of many and weak instruments).



the alternatives without further assumptions on the strength of instruments.

In this paper, we propose a jackknife Lagrange multiplier (JLM) test for IV regression mod-
els, which is robust to (i) many instruments, where the number of instruments may increase
proportionally with the sample size, (ii) arbitrarily weak instruments, and (iii) heteroskedastic
errors. Our idea is to modify the score statistic by jackknifing and to construct its heteroskedas-
ticity robust variance estimator. In particular, by applying the leave-one-out method introduced
by Phillips and Hale (1977) and Angrist, Imbens and Krueger (1999), we re-center a score-type
vector in the presence of many weak instruments and heteroskedasticity.? Compared to the LM
tests by Kleibergen (2002) and Moreira (2001) and their modification for many instruments by
Hansen, Hausman and Newey (2008), our JLM test is robust to heteroskedastic errors and may
circumvent a possible decrease in the power function. In particular, the power of our test does
not decline asymptotically in any region under an additional requirement on strength of the
instruments. Furthermore, the Wald statistic introduced by Hausman et al. (2012) is not fully
robust to weak instruments because it relies on the consistency of their heteroskedastic limited
information maximum likelihood estimator. Our JLM test can be a useful complement to Haus-
man et al.’s (2012) Wald test if the researcher is primarily concerned with the size properties of
the tests. The JLM test is asymptotically valid under the null hypothesis with arbitrarily weak
instruments even though it is generally inconsistent under fixed alternatives without further re-
quirements on the strength of the instruments. Simulation results illustrate the desirable size
robustness properties of the proposed method.

Many papers in the econometrics literature have applied the idea of jackknifing for IV re-
gression models. Phillips and Hale (1977), Angrist, Imbens and Krueger (1999), and Blomquist
and Dahlberg (1999) proposed the jackknife IV estimator (JIVE), which aims at eliminating the
correlation between the first stage fitted values and structural equation errors. Hahn, Hausman
and Kuersteiner (2004) studied higher-order properties of the jackknife two-stage least squares
estimator. Davidson and MacKinnon (2006) conducted an extensive simulation study on the fi-
nite sample performance of the JIVE. Ackerberg and Devereux (2009) proposed a bias-corrected
JIVE and investigated its asymptotic properties under the many instruments asymptotics and
heteroskedastic errors. Chao et al. (2012) studied asymptotic properties of the JIVE under the
many-weak instruments asymptotics and heteroskedastic errors. Newey and Windmeijer (2009)
extended the JIVE to the GMM context. Hansen and Kozbur (2014) proposed a regularized

JIVE to deal with the case where the number of instruments may be larger than the sample size.

2In the context of overidentifying restriction testing, Chao et al. (2014) proposed a jackknife version of the
conventional overidentifying restriction test statistic, which is robust to many instruments and heteroskedastic
errors. In contrast, this paper is concerned with parameter hypothesis testing.



Recently and independently, Crudu, Mellace and Sandor (2021) and Mikusheva and Sun
(2021) have proposed jackknife Anderson-Rubin tests, which are asymptotically size correct
under (i)-(iii). These tests use jackknifing to re-center the Anderson-Rubin statistic in the
presence of many weak instruments and heteroskedasticity. Furthermore, Mikusheva and Sun
(2021) developed a novel variance estimator based on cross-fitting in the spirit of Kline, Saggio
and Sglvsten (2020) to standardize the jackknifed Anderson-Rubin statistic. In contrast to these
recent papers, we apply jackknifing to the score statistic. Thus the construction and theoretical
developments for our statistic are different, and this paper may be considered as a complement
to the Anderson-Rubin approach in Crudu, Mellace and Sandor (2021) and Mikusheva and Sun
(2021). Simulation results indicate that our JLM statistic compares favorably with the jackknife
Anderson-Rubin statistic, even though a formal analysis to compare these statistics is beyond
the scope of this paper.

The paper is organized as follows. Section 2 presents our main results. After introducing
our basic setup in Section 2.1, Section 2.2 proposes the JLM statistic and studies its asymptotic
property for a simple case where there is no included exogenous regressor, and then Section 2.3
discusses a general case. Section 3 conducts a simulation study and presents a real data example.

Finally, Section 4 concludes.

2 Main results

2.1 Setup

We first introduce our basic setup. Consider a single structural equation

Y1i = Yo B + 2157 + wi, (1)

for ¢ = 1,...,n, where yy; is a scalar dependent variable, y9; is a G-dimensional vector of
endogenous regressors, z1; is a Kj-dimensional vector of (included) exogenous regressors in (1),
B and v are G- and Ki-dimensional vectors of unknown parameters, respectively, and u; is an
error term. We assume that (1) is the first equation in a simultaneous system of G + 1 linear
stochastic equations relating G + 1 endogenous variables y; = (y14,95;)’, and K = K; + K>
exogenous variables z; = (2);,25;), where zg; is a Ks-dimensional vector of IVs for (1). The

number of instruments K9 = K5, may grow with the sample size n, and thus the joint distribution

/

of (y},2}) is allowed to vary with n. We also assume that (u1,...,u,) are mutually independent

conditional on (z1,...,2,) with E(u;|z) = 0 almost surely for ¢ = 1,...,n. The reduced form



of y; is defined as

/
™ 1
/ 1in
yi =z + v = AT ; (2)
2n V24

where 71, is a K-dimensional vector and Ils, is a K x G matrix of the reduced form coeflicients,
and v; = (vy3,v%;)" is a (14 G)-dimensional vector of the disturbances. (vy,...,v,) are mutually
independent conditional on (21, ..., z,) with E(v;|z;) = 0 almost surely.

In this setup, we are interested in the following testing problem
Hy:B8=0 against Hi:[ #b,

for a given b. In particular, we focus on the situation where (i) the number of instruments
may increase proportionally with the sample size (i.e., K/n — « € [0,1) as n — o0), (ii) the
instruments are arbitrarily weak (i.e., Il3, may be zero), and (iii) the error term wu; may be

heteroskedastic and non-normal. For this setting, we develop a new robust test statistic.

2.2 Simple case: No exogenous regressor

To present the basic idea, we begin with a simple case, where there is no included exogenous
regressor, i.e., y1; = yh; 8 + u;. A general case will be considered in the next subsection.

