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Abstract. In the estimation of nonparametric additive models, conventional methods, such

as backfitting and series approximation, cannot be applied when measurement error is present

in a covariate. This paper proposes an estimator for such models by extending Horowitz and

Mammen (2004)’s two-stage estimator to the errors-in-variables case. In the first stage, to

adapt to the additive structure, we use a series approximation together with a ridge approach

to deal with the ill-posedness brought by mismeasurement. We derive the uniform convergence

rate of this first-stage estimator and characterize how the measurement error slows down the

convergence rate for ordinary/super smooth cases. To establish the limiting distribution, we

construct a second-stage estimator via one-step backfitting with a deconvolution kernel using the

first-stage estimator. The asymptotic normality of the second-stage estimator is established for

ordinary/super smooth measurement error cases. Finally, a Monte Carlo study and an empirical

application highlight the applicability of the estimator.

1. Introduction

Since their inception, nonparametric additive regression models have received much atten-
tion in the econometrics and statistics literature (see, e.g., Horowitz, 2014, for a review). Their
popularity is primarily driven by their ability to overcome the curse of dimensionality through
imposing additive separability of covariates. Furthermore, this separability ensures easy inter-
pretation and is a natural and realistic assumption in many economic models. For example,
constant elasticity of substitution production functions take this form (Leontief, 1947), as do
many models of consumer behavior (Deaton and Muellbauer, 1980).

In some situations, the curse of dimensionality can be particularly severe; measurement error
in covariates is one such situation. In that case, the degree to which the convergence rate
of nonparametric estimators deteriorates as the dimension of the covariates increases is less
favorable. Unfortunately, economic data is often subject to contamination. Indeed, the frequent
use of imprecise measurements of complex variables such as GDP and inflation, the reliance
on survey data, and the inability to accurately measure intangible variables such as cognitive
ability all lead to measurement error (see, e.g., Bound, Brown and Mathiowetz, 2001, Hu, 2017,
and Schennach, 2020, for surveys in econometrics). Thus, nonparametric additive models can
be particularly useful when dealing with contaminated data. Empirical examples of additive
models which could have benefited from acknowledging measurement error include Xu and Lin
(2015, 2016), who examine the impact of industrialization on carbon dioxide emissions, where
industrialization is measured as industry value added as a proportion of GDP; and Dominici et
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al. (2002), who study the health effects of air pollution, where air pollution is widely held to be
imprecisely measured.

In answer to these issues, this paper studies estimation of the nonparametric additive regression
model with a mismeasured covariate:

Y = µ+ g(X∗) +m1(Z1) + · · ·+mD(ZD) + U, (1.1)

where Y is a response variable, µ is an unknown intercept, X∗ is an error-free but unobservable
covariate, Z = (Z1, . . . , ZD) are observable covariates, U is an error term, and (g,m1, . . . ,mD)

are unknown functions to be estimated. If X∗ is observable, it is a standard nonparametric
additive model with the identity link function, which has been well studied in the literature; see,
e.g., Stone (1985, 1986), Buja, Hastie and Tibshirani (1989), Linton and Nielsen (1995), Linton
and Härdle (1996), Opsomer and Ruppert (1997), Mammen, Linton and Nielsen (1999), Opsomer
(2000), Horowitz and Mammen (2004), and Ozabaci, Henderson and Su (2014). However, when
X∗ is mismeasured, these conventional methods to estimate the unknown functions are generally
inconsistent.

We consider estimation of the nonparametric additive regression model in (1.1) when the
measurement X on X∗ involves a classical measurement error. More precisely, throughout the
paper, we assume that the measurement X is generated by

X = X∗ + ε, (1.2)

where X∗ is scalar, and ε is a measurement error independent of X∗. In Remarks 1 and 3 at the
end of Section 2, we discuss generalizations to relax these assumptions.

We develop an estimator for the unknown functions g,m1, . . . ,mD and intercept µ using
the observables (Y,X,Z) generated by (1.1) and (1.2) and study its asymptotic properties. In
particular, we extend the two-stage approach of Horowitz and Mammen (2004) to deal with the
measurement error using deconvolution techniques. In the first stage, Horowitz and Mammen
(2004) estimated the unknown functions by a series approximation method. In the presence
of measurement error, the coefficients in the series approximation are estimated by the ridge-
based regularized estimator as in Hall and Meister (2007). In the second stage, Horowitz and
Mammen (2004) implemented one-step backfitting based on local linear regression to achieve
asymptotic normality of the estimator. In our case, this step is carried out using a nonparametric
deconvolution kernel regression.

There is an extensive literature on nonparametric additive models when all covariates are
accurately measured; see the papers cited above. A rare exception to assuming the accurate
measurement of covariates is a recent paper by Han and Park (2018). In particular, they also
focus on classical measurement error, and develop a new estimator for additive models by ex-
tending the smoothed backfitting approach of Mammen, Linton and Nielsen (1999). However,
there are two major differences between our work and theirs. First, our second-stage estimator
achieves asymptotic normality, which is useful for statistical inference, while they only derive the
convergence rate of their estimator. Moreover, our first-stage estimator converges at a faster rate
than theirs. Second, our two-stage estimator can handle both ordinary smooth and supersmooth
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errors, while their method cannot be easily adapted to the case of supersmooth measurement
error, which is a particularly important class of error distribution as it includes the normal dis-
tribution. As such, this paper contributes to the literature on nonparametric additive models
by developing the first estimator that achieves asymptotic normality in the face of measurement
error in a covariate, and can handle supersmooth errors.

We also contribute to the literature on nonparametric deconvolution methods for measurement
error models. In particular, we employ the ridge-based regularization method by Hall and Meister
(2007) to estimate moments involving error-free unobservable covariates. Also, for backfitting in
the second stage, we apply a nonparametric deconvolution kernel regression; see, e.g., Stefanski
and Carroll (1990), Carroll and Hall (1988), Fan (1991a, 1991b), Fan and Masry (1992), Fan and
Truong (1993), Delaigle, Hall and Meister (2008), and Hall and Lahiri (2008).

The rest of this paper is organized as follows. Section 2 introduces the basic setup and develops
our two-stage estimator. Section 3 presents our main results: we derive the convergence rate
of the first-stage estimator in Section 3.1, and establish the limiting distribution of the second-
stage estimator in Section 3.2. We focus on the case when the measurement error distribution
is known to researchers in Sections 2 and 3, and relax the known error distribution assumption
using auxiliary data in Section 4. Sections 5 and 6 present a simulation study and an empirical
application, respectively. Finally, Section 7 concludes. All proofs are contained in the Appendix.

Notation. Throughout the paper, let ‖f‖2 =
( ´
|f(w)|2dw

)1/2 be the L2-norm of a function
f : R → C, L2(R) = {f : ‖f‖2 < ∞} be the L2-space, and 〈f1, f2〉 =

´
f1(w)f2(w)dw be the

inner product in L2(R), where c denotes the complex conjugate of c ∈ C, f ft(t) =
´
f(x)eitxdx

be the Fourier transform of f with i =
√
−1. Also, let ‖A‖ = [tr(A†A)]1/2 be the Frobenius norm

of a complex matrix A, where A† denotes A’s conjugate transpose, λmax(A) and λmin(A) be the
largest and smallest eigenvalues of a Hermite matrix A, respectively, and δk,k′ be the Kronecker
delta, which is equal to 0 if k 6= k′, and equal to 1 if k = k′.

2. Setup and estimator

Before presenting our estimator, we first show that the functions g,m1, . . . ,mD and intercept
µ in the model (1.1) can be identified from the distribution of observables (Y,X,Z). To this end,
we impose the following assumptions.

Assumption 1. (1): ε is independent of (Y,X∗, Z), the density fε of ε is known, and
f ftε (t) 6= 0 for all t ∈ R.

(2): The density fX∗,Z of (X∗, Z) is bounded away from zero on I × [−1, 1]D, where I
is a known compact subset of the support of X∗, and [−1, 1] is the support of Zd for
d = 1, . . . , D.

(3): E[U |X∗, Z] = 0 and g,m1, . . . ,mD are normalized as
ˆ
I
g(w)dw =

ˆ 1

−1
m1(w)dw = · · · =

ˆ 1

−1
mD(w)dw = 0. (2.1)
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Assumption 1 (1) claims the measurement error is classical in nature and f ftε is non-vanishing
everywhere, which is commonly used in the literature on nonparametric estimation with mea-
surement error (see, Meister, 2009, for a review). The assumption fε being known is restrictive in
economic applications. In Section 4, we discuss how to relax this by using repeated measurements
on X∗. Assumption 1 (3) contains normalizations required for identification.

Assumption 1 (2) requires all covariates to be continuously distributed. In Remark 2 below,
we discuss how to include correctly measured discrete covariates. As in Horowitz and Mammen
(2004), we assume that the observable covariates Z are supported on [−1, 1]D. This is an
innocuous assumption as an invertible transformation of Z that satisfies it can be used in place of
Z. However, this argument fails for the unobservable covariateX∗. Indeed, such a transformation
does not preserve the additive structure in (1.2) except when the transformation is linear. Thus,
even though the distribution of ε is known, it is difficult to recover the distribution of X∗ from the
transformation of X through deconvolution. Also, since the support of ε is typically unknown,
so too is the support of X∗. With these considerations, we do not impose any condition on the
support of X, X∗ or ε, but focus on estimation of the function g over some known compact
set I of interest. fX∗,Z is assumed to be bounded away from zero on I × [−1, 1]D so that the
conditional expectations (on the event (X∗, Z) ∈ I × [−1, 1]D) are well defined.

Under Assumption 1, all unknown objects in model (1.1) are identified. This result is sum-
marized in Theorem 1 as follows.

Theorem 1. Under Assumption 1, the functions g,m1, . . . ,mD and intercept µ are identified.

This theorem follows from an application of the marginal integration argument for the non-
parametric additive model combined with the identification of the density fY,X∗,Z of (Y,X∗, Z)

based on deconvolution methods. The proof is given in Appendix A.
We now introduce our estimation strategy. For expository purposes, we tentatively assume

that the error-free covariate X∗ is observed. To estimate µ, md over [−1, 1], and g over the
subset I under the normalization in (2.1), the first-stage estimation of Horowitz and Mammen
(2004) is used by minimizing

n∑
j=1

I{X∗j ∈ I}

[
Yj − µ−

κ∑
k=1

pk(X
∗
j )θ0k −

D∑
d=1

κ∑
k=1

qk(Zd,j)θ
d
k

]2
, (2.2)

with respect to θ = (µ, θ01, . . . , θ
0
κ, θ

1
1, . . . , θ

1
κ, . . . , θ

D
1 , . . . , θ

D
κ )′, where I{·} is the indicator func-

tion, {pk}∞k=1 and {qk}∞k=1 are basis functions supported on I and [−1, 1], respectively, and κ is
a tuning parameter characterizing the accuracy of the series approximation. The trimming term
I{X∗j ∈ I} appears because we are only interested in estimating g over I.

If X∗ is mismeasured, the unobservability of X∗ renders this method infeasible. Also, replac-
ing X∗j with the observable Xj and applying least squares estimation for the above criterion
would yield inconsistent estimates in general. To estimate θ in (2.2), we consider the population
counterpart of (2.2), that is

E[I{X∗ ∈ I}Y 2] + θ′E[PκP
′
κ]θ − 2E[Y P ′κ]θ, (2.3)
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where Pκ = (p0(X
∗), p1(X

∗), . . . , pκ(X∗), q01(Z1), . . . , q0κ(Z1), . . . , q01(ZD), . . . , q0κ(ZD))′ with
p0(X

∗) = I{X∗ ∈ I} and q0k(Zd) = p0(X
∗)qk(Zd) for k = 1, . . . , κ and d = 1, . . . , D. Thus, once

we have estimators for E[PκP
′
κ] and E[Y P ′κ], denoted Ê[PκP

′
κ] and Ê[Y P ′κ], respectively, θ can

be estimated by
θ̂ = (<Ê[PκP

′
κ])−1<Ê[Y P ′κ], (2.4)

where <{·} denotes the real part of a complex-valued matrix or vector, and the inverse here
may be the Moore-Penrose inverse. Based on this, the first-stage estimators of g and md for
d = 1, . . . , D are given by

ĝ(x∗) =
κ∑
k=1

pk(x
∗)θ̂0k, m̂d(zd) =

κ∑
k=1

qk(zd)θ̂
d
k. (2.5)

To implement the estimator in (2.5) based on (2.4), we must estimate elements of E[PκP
′
κ] and

E[Y P ′κ].
We first consider estimation of E[Y pk(X

∗)], which appears in E[Y P ′κ]. By Plancherel’s isom-
etry (see Lemma 1 (1) in Appendix D), E[Y pk(X

∗)] can be expressed as

E[Y pk(X
∗)] = 〈mfX∗ , pk〉 =

1

2π

〈
[mfX∗ ]

ft, pftk

〉
=

1

2π

ˆ
E[Y eitX ]

pftk (−t)
f ftε (t)

dt,

where m(·) = E[Y |X∗ = ·], and the last equality follows by the law of iterated expectations and
Assumption 1 (1). A naive estimator of this moment could be obtained by replacing E[Y eitX ] by
its sample analog n−1

∑n
j=1 Yje

itXj . However, it is well known that n−1
∑n

j=1 Yje
itXj/f ftε (t) is a

poor estimator for f ftX∗(t) in the tails. Intuitively, the estimation error of the sample analog can
be severely amplified in the tails, such that the above integral may not be well-defined. Some
form of regularization is commonly introduced in such a situation. Here we employ the ridge
approach of Hall and Meister (2007) and suggest estimating E[Y pk(X

∗)] by

Ê[Y pk(X
∗)] =

1

2π

ˆ  1

n

n∑
j=1

Yje
itXj

 pftk (−t)f ftε (−t)|f ftε (t)|r

{|f ftε (t)| ∨ n−ζ}r+2
dt, (2.6)

where r ≥ 0 is a tuning parameter to control the smoothness of the integrand and n−ζ with
ζ > 0 is a ridge term to keep the denominator away from zero.

Also note that the moments E[Y pk(X
∗)] and E[Y q0k(Zd)], which appear in E[Y P ′κ], and

E[pk(X
∗)], E[q0k(Zd)], E[pk(X

∗)pl(X
∗)], E[pk(X

∗)q0l(Zd)] and E[q0k(Zd)q0l(Zd′)], which ap-
pear in E[PκP

′
κ], can all be expressed in a general form E[p(X∗)Q] by different choices of a

known function p and a random variable Q, where Q is a known function of Y and Z. For ex-
ample, E[p(X∗)Q] equals E[pk(X

∗)q0l(Zd)] when p(X∗) = pk(X
∗) and Q = ql(Zd). By a similar

argument, the estimator of E[p(X∗)Q] is constructed as

Ê[p(X∗)Q] =
1

2π

ˆ  1

n

n∑
j=1

Qje
itXj

 pft(−t)f ftε (−t)|f ftε (t)|r

{|f ftε (t)| ∨ n−ζ}r+2
dt.

