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ABSTRACT
Computing approximate shortest paths in the dynamic streaming

setting is a fundamental challenge that has been intensively studied.

Currently existing solutions for this problem either build a sparse

multiplicative spanner of the input graph and compute shortest

paths in the spanner offline, or compute an exact single source BFS

tree. Solutions of the first type are doomed to incur a stretch-space

tradeoff of 2κ − 1 versus n1+1/κ , for an integer parameter κ. (In fact,

existing solutions also incur an extra factor of 1+ϵ in the stretch for

weighted graphs, and an additional factor of log
O (1) n in the space.)

The only existing solution of the second type uses n1/2−O (1/κ )

passes over the stream (for space O (n1+1/κ )), and applies only to

unweighted graphs.

We show that (1 + ϵ )-approximate single-source shortest paths

can be computed with Õ (n1+1/κ ) space using just constantly many

passes in unweighted graphs, and polylogarithmically many passes

in weighted graphs. Moreover, the same result applies for multi-

source shortest paths, as long as the number of sources is O (n1/κ ).
We achieve these results by devising efficient dynamic streaming

constructions of (1 + ϵ, β )-spanners and hopsets. We believe that

these constructions are of independent interest.
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1 INTRODUCTION
In this report we give a brief overview of our work on approximate

shortest paths in dynamic streams. We refer the reader to the full

version [15] for a detailed exposition. One of the most common

theoretical models for addressing the challenge of processing mas-

sive graphs is the semi-streaming model of computation [1, 17, 27].

In this model, edges of an input n-vertex graph G = (V ,E) arrive
one after another, while the storage capacity of the algorithm is

limited. One usually allows space of Õ (n), though it is often relaxed

to n1+o (1) , sometimes to O (n1+ρ ), for an arbitrarily small constant

parameter ρ > 0, or even to O (n1+η0 ), for some fixed constant η0,
0 < η0 < 1. Generally, the model allows several passes over the

stream, and the objective is to keep both the number of passes and

the space complexity of the algorithm in check. The model comes

in two main variations. In the first one, called static or insertion-
only model [17], the edges can only arrive, and never get deleted.

In the more general dynamic (also known as turnstile) streaming

setting [1], edges may either arrive or get deleted.

In this work, we address the problem of computing computing

approximate shortest paths in the dynamic streaming model by

constructing spanners and hopsets. For a pair of parameters α ≥ 1,

β ≥ 0, given an undirected graph G = (V ,E), a subgraph G ′ =
(V ,H ) of G is said to be an (α , β)-spanner of G, if for every pair

u,v ∈ V , it holds that dG′ (u,v ) ≤ α · dG (u .v ) + β , where dG
and dG′ are the distance functions of G and G ′, respectively. A
spanner with β = 0 is called a multiplicative spanner and one with

α = 1 is called an additive spanner. There is another important

variety of spanners called near-additive spanners for which β ≥ 0

and α = 1 + ϵ , for an arbitrarily small ϵ > 0. Given an n-vertex
weighted undirected graph G = (V ,E,ω), consider another graph
G ′ = (V ,H ,ω ′) on the same vertex set V . Define the union graph

G ′′ = GUG ′ = (V ,E ∪H ,ω ′′), where ω ′′(e ) = ω ′(e ) for e ∈ H and

ω ′′(e ) = ω (e ) for e ∈ E \H . For a positive integer parameter β and

a pair u,v ∈ V , a β-bounded distance, denoted d (β )G (u,v ),between u
and v in G is the length of a shortest u-v path in G that contains

at most β edges. For a parameter ϵ > 0 and a positive integer β ,
a graph G ′ = (V ,H ,ω ′) on the same vertex set as G is called a

(1+ ϵ, β )-hopset ofG , if for every pair of vertices u,v ∈ V , we have

dG (u,v ) ≤ d
(β )
G∪G′ (u,v ) ≤ (1 + ϵ ) · dG (u,v ).

Both spanners and hopsets are fundamental graph-algorithmic

constructs for approximating distances and shortest paths. Hopsets

are particularly useful in various computational settings in which

computing shortest paths with a limited number of hops is sig-

nificantly easier than computing them with no limitation on the

number of hops. A partial list of these settings includes stream-

ing, distributed, parallel and centralized dynamic models. Recently,
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hopsets were also shown to be useful for computing approximate

shortest paths in the standard centralized model of computation as

well [12].