We introduce some notation to define our test statistic. Let Yo = (yo1,...,y20), Z =
(21,...,2,), and Vo = (va1,...,v2,)" be matrices for the endogenous regressors, instruments,
and reduced form errors, respectively. Although the number of columns K of Z grows with the
sample size n, we suppress the dependence and denote Zx, by Z. We also define the observables
w0 = Y1i — Yo;b and ug = (uou, . . ., uon)’. Finally, we define the matrix P* by P =P fori#j
and P = 0 for all 4, where P is the projection matrix Z(Z'Z)~12".

We note that under the null hypothesis Hy : f = b, the score-type vector Yy Pug is not
necessarily centered, i.e., E(YyPug) = E(VyPuy) may not be zero. This is due to the fact that
E(Va; Pjjup;) may not be zero. Thus, we propose to construct our test statistic based on the
jackknife version of the score-type vector Yy P*ug, which satisfies E(YyP*ug) = 0.

By inserting the reduced form yo; = IIY, z; + va;, the (conditional) variance of Yy P*ug is

written as

U, = Var(YgP*ug|Z)

n n
— > 0illh, 2Pk Pej2iTlon + > PA{E(vaivy| Z)0? + E(vaius| Z) E(vh;u4] Z)},
0,5,k ik, j#k i#j
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where 0? = E(u?|Z). The first and second terms come from the components T}, z; and vg; in the
reduced form, respectively. Under the conventional asymptotic framework with a fixed number
of strong instruments, the first term dominates. On the other hand, under the many and weak
instruments setup as in this paper, both terms may be of the same order. Note that this variance

formula allows for heteroskedastic errors. Observe that ¥,, can be alternatively written as
n n
¥, =F D yaPuugPagyh; + Y yaithjuoive; P | Z

0,0,k i#k,j £k i#j

Based on this expression, we estimate the variance ¥,, by

n
U, = YyP*SoP*Y, + Z Yaitsjuoitio; P, (3)
ij=1
where >y = diag(u%l, . ,ugn). By standardizing the jackknife score vector by this variance

estimator, our JLM test statistic for testing Hp : 8 = b is defined as
JLM(b) = (upP"Ya) ¥, (VS P"ug). (1)

Compared to the standard LM statistic, (u(PY2) [62(Y4PY2)] - (Y5 Puyg), for some homoskedas-
tic error variance estimator 62 (Wang and Zivot, 1998), the major differences of our approach
are the use of the jackknife score Yy P*ug instead of YjPuo and the use of the heteroskedas-
ticity robust variance estimator W, instead of 62(YJPY3). Note that YJP*uo and YyPuq are
asymptotically equivalent under the conventional asymptotics with a fixed number of strong
instruments.

To study the asymptotic properties of the JLM statistic, we impose the following assumptions.

Assumption 1. (i) For each n, Z is of full column rank almost surely, and there exists a
constant ¢ € [Py, 1) almost surely for all i = 1,...,n. (ii) For each n, conditional on Z,
{(ui, vh;)}?_, are independent with E(u;|Z) = 0 and E(vy|Z) = 0 almost surely. (iii) There exists
a positive constant C' (which is independent of n) such that for each n, max;—1, » E(u}|Z) < C,
max;—1..n E(|lvai||*12) < C, and maxj—1i,..n |z£7r25]4 < C forall s =1,...,G almost surely,
where was is the s-th column of lay,. (iv) There exists a positive constant Cy (which is independent

of n) such that for each n, max;—1, n |corr(cve, u;|Z)| < Ci < 1 almost surely for any ¢ # 0.

We note that the distribution of the data (y},z}) is allowed to vary with n. Assumption 1
(i)-(iii) are also imposed in existing papers on many weak IV regressions, such as Chao et al.,

(2012) and Hausman et al. (2012). Assumption 1 (i) is on Z and implies K < n. Assumption 1
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(ii) is a standard exogeneity condition for instruments, and Assumption 1 (iii) contains regularity
conditions for the fourth conditional moments of the error terms, which are used to apply central
limit theorems. Assumption 1 (iv) is a mild condition which guarantees positive definiteness of
U, (see Lemma 1 in Appendix).® Under these assumptions, the limiting null distribution of the

JLM statistic is obtained as follows:

Theorem 1. Suppose Assumption 1 holds true, K — oo, and K/n — « € [0,1) as n — 0.
Then under Hy : 8 = b,
JLM(b) % \2,.

This theorem proves the asymptotic pivotalness of the JLM statistic under the conditions that
allow for (i) arbitrarily weak instruments, (ii) many instruments in the sense that K/n — a €
[0,1), and (iii) heteroskedasticity. By inverting JLM (b), the JLM-based 100(1 — a)% confidence
set can be obtained as {b : JLM(b) < Xé’a}, where X%’,a is the (1 — a)-th quantile of the xZ
distribution.*

We note that this theorem does not cover the case where K is fixed. In this case, we can still
obtain the same conclusion as far as the instruments are strong enough (in the sense that Iy, is
fixed or decays to zero slower than the \/n-rate).

Furthermore, the LM test by Kleibergen (2002) and Moreira (2001) is not robust to many
instruments, in the sense of @ > 0. Hansen, Hausman and Newey’s (2008) modified version is
robust to the case of & > 0, but not robust to heteroskedastic errors. The Wald test by Hausman
et al. (2012) is also robust to the case of @ > 0, but not fully robust to weak instruments.
Recently and independently, Crudu, Mellace and Sandor (2021) and Mikusheva and Sun (2021)
have proposed jackknife Anderson-Rubin tests, which are asymptotically size correct under the
setup of Theorem 1. It is beyond the scope of this paper to compare our JLM test with these
tests under the many and weak instruments setup. However, under the conventional asymptotic
framework with a fixed number of strong instruments, we can see that the limiting null distribu-
tion of their jackknife Anderson-Rubin statistics is (x% — K)/ V2K, instead of x% for the JLM
statistic. Therefore, under the conventional asymptotics, the JLM statistic will exhibit better

power properties when K > G.

3Although W, is shown to be positive definite for each n almost surely, its eigenvalues typically diverge.
Therefore, the argument based on the continuous mapping theorem for separately taking the limits for U, and
Y5 P*uy is not applicable here if we want to derive the limiting distribution of JLM (b). As shown in Lemma 3,
we take the limit for the whole quadratic part of the dominant term of JLM (b), where the diverging eigenvalues
of W,, are internally normalized.