Then, by applying these estimators to elements in (2.4), we obtain the first-stage estimator (2.5).
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In the literature on nonparametric deconvolution methods, the kernel approach is more fre-
quently used than the ridge. However, the kernel-based method is not adaptive. This is because,
to obtain the optimal convergence rate, the smoothness of the target function must be known
so that the kernel function can be chosen to adapt to it. Indeed, this disadvantage of the kernel
approach becomes more severe when there are multiple targets to be estimated simultaneously.
In such situations, even if the smoothness of all targets are known, choosing a kernel function to
adapt for each component is a nontrivial task. It would be even more challenging when the num-
ber of targets grows with the sample size, as is the case considered in this paper. Compared to
the kernel-based method, the ridge approach can adapt remarkably well to targets with different
smoothness via cross-validation, as shown in Hall and Meister (2007). On the other hand, the
kernel approach requires fewer tuning parameters. In particular, the ridge approach involves two
tuning parameters, r and ζ, while the kernel approach uses only one: the bandwidth. However,
we claim that while the choice of the ridging parameter ζ is important to the performance of our
estimator, the choice of r is far less so. A detailed discussion on the choice of r and ζ is left to
Section 3.1.

To conduct statistical inference, we construct a second-stage estimator for which we can es-
tablish its asymptotic distribution. If X∗ is observable, we can implement one-step backfitting
as in Horowitz and Mammen (2004), where the second-stage estimator of g is given by a non-
parametric regression of the residuals of the first stage, Yj− µ̂−

∑D
d=1 m̂d(Zd,j), on the covariate

X∗j . When X∗ is mismeasured and unobservable, we modify this second-stage by applying a
deconvolution kernel regression. In particular, let

Kh(w) =
1

2π

ˆ
e−itw

K ft(th)

f ftε (t)
dt,

be the deconvolution kernel, whereK is a kernel function and h is a bandwidth. The second-stage
estimator of g is defined as

g̃(x∗) =

∑n
j=1Kh(x∗ −Xj)

[
Yj − µ̂−

∑D
d=1 m̂d(Zd,j)

]∑n
j=1Kh(x∗ −Xj)

. (2.7)

The second-stage estimator of md, however, cannot use a direct application of the deconvo-
lution kernel regression because the unobservable X∗ is now present in the dependent variable
Yj − µ̂ − ĝ(X∗j ) −

∑D
d′ 6=d m̂d′(Zd′,j). Moreover, it enters in a nonlinear fashion, instead of sim-

ply acting as a covariate. One initial thought would be to first estimate g(x∗) + md(zd) by
the deconvolution kernel regression of Yj − µ̂ −

∑D
d′ 6=d m̂d′(Zd′,j) on (X∗j , Zd,j), then deduct

ĝ(x∗). This, however, would make the estimator of md dependent on the choice of x∗, which
would not be welcome in practice. Alternatively, we consider the standard kernel regression of
Yj − µ̂−

∑D
d′ 6=d m̂d′(Zd′,j) on Zd,j , and then deduct an estimator of E[g(X∗)|Zd] to estimate md.

The conditional moment E[g(X∗)|Zd] can be estimated based on estimates of g and the joint
density of X∗ and Zd. For the joint density of X∗ and Zd, we use the deconvolution density esti-
mator. For the unknown function g, it is natural to employ its first-stage estimator ĝ. However,
since ĝ(x∗) is a valid estimator of g(x∗) only when x∗ ∈ I, the second-stage estimation of md
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should be conditional on X∗ ∈ I. In particular, we consider

md(zd) = E
[
Y − µ− g(X∗)−

∑
d′ 6=d

md′(Zd′)|Zd = zd, X
∗ ∈ I

]

=

´
I E
[
Y − µ− g(X∗)−

∑
d′ 6=dmd′(Zd′)|Zd = zd, X

∗ = x∗
]
fZd,X∗(zd, x

∗)dx∗´
I fZd,X∗(zd, x

∗)dx∗
,

which suggests the following second-stage estimator of md:

m̃d(zd) =

∑n
j=1

´
I Kh(x∗ −Xj)

[
Yj − µ̂− ĝ(x∗)−

∑
d′ 6=d m̂d′(Zd′,j)

]
dx∗Kh(zd − Zd,j)∑n

j=1

´
I Kh(x∗ −Xj)dx∗Kh(zd − Zd,j)

,(2.8)

with Kh(w) = K(w/h) for a (conventional) kernel function K.

Remark 1. [Case of vector X] We note that the proposed method can be generalized to the
case of vector X, i.e.,

Y = µ+ g1(X
∗
1 ) + · · ·+ gL(X∗L) +m1(Z1) + · · ·+mD(ZD) + U,

where X∗1 , . . . , X∗L are unobservable, and instead we observe noisy measurements X1, . . . , XL.
Suppose the measurement errors ε1, . . . , εL are classical and mutually independent. In this case,
the first-stage estimator can be constructed similarly. The second-stage estimator can then be
obtained as

g̃l(x
∗
l ) =

∑n
j=1

´
Il−
∏L
l′=1Kh(x∗l′ −Xl′,j)

[
Yj − µ̂−

∑
l′ 6=l ĝl′(x

∗
l′)−

∑D
d=1 m̂d(Zd,j)

]
dx∗l−∑n

j=1

´
Il−
∏L
l′=1Kh(x∗l′ −Xl′,j)dx

∗
l−

,

m̃d(zd) =

∑n
j=1

´
I
∏L
l′=1Kh(x∗l′ −Xl′,j)

[
Yj − µ̂−

∑L
l=1 ĝl(x

∗
l )−

∑
d′ 6=d m̂d′(Zd′,j)

]
dx∗Kh(zd − Zd,j)∑n

j=1

´
I
∏L
l′=1Kh(x∗l′ −Xl′,j)dx∗Kh(zd − Zd,j)

,

for l = 1, . . . , L and d = 1, . . . , D, where Il− = I1×· · ·×Il−1×Il+1×· · ·×IL, I = I1 × · · · × IL,
dx∗l− = dx∗1 . . . dx

∗
l−1dx

∗
l+1 . . . dx

∗
L, and dx

∗ = dx∗1 . . . dx
∗
L. We expect that analogous results to

those in the next section can be established for this estimator as well.

Remark 2. [Case of correctly measured discrete covariates] Even though Assumption 1 (4)
requires all covariates to be continuous, the proposed method can be generalized to the case
where some correctly measured covariates are discrete (with finite support), i.e.,

Y = µ+W ′β + g(X∗) +m1(Z1) + · · ·+mD(ZD) + U, (2.9)

where W = (W1, . . . ,WS)′ is a vector of indicators for specific values of correctly measured
discrete covariates and β = (β1, . . . , βS)′ are the corresponding slope parameters. In this case,
the first-stage estimator can be constructed using P̃κ = (p0(X

∗)W1, . . . , p0(X
∗)WS , P

′
κ)′ instead

of Pκ as in (2.4) and (2.5), and the second-stage estimator follows by using Ỹj = Yj − µ̃−W ′j β̃
in place of Yj as in (2.7) and (2.8), where µ̃ and β̃ are the first-stage estimators of µ and β based
on P̃κ.

Remark 3. [Non-classical measurement error] The classical measurement error assumption is
restrictive in many cases and has often come under criticism; see, e.g., Bound, Brown and
Mathiowetz (2001) and Hyslop and Imbens (2001). Consequently, many papers have begun to
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move beyond this assumption to provide results for the non-classical error case; see, e.g., Hu and
Schennach (2008), Gottschalk and Huynh (2010), Bonhomme and Robin (2010), Hu and Sasaki
(2015), and An, Wang and Xiao (2020). See also Schennach (2020, Section 3.6) for a survey on
the developments to deal with non-classical measurement errors. Furthermore, Schennach (2019)
showed that nonparametric deconvolution methods can be applied under a weaker assumption
than independence, known as subindependence. However, in each of these cases, this research
built on earlier work on the same models with classical measurement error. For the additive
regression model, there is still much work to be completed in the classical error case; thus, we
see our work as a stepping stone to the more widely applicable case of non-classical error.

Although the estimator is constructed based on the classical measurement error assumption,
there are cases with non-classical error that our method can be applied to. As an example,
consider the case where W is a noisy measurement of W ∗ which entails a measurement error
W ∗(ν − 1), where ν is a random error that is independent of W ∗. In this case, our estimator
can be applied after implementing a log-transformation and by treating log(W ) as X, log(W ∗)

as X∗, and log(ν) as ε. As another example, consider the case where X is a noisy measurement
of X∗ which entails a measurement error (φ−1)X∗+ ν, for constant φ 6= 1, where ν is a random
error that is independent of X∗. In this case, if φ 6= 0, we can treat φX∗ as the true underlying
covariate instead of X∗,1 and our estimator can be directly applied to estimate g,m1, . . . ,mD.

3. Asymptotic properties

3.1. First-stage estimator. We now study the asymptotic properties of the first-stage estima-
tor in (2.5). Let Fα,c = {f ∈ L2(R) :

´
|f ft(t)|2(1 + |t|2)αdt ≤ c} denote the Sobolev class of

order α > 0 and c > 0.2 We impose the following assumptions.

Assumption 2. (1): {Yj , Xj , Zj}nj=1 is an i.i.d. sample of (Y,X,Z) satisfying (1.1), (1.2),
E[Y 2|X∗, Z] <∞, and fZ is bounded.

(2): fX∗ , fX∗|Zd=zd , fX∗|Zd=zd,Zd′=zd′ , E[Y |X∗]fX∗, and E[Y |X∗ = ·, Zd = zd]fX∗|Zd=zd
belong to Fα,csob for all d, d′ = 1, . . . , D and zd, zd′ ∈ [−1, 1].

(3): {pk}∞k=1 and {qk}∞k=1 are basis functions supported on I and [−1, 1], respectively, and
satisfy

´
pk(w)dw =

´
qk(w)dw = 0 and 〈pk, pk′〉 = 〈qk, qk′〉 = δk,k′ for all k, k′.

(4): λmin(E[PκP
′
κ]) ≥ λ > 0 for all κ, sup(x∗,z)∈I×[−1,1]D ‖Pκ(x∗, z)‖ = O(κ1/2) as κ→∞,

and there exists θ0 = (µ0, θ
0
0, θ

1
0, . . . , θ

D
0 ) such that

sup
x∗∈I
|g(x∗)− P ′κ,0(x∗)θ00| = O(κ−2), sup

zd∈[−1,1]
|md(zd)− P ′κ,d(zd)θd0 | = O(κ−2),

1If φX∗ is treated as the true underlying covariate and φ 6= 0, we have Y − µ −m1(Z1) − · · · −mD(ZD) − U =
g̃(φX∗), with g̃(·) = g(·/φ). Then the normalization required in Assumption 1 (6) becomes

´
Ĩ g̃(w)dw = 0, with

Ĩ = {w̃ = φw : w ∈ I}. Since I is the range of X∗ chosen by researchers, instead of Ĩ (which is unknown without
a specific value of φ), we may directly decide the range of interest of φX∗ based on limited knowledge of φ (for
example, a set of possible values of φ).
2Even though it seems somewhat different, the Sobolev condition imposed here is essentially equivalent to
the one used in Meister (2009, eq. (2.30)), which imposes

´
|f ft(t)|2|t|2αdt < c. First, it is easy to see that´

|f ft(t)|2(1 + |t|2)αdt < c implies
´
|f ft(t)|2|t|2αdt < c. For the other direction, we have

´
|f ft(t)|2(1 + |t|2)αdt ≤

2α
´
|t|≤1

|f ft(t)|2dt+ 2α
´
|f ft(t)|2|t|2αdt < c′, where the first inequality follows by 2α|t|2α ≥ (1 + |t|2)α ⇔ |t| ≥ 1,

and the second inequality follows by f ∈ L2(R) and Meister (2009, eq. (2.30)).
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where Pκ,0(x∗) = (p1(x
∗), . . . , pκ(x∗)) and Pκ,d(zd) = (q1(zd), . . . , qκ(zd)) for d = 1, . . . , D.

(5): r ≥ 0, ζ > 0, and κ→∞ as n→∞.

Assumption 2 (1) is standard for cross-section data. Extensions to more general data envi-
ronments are beyond the scope of this paper. Assumption 2 (2) lists the Sobolev conditions for
several densities and regression functions, these restrict the smoothness of the underlying objects
to control orders of the bias terms from estimation. Assumption 2 (3) contains conditions on
the basis functions {pk}∞k=1 and {qk}∞k=1. Similar conditions are used in Horowitz and Mammen
(2004) for the first-stage estimator without measurement error. Assumption 2 (4) is commonly
used for series-based estimation; see, e.g., Newey (1997, Assumptions 2 and 3). Assumption 2 (5)
contains mild requirements on the tuning constants, r and ζ, for the ridge regularization, and κ
for the series approximation. See the remark at the end of this subsection for further discussion.

Although Assumptions 2 (2) and (4) both contain smoothness conditions, they focus on dif-
ferent objects for different purposes: Assumption 2 (2) imposes smoothness of densities and
products of densities and regression functions to control the estimation bias, while Assumption
2 (4) is imposed on each of the nonparametric components of the regression function to control
the series approximation error. This approximation bias term contributes to the last terms of
the convergence rates in Theorem 2 below and indicates that the series length κ needs to diverge
fast enough to achieve the desired convergence rate. As explained in Newey (1997, pp.150), for
spline basis functions, since our nonparametric components are all univariate, Assumption 2 (4)
essentially requires that g and md are twice continuously differentiable, which is consistent with
Assumption 2 (2) when α = 2.

It is known in the literature that the convergence rate of a deconvolution-based estimator
depends on the smoothness of the measurement error density fε. Intuitively, the deconvolution-
based estimators typically involve the characteristic function of ε in the denominator. The
smoother fε is, the faster its characteristic function decays to zero in the tails, slowing down
the convergence of the resulting estimator. Therefore, for the density of the measurement error
fε, we consider the following two categories that are commonly employed in the deconvolution
literature.
fε is said to be ordinary smooth of order β, if there exist constants cos,1 > cos,0 > 0 and β > 0

such that
cos,0(1 + |t|)−β ≤ |f ftε (t)| ≤ cos,1(1 + |t|)−β for all t ∈ R.

fε is said to be supersmooth of order γ, if there exist constants css,1 > css,0 > 0, µ > 0, and
γ > 0 such that

css,0 exp(−µ|t|γ) ≤ |f ftε (t)| ≤ css,1 exp(−µ|t|γ) for all t ∈ R.