Most of the algorithms for computing (approximate) distances

and shortest paths in the streaming setting compute a sparse span-

ner, and then employ it for computing exact shortest paths and

distances in it offline, i.e., in the post-processing, after the stream

is over [2, 4, 8, 10, 16, 18–20, 24]. The algorithms of [4, 8, 18] ap-

ply to unweighted graphs, but they can be extended to weighted

graphs by running many copies of them in parallel, one for each

weight scale. Let Λ = Λ(G ) denote the aspect ratio of the graph, i.e.,
Λ =

maxu,v∈V dG (u,v )
minu,v∈VdG (u,v )

. Also, let ϵ ≥ 0 be a slack parameter. Then

by runningO (
logΛ
ϵ ) copies of the algorithm for unweighted graphs

and taking the union of their outputs as the ultimate spanner, one

obtains a one-pass static streaming algorithm for 2(1+ϵ )κ-spanner

with Õ (n1+
1

κ · (logΛ)/ϵ ) edges. [14] Elkin and Zhang [16] and Elkin
and Neiman [10] devised static streaming algorithms for building

(1+ϵ, βEN )-spanners with Õ (n1+1/κ ) edges using βEN passes over

the stream and space Õ (n1+ρ ), where, for any parameters ϵ, ρ > 0

and κ = 1, 2, . . .. β = βEN =
(
logκρ+1/ρ

ϵ

)
logκρ+1/ρ

.

Recently [5] devised a dynamic streaming algorithm that uses

Õ (n/p) passes (for parameter 1 ≤ p ≤ n as above) and space Õ (n +
p2) for the SSSP (Single Source Shortest Paths) problem, and space

Õ ( |S |n + p2) for the S ×V approximate shortest path computation.

Ahn, Guha and McGregor [2] devised the first dynamic streaming
algorithm for computing approximate distances. Their algorithm

computes a (2κ − 1)-spanner (for any κ = 1, 2, . . .) with Õ (n1+1/κ )
edges (and the same space complexity) inκ passes over the stream. A

number of dynamic streaming algorithms for spanner construction

were devised thereafter. [2, 19, 20, 24]

All known dynamic streaming algorithms for computing approx-

imately shortest paths (with space Õ (n1+1/κ ), for a parameter κ =
1, 2, . . .), can be divided into two categories. The algorithms in the

first category build a sparsemultiplicative (2κ−1)-spanner, and they
provide amultiplicative stretch of at least 2κ−1 [2, 19, 20, 24]. More-

over, due to existential lower bounds for spanners, this approach

is doomed to provide stretch of at least
4

3
κ [26]. The algorithms in

the second category compute exact single source shortest paths in
unweighted graphs, but they employ n1/2−O (1/κ )

passes [5, 9].

Our Results:We present the first dynamic streaming algorithm

for SSSP with stretch 1 + ϵ , space Õ (n1+1/κ ), and constant (as
long as ϵ and κ are constant) number of passes for unweighted

graphs. For weighted graphs, our number of passes is polylogarith-
mic in n. Specifically, the number of passes of our SSSP algorithm

is ( κϵ )
κ (1+o (1))

for unweighted graphs, and

(
(logn)κ

ϵ

)κ (1+o (1))
for

weighted ones. Moreover, within the same complexity bounds, our

algorithm can compute (1+ϵ )-approximate S×V shortest paths from

|S | = n1/κ designated sources. Moreover, in unweighted graphs,

all pairs almost shortest paths with stretch (1 + ϵ,
(
κ
ϵ

)κ
) can also

be computed within the same space and number of passes. Note

that our multiplicative stretch (1 + ϵ ) is dramatically better than

(2κ − 1), exhibited by algorithms based on multiplicative span-

ners [2, 19, 20, 24]. Our number of passes is independent of n, for

unweighted graphs, and depends only polylogarithmically on n for

weighted ones.

2 TECHNICAL OVERVIEW
We devise two algorithms. One of them builds a near-additive span-

ner and the other builds a hopset. The following two theorems

summarize the results of our spanner and hopset constructions.

Theorem 2.1. For any unweighted graph G (V ,E) on n vertices,
parameters 0 < ϵ < 1, κ ≥ 2, and ρ > 0, our dynamic streaming
algorithm computes a (1 + ϵ, β )-spanner with Oϵ,κ,ρ (n

1+1/κ ) edges,
in O (β ) passes using O (n1+ρ log4 n) space whp, where β is given by:

β =

(
logκρ + 1/ρ

ϵ

)
logκρ+1/ρ

.

We then use the spanner thus constructed to compute (1 + ϵ )-

approximate S × V shortest paths from up to n1/κ designated

sources. (See Section 6 of [15] for more details.)