4We note that Theorem 1 only guarantees pointwise asymptotic validity of the JLM test and confidence set by
using the x? critical value (i-e., the limit is taken under each null distribution). Although it is beyond the scope
of this paper, it is interesting to assess uniform asymptotic size or coverage properties based on our JLM statistic
by applying the generic results in Andrews, Cheng and Guggenberger (2020).
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We next study power properties of the JLM test. As indicated by the impossibility result in
Dufour (1997), we cannot achieve consistency of the JLM test under fixed alternatives without
further assumptions. Indeed based on Mikusheva and Sun (2021), there exists no consistent test
for the null Hy : S = b unless some condition on the concentration parameters, which guarantees
sufficiently strong instruments, is satisfied. As such, we derive the consistency of the JLM test
under this additional requirement.

Furthermore, we note that the LM statistic by Kleibergen (2002) and Moreira (2001) and
its modification by Hansen, Hausman and Newey (2008) may lose power in some regions for the
alternative hypotheses. This lack of power is caused by the fact that those LM statistics are equal
to zero at the maximum as well as the minimum of the concentrated log-likelihood, since they are
quadratic forms of the score of the concentrated likelihood (see, p. 1788 of Kleibergen, 2002). On
the other hand, the jackknife score for our JLM statistic is different from the (conventional) score
of the concentrated likelihood. Specifically, we can show that under an additional requirement
on strength of instruments, the power curve of the JLM statistic shows monotonicity in an
asymptotic sense.

The power properties of the JLM test discussed above are described as follows.

Theorem 2. Suppose Assumption 1 holds true, K — oo, and K/n — « € [0,1) as n — oo.

Additionally, assume that — 0, where (p1, ..., 1g) are the concentration parameters

K
min{ug,....u¢ }
defined in (10). Then under the alternative Hy : f = b+ A for a fivzed A # 0,

(i) P{JLM(b) > Xé,a} — 1 asn — oo, where Xé,a is the (1 — a)-th quantile of the X%

distribution,

(ii) there exists some C' > 0 such that

P{JLM(b) > C||b—B|[> for each b} =1 asn — oo.

The additional assumption — 0 is on the strength of the instruments. For

___ K
min{uf,....ug}
example, Chao and Swanson (2005) imposed this assumption to achieve consistency of point
estimators under their many weak instruments asymptotics. This theorem says that the JLM
test is consistent for any fixed A # 0 and that the JLM statistic JLM (b) for testing Hy: 3 =b
increases monotonically as ||b — /|| increases with probability approaching to 1.

We note that the consistency and power monotonicity results presented in Theorem 2 do not

contradict the impossibility result given in Dufour (1997), which says that any valid confidence

set with level 1 — o must be unbounded with probability close to 1 — « in the neighborhood of



nonidentification regions. The reason is that these power properties of the JLM test are derived

K
min{uf,...,ué}

relative to the number of instruments K. Indeed, based on Mikusheva and Sun (2021), unless

under the additional condition — 0, which requires sufficiently strong instruments

K

———1—7 — 0, we can conclude that there exists no consistent test for the null Hy : 5 =b.
min{yf,..., e

2.3 Models with exogenous regressors

In this subsection, we extend our analysis to models with exogenous regressors in (1). Under the
null hypothesis Hy : 8 = b, the slope parameters =y for the exogenous regressors can be estimated
by

A(b) = (£121) ™ Z1(y1 — Yab),

where Z7 = (211,...,21n)". We can construct the JLM test statistic in the same way as in the
previous section. Define @p; = y1;,—yh;b—21,7(b) and @p = (o1, - . ., Uon). Based on the projection
matrix P| = Z1(Z}Z1)"1Z;, we define n x n matrices Py = (I —P1)Z2(Z4(1—P1)Z2) 1 Z5(I — Py)
and P# such that P;;-E = Py ;j for i # j and Pf =0.

We can show that under H,
(@ P7*Ya) (W)~ (Yo PP ig) = (up PTY2) (W)~ (Vs Plug) + 0,(1), (5)

where ug; = y1i — yh;b — 21,7 and up = (uo1, - - -, uon)’, P is an n x n matrix such that PZ-TJ- =
[Py + diag(P,) P1];j for i # j and P} = 0, and

n

U= Y ol z PP, + Z{PJJP]TZE (v2i03| Z)0% + P E(vaiui] Z)E(vhu;] Z) }.

0,9,k 07k, jF#k G|

Thus, the score-type vector Yy P#1y can be a proxy for the mean zero vector YQ/PTU, and we can

construct the JLM statistic for this general case using the quadratic form:

JLM(b) = (4 P#Ya) W, (Y PFap), (6)
where
5 N n
v, = YQIPTEOPT/YQ + Z ygiyéjﬁgiﬁoj(PiE)Q, (7)
ij=1
and Xy = diag(a3,,...,42,).

The asymptotic property of this JLM statistic is obtained as follows.

Theorem 3. Suppose Assumption 1 holds true, K — oo, and K/n — « € [0,1) as n — oo.



Then under Hy : = b,
JLM(b) %\,

Similar comments to Theorem 1 apply. For example, the JLM-based 100(1 — a)% confidence
set for B in this setup can be constructed as {b: JLM (b) < Xé,a}-

3 Numerical illustrations

3.1 Simulation

In this section, we conduct a simulation study to evaluate the finite sample properties of the

proposed JLM test. We consider the data generating process:

y1i = y2iBo + 2170 + i,
/
Yoi = 2;T2 + v, (8)
s _ / _ !\ _ _ 2 3 / /
for i =1,...,n, where m = (d,...,d), zi = (213, 25;), z1; = 1, and 22; = (2214, 231;, 251> Z59;)

with 291, ~ N(0,1) and z99; ~ N(0,Ix_4). The error terms are generated by (u;,ve;) = ((1 +
b2215)€14, pui + /1 — p2ea;), where e1; and e; are independent and drawn from N (0,1).5 We set
n = 200 for the sample size in all cases, and set Sy = v = 1, p € {0.2,0.6}, and ¢ € {0,0.2}
for the cases of homoskedastic and heteroskedastic errors, respectively. For each Monte Carlo
replication, we set the value of d to fix the value of the concentration parameter (given the

realized values of {z;})

h [Z?zl Zoizhy — SOy 2zl (S0 21izhy) T Zlizéi] 2

2 _
0" = Var(vy;)