In particular, the characteristic function of an ordinary smooth error distribution decays at
a polynomial rate, while the characteristic function of a supersmooth error distribution decays
at an exponential rate. Typical examples of ordinary smooth densities are the Laplace and
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gamma densities, and examples of supersmooth densities include the normal and Cauchy densi-
ties. To facilitate the discussion of the convergence rate of the first-stage estimator, we impose
the following assumptions to specify the smoothness of the error distribution.

Assumption 3. fε is ordinary smooth of order β > 1/2 and max{κ2n2ζ+
ζ
β
−1
, κn

− 2αζ
β } → 0 as

n→∞.

Assumption 4. fε is supersmooth of order γ > 0, r = 0, 0 < ζ < 1
4 , and κ(log n)

− 2α
γ → 0 as

n→∞.

Besides the supersmooth condition on the measurement error distribution, Assumption 4 con-
tains further requirements on smoothing parameters r and ζ. Given r = 0, Assumption 4
guarantees that the variance of the first-stage estimation error converges to zero at a polynomial
rate and is dominated by the bias of the first-stage estimation error, which converges to zero at
a logarithmic rate in the supersmooth case. Under these assumptions, the convergence rate of
the first-stage estimator in (2.5) is obtained as follows.

Theorem 2. Suppose that Assumptions 1 and 2 hold true.

(1): Under Assumption 3, it holds

‖θ̂ − θ0‖ = Op

(
κn

ζ+ ζ
2β
− 1

2 + κ
1
2n
−αζ

β + κ−2
)
,

sup
x∗∈I
|ĝ(x∗)− g(x∗)| = Op

(
κ

3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2

)
,

sup
zd∈[−1,1]

|m̂d(zd)−md(zd)| = Op

(
κ

3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2

)
,

for d = 1, . . . , D.
(2): Under Assumption 4, it holds

‖θ̂ − θ0‖ = Op

(
κ

1
2 (log n)

−α
γ + κ−2

)
,

sup
x∗∈I
|ĝ(x∗)− g(x∗)| = Op

(
κ(log n)

−α
γ + κ−

3
2

)
,

sup
zd∈[−1,1]

|m̂d(zd)−md(zd)| = Op

(
κ(log n)

−α
γ + κ−

3
2

)
,

for d = 1, . . . , D.

It is worth noting that the number of regressors D does not appear in the convergence rate
obtained in Theorem 2; this is due to the additive structure of the regression function combined
with the series approximation. This immunity of the additive model to the curse of dimensionality
is well-documented for the error-free case; we contribute to the literature by showing it continues
to hold in the face of measurement error.

The first two terms in the convergence rates of Theorem 2 (1) and the first terms in Theorem
2 (2) are due to estimation variances, which indicate that to achieve the desired convergence
rate, the series length κ cannot diverge too quickly.

The last terms in the convergence rates above characterize the magnitudes of the series ap-
proximation errors, which are identical to those of the error-free case; see Horowitz and Mammen
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(2004, Theorem 1). For ĝ and m̂d in the ordinary smooth case, the first two terms κ
3
2n

ζ+ ζ
2β
− 1

2

and κn−
αζ
β in the convergence rates characterize the magnitudes of the estimation bias and vari-

ance, respectively. For the supersmooth case, the term κ(log n)
−α
γ characterizes the magnitude

of the estimation bias, while the variance of the estimation error is dominated under Assumption
4. If the smoothness parameters α, β, and γ are known, we can choose κ and ζ to achieve the
optimal convergence rates. In particular, when fε is ordinary smooth, by setting κ = n

2α
7α+10β+5

and ζ = 5β
7α+10β+5 , the optimal convergence rate of ĝ and m̂d is obtained as n−

3α
7α+10β+5 . When fε

is supersmooth, by setting κ = (log n)
2α
5γ , the optimal convergence rate of ĝ and m̂d is obtained

as (log n)
− 3α

5γ .

Remark 4. [Comparison with Han and Park (2018)] In the ordinary smooth case, we can
compare our rate results to those obtained in Han and Park (2018) for their smoothed backfitting
estimator. In particular, when α = 2 and β > 1/2,3 Han and Park (2018) showed that their
backfitting estimator of g achieves the uniform convergence rate n−

1
4+4β , which is slower than the

convergence rate n−
6

19+10β of our first-stage estimator ĝ.4 The difference is due to backfitting.
In particular, the estimation variance of the backfitting estimator of Han and Park (2018) is
dominated by two components. One comes solely from the measurement error, which would
still exist if D = 1. The other arises from backfitting in conjunction with measurement errors,
which dominates if β > 1/2. As we consider the estimation of all nonparametric components
simultaneously in the first stage, our first-stage estimator ĝ converges faster than the backfitting
estimator of Han and Park (2018). However, Han and Park (2018) can handle the case when
β ≤ 1/2, which cannot be covered in this paper since β > 1/2 is required by the ridge-based
regularization as in Lemma 3 (1).5

Remark 5. [Comparison with the error-free case] In the error-free case, by Horowitz and Mam-
men (2004, Theorem 1), the optimal convergence rate to estimate g and md is n−

3
10 , which is

obtained by setting κ = n
1
5 . When fε is ordinary smooth of order β > 1/2 and α = 2,6 the

optimal convergence rate of our ĝ and m̂d is slower than n−
1
4 ; thus, it is slower than n−

3
10 . In

the case of supersmooth fε, ĝ and m̂d converge at a logarithmic rate, which is certainly slower
than the polynomial rate obtained in Horowitz and Mammen (2004). However, these slower
convergence rates are quite reasonable given the contaminated nature of the sample.

Remark 6. [Choice of tuning parameters] To implement the first-stage estimator, we need to
choose three tuning parameters, κ, r, and ζ. For the series length κ, to the best of our knowledge,

3We set α = 2 because Han and Park (2018) assumed that fj is twice continuously differentiable in their As-
sumption K4. See Meister (2009, Section A.2) for the relationship between order of differentiability and choice of
α.
4Even though Han and Park (2018) considered a different setup where all covariates are mismeasured, the conver-
gence rate of their smoothed backfitting method would remain the same when only one covariate is mismeasured,
as it is independent of their number of covariates d. This is a natural result when the regression function has an
additive structure. Therefore, the uniform convergence rate presented in Han and Park (2018, Corollary 3.5) can
be directly compared to Theorem 2 when the smoothing parameters α and β are the same.
5We note that if β > 1/2, then fε is bounded and continuous.
6Similarly to the previous case, here we set α = 2 because Horowitz and Mammen (2004) assume that mj is twice
continuously differentiable in their Assumption A2.
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there is no theoretical study on the optimal choice even for the error-free additive model. As
suggested in Horowitz and Lee (2005), one practical way is to construct a BIC-type criterion
function for κ, and choose κ to minimize it. In our setup, the BIC-type criterion is obtained from
the sample counterpart of the least squares objective function (2.3) with a penalty term for κ.
For the tuning parameters r and ζ in the ridge-type regularization, we can follow the suggestions
in Hall and Meister (2007). The choice of r, which controls the shape of the smoothing regime, is
less important. For example, Hall and Meister (2007) set r = 2 for the ordinary smooth case and
r = 0 for the supersmooth case in their numerical study. On the other hand, ζ plays the role of
the ridge smoothing parameter, and its choice is crucial. For example, the moment estimator in
(2.6) is interpreted as the one for E[Y pk(X

∗)] =
´
m(x)fX∗(x)pk(x)dx. Thus, we can adapt the

cross-validation method in Hall and Meister (2007, pp. 1539-40), which minimizes an estimate
of
´
| ̂m(x)fX∗(x)−m(x)fX∗(x)|2dx with respect to ζ, to the criterion weighted by pk(x)2.

3.2. Second-stage estimator. In this subsection, we derive the asymptotic distribution of the
second-stage estimators g̃ and m̃d. To this end, we impose the following additional assumptions.

Assumption 5. (1): fX∗ is continuously differentiable, ‖fX‖∞ < ∞, and g is twice con-
tinuously differentiable.

(2): supxE[|U |2+η|X = x] <∞ for some constant η > 0.
(3):

´
wK(w)dw = 0,

´
w2K(w)dw <∞, ‖K ft‖∞ <∞, and ‖K ft′‖∞ <∞.

(4): h→ 0 as n→∞.

Assumption 5 (1) contains smoothness conditions on the density fX∗ and the regression func-
tion g, which are used to control the estimation bias. Assumption 5 (2) is used to apply Lya-
punov’s central limit theorem. Assumption 5 (3) concerns the kernel function K, which is
commonly employed to control the bias from nonparametric estimation. Assumption 5 (4) is
standard for kernel-based estimators (as used in the second-stage estimator).

For the ordinary smooth case, we impose the following assumptions.

Assumption 6. (1): ‖f ft′ε ‖∞ < ∞, |s|β|f ftε (s)| → cε, and |s|β+1|f ft′ε (s)| → βcε for some
constant cε > 0 as |s| → ∞.

(2):
´
|s|β{|K ft(s)|+ |K ft′(s)|}ds <∞,

´
|s|2β|K ft(s)|2ds <∞.

(3): κ3n2ζ+
ζ
β
−1 → 0 and κn−

αζ
β → 0 as n→∞.

Assumption 6 (1) is commonly used in deconvolution problems with an ordinary smooth error.
It goes further than Assumption 3, as Assumption 6 (1) characterizes the exact limit, rather than
the upper and lower bounds, of the error characteristic function and its derivative in the tails.
Assumption 6 (2) requires smoothness of the kernel function K. Assumption 6 (3) is required to
eliminate estimation error from the first stage. According to Theorem 2, it guarantees that the
first-stage estimator is uniformly consistent when the measurement error is ordinary smooth of
order β. To derive the asymptotic distribution of g̃, we add the following assumptions.

Assumption 7. (1): For each x∗ ∈ I, E[|g(X∗) + U − g(x∗)|2|X = x] as a function of x
is continuous for almost all x.
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(2): nh2β+1 →∞ as n→∞.

Assumption 7 (1) is a technical assumption. Given Assumption 5, it would be satisfied if all
densities are continuous. Assumption 7 (2) imposes an upper bound on the speed at which the
bandwidth h decays to zero; this controls the estimation variance brought by the measurement
error, and thus is characterized by the smoothness order of the measurement error distribution.

For the supersmooth case, we impose the following assumptions.

Assumption 8. (1): K ft is supported on [−1, 1].
(2): κ(log n)

−α
γ → 0 as n→∞.

Assumption 8 (1) assumes the kernel function K is of infinite-order, rather than adapting the
smoothness of the kernel function to that of the measurement error density as in the ordinary
smooth case. Assumption 8 (2), parallel to Assumption 6 (3), asymptotically eliminates esti-
mation error from the first stage. According to Theorem 2, it guarantees that the first-stage
estimator is uniformly consistent when the measurement error density is supersmooth. To derive
the asymptotic distribution of g̃, we add the following assumptions.

Assumption 9. (1): nhe−2µh−γ →∞ as n→∞.
(2): E|G1,n,1|2he−2µh

−γ →∞ as n→∞, where G1,n,1 is defined in Appendix B.2.

Assumption 9 (1) requires the bandwidth h to go to zero at a logarithmic rate at most, this
is due to the error characteristic function in the denominator decaying at an exponential rate.
Assumption 9 (2) is a technical assumption used to verify Lyapunov’s condition in the proof of
Theorem 3. Primitive conditions, as in Fan and Masry (1992, Condition 3.1), could be derived.
To keep the exposition simple, following Delaigle, Fan and Carroll (2009), we stick to the current
form of Lyapunov’s condition.

Under these assumptions, the asymptotic distribution of the second-stage estimator g̃ is ob-
tained as follows. Let Bias{g̃(x∗)} = g(x∗)− E[g̃(x∗)] and V ar[g̃(x∗)] be the variance of g̃(x∗).

Theorem 3. Suppose Assumptions 1, 2, and 5 hold true.

(1): Under Assumptions 3, 6, and 7, it holds

g̃(x∗)− g(x∗)− Bias{g̃(x∗)}√
V ar[g̃(x∗)]

d→ N(0, 1).

(2): Under Assumptions 4, 8, and 9, it holds

g̃(x∗)− g(x∗)− Bias{g̃(x∗)}√
V ar[g̃(x∗)]

d→ N(0, 1).

The asymptotic normality of g̃ is provided in a normalized form. It is interesting to note that
the measurement error barely has any effect on the bias term Bias{g̃(x∗)}. Indeed, it can be
shown that the dominant term of Bias{g̃(x∗)} is the same as that of Horowitz and Mammen’s
(2004) second-stage estimator of g, which is of order h2. On the other hand, the measurement
error affects the manner of divergence of V ar[g̃(x∗)] to infinity. In particular, when fε is ordinary
smooth, as shown in Appendix B.2, V ar[g̃(x∗)] explodes at the rate h−(2β+1). In the case of
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supersmooth fε, deriving the exact exploding rate of V ar[g̃(x∗)] is difficult in general. Thus, the
lower bound on the exploding rate of V ar[g̃(x∗)] is obtained under Assumption 9 rather than
the exact rate, as shown in Appendix B.2.

Similarly to the second-stage estimator of Horowitz and Mammen (2014) in the error-free
case, our second-stage estimator is oracle in the sense that its asymptotic distribution is the
same as if all other nonparametric components were known. In particular, as shown in Appen-
dix C, the asymptotic distribution of g̃ is characterized by the deconvolution kernel regression
estimator with dependent variable Y − µ −

∑D
d=1md(Zd) and bandwidth h, and the choice of

the bandwidth h is independent of the choice of the first-stage tuning parameters κ and ζ. In
fact, both Assumption 6 (3) and Assumption 8 (2), which are separately imposed to guarantee
the asymptotic negligibility of the first-stage estimation error for the ordinary smooth case and
the supersmooth case, respectively, only involve κ and ζ but not h.

Since X∗ is not directly observable, it is difficult to adapt the penalized least squares method
in Horowitz and Mammen (2004) to select the bandwidth parameter h in the second-stage es-
timator. Even for the conventional nonparametric deconvolution regression, it is not clear how
to implement a standard data-driven selection of h, such as cross-validation (see, pp. 123-5
of Meister, 2009). One practical way to select h is to apply the SIMEX-based cross-validation
method in Delaigle and Hall (2008) by setting the dependent variable as Yj − µ̂−

∑D
d=1 m̂d(Zd,j)

in the second-stage estimation. However, the theoretical analysis of this is beyond the scope of
this paper.

We now consider the asymptotic distribution of m̃d. For the ordinary smooth case, we impose
the following assumptions.

Assumption 10. (1): I = supp g = [b1, b2].
(2): fε is ordinary smooth of order β ≥ 2.
(3): E[|g(X∗) +md(Zd) +U −md(zd)|2|X = x, Zd = z] is continuous for d = 1, . . . , D and

almost all (x, z) ∈ I × [−1, 1].
(4): sups

∣∣gft (− s
h

)
s
h2

∣∣→ 0 as n→∞.
(5): nh2β →∞ as n→∞.