Theorem 2.2. For any n-vertex graphG (V ,E,ω) with aspect ratio
Λ, 2 ≤ κ ≤ (logn)/4, 1/κ ≤ ρ ≤ 1/2 and 0 < ϵ ′ < 1, our dynamic
streaming algorithm computes whp a (1 + ϵ ′, β ′) hopset H with
expected size O (n1+1/κ · logΛ) and the hopbound β ′ given by

β ′ = O

(
logΛ

ϵ ′
(logκρ + 1/ρ)

)
logκρ+1/ρ

.

It does so by makingO (β ′ · logΛ · (logκρ + 1/ρ)) passes through the
stream and using O (

β ′
ϵ ′ · n

1+ρ · logΛ · log2 n · (log2 n + logΛ)) bits
of space.

We then use the hopset thus constructed to compute (1 + ϵ )-

approximate S × V shortest paths from up to n1/κ designated

sources. (See Section 8 of [15] for more details.) These algorithms

extend the results of [10, 11] from the static streaming setting

to dynamic streaming one. The algorithms of [10, 11], like their

predecessor, the algorithm of [13], are based on the superclustering-
and-interconnection (henceforth, SAI) approach. Our algorithms in

the current paper also fall into this framework. Algorithms that

follow the SAI approach proceed in phases, and in each phase they

maintain a partial partition of the vertex set V of the graph. Some

of the clusters ofG are selected to create superclusters around them.

This is the superclustering step. Clusters that are not superclustered

into these superclusters are then interconnected with their nearby

clusters. The main challenge in implementing this scheme in the

dynamic streaming setting is in the interconnection step. Indeed,

the superclustering step requires a single and rather shallow BFS

exploration, and implementing depth-d BFS in unweighted graphs

in d passes over the dynamic stream can be done in near-linear

space (See, e.g., [2, 5]). For the weighted graphs, we devise a routine

for performing an approximate Bellman-Ford exploration (hence-

forth, BFE) up to a given hop-depth d , using d passes and Õ (n)
space. On the other hand, the interconnection step requires imple-

menting simultaneous BFS (BFE for the weighted case) distance

explorations originated at multiple sources. A crucial property that

enabled [10, 11] to implement it in the static streaming setting is

that one can argue that with high probability, not too many distance

explorations traverse any particular vertex. Let us denote by N , an



Brief Announcement:(1 + ϵ )-Approximate Shortest Paths in Dynamic Streams PODC ’22, July 25–29, 2022, Salerno, Italy

upper bound on the number of explorations (traversing any particu-

lar vertex). In the dynamic streaming setting, however, at any point

of the stream, there may well be much more than N explorations

that traverse a specific vertexv ∈ V , based on the stream of updates

observed so far. Storing data about all these explorations would

make the space requirement of the algorithm prohibitively large.

To resolve this issue (and a number of related similar issues), we

incorporate a sparse recovery routine into our algorithms. Sparse re-

covery is a fundamental and well-studied primitive in the dynamic

streaming setting [3, 7, 21, 23]. It is defined for an input which is

a stream of (positive and negative) updates to an n-dimensional

vector

→
a = (a1,a2, . . . ,an ). In the strict turnstile setting, which is

sufficient for our application, ultimately each coordinate ai (i.e.,
at the end of the stream) is non-negative, even though negative

updates are allowed and intermediate values of coordinates may be

negative. In the general turnstile model coordinates of the vector

→
a

may be negative at the end of the stream as well. For a parameter s ,

an s-sparse recovery routine returns the vector

→
a , if |supp (

→
a ) | ≤ s ,

and returns failure otherwise, where supp (
→
a ) denotes the size of

the support of

→
a . Most of sparse recovery routines are based on

1-sparse recovery, i.e., the case s = 1. The first 1-sparse recovery

algorithm was devised by [21], and it applies to the strict turnstile

setting. The space requirement of the algorithm of [21] is O (logn).
The result was later extended to the general turnstile setting by [7]

(See also, [28]). We devise an alternative streaming algorithm for

this basic task in the strict turnstile setting. Our 1-sparse recovery

technique is inspired by ideas from [22, 25] and [6]. The space com-

plexity of our algorithm isO (logn), like that of [21]. The processing
time-per-item of Ganguly’s algorithm [21] is howeverO (1), instead
of polyloд(n) of our algorithm.

1
Nevertheless, we believe that our

new algorithm for this task is of independent interest.
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