We investigate size properties of eleven tests for Hy : 8 = [p: (i) the standard t-test with
the two-stage least squares estimator (t7g), (ii) the standard ¢-test with the limited information
maximum likelihood estimator (¢z7), (iii) the ¢-test with the heteroskedasticity robust limited
information maximum likelihood estimator by Hausman et al. (2012) (tgrr), (iv) the Anderson-
Rubin test (AR) using the asymptotic x? critical value, (v) the conditional likelihood ratio test
by Moreira (2003) (CLR), (vi) the Lagrange multiplier test by Kleibergen (2002) (KLM), (vii)

the modified Lagrange multiplier test by Hansen, Hausman and Newey (2008) (mKLM), (viii)

®In our preliminary simulation, we also consider the cases of (a) the t5 and x3 distributions for error terms as
examples of fat-tailed and skewed errors, (b) truncated support of z; to satisfy Assumption 1 (iii), (c) {z:} kept
fixed throughout Monte Carlo replications, and (d) identification failure by setting d = 0. For (a)-(c), the results
are overall similar to the ones in Table 2. For (d), the size properties are also similar to the ones in Table 2.
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the heteroskedasticity robust version of KLM by Kleibergen (2005) (HKLM), (viiii) the het-
eroskedasticity robust version of CLR by Kleibergen (2005) (HCLR), (x) the heteroskedasticity
robust version of AR by Mikusheva and Sun (2021) (HAR), and (xi) the proposed JLM test
(JLM). The number of Monte Carlo repetitions in each experiment is 10,000.

Tables 2 and 3 report the null rejection frequencies of the tests at the nominal 5% significance
level for the cases of homoskedastic and heteroskedastic errors, respectively. Our findings are

summarized as follows.

i) The size distortions of both trg and ¢ are large except when 62 is large, K is small, and
the errors are homoskedastic. The distortions tend to be quite large when §2 is small, and
K and p are large (see the case of 6> = 2, K = 30, and p = 0.6) even in the case of

homoskedastic errors.

ii) The size distortions of tz1,; are smaller for both the cases of homoskedastic and heteroskedas-
tic errors compared to tyg and tr;. However, the distortions tend to be large when 62 is
small (see the case of 62 = 2). More precisely, tyr; under-rejects when p is small and

over-rejects when p is large.

iii) AR, CLR, and KLM work well even when 62 is small in the case of homoskedastic errors.
However, they tend to over-reject when K is large. The size distortions are severe in the
case of heteroskedastic errors. These findings are consistent with lack of robustness of these
tests against heteroskedastic errors and relatively large K, as shown in Andrews and Stock

(2007b).

iv) mKLM works well for all the cases of homoskedastic errors. However, it tends to over-reject
in the case of heteroskedastic errors. This result is also sensible because mKLM is derived

under homoskedastic errors.

v) HCLR, HKLM, and HAR work relatively well for both the cases of homoskedastic and het-
eroskedastic errors. However, HCLR and HKLM tend to under- or over-reject when 62 is

small. HAR works best among these although it tends to mildly over-reject for all cases.

vi) Compared to the other tests we consider, the rejection frequencies of JLM are overall close
to the nominal level for all cases. The JLM test is robust to many instruments, weak
instruments and heteroskedastic errors, as we would expect from our theoretical results in

Section 2.

We also investigate the power properties of the tests for Hy : f = [y under the alternative

hypotheses Hi : 5 = By + A. We focus on HAR, mKLM, and JLM since the size distortions of
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the other tests are severe when the errors are heteroskedastic and /or the number of instruments is
large. Figures 1-3 display the calibrated power curves at 5% significance level (i.e., the rejection
frequencies of these tests, where the critical values are given by the Monte Carlo 95th percentiles
of these test statistics under Hy). Among various cases tried in preliminary simulations, we
present the cases of n = 200, K = 30, and p = 0.2 for %2 = 60, 30,10 as typical examples.
First, JLM and mKLM are more powerful when |A| is small but less powerful when |A| is large
compared to HAR. Although it is beyond the scope of this paper, we conjecture that the power
property of JLM for large |A| can be improved by using a cross-fit variance estimator as in
Mikusheva and Sun (2021). Second, mKLM exhibits declines of power in some regions for the
alternative hypotheses while the power curves of JLM and HAR are monotone for all cases. This

result is consistent with our theoretical finding in Theorem 2.

3.2 Real data example

We compare the confidence sets of the effect of schooling on log weekly wage with the specification
underlying Table VII Column (6) of Angrist and Krueger (1991) using their original data. We
focus on the specification with 180 and 1,530 instruments as in Mikusheva and Sun (2021). Table
1 reports the 95% confidence sets based on the HAR statistic by Mikusheva and Sun (2021), and
the proposed JLM statistic. In this application, the confidence sets based on JLM are narrower
than those based on HAR. We conjecture that this is due to the better power property of the

JLM test for small values of |A| as illustrated in the simulation study above.

HAR JLM
180 instruments  [0.008, 0.201]  [0.067, 0.133]
1530 instruments [-0.047, 0.202] [0.025, 0.123]

Table 1: 95% confidence sets of the effect of schooling on log weekly wage using Angrist and
Krueger’s (1991) data

4 Conclusion

By modifying the score statistic based on jackknifing combined with heteroskedasticity robust
estimation for its variance component, we propose a new jackknife Lagrange multiplier test for
parameter hypotheses on instrumental variable regression models. Our test is easy to implement
and robust not only to many and arbitrarily weak instruments but also to heteroskedastic er-
rors. Simulation results endorse desirable size and power properties of the proposed test. It is
interesting to adapt our idea of jackknifing to other tests, such as Moreira’s (2003) conditional

likelihood ratio test and its heteroskedasticity and autocorrelation robust version by Moreira and

12



Moreira (2019), to robustify these tests under many instruments asymptotics. Such extensions

are currently under investigation by the authors.