Assumption 10 (1) assumes that I equals suppX∗ and is a closed interval with known boundary
points b1 < b2. It is stronger than Assumption 1 (4), where we assume that I is a compact
subset of suppX∗. However, this assumption is difficult to avoid in the current derivation of the
asymptotic normality of m̃d because there is an additional integration of x∗ over I in the definition
of m̃d, and we must be specific regarding the smoothness of this integration. In Assumption 10
(2), we require β ≥ 2, which is a technical assumption to guarantee

´
|K ft(s)||s|β−2ds < ∞.

Assumption 10 (3) plays a similar role as Assumption 7 (1). Again, given Assumption 5, it
would be satisfied if all densities are continuous. Assumption 10 (4) is an additional smoothness
condition on g to ensure the estimation noise of ĝ is negligible in the estimation of md. In
particular, it requires that gft should decay to zero fast enough. Assumption 10 (5) imposes an
upper bound on the decay rate of h to zero. This is different from Assumption 7 (2) due to the
additional integration with respect to x∗ in the definition of m̃d.
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To derive the asymptotic distribution of m̃d for the supersmooth case, we impose the following
assumptions.

Assumption 11. (1): I = supp g = [b1, b2].
(2): nh3e−2µh−γ →∞ as n→∞.
(3): E|Gd1,n,1|2h3e−2µh

−γ → ∞ as n → ∞, where Gd1,n,1 is defined in Appendix B.3 for
d = 1, . . . , D.

Assumption 11 (2) plays a similar role as Assumption 9 (1). This assumption requires the
bandwidth h to decay at an even slower rate due to the extra integration in the definition of m̃d.
Assumption 11 (3) is a technical assumption used to verify Lyapunov’s condition in the proof
of Theorem 4, which is imposed to keep the presentation simple. Similar to Assumption 9 (2),
primitive conditions, like Fan and Masry (1992, Condition 3.1), could be derived.

The asymptotic distribution of the second-stage estimator m̃d for md is obtained as follows.
Let Bias{m̃d(zd)} = md(zd)− E[m̃d(zd)] and V ar[m̃d(zd)] be the variance of m̃d(zd).

Theorem 4. Suppose Assumptions 1, 2, and 5 hold true.

(1): Under Assumption 6 and 10, it holds

m̃d(zd)−md(zd)− Bias{m̃d(zd)}√
V ar[m̃d(zd)]

d→ N(0, 1).

(2): Under Assumption 4, 8, and 11, it holds

m̃d(zd)−md(zd)− Bias{m̃d(zd)}√
V ar[m̃d(zd)]

d→ N(0, 1).

Similar to g̃, the asymptotic normality of m̃d is also provided in a normalized form. Again,
it can be shown that the dominant term of Bias{m̃d(zd)} is the same as that of the error-free
second-stage estimator of md as in Horowitz and Mammen (2004), which has the order h2, while
the measurement error slows down the divergence rate of V ar[m̃d(zd)] to infinity. In particular,
when fε is ordinary smooth, as shown in Appendix B.3, V ar[m̃d(zd)] diverges at the rate h−2β ,
which is slower than that of g̃ due to the additional integration with respect to x∗. In the case of
supersmooth fε, again, the lower bound on the divergence rate of V ar[m̃d(zd)] is obtained under
Assumption 11 rather than the exact rate, as shown in Appendix B.3. By similar arguments for
g̃, as for the second-stage estimator of Horowitz and Mammen (2004) in the error-free case, m̃d

is oracle in the sense that its asymptotic distribution is the same as if all other nonparametric
components were known.

4. Case of unknown measurement error distribution

4.1. Setup and estimator. A major limitation of our estimator is the assumption that the
measurement error density fε is known, which is unrealistic in many settings. In this section, we
relax this assumption by considering fε to be unknown but repeated measurements on X∗ are
available. Suppose we have two independent noisy measurements of the error-free covariate X∗,
i.e.,

Xj = X∗j + εj , and Xr
j = X∗j + εrj , (4.1)
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for j = 1, . . . , n. The following assumption is imposed for identification of fε.

Assumption 12. εr has the same distribution as ε, and is independent of (Y,X∗, ε). Further-
more, f ftε is real-valued.

These assumptions are commonly used in the literature when the measurement error distribu-
tion is symmetric around zero. In particular, Assumption 12 requires that εr is an independent
copy of ε, and f ftε is real-valued if fε is symmetric around zero. Under Assumption 12, the mea-
surement error distribution can be identified by f ftε (t) = |E[cos{t(X −Xr)}]|1/2. Given an i.i.d.
sample {Xj , X

r
j }nj=1 of (X,Xr), following Delaigle, Hall and Meister (2008), f ftε can be estimated

by

f̌ ftε (t) =

∣∣∣∣∣∣ 1n
n∑
j=1

cos{t(Xj −Xr
j )}

∣∣∣∣∣∣
1/2

.

Based on this estimator of f ftε , we propose to estimate g and md by

ǧ(x∗) =

κ∑
k=1

pk(x
∗)θ̌0k, m̌d(zd) =

κ∑
k=1

qk(zd)θ̌
d
k, (4.2)

where θ̌ = (<Ě[PκP
′
κ])−1<Ě[Y P ′κ], and elements of Ě[Y P ′κ] and Ě[PκP

′
κ] are constructed as

Ě[p(X∗)Q] =
1

2π

ˆ  1

n

n∑
j=1

Qje
itXj

 pft(−t)f̌ ftε (t)

{f̌ ftε (t) ∨ n−ζ}2
dt,

which is obtained by replacing f ftε in Ê[p(X∗)Q] by the estimator f̌ ftε and using the fact that
f̌ ftε (−t) = f̌ ftε (t) and f̌ ftε (t) ≥ 0 for all t ∈ R.

4.2. Asymptotic properties. To study the asymptotic properties of ǧ, m̌1, . . . , m̌D, we focus
on a special case where I coincides with the support of X∗. Even though it is rare in practice,
this simplifying assumption allows us to characterize the additional challenges that must be
met in order to extend our methods to the case when fε is unknown. Alternatively, we could
assume that the density of X∗ is bounded away from zero over the range of integration; such an
assumption is not uncommon in works of this type. The known support assumption, together
with some additional assumptions used to derive the convergence rates of ǧ, m̌1, . . . , m̌D, are
summarized as follows.

Assumption 13. (1): I is the support of X∗.
(2): E|ε|2+ς <∞ for some ς > 0.
(3): maxd=1,...,D E|qk(Zd)|2 <∞ and

´
|pftk (t)|dt <∞ for k = 1, . . . .

Assumption 13 (2) is a mild condition required by Lemma 11 in Appendix D, which is used
to characterize the uniform convergence rate of the empirical characteristic function of ε − εr

over an expanding region. Assumption 13 (3) contains additional conditions on the basis func-
tions than Assumption 2. In particular, the first part is imposed to guarantee that terms like
1
n

∑n
j=1 |qk(Zd,j)| and

1
n

∑n
j=1 |qk(Zd,j)ql(Zd′,j)| are stochastically bounded, and the second part

is a regularity condition on pk used to characterize the convergence rates of ǧ, m̌1, . . . , m̌D.
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For the tuning parameter κ, when fε is unknown, in addition to Assumption 3 and 4, we make
the following assumptions for the ordinary smooth case and supersmooth case, respectively.

Assumption 14. κ2n3ζ max

 n−1/2 log
(
c
1/β
os,1n

ζ/β − 1
)
,

max1≤k≤κ
´
|t|>c1/βos,0n

ζ/β−1 |p
ft
k (t)|dt

→ 0 as n→∞.

Assumption 15. κ2n3ζ max

{
n−1/2 log

(
µ−1/γ log(css,1n

ζ)1/γ
)
,

max1≤k≤κ
´
|t|>µ−1/γ log(css,0nζ)1/γ

|pftk (t)|dt

}
→ 0 as n→∞.

In the ordinary smooth case, Assumption 14 guarantees that if n is large enough, the moment
matrix Ě[PκP

′
κ] for the case when fε is estimated using repeated measurements on X∗ is close

to the moment matrix Ê[PκP
′
κ] for the case when fε is directly known, which is used in the

proof of Theorem 5. Assumption 15 plays a similar role in the proof of Theorem 5 when fε is
supersmooth.

Under these assumptions, the convergence rates of the estimators for the case of unknown fε
are obtained as follows.

Theorem 5. Suppose Assumption 1 holds except fε is unknown, and Assumptions 2, 12, and 13
hold true.

(1): Under Assumptions 3 and 14, it holds

‖θ̌ − θ0‖ = Op

(
κn

ζ+ ζ
2β
− 1

2 + κ
1
2n
−αζ

β + κ−2 + χ
1/2
os,n,ζ,κ

)
,

sup
x∗∈I
|ǧ(x∗)− g(x∗)| = Op

(
κ

3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2 + κ1/2χ

1/2
os,n,ζ,κ

)
,

max
1≤d≤D

sup
zd∈[−1,1]

|m̌d(zd)−md(zd)| = Op

(
κ

3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2 + κ1/2χ

1/2
os,n,ζ,κ

)
,

where χos,n,ζ,κ = κ2n−1/2+3ζ log(c
1/β
os,1n

ζ/β − 1) + κ2n3ζ max1≤k≤κ
´
|t|>c1/βos,0n

ζ/β−1 |p
ft
k (t)|dt.

(2): Under Assumptions 4 and 15, it holds

‖θ̌ − θ0‖ = Op

(
κ

1
2 (log n)

−α
γ + κ−2 + χ

1/2
ss,n,ζ,κ

)
,

sup
x∗∈I
|ǧ(x∗)− g(x∗)| = Op

(
κ(log n)

−α
γ + κ−

3
2 + κ1/2χ

1/2
ss,n,ζ,κ

)
,

max
1≤d≤D

sup
zd∈[−1,1]

|m̌d(zd)−md(zd)| = Op

(
κ(log n)

−α
γ + κ−

3
2 + κ1/2χ

1/2
ss,n,ζ,κ

)
,

where χss,n,ζ,κ = κ2n3ζ max1≤k≤κ
´
|t|>µ−1/γ log(css,0nζ)1/γ

|pftk (t)|dt.

Theorem 5 (1) presents the convergence rates of ǧ, m̌1, . . . , m̌D when fε is ordinary smooth.
Compared to Theorem 2 (1) where fε is known, the additional components that contain χos,n,ζ,κ

characterize the estimation error of f̌ ftε . In particular, the first component of χos,n,ζ,κ captures the
estimation error of f̌ ftε over an expanding region, and the second component is the upper bound
of the estimation error of f̌ ftε in the tails, obtained through the regularity of the basis functions
pk and the smoothness of fε. Theorem 5 (2) presents the convergence rates of ǧ, m̌1, . . . , m̌D

when fε is supersmooth. Similarly to the ordinary smooth case, the additional components that
contain χss,n,ζ,κ characterize the estimation error of f̌ ftε . In contrast to the ordinary smooth
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case, since κ can only diverge at a logarithm rate, the additional component that captures the
estimation error of f̌ ftε over an expanding region is dominated and does not appear in the final
rate.

5. Finite sample properties

In this section, the finite sample properties of our estimator are investigated and compared
to the estimators of Han and Park (2018) and Horowitz and Mammen (2004). Note that the
estimator of Horowitz and Mammen (2004) is not designed to deal with measurement error, so
this constitutes simply ignoring the measurement error issue.

The following data generating process is considered

Y = 1 + g(X∗) +m1(Z1) +m2(Z2) + U,

where (X∗Z1, Z2) are each drawn from N(0, 1/3) with correlation of 0.25 between each variable,
and U is drawn from N(0, 1/3) and is independent of (X∗Z1, Z2). While X∗ is assumed unob-
servable, we suppose X = X∗+ ε is observed, where ε is mutually independent and independent
of (X∗, Z1, Z2, U). We consider two cases for the density of ε. For the ordinary smooth case, ε
has a zero mean Laplace distribution with variance of 1/9. For the supersmooth case, ε has a
normal distribution with zero mean and variance of 1/9.

For the regression functions, we take m1(z) = z − z2, m2(z) = sin(πz), and consider three
specifications for g(z):

DGP1 :g(z) = z − z2,

DGP2 :g(z) = arctan(πz),

DGP3 :g(z) = cos(πz).

Note that each function is further standardized such that Assumption 1 (6) is satisfied, where
we truncate the range of integration at the 5% and 95% quantiles of X∗.

Throughout the simulation study, we use the kernel proposed in Fan (1992) which has a Fourier
transform given by

K ft = I{|t| ≤ 1}(1− t2)3.

This kernel satisfies all necessary assumptions given in Section 3. As basis functions for our
approach, we use polynomials standardized to satisfy Assumptions 2 (4) and (5). For the choice of
tuning parameters for the first-stage estimator, we follow the suggestions in Remark 6 of Section
3.1, while the bandwidth for the second-stage estimator is selected using the SIMEX approach
of Delaigle and Hall (2008). The bandwidth for the estimator of Han and Park (2018) was also
chosen using this SIMEX approach. For the method of Horowitz and Mammen (2004), we use
cross-validation to choose the bandwidths and use the same polynomials as for our estimator.

Results for two sample sizes, 500 and 1000, are provided. The mean integrated squared error
(multiplied by 10) for each estimator under each setting is given in Tables 1 - 3 and are based on
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1000 Monte Carlo replications. ‘DOT’ refers to the estimator of this paper, while ‘HP’ and ‘HM’
refer to the methods of Han and Park (2018) and Horowitz and Mammen (2004), respectively.

Table 1: DGP 1

Estimator g m1 m2

Error Type OS SS OS SS OS SS

Sample Size 500 1000 500 1000 500 1000 500 1000 500 1000 500 1000

DOT 0.30 0.26 0.42 0.38 0.26 0.23 0.24 0.21 0.18 0.11 0.16 0.10

HP 0.22 0.15 0.39 0.32 0.21 0.18 0.18 0.15 0.35 0.27 0.34 0.27

HM 0.51 0.46 0.58 0.55 0.24 0.21 0.24 0.21 0.16 0.10 0.16 0.10

Table 2: DGP 2

Estimator g m1 m2

Error Type OS SS OS SS OS SS

Sample Size 500 1000 500 1000 500 1000 500 1000 500 1000 500 1000

DOT 0.21 0.16 0.49 0.40 0.26 0.23 0.25 0.22 0.19 0.12 0.17 0.11

HP 0.30 0.22 0.57 0.45 0.12 0.07 0.11 0.07 0.33 0.25 0.31 0.24

HM 0.73 0.64 0.90 0.81 0.24 0.22 0.24 0.22 0.16 0.10 0.16 0.10

Table 3: DGP 3

Estimator g m1 m2

Error Type OS SS OS SS OS SS

Sample Size 500 1000 500 1000 500 1000 500 1000 500 1000 500 1000

DOT 0.47 0.34 1.13 0.98 0.26 0.23 0.24 0.22 0.19 0.11 0.18 0.11

HP 0.53 0.35 1.49 1.30 0.21 0.16 0.19 0.16 0.35 0.27 0.34 0.27

HM 1.40 1.27 1.79 1.67 0.24 0.22 0.24 0.22 0.17 0.11 0.17 0.11

First, as would be expected, the MISE for each estimator falls as the sample size increases
and when the function to be estimated is closer to linearity. Furthermore, as suggested by the
theoretical results, the performance of the estimators is better in the case of ordinary smooth
measurement error than with supersmooth error. It is also unsurprising to see that m1 and m2

are estimated with a lower MISE than g since the regressor associated with g is the only one to
suffer from measurement error.
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In all settings, the method of Horowitz and Mammen (2004) is clearly dominated by the other
two methods when estimating g; this is to be expected since the approach of Horowitz and
Mammen (2004) is designed to be used only with perfectly measured regressors. However, it is
interesting to note that this estimator performs admirably when estimating m1 and m2, showing
a marginal improvement over the method of this paper and generally giving lower MISE than
the estimator of Han and Park (2018).

When comparing the estimator of this paper to that of Han and Park (2018), it appears that
neither approach dominates the other. When the function to estimate is closer to linearity, i.e.
g in DGP 1 and m1 in all three DGPs, the estimator of Han and Park (2018) is preferable.
However, when the function exhibits more nonlinearity, our estimator dominates. Interestingly,
the difference between the estimators does not appear to depend on the smoothness of the
measurement error density. This suggests that although Han and Park (2018) do not discuss the
asymptotic properties of their estimator under supersmooth error, it is likely to remain consistent
in this case.

6. Empirical application

In this section, we use our estimator to analyze the black-white wage gap. In particular,
we aim to shed light on the differing wage-returns to cognitive ability, tenure, and education
across race. This topic dates back to at least Blinder (1973) and has received much attention
in the economics literature (see, for example, Card and Lemieux, 1996, Chay and Lee, 2000,
and Lang and Manove, 2011). While many papers include cognitive ability as a control - or
explicitly estimate the return to cognitive ability - few account for the inherent measurement
error present in this variable. Schennach (2007) is one such exception. In that paper, she presents
a nonlinear - but parametric - model of the black-white wage gap while taking seriously the issue
of measurement error. See Lang and Lehman (2012) for a comprehensive review of this vast
literature.

For our study, we use data from the National Longitudinal Survey of Youth 1979 (NLSY79).
The dataset contains a sample of Americans who were aged between 14-22 when first interviewed
in 1979. As is typical in work using the NLSY79 dataset, we restrict the sample to males who
work in the formal labour market (Neal, 2004). One part of this extensive survey is the Armed
Services Vocational Aptitude Battery (ASVAB), a series of multiple-choice tests designed to
measure cognitive ability. The individuals are then periodically interviewed, with the most
recent interview conducted in 2016. Among other variables, information on education, tenure,
and wages is provided in these surveys.

Our interest lies in estimating the effect of cognitive ability, tenure, and education on wages
as measured in 2016, and how these effects differ across race. Thus, we estimate an additive
regression model using the approach of this paper where the log of hourly wages is the dependent
variable and cognitive ability measured by the ASVAB test score (averaged over the ten tests
administered), years of tenure, and years of education act as the regressors. All variables are
standardized to have unit variance. To allow for the effect of race to be unconstrained, we
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estimate the model separately for blacks and whites. The sample size for blacks is 600, and for
whites 1232.

We consider the ASVAB score to be a noisy measure of cognitive ability, where the noise is
unrelated to the true underlying ability (see Dong, Otsu and Taylor, 2020, for evidence to the
suitability of the classical measurement error assumption in this context). In contrast to the
Monte Carlo evidence in Section 5, here we assume the distribution of the measurement error
to be known, thus, we must specify choices. We assume the error distribution is normal and
give results for a standard deviation of 0.1 and 0.3, respectively; this allows an examination of
the sensitivity of the results to this choice. The parameters for the estimator are chosen in the
same manner as in Section 5. In Figures 6.1 - 6.3, we plot each of the additive functions between
the 1% and 99% quantile of the respective regressor. The blue lines refer to results for black
individuals and the red lines for white individuals. The solid lines use a standard deviation of
0.1 for the measurement error and the dashed lines use 0.3.

First, it is interesting to see that the estimates for whites are quite insensitive to the assumed
standard deviation of the measurement error. However, for blacks, this is not the case for all
estimated functions; this likely reflect the smaller sample size for black men. Unsurprisingly, there
is a positive effect for each of cognitive ability, tenure, and education on wages, with cognitive
ability showing the largest effect. It is also clear from these plots that the relationship between
each regressor and the outcome is nonlinear. Thus, a nonparametric analysis seems necessary in
this setting. Finally, in line with much of the previous literature, the estimated wage-returns for
these different attributes are higher for blacks than whites (see, for example, Lang and Manove,
2011).
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Figure 6.1. Plot of ĝ between the 1% and 99% quantile of the ASVAB test score using the
NLSY79 dataset. The blue lines give results for black individuals and the red lines for white
individuals. The solid lines use a standard deviation of 0.1 for the measurement error and the
dashed lines use 0.3.
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Figure 6.2. Plot of m̂1 between the 1% and 99% quantile of tenure (in years) using the
NLSY79 dataset. The blue lines give results for black individuals and the red lines for white
individuals. The solid lines use a standard deviation of 0.1 for the measurement error and the
dashed lines use 0.3.
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Figure 6.3. Plot of m̂2 between the 1% and 99% quantile of education (in years) using the
NLSY79 dataset. The blue lines give results for black individuals and the red lines for white
individuals. The solid lines use a standard deviation of 0.1 for the measurement error and the
dashed lines use 0.3.

7. Conclusion

In this paper, we develop a novel nonparametric estimation strategy for additive models where
one covariate is contaminated with classical measurement error. The estimation procedure is di-
vided into two stages. In the first stage, to adapt to the additive structure of the regression
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function, we derive the first-stage estimator based on an orthonormal series approximation com-
bined with a ridge parameter deconvolution; the ridge approach being used to deal with the
ill-posedness brought by the measurement error.

The uniform convergence rate of our first-stage estimator is separately derived for cases of
ordinary/super smooth measurement error. In particular, we find that the presence of mea-
surement error slows down the convergence rate in general. In the case of ordinary smooth
measurement error, our first-stage estimator can achieve a uniform convergence rate as fast as
n
− 6

19+10β , which is faster than n
− 1

4+4β as in Han and Park (2018) under the same smoothness
condition when α = 2 and β > 1/2. In the case of supersmooth measurement error which was not
addressed by Han and Park (2018), our first-stage estimator can achieve a uniform convergence
rate as fast as (log n)

− 3α
5γ . These rate results, however, are slower than the error-free rate n−

3
10

as in Horowitz and Mammen (2004), which is expected given the contaminated nature of the
sample. To establish the limiting distribution - which is important for statistical inference - we
consider the second-stage estimator obtained by one-step backfitting using a deconvolution ker-
nel based on our first-stage estimator. The method of constructing our second-stage estimator,
however, depends on whether the nonparametric component to be estimated is associated with
a mismeasured covariate or a correctly measured one. The asymptotic normality is established
for both types of second-stage estimator, and for cases of ordinary/super smooth measurement
error. Finally, a Monte Carlo study and an empirical application highlight the applicability of
our estimator.

Further research is needed to explore optimal convergence rates, adaptive estimation, and
extensions to models with non-identity link functions.
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Appendix A. Proofs for Section2

A.1. Proof of Theorem 1. Let z = (z1, . . . , zD), z−d = (z1, . . . , zd−1, zd+1, . . . , zD), A(I) be
the length of the set I, and f ftY,X,Z(y, ·, z)(t) =

´
fY,X,Z(y, x, z)eitxdx, where fY,X,Z is the density

of (Y,X,Z). By Assumption 1 (1) and Lemma 1 (2), fY,X∗,Z is identified as

fY,X∗,Z(y, x∗, z) =
1

2π

ˆ
e−itx

∗ f
ft
Y,X,Z(y, ·, z)(t)

f ftε (t)
dt,

and the conditional mean E[Y |X∗, Z] is also identified under Assumption 1 (2). Thus, using
Assumption 1 (3), the intercept µ and the functions g and md for d = 1, . . . , D are identified as

µ = 2−DA(I)−1
¨
I×[−1,1]D

E[Y |X∗ = x∗, Z = z]dx∗dz,

g(x∗) = 2−D
ˆ
[−1,1]D

E[Y |X∗ = x∗, Z = z]dz − µ,

md(zd) = 2−(D−1)
ˆ
[−1,1]D−1

E[Y |X∗ = x∗, Z = z]dz−d − µ− g(x∗).

Appendix B. Proofs for Section 3

B.1. Proof of Theorem 2 . First, we show the convergence rate of ‖θ̂ − θ∗‖2. Let M̂κ =

<Ê[PκP
′
κ], Ĉκ = <Ê[Y P ′κ], Mκ = E[PκP

′
κ], Cκ = E[PκY ], θ∗ = M−1κ Cκ, and rκ = E[Y |X∗, Z]−

P ′κθ0. Observe that

‖θ̂ − θ∗‖2 = ‖M̂−1κ Ĉκ −M−1κ Cκ‖2 = ‖M̂−1κ (Ĉκ − Cκ) + M̂−1κ (Mκ − M̂κ)θ∗‖2

≤ 2‖M̂−1κ (Ĉκ − Cκ)‖2 + 2‖M̂−1κ (Mκ − M̂κ)θ∗‖2

≤ 2λmax(M̂−2κ ){‖Ĉκ − Cκ‖2 + ‖M̂κ −Mκ‖2‖θ∗‖2},

where the penultimate step follows from Jensen’s inequality, and the last step follows from
λmax(A) = sup‖δ‖=1 δ

′Aδ and λmax(A′A) ≤ ‖A‖2.
Since ‖M̂κ −Mκ‖2 ≤ ‖Ê[PκP

′
κ] −Mκ‖2 and ‖Ĉκ − Cκ‖2 ≤ ‖Ê[PκY ] − Cκ‖2, the orders of

‖M̂κ −Mκ‖2 and ‖Ĉκ − Cκ‖2 follow from Lemma 4. For λmax(M̂−2κ ), we have

λmax(M̂−2κ ) = λ−2min(M̂κ) ≥ { inf
‖δ‖=1

δ′(M̂κ −Mκ)δ + λmin(Mκ)}2,

where
(

inf‖δ‖=1 δ
′(M̂κ−Mκ)δ

)2
≤ ‖M̂κ−Mκ‖2

p→ 0 under Assumption 3 or 4, and λmin(Mκ) ≥
λ > 0 as in Assumption 2 (4). For ‖θ∗‖2, we have

‖θ∗‖2 = C ′κM
−2
κ Cκ ≤ λmax(M−1κ )CκM

−1
κ Cκ ≤ λ−1E[E[Y |X∗, Z]2] <∞,

where the third step follows from Cκ = E[PκE[Y |X∗, Z]] and Theorem 1 of Tripathi (1999), and
the last step follows from the boundedness of g,m1, · · · ,mD. Combining these results, we obtain

‖θ̂ − θ∗‖2 =

 Op

(
κ2n

2ζ+ ζ
β
−1

+ κn
− 2αζ

β

)
under Assumption 3,

Op

(
κ(log n)

− 2α
γ

)
under Assumption 4.
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Therefore, the convergence rate of ‖θ̂ − θ0‖ follows from the triangle inequality and

‖θ∗ − θ0‖2 = E[P ′κrk]M
−2
κ E[Pκrk] ≤ λmax(M−1κ )E[P ′κrk]M

−1
κ E[Pκrk] ≤ λ−1E[r2k] = O(κ−4),

where the first step follows from θ∗ = θ0 +M−1κ E[Pκrk], the third step follows from Theorem 1
of Tripathi (1999), and the last step follows from Assumption 2 (4).

Next, we prove the convergence rates of ĝ and m̂d. Since the proof is similar, we focus on ĝ.
Let θ̂0 be the vector of estimated coefficients in θ̂ corresponding to Pκ,0. Then, we have

sup
x∗∈I
|ĝ(x∗)− g(x∗)| ≤ sup

x∗∈I
|Pκ,0(x∗)′(θ̂0 − θ00)|+ sup

x∗∈I
|g(x∗)− P ′κ,0(X∗)θ00|

≤ sup
x∗∈I
‖Pκ,0(x∗)‖ · ‖θ̂0 − θ00‖+O(κ−2)

=

 Op

(
κ

3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2

)
under Assumption 3,

Op

(
κ(log n)

−α
γ + κ−

3
2

)
under Assumption 4,

where the second step uses the Cauchy-Schwartz inequality and Assumption 2 (4), and the
last step follows from supx∗∈I ‖Pκ,0(x∗)‖ ≤ sup(x∗,z)∈I×[−1,1]D ‖Pκ(x∗, z)‖, Assumption 2 (4),
‖θ̂0 − θ00‖ ≤ ‖θ̂ − θ0‖, and the convergence rate of ‖θ̂ − θ0‖.

B.2. Proof of Theorem 3 . To simplify the presentation, in the following discussion we sup-
press dependence on x∗, the point at which g is evaluated. Let An = 1

n

∑n
j=1Kh(x∗−Xj) and a =

fX∗(x
∗)
´
K(w)dw. Decompose g̃−g = 1

n

∑n
j=1Gn,j , where Gn,j = G1,n,j+G2,n,j+G3,n,j+G4,n,j

and

G1,n,j =
1

2πa

ˆ
e−it(x

∗−Xj)K
ft(th)

f ft
ε (t)

[
Yj − µ−

D∑
d=1

md(Zd,j)− g(x∗)
]
dt,

G2,n,j =
1

2πa

ˆ
e−it(x

∗−Xj)K
ft(th)

f ft
ε (t)

[
µ+

D∑
d=1

md(Zd,j)− µ̂−
D∑
d=1

m̂d(Zd,j)
]
dt,

G3,n,j =
a− An
An

G1,n,j , G4,n,j =
a− An
An

G2,n,j .