13



p 2 K trg trr tprr AR CLR KLM mKLM HKLM HCLR HAR JLM
02 30 5 0.045 0.048 0.048 0.056 0.055 0.053 0.052 0.040  0.048 0.085 0.044
30 10 0.056 0.064 0.036 0.055 0.057 0.055 0.053 0.038  0.048 0.074 0.051
30 30 0.123 0.132 0.027 0.075 0.066 0.063 0.051 0.032  0.047 0.078 0.050
30 90 0.391 0.342 0.024 0.129 0.146 0.127  0.052 0.112  0.132 0.087 0.053
10 5 0.033 0.034 0.023 0.051 0.053 0.054 0.051 0.031 0.035 0.080 0.047
10 10 0.058 0.061 0.019 0.058 0.057 0.052 0.046 0.032  0.032 0.077 0.050
10 30 0.161 0.156 0.014 0.071 0.076 0.068  0.047 0.030  0.040 0.076 0.050
10 90 0.447 0.370 0.015 0.126 0.158 0.140  0.047 0.110  0.131 0.082 0.049
2 5 0.018 0.015 0.008 0.054 0.056 0.055 0.048 0.016  0.013 0.082 0.049
2 10 0.054 0.042 0.008 0.058 0.060 0.059 0.047 0.019  0.014 0.079 0.050
2 30 0.179 0.152 0.009 0.067 0.073 0.072  0.047 0.026  0.029 0.072 0.051
2 90 0484 0371 0.012 0.126 0.158 0.145 0.049 0.105  0.131 0.086 0.052
06 30 5 0.086 0.055 0.065 0.059 0.052 0.052 0.052 0.042  0.051 0.085 0.049
30 10 0.176 0.062 0.049 0.057 0.055 0.053 0.052 0.039  0.049 0.075 0.050
30 30 0.696 0.097 0.046 0.072 0.063 0.089  0.049 0.034  0.048 0.075 0.046
30 90 0.999 0.253 0.069 0.128 0.136 0.119 0.049 0.112  0.139 0.088 0.051
10 5 0.131 0.073 0.068 0.052 0.053 0.052  0.050 0.035  0.040 0.082 0.048
10 10 0.312 0.099 0.064 0.055 0.055 0.055 0.050 0.034 0.036 0.078 0.049
10 30 0.879 0.201 0.081 0.073 0.070 0.063 0.046 0.031 0.042 0.076 0.048
10 90 1.000 0.349 0.097 0.129 0.154 0.136  0.046 0.109  0.143 0.086 0.050
2 5 0210 0.114 0.075 0.052 0.051 0.050 0.045 0.018  0.016 0.080 0.042
2 10 0.497 0.197 0.092 0.055 0.058 0.050 0.042 0.024  0.016 0.075 0.042
2 30 0945 0.324 0.104 0.070 0.079 0.069  0.046 0.029  0.032 0.074 0.047
2 90 1.000 0.448 0.125 0.124 0.161 0.148 0.050 0.110  0.151 0.082 0.051

Table 2: Empirical rejection frequencies at 5% significant level: Homoskedastic errors
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p 2 K trg trr tprr AR CLR KLM mKLM HKLM HCLR HAR JLM
02 30 5 0.091 0.098 0.050 0.088 0.113 0.110 0.108 0.035  0.044 0.095 0.045
30 10 0.096 0.107 0.044 0.080 0.099 0.097 0.093 0.037  0.040 0.081 0.045
30 30 0.139 0.155 0.025 0.076 0.083 0.076  0.062 0.030  0.043 0.070 0.046
30 90 0.408 0.351 0.024 0.124 0.152 0.132  0.051 0.114  0.136  0.082 0.048
10 5 0.068 0.067 0.029 0.088 0.108 0.102  0.098 0.025  0.026 0.096 0.045
10 10 0.083 0.085 0.019 0.077 0.091 0.087 0.078 0.025  0.026 0.087 0.050
10 30 0.172 0.168 0.017 0.082 0.088 0.076  0.054 0.028  0.036 0.076 0.045
10 90 0.458 0.378 0.016 0.129 0.162 0.147  0.049 0.104  0.128 0.082 0.050
2 5 0.030 0.026 0.008 0.082 0.085 0.073 0.063 0.013  0.012 0.091 0.044
2 10 0.066 0.052 0.008 0.078 0.081 0.067 0.054 0.018  0.013 0.081 0.047
2 30 0.197 0.167 0.009 0.081 0.090 0.078  0.050 0.025  0.027 0.077 0.048
2 90 0493 0380 0.012 0.128 0.161 0.146 0.047 0.107  0.127 0.083 0.053
0.6 30 5 0.128 0.097 0.064 0.091 0.116 0.112 0.111 0.040  0.049 0.098 0.046
30 10 0.201 0.095 0.057 0.081 0.099 0.096 0.093 0.039  0.046 0.088 0.049
30 30 0.708 0.130 0.056 0.082 0.088 0.081  0.068 0.031 0.044 0.075 0.050
30 90 0.999 0.263 0.071 0.130 0.148 0.126  0.055 0.116  0.136  0.086 0.050
10 5 0.170 0.112 0.076 0.092 0.107 0.104 0.100 0.028  0.033 0.098 0.044
10 10 0.329 0.134 0.077 0.079 0.094 0.089 0.082 0.032  0.035 0.081 0.046
10 30 0.883 0.213 0.080 0.081 0.087 0.076  0.057 0.029  0.043 0.075 0.047
10 90 0.999 0.356 0.098 0.124 0.151 0.134  0.046 0.111 0.142  0.081 0.045
2 5 0248 0.149 0.091 0.087 0.095 0.086 0.077 0.014  0.014 0.092 0.032
2 10 0.515 0.214 0.095 0.077 0.083 0.069 0.058 0.020  0.015 0.082 0.043
2 30 0.948 0.338 0.107 0.083 0.089 0.075 0.052 0.026  0.031 0.077 0.050
2 90 1.000 0.446 0.124 0.131 0.165 0.149 0.049 0.108  0.148 0.083 0.047

Table 3: Empirical rejection frequencies at 5% significant level: Heteroskedastic errors
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Figure 1: Calibrated power curves: n = 200, K = 30, p = 0.2, 6% = 60, Heteroskedastic errors.
Readers are referred to the online version of the paper for colored graphics.
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Figure 2: Calibrated power curves: n = 200, K = 30, p = 0.2, 62 = 30, Heteroskedastic errors.
Readers are referred to the online version of the paper for colored graphics.
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A  Proof