The proof is divided into three steps. First, we consider the case where fε is ordinary smooth.
Step 1: Show ∑n

j=1G1,n,j − nE[G1,n,1]√
nV ar[G1,n,1]

d→ N(0, 1). (B.1)

By Lyapunov’s central limit theorem, it is sufficient for (B.1) to show

lim
n→∞

E|G1,n,1|2+η

nη/2
[
E|G1,n,1|2

](2+η)/2 = 0, (B.2)

for some constant η > 0. Let µg,2+η(x) = E[|g(X∗) + U − g(x∗)|2+η|X = x]fX(x). By the law
of iterated expectations, we can write E|G1,n,1|2+η as

E|G1,n,1|2+η =

ˆ
x

∣∣∣∣ 1

2πa

ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2+η µg,2+η(x)dx. (B.3)
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If η > 0, we have

E|G1,n,1|2+η

≤ h−(β+1)η

(2π)ηa(2+η)

(
hβ+1

ˆ
|K ft(th)|
|f ftε (t)|

dt

)η
× h2β+1

4π2

ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 µg,2+η(x)dx

= O(h−(β+1)(η+2)+1), (B.4)

where the equality follows by Lemmas 5 and 7. On the other hand, if η = 0, we have

E|G1,n,1|2 =
h−(2β+1)

a2

(
h2β+1

4π2

ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 µg,2+η(x)dx

)

=
h−(2β+1)µg,2(x

∗)

2πa2c2ε

ˆ
|s|2β|K ft(s)|2ds{1 + op(1)}, (B.5)

where the second equality follows by Lemma 7. Thus, (B.4) and (B.5) together imply that (B.1)
holds true if nh→∞ as n→∞.

Step 2: Show ∑n
j=1G2,n,j − nE[G2,n,1]√

nV ar[G1,n,1]

p→ 0. (B.6)

For the numerator, we note
n∑
j=1

G2,n,j − nE[G2,n,1] = Op

(√
nE|G2,n,1|2

)
, (B.7)

and

E|G2,n,1|2 =

ˆ
x
E

[∣∣∣µ+
D∑
d=1

md(Zd,1)− µ̂−
D∑
d=1

m̂d(Zd,1)
∣∣∣2∣∣∣∣∣X = x

] ∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 fX(x)dx

≤

(
|µ̂− µ|+

D∑
d=1

sup
zd∈[−1,1]

|m̂d(zd)−md(zd)|

)2

×4π2h−(2β+1)

{
h2β+1

4π2

ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 fX(x)dx

}
= Op

(
κ3n

2ζ+ ζ
β
−1
h−(2β+1) + κ2n

− 2αζ
β h−(2β+1) + κ−3h−(2β+1)

)
, (B.8)

where the last equality follows by Theorem 2 and Lemma 7. For the denominator,

aE[G1,n,1] =
1

2π

ˆ
e−itx

∗
K ft(th){E[eitX

∗
g(X∗)]− E[eitX

∗
]g(x∗)}dt

= E[Kh(x∗ −X∗)g(X∗)]− E[Kh(x∗ −X∗)]g(x∗)

=

ˆ
Kh(x∗ − w)g(w)fX∗(w)dw − g(x∗)

ˆ
Kh(x∗ − w)fX∗(w)dw,

= O(h2), (B.9)
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where the last equality follows by the second-order differentiability of fX∗ , the third-order dif-
ferentiability of g, the symmetry of K,

´
K(w)w2dw <∞, and the fact thatˆ

Kh(x∗ − w)g(w)fX∗(w)dw − g(x∗)

ˆ
Kh(x∗ − w)fX∗(w)dw

= fX∗(x
∗)g′′(x∗)

ˆ
K(w)w2dwh2 + o(h2).

Then (B.9) and (B.5) imply that V ar[G1,n,1] is strictly dominated by E|G1,n,1|2 for large n. Now
by (B.5), we have

1

V ar[G1,n,1]
= O(h(2β+1)). (B.10)

Thus, (B.6) holds true if κ
3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2 → 0 as n→∞.

Step 3: Show ∑n
j=1Gk,n,j − nE[Gk,n,1]√

nV ar[G1,n,1]

p→ 0, (B.11)

for k = 3, 4. For this, it is sufficient to show An − a = op(1). To see this, note

An = E[An] +Op

(
n−1/2

[
E|Kh(x∗ −X)|2

]1/2)
. (B.12)

For the first term in (B.12), we have

E[An] = E

[
1

2π

ˆ
K ft(th)

f ftε (t)
e−it(x

∗−X)dt

]
=

1

2π

ˆ
e−itx

∗
K ft(th)f ftX∗(t)dt

= E[Kh(x∗ −X∗)] =

ˆ
K(u)fX∗(x

∗ − uh)du = a+O(h), (B.13)

where the second equality follows by Assumption 1 (1), the third equality follows by Plancherel’s
isometry (Lemma 1 (1)), the fourth equality follows by a change of variables, and the last
equality follows by the differentiability of fX∗ . For the second term in (B.12), by Lemma 7, we
have E|Kh(x∗ −X)|2 = O(h−(2β+1)) and thus

An − a = O(h) +Op(n
−1/2h−(β+1/2)), (B.14)

which implies that (B.11) follows by (B.1) and (B.6) if h→ 0 and nh2β+1 →∞.
Combining (B.1), (B.6), and (B.11), we have

g̃(x∗)− g(x∗)− Bias{g̃(x∗)}√
V ar[G1,n,1]

d→ N(0, 1),

where Bias{g̃(x∗)} = E[Gn,1]. To conclude for the ordinary smooth case, note V ar[g̃(x∗)] =
1
nV ar

[∑4
k=1Gk,n,1

]
. By the Cauchy-Schwartz inequality, the covariance terms are dominated by

the variance terms, then for V ar[g̃(x∗)]/V ar[G1,n,1]
p→ 1, it is sufficient to show V ar[Gk,n,1]/V ar[G1,n,1]

p→
0 for k = 2, 3, 4, which immediately follows by (B.8), (B.10), and (B.12).

The proof for the supersmooth case is similar to that of the ordinary smooth case, so we only
state the differences here. First, we update the upper bound results. In Step 1 of the ordinary
smooth case, to verify the Lyapunov condition (B.2), by (B.3), parallel to (B.4), for η > 0, we
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have

E|G1,n,1|2+η ≤
supx µg,2+η(x)

(2πa)2+η

(ˆ
|K ft(th)|
|f ftε (t)|

dt

)η ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 dx
= O

(
h−(1+η)eµ(2+η)h

−γ
)
, (B.15)

where the last equality follows by Lemma 8 and supx µg,2+η(x) < ∞. For the latter, we note
‖g‖∞ < cg for some cg > 0 and

|g(X∗) + U − g(x∗)|2+η ≤ {|g(X∗)|+ |U |+ |g(x∗)|}2+η ≤ {2cg + |U |}2+η ≤ c1 + c2|U |2+η,

for constants c1 = 21+η(2cg)
2+η and c2 = 21+η. Hence, supx µg,2+η(x) <∞ follows by ‖fX‖∞ <

∞ and supxE[|U |2+η|X = x] <∞. By a similar argument as in (B.15), we have
ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 fX(x)dx ≤ ‖fX‖∞
ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 dx
= O

(
h−1e2µh

−γ
)
, (B.16)

where the equality follows by ‖fX‖∞ < ∞ and Lemma 8. Therefore, for the parallel result to
(B.8), by Theorem 2 and (B.16),

E|G2,n,1|2 = Op

(
κ(log n)

−α
β h−1e2µh

−γ
+ κ−

3
2h−1e2µh

−γ
)
. (B.17)

For the parallel result to (B.12), using (B.16), we have

An − a = O(h) +Op

(
n−1/2h−1/2eµh

−γ
)
, (B.18)

which implies that (B.11) still holds if h→ 0 and nhe−2µh−γ →∞.
To verify Lyapunov’s condition (B.2) and to check that the first-stage estimation error is

negligible as in (B.6), besides (B.15), we also need the parallel result to (B.5). However, it is
difficult to derive the parallel result to Lemma 7 in general for the case of supersmooth fε. In
the deconvolution literature, the lower bound of E|G1,n,1|2 is commonly used to verify (B.2) in
the case of supersmooth fε. Primitive conditions, like Fan and Masry (1992, Condition 3.1), can
be imposed to this end. In this paper, to avoid unnecessary complication, we directly assume
the lower bound of E|G1,n,1|2 in Assumption 8 (3). Hence, under Assumption 8 (3), both (B.2)
and (B.6) hold true, and the conclusion follows.

B.3. Proof of Theorem 4 . Similar to the proof of Theorem 3, in the following discussion we
suppress dependence on zd, the point at which md is evaluated. Let Adn = 1

n

∑n
j=1

´
x∗∈I Kh(x∗−

Xj)dx
∗Kh(zd−Zd,j) and ad =

´
x∗∈I fX∗,Zd(x

∗, zd)dx
∗( ´ K(w)dw

)2. First, similar to the proof of
Theorem 3, we have m̃d(zd)−md(zd) = 1

n

∑n
j=1G

d
n,j , where G

d
n,j = Gd1,n,j+G

d
2,n,j+G

d
3,n,j+G

d
4,n,j
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and

Gd1,n,j =
1

ad

ˆ
x∗∈I

Kh(x∗ −Xj)dx
∗Kh(zd − Zd,j)

[
Yj − µ−

∑
d′ 6=d

md′(Zd′,j)−md(zd)
]

− 1

ad

ˆ
x∗∈I

Kh(x∗ −Xj)g(x∗)dx∗Kh(zd − Zd,j),

Gd2,n,j =
1

ad

ˆ
x∗∈I

Kh(x∗ −Xj)dx
∗Kh(zd − Zd,j)

[
µ+

∑
d′ 6=d

md′(Zd′,j)− µ̂−
∑
d′ 6=d

m̂d′(Zd′,j)
]

− 1

ad

ˆ
x∗∈I

Kh(x∗ −Xj){ĝ(x∗)− g(x∗)}dx∗Kh(zd − Zd,j),

Gd3,n,j =
ad − Adn

Adn
Gd1,n,j , Gd4,n,j =

ad − Adn
Adn

Gd2,n,j ,

and the rest of the proof follows in three steps. First, we consider the ordinary smooth case.
Step 1: Show

lim
n→∞

E|Gd1,n,1|2+η

nη/2
[
E|Gd1,n,1|2

](2+η)/2 = 0, (B.19)

for some constant η > 0. For the numerator, by Jensen’s inequality,

E|Gd1,n,1|2+η ≤
2(1+η)

(ad)2+η
E

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd){md(Zd) + g(X∗) + U −md(zd)}
∣∣∣∣2+η

+
2(1+η)

(ad)2+η
E

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)g(x∗)dx∗Kh(zd − Zd)
∣∣∣∣2+η .

For the first term, we have

E

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd){md(Zd) + g(X∗) + U −md(zd)}
∣∣∣∣2+η

= O

(
h−η

(ˆ
|K ft(th)|
|f ftε (t)|

dt

)η
E

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd)
∣∣∣∣2
)

= O(h−(η+2)β−2η),

where the first equality follows by the law of iterated expectations, ‖md‖∞ < ∞, ‖g‖∞ < ∞,
supu,v E[|U |2+η|X = u, Zd = v] <∞, and

E
[
|md(Zd) + g(X∗) + U −md(zd)|2+η |X = u, Zd = v

]
≤ 41+η

(
2‖md‖2+η∞ + ‖g‖2+η∞ + E[|U |2+η|X = u, Zd = v]

)
,

and the second equality follows by Lemmas 5 and 9.
By a very similar argument, we have

E

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)g(x∗)dx∗Kh(zd − Zd)
∣∣∣∣2+η = O(h−(η+2)β−2η),

which implies E|Gd1,n,1|2+η = O(h−(η+2)β−2η). Also, by Lemma 9, there exists a constant c > 0

such that E|Gd1,n,1|2 ≥ ch−2β for all n large enough. Thus, (B.19) holds true if nh4 → ∞ as
n→∞.
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Step 2: Show
E|Gd2,n,1|2

V ar(G2
1,n,1)

→ 0. (B.20)

For the numerator, we have

E|Gd2,n,1|2 ≤ 2

a2d
E

∣∣∣∣∣∣
ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd)
[
µ+

∑
d′ 6=d

md′(Zd′)− µ̂−
∑
d′ 6=d

m̂d′(Zd′)
]∣∣∣∣∣∣

2

+
2

a2d
E

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X){ĝ(x∗)− g(x∗)}dx∗Kh(zd − Zd)
∣∣∣∣2 . (B.21)

For the first term, we have

E

∣∣∣∣∣∣
ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd)
[
µ+

∑
d′ 6=d

md′(Zd′)− µ̂−
∑
d′ 6=d

m̂d′(Zd′)
]∣∣∣∣∣∣

2

=

ˆ
u,v
E

∣∣∣∣∣∣µ+
∑
d′ 6=d

md′(Zd′)− µ̂−
∑
d′ 6=d

m̂d′(Zd′)

∣∣∣∣∣∣
2∣∣∣∣∣∣X = u, Zd = v


×
∣∣∣∣ˆ
x∗∈I

Kh(x∗ − u)dx∗Kh(zd − v)

∣∣∣∣2 fX,Zd(u, v)dudv

≤

|µ̂− µ|+ ∑
d′ 6=d

sup
zd′∈[−1,1]

|m̂d′(zd′)−md′(zd′)|

2

h−2β

{
h2βE

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd)
∣∣∣∣2
}

= Op

(
h−2βκ

3
2n

ζ+ ζ
2β
− 1

2 + h−2βκn
−αζ

β + h−2βκ−
3
2

)
,

where the first equality follows by the law of iterated expectations and the last equality follows
by Theorem 2 and Lemma 9. By a similar argument, we have

E

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X){ĝ(x∗)− g(x∗)}dx∗Kh(zd − Zd)
∣∣∣∣2

= Op

(
h−2βκ

3
2n

ζ+ ζ
2β
− 1

2 + h−2βκn
−αζ

β + h−2βκ−
3
2

)
,

which implies E|Gd2,n,1|2 = Op

(
h−2βκ

3
2n

ζ+ ζ
2β
− 1

2 + h−2βκn
−αζ

β + h−2βκ−
3
2

)
. For the denomina-

tor, by Lemma 9, we have E|Gd1,n,1|2 ≥ ch−2β . Also, we note

adE[Gd1,n,1] =

ˆ
x∗∈I

1

2π

ˆ
e−itx

∗
K ft(th) {E[{md(Zd) + g(X∗)}Kh(zd − Zd)|X∗]fX∗}ft (t)dtdx∗

−
ˆ
x∗∈I

md(zd) + g(x∗)

2π

ˆ
e−itx

∗
K ft(th) {E[Kh(zd − Zd)|X∗]fX∗}ft (t)dtdx∗

=

ˆ
x∗∈I

E[{md(Zd) + g(X∗)}Kh(x∗ −X∗)Kh(zd − Zd)]dx∗

−
ˆ
x∗∈I
{md(zd) + g(x∗)}E[Kh(x∗ −X∗)Kh(zd − Zd)]dx∗ = O(h2), (B.22)

where the first equality follows by Assumption 1 (1), the second equality follows by the convolu-
tion theorem (Lemma 1 (2)), and the last equality follows by the twice continuous differentiability
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of g, md, and fX∗,Zd , the symmetry of K,
´
K(w)w2dw <∞, and the following factˆ

Kh(x∗ − w1)Kh(zd − w2){g(w1) +md(w2)}fX∗,Zd(w1, w2)dw

−{g(x∗) +md(zd)}
ˆ
Kh(x∗ − w1)Kh(zd − w2)fX∗,Zd(w1, w2)dw

=

ˆ
K(w1)K(w2)

[
g(x∗ − w1h) +md(zd − w2h)

]
fX∗,Zd(x

∗ − w1h, zd − w2h)dw

−{g(x∗) +md(zd)}
ˆ
K(w1)K(w2)fX∗,Zd(x

∗ − w1h, zd − w2h)dw

= fX∗,Zd(x
∗, zd){g′′(x∗) +m′′d(zd)}

ˆ
K(w)w2dw

ˆ
K(w)dwh2 + o(h2).

Since V ar[G1,n,1] is dominated by E|G1,n,1|2, we obtain

1

V ar[Gd1,n,1]
= O(h2β). (B.23)

Thus, (B.20) holds true if κ
3
2n

ζ+ ζ
2β
− 1

2 + κn
−αζ

β + κ−
3
2 → 0 as n→∞.

Step 3: Show
Adn − ad = op(1). (B.24)

To see this, we note

Adn = E[Adn] +Op

n−1/2 [E ∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd)
∣∣∣∣2
]1/2 .

For the first term E[Adn], we have

E[Adn] =

ˆ
x∗∈I

1

2π

ˆ
t
e−itx

∗
K ft(th)

{
E[Kh(zd − Zd)|X∗]fX∗

}ft
(t)dtdx∗

=

ˆ
x∗∈I

E[Kh(x∗ −X∗)Kh(zd − Zd)]dx∗

=

ˆ
x∗∈I

ˆ
u,v
K(u)K(v)fX∗,Zd(x

∗ − uh, zd − vh)dudvdx∗ = ad +O(h2),

where the first equality follows by the law of iterated expectations, the second equality follows
by Plancherel’s isometry (Lemma 1 (1)), the third equality follows by a change of variables,
and the last equality follows by the standard bias reduction argument using the twice continuous
differentiability of fX∗,Zd , the symmetry of K,

´
K(w)w2dw <∞, and the compactness of I. For

the second-order term, by Lemma 9, we have E
∣∣´
x∗∈I Kh(x∗ −X)dx∗Kh(zd − Zd)

∣∣2 = O(h−2β),
and it follows

Adn − ad = O(h) +Op(n
−1/2h−β),

which implies (B.24) holds true if h→ 0 and nh2β →∞ as n→∞.
Combining (B.19), (B.20), and (B.24), by a similar argument as in the proof of Theorem 3,

we have
m̃d(zd)−md(zd)− Bias{m̃d(zd)}√

V ar[m̃d(zd)]

d→ N(0, 1),

where Bias{m̃d(zd)} = E[Gdn,1].
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The proof for the supersmooth case follows a similar route as the ordinary smooth case so we
only state the differences as follows. First, by Lemmas 8 and 10, for η ≥ 0, we have

E

∣∣∣∣∣∣
ˆ

x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd){md(Zd) + g(X∗) + U −md(zd)}

∣∣∣∣∣∣
2+η

= O

(
h−η

(ˆ
|K ft(th)|
|f ftε (t)|

dt

)η
E

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd)
∣∣∣∣2
)

= O
(
h−(2η+3)e(η+2)µh−γ

)
.

By a similar argument, we have

E

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)g(x∗)dx∗Kh(zd − Zd)
∣∣∣∣2+η = O

(
h−(2η+3)e(η+2)µh−γ

)
.

Thus, by Assumption 11, (B.19) and (B.23) hold true.
Also, by Lemma 10, we have

Adn − ad = O(h) +Op(n
−1/2h−3/2eµh

−γ
),

which implies Adn − ad = op(1) if h→ 0 and nh3e−2µh−γ →∞, and the conclusion follows.

Appendix C. Proofs for Section 4

C.1. Proof of Theorem 5. Let M̌κ = <Ě[PκP
′
κ] and Čκ = <Ě[Y P ′κ]. The proof follows from

a similar route as that of Theorem 2 except that instead of the orders of ‖Ê[PκP
′
κ]−Mκ‖2 and

‖Ê[PκY ]−Cκ‖2, we need to quantify the orders of ‖Ě[PκP
′
κ]−Mκ‖2 and ‖Ě[PκY ]−Cκ‖2, which

are given by

‖Ě[PκP
′
κ]−Mκ‖2 ≤ 2‖Ê[PκP

′
κ]−Mκ‖2 + 2‖Ě[PκP

′
κ]− Ê[PκP

′
κ]‖2,

‖Ě[PκY ]− Cκ‖2 ≤ 2‖Ê[PκY ]− Cκ‖2 + 2‖Ě[PκY ]− Ê[PκY ]‖2,

and Lemma 4 and 12. Then, the conclusion follows from Assumptions 3 and 14, or Assumptions
4 and 15, which together with Lemma 4 and 12 implies ‖M̌κ −Mκ‖2 ≤ ‖Ě[PκP

′
κ]−Mκ‖2

p→ 0.

Appendix D. Lemmas

For ζ > 0, let Gε,n,ζ = {t ∈ R : |f ftε (t)| < n−ζ} be the region over which the ridge regularization
is implemented, and Gcε,n,ζ = R\Gε,n,ζ be the complement of Gε,n,ζ . First, we introduce Lemmas
1-3 to prepare for the proof of Lemma 4, which is used in the proof of Theorem 2.

Lemma 1. For f1, f2, f ∈ L1(R) ∩ L2(R) and c ∈ R, we have

(1): 〈f1, f2〉 = 1
2π 〈f

ft
1 , f

ft
2 〉

(2): {
´
f1(w − w̃)f2(w̃)dw̃}ft(t) = f ft1 (t)f ft2 (t)

(3): {f1f2}ft(t) = 1
2π

´
f ft1 (t− s)f ft2 (s)ds

(4): f ft(t− s) = {f(w)e−isw}ft(t)
(5): f ft(ct) = {f(w/c)/c}ft(t)

Proof. Lemma 1 (1) is known as Plancherel’s isometry and its proof can be found in Meister (2009,
Theorem A.4). One useful special case is when f1 = f2 = f , which gives Parseval’s identity,
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‖f‖22 = 1
2π‖f

ft‖22. Lemma 1 (2) is known as the convolution theorem and its proof can be found
in Meister (2009, Lemma A.1 (b)). Lemma 1 (3) follows from (2) and f(w) = 1

2π{f
ft}ft(−w).

Lemma 1 (4) follows from the definition of the Fourier transform. Lemma 1 (5) is known as the
linear stretching property of the Fourier transform, and its proof can be found in Meister (2009,
Lemma A.1 (e)). �

Lemma 2. Suppose Assumptions 1 and 2 hold true.

(1): If fε is ordinary smooth of order β > 0, thenˆ
Gε,n,ζ

|f ftX∗(t)|2dt = O
(
n
− 2αζ

β

)
, sup

zd∈[−1,1]

ˆ
Gε,n,ζ

|f ftX∗|Zd=zd(t)|
2dt = O

(
n
− 2αζ

β

)
,

sup
zd,zd′∈[−1,1]

ˆ
Gε,n,ζ

|f ftX∗|Zd=zd,Zd′=zd′ (t)|
2dt = O

(
n
− 2αζ

β

)
.

(2): If fε is supersmooth of order γ > 0, thenˆ
Gε,n,ζ

|f ftX∗(t)|2dt = O
(

(log n)
− 2α

γ

)
, sup

zd∈[−1,1]

ˆ
Gε,n,ζ

|f ftX∗|Zd=zd(t)|
2dt = O

(
(log n)

− 2α
γ

)
,

sup
zd,zd′∈[−1,1]

ˆ
Gε,n,ζ

|f ftX∗|Zd=zd,Zd′=zd′ (t)|
2dt = O

(
(log n)

− 2α
γ

)
.

Proof. Since the proof is similar, we focus on
´
Gε,n,ζ

|f ftX∗(t)|2dt. For (1), if fε is ordinary smooth
of order β, we have cos,0(1 + |t|)−β < n−ζ for t ∈ Gε,n,ζ . Note that Jensen’s inequality (1 + |t|) ≤
√

2(1 + t2)1/2 implies (1 + t2)−α ≤ 2α(1 + |t|)−2α, and it follows (1 + t2)−α < 2αc
− 2α
β

os,0 n
− 2αζ

β . Also
note that

´
Gε,n,ζ

|f ftX∗(t)|2(1 + t2)αdt ≤
´
|f ftX∗(t)|2(1 + t2)αdt < csob by fX∗ ∈ Fα,csob . Then we

have ˆ
Gε,n,ζ

|f ftX∗(t)|2dt =

ˆ
Gε,n,ζ

|f ftX∗(t)|2(1 + t2)α(1 + t2)−αdt

≤ 2αc
− 2α
β

os,0 n
− 2αζ

β

ˆ
Gε,n,ζ

|f ftX∗(t)|2(1 + t2)αdt = O(n
− 2αζ

β ). (D.1)

For (2), if fε is supersmooth of order γ, we have css,0 exp(−µ|t|γ) < n−ζ for t ∈ Gε,n,ζ . Note that

css,0 exp(−µ|t|γ) < n−ζ ⇒ |t|γ > µ−1
[

log(css,0) + ζ log(n)
]

⇒ 1 + |t|2 > 1 + µ
− 2
γ
[

log(css,0) + ζ log(n)
] 2
γ

⇒ (1 + |t|2)−α <
(
1 + µ

− 2
γ
[

log(css,0) + ζ log(n)
] 2
γ
)−α

,

which implies there exists a constant C > 0 such that (1 + t2)−α ≤ C(log n)
− 2α

γ for t ∈ Gε,n,ζ .
Then, similarly to the previous ordinary smooth case, we haveˆ

Gε,n,ζ

|f ftX∗(t)|2dt =

ˆ
Gε,n,ζ

|f ftX∗(t)|2(1 + t2)α(1 + t2)−αdt

≤ C(log n)
− 2α

γ

ˆ
Gε,n,ζ

|f ftX∗(t)|2(1 + t2)αdt = O((log n)
− 2α

γ ). (D.2)

�

Lemma 3. Suppose Assumptions 1 and 2 hold true.
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(1): If fε is ordinary smooth of order β with β > 1/2, then
ˆ

|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt = O(n

ζ(2β+1)
β ).

(2): If fε is supersmooth of order γ > 0, then
ˆ

|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt = O(n2ζ(r+2)).

Proof. For (1), decompose
ˆ

|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt = n2ζ(r+2)

ˆ
Gε,n,ζ

|f ftε (t)|2r+2dt+

ˆ
Gcε,n,ζ

1

|f ftε (t)|2
dt. (D.3)

First, note that |f ftε (t)| ≤ cos,1(1 + |t|)−β for t ∈ R and cos,0(1 + |t|)−β < n−ζ for t ∈ Gε,n,ζ ,

which implies (1 + |t|)−2β(r+1)+1+η < c
− 2β(r+1)−1−η

β

os,0 n
− ζ(2β(r+1)−1−η)

β for t ∈ Gε,n,ζ and for any
constant η ∈ (0, 2β(r + 1) − 1). Also note that

´
Gε,n,ζ

(1 + |t|)−1−ηdt → 0 as n → ∞ because
´

(1 + |t|)−1−ηdt <∞ for any η > 0 and |t| > c
1
β

os,0n
ζ
β − 1 for t ∈ Gε,n,ζ . Then, for the first term

of (D.3), we haveˆ
Gε,n,ζ

|f ftε (t)|2r+2dt ≤ c2r+2
os,1

ˆ
Gε,n,ζ

(1 + |t|)−2β(r+1)+1+η(1 + |t|)−1−ηdt

≤ c2r+2
os,1 c

− 2β(r+1)−1−η
β

os,0 n
− ζ(2β(r+1)−1−η)

β

ˆ
Gε,n,ζ

(1 + |t|)−1−ηdt = o(n
− ζ(2β(r+1)−1−η)

β ). (D.4)

For the second term of (D.3), note that |f ftε (t)|−2 ≤ n2ζ and |t| < c
1
β

os,1n
ζ
β for t ∈ Gcε,n,ζ , which

implies ˆ
Gcε,n,ζ

|f ftε (t)|−2dt ≤ n2ζ
ˆ
Gcε,n,ζ

dt ≤ 2c
1
β

os,1n
ζ(2β+1)

β = O(n
ζ(2β+1)

β ). (D.5)

Then, (1) follows from combining (D.3), (D.4), and (D.5).
For (2), note that |f ftε (t)| ∨ n−ζ ≥ n−ζ and |f ftε (t)| ≤ css,1 exp(−µ|t|γ), which implies

ˆ
|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt ≤ 2c2r+2

ss,1 n2ζ(r+2)

ˆ +∞

0
exp(−(2r + 2)µ|t|γ)dt. (D.6)

Also note that t2 and exp((2r+ 2)µ|t|γ) are strictly increasing and there exists a constant δ such
that exp((2r + 2)µ|t|γ) > t2 for any t > δ. Then, since exp(−(2r + 2)µ|t|γ) ≤ 1 for t ≥ 0, we
have ˆ +∞

0
exp(−(2r + 2)µ|t|γ)dt = {

ˆ δ

0
+

ˆ +∞

δ
} exp(−(2r + 2)µ|t|γ)dt

≤ δ +

ˆ +∞

δ
t−2dt = δ + δ−1 <∞. (D.7)

Then, (2) follows from combining (D.6) and (D.7). �

Let IMκ = {(p,Q) : E[p(X∗)Q] is an element of Mκ} be the index set characterizing the com-
ponents ofMκ, where p is a product of {p0, p1, . . . , pκ} andQ is a product of {1, q1(Z1), . . . , qκ(ZD)}.
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To keep notation simple throughout the proof of Lemma 4, let %Bn denote n−
2αζ
β under Assump-

tion 3 and (log n)
− 2α

γ under Assumption 4, and %Vn denote n2ζ+
ζ
β
−1 under Assumption 3 and

n2ζ(r+2)−1 under Assumption 4.

Lemma 4. Suppose Assumptions 1 and 2 hold true.

(1): Under Assumption 3, it holds

|Ê[PκP
′
κ]−Mκ|2 = Op

(
κ2n

2ζ+ ζ
β
−1

+ κn
− 2αζ

β

)
, |Ê[PκY ]−Cκ|2 = Op

(
κn

2ζ+ ζ
β
−1

+ n
− 2αζ

β

)
.

(2): Under Assumption 4 with r ≥ 0 and 0 < ζ < 1
2(r+2) , it holds

|Ê[PκP
′
κ]−Mκ|2 = Op

(
κ(log n)

− 2α
γ

)
, |Ê[PκY ]− Cκ|2 = Op

(
(log n)

− 2α
γ

)
.