Notation: Hereafter C' means a generic positive constant. Lemma 1 below guarantees that ¥,
is positive definite almost surely. Thus, by the spectral decomposition, there exists an orthogonal

matrix Q, = (q1,...,qq) such that @,Q), = I and
QLY. Q, = A, = diag(\1, ..., \g). (9)
Also define ug; = y1; — yh;b, and
Aijie = 071y, 2 Py Prj2iTlon, Bij = PZ{E(v2vi| Z)0? + E(vaiui| Z) E(vy;u4]2)},
Ay, = g y2i Pi P Bij = P (yaiyiug; + y2iyhuoitio; ),

so that ¥,, = ZZj,k,#k,j;ék Aijie + Z:;éj B;; and U, = Z#ﬁék Aijk + Z;;j Eij under Hy. Based
on @, = (q,...,q9c), denote

n
pe =3 a0, %z ongg, (10)
=1

forg=1,...,G.

A.1 Proof of Theorem 1

By Lemma 1, ¥, is positive definite, and then we have
JLM(b) = ' P*YaQu A, QY3 P*u+ 0,(1) 5 X2,

under Hy : 8 = b, where the equality follows from Lemma 2 and the convergence follows from

Lemma 3.

A.2 Lemmas for Theorem 1

Lemma 1. Under Assumption 1, V,, is positive definite almost surely for each n > K.

Proof: Pick any n > K and nonzero G-dimensional vector ¢. Then ¥, c = A + B, where

A=3"0kisk g € Aigre and B = 370, . ¢ Byje. For A, note that

/

n n n
A= C,ZU’%’ Z P21y, Z ijZ;'HQn c>0.
k=1 i=1,i#k Jj=1,j#k
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For B, we have

B = Z {E C’UgZ ’Z](T —i—E[(CUQ]) |Z] +2E(C,’Ugiui‘Z)E(CIU2ju3"Z)}
Z {E cvg;) |Z]U + E[(cv2;)?| Z)0? — |12E(cvui| Z) E(dvajuy| Z)| ). (11)
l#y

v

Also, the Cauchy-Schwarz inequality combined with Assumption 1 (iv) implies

| E(cvaiui| Z) E(cvajus|Z)| < \/E[(C’U%)QIZ]E[(C’UQJ‘)Q\Z]Uf%za
almost surely. Thus, by % (a® + b%) > ab, we have
E[(c’vgi)2|Z]o]2- + E[(dve;)?| Z2)0? — |2B(cvaiui| Z) E(cvajui| Z)| > 0, (12)

almost surely. Since Y " =31, P; =K, we have

INE 1

n
;a%:K—;a%zK(l—lmW”)>o, (13
1£] 1=

almost surely, where the last inequality follows from Assumption 1 (i).

Combining (11)-(13), we obtain B > 0 almost surely, and the conclusion follows.

Lemma 2. Under Assumption 1 and Hy: 5 =b,
JLM(b) = ' P*Y2Qn A, QL Ys P u+ 0py(1).
Proof: By Lemma 1 and (9), the LM statistic can be written as

JLM(b) = upP*Yo{W, + (¥, — ¥,)} 1Yy P ug
= Uy P Yo{QnQ, Y, Q,Q) + QnQ, (T, — U,)Q, Q. } 1Y) Prug
= uyP*YoQ,A 1/2{I+A 1/2Qn( U,)QnA 1/2} 1A- 1/2Q Y4 P uo.

Pick any g,h =1,...,G. Then it follows from Lemma 4 that

1 S P,
v, —WU = 0.
o Gy(V — V) qn
Thus, we obtain A, 1/ QQ;(@ U,)QnAy 2R 0, and Slutsky’s lemma yields the conclusion.
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Lemma 3. Under Assumption 1,

u'P*YQQnA,:lQ;LYQ'P*u i> X%}-

Proof: Without loss of generality, we assume that LGN o0y L 4 o0 and 55— —
M1 e HGi+1
o0, ..., % — oo. Pick any nonzero Ga-dimensional vector £, and define S,, = diag(u1,. .., g, VK, ...
G
Observe that
(€)1 2N 2Q Yy Pru
(&)L 2S8,8, ), ZH%ZZ Pyyui + &0 PVK TQ Z%Puu]
i=1 i#£j
Here we apply Chao et al. (2012, Lemma A.2) by setting “U;, €;, Wi, c1pn, and c2,,” in their

notation as va;, u;, S; Q" bnzi(1— Pyi)ug, SnAﬁl/Qg, and \/EA;1/2§, respectively. It is straight-
forward to verify that the conditions of Chao et al. (2012, Lemma A.2) are satisfied.> Thus, by

the Cramér-Wold device, we have
AYV2Q VPR u S N(0, 1),

which implies the conclusion.

Lemma 4. Under Assumption 1, it holds that

g o

forg,h=1,....G.

Conditions (i)-(iii) of Chao et al. (2012, Lemma A2) are directly verified from Assumption 1. Condition (iv)
of Chao et al. (2012, Lemma A2) can be verified as

n n G
1
ST E(Winll*|2) < CZ {Z (2iMangg)* + ) Kg(zi-ang)“}
i=1 =1 (g=1 9=G1+1
Hg
< =
< C{lrgzag(n 2 Tl2nqy) }{Z Z KQ}HO
g=G1+1
almost surely for some C' > 0, where the first inequality follows from the definition of Wi, = Sy, ' Q) II5, zi (1— Pi; )us
and Assumption 1 (i) and (iii), and the convergence follows from u; — oo for g = 1,...,G1 (because of K — c0),
the assumptlon — oo for g = G1+1,...,G, and boundedness of maxi<i<y(2/112,qy)* (by Assumption 1 (iii)).

Furthermore, Chao et al. (2012, Lemma A2) require ||cin|| < C and ||can|| < C for some C > 0. In our case,

Clp = SnA;1/2§ and con, = V KA;1/2§ satisfy these requirements because of the fact that \y = Ay + By > Ay
and pg = O(Ay) by the proof of Lemma 4.
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Proof: Pick any g,h =1,...,G. Decompose

1, 1 , 1 )
Qg(Un — Upn)gn = > d(Aik — Ai)an + ——=>_ ¢y(Bij — Aiij — Bij)an
gy 9 Vo 22, Vg
= My + M.

It is enough to show that Mp, M, % 0. Based on 9), let \y = Ay + By, where A; =
Dot jkizk ik QgAijkdg and By = 370, . 43 Bijqg. We note that \/AgA, > max{\/AgAs, \/By B}

since Ag, Ap, > 0 and By, By, > 0 from Lemma 1. We consider two cases: (I) # — 0, and (II)
h
K g
Mg

Case (I). First, consider the case where —~ ug — 0. It follows | M| < \/ﬁ ‘Zi##k q;(flijk - Aijk)qh‘ LS

0 from Chao et al. (2012, Lemma A4) by setting “W;, Y}, and 7;” in their notation as ﬁq@ygi,

- 0.

ﬁhqugj, and uj, respectively. Let ,ug = Z?:l(q;H’ani)Q. Note that ,ug = O(A,) because

Hy o o
Ag 7 OX% kink i GMon 2 Pir Pz Tlangg
2
C {Zz l(ngénzl) —2 Zz k RLkPk’L(ngQnZZ) + Zz 1 (ng2nzl) }

,LLg < C/
C{XiL1 (1= 2P + PR)(ggMTy,2:)? ) —
where the first equality follows from > 7', | 2P Prj2; = 2,y 2%}, the second equality follows
from "}, PirPri = Py, and the second inequality follows from Assumption 1 (i). This allows
us to verify the conditions in Chao et al. (2012, Lemma A4).
For My, we first apply Chao et al. (2012, Lemma A3) by setting “W; and Y;” in their notation
as \/ﬁ(q;ygiyéiqh) and u?, respectively. Note that

1 1
E(Wi|Z) = ———— (¢ T, 22 Tonqn) + ———— . E (va30;| Z ) i
( 2| ) \/m(qg 2n~1% 2nqh> \/mqg (21 21| )qh
so that
1 1
E Z)| < I I .
11"gza<>;| WilZ)| < C \/mlrggglqg o zi%M2ngn| + T |
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almost surely. Moreover, for v;, = g;vgi, it holds that

1
Joax Var(W;|Z) = Joax. Var <\/m Z)
1 - - L
= o o {5020 E412) + (T2 G 2) + 2 Ty 00 | g1 2)
+2(q) 1y, 2i) E(Uig073,| Z) + 2(q3 1T, 2:) E(U3,0in| Z) + Var (0ig0in| Z) }

{ay (1T, 2; + vai) (T, 2; + v2i) qn }

C
< A e {(0ghnz0)” + (6hThn2)” + 15T il + 16 Do) + 1),
g
almost surely. Thus, by applying Chao et al. (2012, Lemma A3) (with W; = m(%y%yéi%)
and Y; = u?), we obtain
2

1
NZw > Phagyaivhiuian — \/ﬂ > Py, 22T lanqn0? + g E(vaivh;|2:)07an}

i#j i#j Lo,Z

2
< CK{ max Var(W;|Z) uax Var(Y]Z) + max Var(W\Z) (lrgaé( E(Y;]Z))

1<i<n
2
+ (max E(W\Z)) max Var(Yi]Z)}
1<i< 1<i<n

CK
A Ah 1<z<n {(ng2nzl) (q;znénzi)2 + (q_;HIQHZi)2 + (q;IH/Q'I’LZZ) + |qg ZZ‘ + ’qhH2nZZ‘ + 1}

<

almost surely. Taking the expectation with respect to the distribution of Z and using Billingsley
(1986, Theorem 16.1), we have that

2
1
E\|{—F—— E Pdyaiyhiuian — E > {ay Y, 22 onan o’ + 4y E (vaivh;|2:)05qn}
J 29 ) g-Zn 7 J g % J
VAgAL oy \/AA poy
2

1 2/ /2 ! 71/ / 2 / / 2
W Z Piiagy2iyausan — \/ﬂ Z {nganiziHanhaj + ng(vgini]zi)aj an}

h i#j i#] Lo,Z
< UK Ez | m II II 11, 2;)? ! 11 I, 2| + 1
> Z ax {(Qg 2n2z) (Qh 2nZZ) + (Qg mzi)” + (q 2nzl) + |Qg nZil + |‘.7h nzil + 1}
AgAh 1<i<n

=9 (Ajil,) =elb)

where the last equality follows from ,ug = O(Ay) and p3 = O(Ap). Thus, the Markov inequality
yields

1
———  Plqyaivhitiqn = > P2{q) My, 22 Tlonqno; + ¢, B (vaivh;| Z)o3qn} + 0p(1).
VA AR VA A i#j

(14)
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Secondly, by a similar argument as in Chao et al. (2012, Lemma A3) and setting “W; and Y;” in

their notation as \/%q;ygiui and \/%Thquziui, respectively, we can show that
g

S P2, Evnl 2) B (b5 D) + 0p(1).  (15)

1
——— Y Pldyaivhjuitign =
AgAh l#] 174gdard2y ) /A A Z#]

Combining (14), (15) and the fact that |[My| < ——— 1;&](3 — Ajij — Bij)|, we have that

My 2 0.

Case (II). Next, we consider the case where ZL/F — 0. It follows that
9Fh

| M| < — Aijk)an 20 from Chao et al. (2012, Lemma A4) by setting

\/ﬁ Zz’;éjyék; qg(Az’jk
YA . » s : : 1 /o 1 / . 2 :
Wi, Y;, and n;” in their notation as —@qugl, 757 Y2 and wuy, respectively. Note that
\/%Bh Z##k Qg Aijkdn 20 in this case.
g
For Ms, we apply Chao et al. (2012, Lemma A3) by setting “W; and Y;” in their notation

with

ﬁ(qugzy%qh) and u?, respectively (and \/—qugluz and thyglu,, respectively),

and it follows | Ms| < — Ayij — Bij)| 5 0 by the same argument as in Case (I).

\/ﬁ Zz‘;ﬁj(Bij
A.3 Proof of Theorem 2
Proof of (i)

To simplify the presentation, we consider the case of a single included endogenous regressor (i.e.,
G = 1). The case of multiple endogenous regressors is shown in a similar way using the spectral
decomposition as in the proof of Theorem 1.

Pick any b # (. In the case of G = 1, the JLM statistic is written as JLM (b) = (N1 + N2 +
N3)/,,, where

2
n
> Pijyaiya; | (B-b)%, Np=2 Z Z Pij Payoiujyoryu(B—b), Nz = Z Pijyaiu;
i£] i#j k#l i#J
For Njp, observe that
2
n n n
Ny = Z(l — P05, 2 2i1loy, + Z Pijvoivej + 2 Z(l — Pi)h,ziva; ¢ (B —b)?
i=1 i#j i=1
2
> Cl,Uzl + Z ]DZJUQZUQ] +2 Z — Py HQnZzUQZ (/8 - b)2
1#] i=1
= (N1 + Niz + Ni3)*(8 — )%, (16)
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for some C; > 0, where the inequality follows from Assumption 1 (i). For Nj2 and Nj3, similar

arguments as those in Chao et al. (2012, Lemma A2) yield

N} = Z E[v3;|Z] [U2j‘Z]{1+0p(1)}a
zsﬁj
Niy = 42 — P;i)*(ITy,2:)* Elvg;] Z1{1 + 0,(1)}.

Then Nz = 0,(N11) follows from the facts that Z#] %< >

the assumption ——&
p mln{l"[/%7"7l'l/4c:}

Hence, by applying similar arguments to the cross terms, we have
Ny > Cipi{l + 0p(1)}.

Similarly, for No and N3, we obtain

n
Ny, = 4 > PuPri(Iy, ) (I, 2) Elvaygus| Z] (8 — b) +Z

Z,],k,l;ﬁj#k ’L;é.]
- OP(N1)7
and
n
N3 = > PuPy(Ih,z) (T, 2) E[uf| Z] + Z
1,5,k i#k,j#k i#j

Z E[v3,| Z1Eluj| Z] 5 {1+ 0p(1)}
7]
= Op(Nl)-

24
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=", P; =K and

E[v3;| Z) Elvaju,| Z)(8 —

UQZUZ‘Z [Ungj|Z]

— 0, and Ni3 = o0p(N11) follows from Assumption 1 (i) and (iii).

b)

{1+0p(1)}



For the denominator, similar arguments as in the proof of Lemma 4 yield

n n
v, = > veiPu{uk + yor(8 — b)Y Pajyzg + Y Plyziya;{ui + y2i (8 — b) Huy + y2,(8 — b)}
ik gk i
n

n
= Z yoi Piryan Prjyoj + Z Plyays; | (B —1b)

.0,k i#k,j#k i#]
n n
+2 > yaiPiuuyorPrjya; + > Prysiyajuiyz | (8 —0)
i,0,k,i#k,j#k i#]

n n
+ Z Y2i P Prjyo; + Z P%?/Qi?ﬂj”i“j
1,9,k i#k,j#k i#£]
< Cymax{ud, K}(5 — b +2(6 — ) + 1),

for some C3 > 0 by applying Chao et al. (2012, Lemmas A3 and A4) and Assumption 1 (iii).

By using the above results, it holds that
P{JLM(b) < C} =P {W < C}
Crii(1+ 0p(1)) }

< P <C

= {cs max {12, K (B — b)° +2(3 — b) + 1}

— 0, (17)

for any C' > 0, where the convergence follows from the assumption that K/uj — 0. Therefore,

the conclusion follows.

Proof of (ii)
By using (17), there exists some C” > 0 such that

PLILM(b) < C'(5 — )2} = P {NIHVM < (B - b)z}

n

< P{g11 < (1—6)3(5—19)2} +0(1) = 0,

for all € > 0 small enough, where C is a positive constant defined in (16), and the convergence

follows from the assumption that K/u{ — 0. Therefore, the conclusion follows.
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A.4 Proof of Theorem 3

We show the theorem in the same way as in Theorem 1:

JLM(b) = (igP*Y2)(Wh) ' (YsP%iig) + 0p(1)
= (upPY2)(W]) " (Y3 PTug) + 0p(1)
d
= Xé (18)
under Hy : f = b, where the first equality in (18) follows by the same argument as in Lemma 2,

i.e., apply Chao et al. (2012, Lemmas A3 and A4) with P;; replaced by PZTJ Indeed, by noting
that

(PiTj)2 = P22,z'j + 2P P2 i P1ij + P22,iiP12,z'j < P22,ij + 2| P2ij Prij| + P12,ij7

and yglP;r] = y2iPoij + (Y2iPo,ii)P1,ij, we can show the same results as in Chao et al. (2012,
Lemmas A3 and A4) with P;; replaced by P;g
The second equality in (18) follows from the relation in (5), which is shown as follows. Note

that under Hy,

YyP#ig = Y3P#(y; — Yaby — Z14(D))
= YyP*u - Y{P*Z,(5(b) — 7)
= YyP%u + Yydiag(Py)Piu

= Yy Plu + Yydiag(P,)diag(P;)u,

where the fourth equality follows from PP} = 0. Pick any G-dimensional vector ¢ and let

p2 =31 (1, 2)?. Since

n n
Var ('Yydiag(P,)diag(P1)ulZ) = Z PL.PE.Var(cysui| Z) < C Z PV ar(cysui| Z)
i=1 =1

S C’ZPuiVar(c’ygiui\Z) = O(Kl) = O(l),
i=1
we have (I) ¢'Yydiag(P2)diag(P1)u = op(p.) when K/pu2 is bounded, and (II) ¢'Yydiag( P2 )diag( Py )u =
0p(VK) when K/u? — co. Hence we have that ¢/Yydiag(Py)diag(Py)u = 0,(c'YyPtu). There-
fore, the relation in (5) follows.

Finally, the convergence in (18) follows from the same argument as in Lemma 3. We note
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that

n n n n
C/Y2/PTU = Z Z C/H/QnZi(PQJj -+ P2iiP1ij) u]' + Z C/UQZ‘PQJ']'U]' + Z C/UQiPQii.PlijUj,
j=1 i=1i#j i#j i#j

and >, 5 v Poji Prijuj = Op(V K1) = 0p(c'YgPTu). Then we apply Chao et al. (2012, Lemma
A2) by setting “U;, €;, Win, c1n, and c2,,” in their notation as ve;, u;,

StQ, {Z;‘L:l,j# T, 2 (P, ji + P2ij1ji)} u;, SnAﬁlﬂf, and \/EAﬁlﬂf, respectively.
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