Proof. Since the proof is similar, we focus on the proof for |Ê[PκP
′
κ] − Mκ|2. Let Bp,Q =

E{Ê[p(X∗)Q]} − E[p(X∗)Q] be the bias of the proposed estimator of the element of Mκ char-
acterized by p and Q. Let Vp,Q = Ê[p(X∗)Q] − E{Ê[p(X∗)Q]}, and Vp,Q,j be its component
associated with the j-th observation, i.e., Vp,Q = 1

n

∑n
j=1 Vp,Q,j . First, note that random sam-

pling implies

E|Ê[PκP
′
κ]−Mκ|2 =

1

n2

n∑
j,j′=1

∑
(p,Q)∈IMκ

E
[
(Bp,Q + Vp,Q,j)(Bp,Q + Vp,Q,j′)

]
=

∑
(p,Q)∈IMκ

|Bp,Q|2 +
1

n

∑
(p,Q)∈IMκ

E|Vp,Q,1|2 ≡ B + V.

Using Lemma 1 (1), the law of iterated expectations, and properties of classical measurement
error, we have

E[p(X∗)Q] = 〈E[Q|X∗]fX∗ , p〉 =
1

2π

ˆ
E[QeitX

∗
]pft(−t)dt,

E{Ê[p(X∗)Q]} =
1

2π

ˆ
E[QeitX

∗
]
|f ftε (t)|r+2pft(−t)
{|f ftε (t)| ∨ n−ζ}r+2

dt.

So, the bias term B can be written as

B =
∑

(p,Q)∈IMκ

∣∣∣∣ 1

2π

ˆ (
|f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
E[QeitX

∗
]pft(−t)dt

∣∣∣∣2 ≡ B1 + · · ·+B7,

where B1, . . . , B7 are summations of the terms whose (p,Q) are in the form of (p0, 1), (pk, 1),
(pkpl, 1), (p0, qk(Zd)), (pk, ql(Zd)), (p0, qk(Zd)ql(Zd)), and (p0, qk(Zd)ql(Zd′)) separately for k, l =

1, . . . , κ and d, d′ = 1, . . . , D with d 6= d′.
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Since the proof is similar for B1, B2, and B3, we focus on B3, for which we have

B3 =
κ∑

k,l=1

∣∣∣∣ 1

2π

ˆ (
|f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
f ftX∗(t){pkpl}ft(−t)dt

∣∣∣∣2

=
κ∑

k,l=1

∣∣∣∣ 1

4π2

¨ (
|f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
f ftX∗(t)p

ft
k (−t− s)pftl (s)dsdt

∣∣∣∣2

=

κ∑
k,l=1

∣∣∣∣ 1

4π2

¨ (
|f ftε (u− v)|r+2

{|f ftε (u− v)| ∨ n−ζ}r+2
− 1

)
f ftX∗(u− v)pftk (−u)pftl (v)dudv

∣∣∣∣2

≤ 1

16π4

ˆ { κ∑
k=1

∣∣∣∣〈( |f ftε (u− v)|r+2

{|f ftε (u− v)| ∨ n−ζ}r+2
− 1

)
f ftX∗(u− v), pftk (u)

〉
u

∣∣∣∣2
}

κ∑
l=1

|pftl (v)|2dv

≤ κ

4π2

ˆ
Gε,n,ζ

|f ftX∗(t)|2dt = O(κ%Bn ),

where the second step follows from Lemma 1 (3), the third step uses the change of variables
(u, v) = (t + s, s), the last step follows from Lemma 2, and the penultimate step follows from
Lemma 1 (1), the orthonormality of {pl}κl=1 and

κ∑
k=1

∣∣∣∣〈( |f ftε (u− v)|r+2

{|f ftε (u− v)| ∨ n−ζ}r+2
− 1

)
f ftX∗(u− v), pftk (u)

〉
u

∣∣∣∣2

= 4π2
κ∑
k=1

∣∣〈h1(w)e−ivw, pk(w)
〉
w

∣∣2 ≤ 4π2
∥∥h1(w)e−ivw

∥∥2
2

≤ 2π

∥∥∥∥( |f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
f ftX∗(t)

∥∥∥∥2
2

≤ 2π

ˆ
Gε,n,ζ

|f ftX∗(t)|2dt,

where h1 denotes the Fourier inverse of
(

|f ftε (t)|r+2

{|f ftε (t)|∨n−ζ}r+2 − 1
)
f ftX∗(t), the first step follows from

Lemma 1 (1) and (4), the second step follows from the orthonormality of {pk}κk=1, and the third
step follows from |e−ivw| = 1 and Lemma 1 (1). Similarly, we have B1, B2 = O(%Bn ).

Since the proof is similar for B4 and B5, we focus on B5, for which we have

B5 = 2

D∑
d=1

κ∑
k,l=1

∣∣∣∣ 1

2π

ˆ (
|f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
E[ql(Zd)e

itX∗ ]pftk (−t)dt
∣∣∣∣2

=
1

2π2

D∑
d=1

κ∑
k,l=1

∣∣∣∣〈( |f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
E[ql(Zd)e

itX∗ ], pftk (t)

〉
t

∣∣∣∣2

≤ 1

π

D∑
d=1

ˆ
Gε,n,ζ

{
κ∑
l=1

∣∣∣∣ˆ f ftX∗|Zd=zd(t)fZd(zd)ql(zd)dzd

∣∣∣∣2
}
dt

≤ 1

π

D∑
d=1

ˆ
Gε,n,ζ

{ˆ
|f ftX∗|Zd=zd(t)|

2|fZd(zd)|
2dzd

}
dt

≤ 1

π

{
maxd∈{1,··· ,D} supzd∈[−1,1]

´
Gε,n,ζ

|f ftX∗|Zd=zd(t)|
2dt

×
∑D

d=1

´
|fZd(zd)|2dzd

}
= O(%Bn ),

36



where the fourth step follows from the orthonormality of {ql}κl=1, the last step follows from Lemma
2 and the boundedness of fZd , and the third step follows from E[ql(Zd)e

itX∗ ] =
´
f ftX∗|Zd=zd(t)fZd(zd)ql(zd)dzd

and
κ∑
k=1

∣∣∣∣〈( |f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
E[ql(Zd)e

itX∗ ], pftk (t)

〉
t

∣∣∣∣2 = 4π2
κ∑
k=1

∣∣〈h2,l,d, pk〉∣∣2 ≤ 4π2‖h2,l,d‖22

= 2π

∥∥∥∥( |f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
E[ql(Zd)e

itX∗ ]

∥∥∥∥2
2

≤ 2π

ˆ
Gε,n,ζ

|E[ql(Zd)e
itX∗ ]|2dt,

where h2,l,d denotes the Fourier inverse of
(

|f ftε (t)|r+2

{|f ftε (t)|∨n−ζ}r+2 − 1
)
E[ql(Zd)e

itX∗ ], the first step
follows from Lemma 1 (1), the second step follows from the orthonormality of {pk}κk=1, and the
third step follows from Lemma 1 (1). Similarly, we have B4 = O(%Bn ).

Since the proof is similar for B6 and B7, we focus on B6, for which we have

B6 =

D∑
d=1

κ∑
k,l=1

∣∣∣∣ 1

2π

ˆ (
|f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
E[qk(Zd)ql(Zd)e

itX∗ ]pft0 (−t)dt
∣∣∣∣2

≤ A(I)

2π

D∑
d=1

κ∑
k,l=1

ˆ ∣∣∣∣( |f ftε (t)|r+2

{|f ftε (t)| ∨ n−ζ}r+2
− 1

)
E[qk(Zd)ql(Zd)e

itX∗ ]

∣∣∣∣2

≤ A(I)

2π

D∑
d=1

κ∑
k=1

ˆ
Gε,n,ζ

κ∑
l=1

∣∣∣∣〈f ftX∗|Zd=zd(t)fZd(zd)qk(zd), ql(zd)〉zd
∣∣∣∣2 dt

≤ A(I)

2π

D∑
d=1

κ∑
k=1

ˆ
Gε,n,ζ

{ˆ
|f ftX∗|Zd=zd(t)fZd(zd)qk(zd)|

2dzd

}
dt

≤ A(I)

2π

{
maxd∈{1,··· ,D} supzd∈[−1,1]

´
Gε,n,ζ

|f ftX∗|Zd=zd(t)|
2dt

×
∑D

d=1

∑κ
k=1

´
|fZd(zd)|2|qk(zd)|2dzd

}
= O(κ%Bn ),

where the second step follows from the Cauchy-Schwarz inequality and Lemma 1 (1), the third
step follows from E[qk(Zd)ql(Zd)e

itX∗ ] =
´
zd
f ftX∗|Zd=zd(t)fZd(zd)qk(zd)ql(zd)dzd, the fourth fol-

lows from the orthonormality of {ql}κl=1, and the last step follows from Lemma 2, the boundedness
of fZd , and the unity of qk. Similarly, we have B7 = O(%Bn ).

Combining these results, we obtain

B = O(κ%Bn ) =

{
O(κn

− 2αζ
β ) under Assumption 3,

O(κ(log n)
− 2α

γ ) under Assumption 4.

We now consider the variance term V . Similarly to the bias term, we decompose

V ≤ 1

n

∑
(p,Q)∈IMκ

E

∣∣∣∣ 1

2π

ˆ
QeitX

f ftε (−t)|f ftε (t)|rpft(−t)
{|f ftε (t)| ∨ n−ζ}r+2

∣∣∣∣2 ≡ V1 + · · ·+ V7,

where V1, . . . , V7 are summations of non-central second moment terms with (p,Q) in the forms
of (p0, 1), (pk, 1), (pkpl, 1), (p0, qk(Zd)), (pk, ql(Zd)), (p0, qk(Zd)ql(Zd)), and (p0, qk(Zd)ql(Zd′))

separately for k, l = 1, . . . , κ and d, d′ = 1, . . . , D with d 6= d′.
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Since the proof is similar for V1, V2, and V3, we focus on V3, for which we have

V3 =
1

n

κ∑
k,l=1

E

∣∣∣∣ 1

2π

ˆ
eitX

f ftε (−t)|f ftε (t)|r{pkpl}ft(−t)
{|f ftε (t)| ∨ n−ζ}r+2

dt

∣∣∣∣2

=
1

4π2n

κ∑
k,l=1

E

∣∣∣∣ 1

2π

¨
eitX

f ftε (−t)|f ftε (t)|r

{|f ftε (t)| ∨ n−ζ}r+2
pftk (−t− s)pftl (s)dsdt

∣∣∣∣2

=
1

4π2n

κ∑
k,l=1

E

∣∣∣∣ 1

2π

¨
ei(u−v)X

f ftε (−u+ v)|f ftε (u− v)|r

{|f ftε (u− v)| ∨ n−ζ}r+2
pftk (−u)pftl (v)dudv

∣∣∣∣2

≤ 1

16π4n

¨ {
κ∑
k=1

∣∣∣∣〈ei(u−v)x f ftε (−u+ v)|f ftε (u− v)|r

{|f ftε (u− v)| ∨ n−ζ}r+2
, pftk (u)

〉
u

∣∣∣∣2
}
fX(x)dx

κ∑
l=1

|pftl (v)|2dv

≤ κ

4π2n

ˆ
|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt = O(κ%Vn ),

where the second step follows from Lemma 1 (3), the third step uses the change of variables
(u, v) = (t + s, s), the last step follows from Lemma 3, and the penultimate step follows from
Lemma 1 (1), the unity of {pl}κl=1, and

κ∑
k=1

∣∣∣∣〈ei(u−v)x f ftε (−u+ v)|f ftε (u− v)|r

{|f ftε (u− v)| ∨ n−ζ}r+2
, pftk (u)

〉
u

∣∣∣∣2

= 4π2
κ∑
k=1

∣∣〈h3,x(w)e−ivw, pk(w)
〉
w

∣∣2 ≤ 4π2‖h3,x(w)e−ivw‖22

≤
ˆ

|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt,

where h3,x denotes the Fourier inversion of eitx f ftε (−t)|f ftε (t)|r
{|f ftε (t)|∨n−ζ}r+2 for every x in the support of X, the

first step follows from Lemma 1 (1) and (4), the second step follows from the orthonormality of
{pk}κk=1, and the last step follows from |e−ivw| = |eitx| = 1, Lemma 1 (1) and |f ftε (−t)| = |f ftε (t)|.
Similarly, we have V1, V2 = O(%Vn ).

Since the proof is similar for other terms, we focus on V5, for which we have

V5 =
2

n

D∑
d=1

κ∑
k,l=1

E

∣∣∣∣ 1

2π

ˆ
ql(Zd)e

itX f
ft
ε (−t)|f ftε (t)|rpftk (−t)
{|f ftε (t)| ∨ n−ζ}r+2

dt

∣∣∣∣2

=
1

2π2n

D∑
d=1

κ∑
l=1

¨
|ql(zd)|2

κ∑
k=1

∣∣∣∣〈eitx f ftε (−t)|f ftε (t)|r

{|f ftε (t)| ∨ n−ζ}r+2
, pftk (t)

〉
t

∣∣∣∣2 fX,Zd(x, zd)dxdzd
≤ 1

2π2n

ˆ
|f ftε (t)|2r+2

{|f ftε (t)| ∨ n−ζ}2r+4
dt

D∑
d=1

κ∑
l=1

ˆ
|ql(zd)|2fZd(zd)dzd = O(κ%Vn ),

where the last step follows from Lemma 3, the boundedness of fZd , and the unity of {ql}κl=1.
Similarly, we have V4 = O(κ%Vn ) and V6, V7 = O(κ2%Vn ).

Combining these results, we obtain

V = O(κ2%Vn ) =

{
O(κ2n

2ζ+ ζ
β
−1

) under Assumption 3,
O(κ2n2ζ(r+2)−1) under Assumption 4.
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Under Assumption 4, κ can only diverge at a logarithmic rate so that κ(log n)
− 2α

γ converges
to zero. Therefore, for 0 < ζ < 1

2(r+2) and n large enough, we have κ2n2ζ(r+2)−1 � κ(log n)
− 2α

γ ,
and the conclusion follows. �

Lemma 5. Under Assumptions 3 and 6, there exists ψ ∈ L1(R) such that

sup
n
hβ
|K ft(s)|
|f ftε (s/h)|

≤ ψ(s),

which implies that there exists a constant c > 0 such that hβ+1
´ |Kft(th)|
|f ftε (t)| dt ≤ c.

Proof. Since lim|t|→∞ |t|β|f ftε (t)| = cε, there exists a constant cF such that |t|β|f ftε (t)| > cε/2 for
all t ≥ cF . Then for constants c1, c2 > 0 such that c1 > hβ and c2 > cFh for all n, we have

hβ
|K ft(s)|
|f ftε (s/h)|

≤ hβ
max|s|≤cF h |K

ft(s)|
min|s|≤cF |f ftε (s)|

1{|s| ≤ cFh}+
|K ft(s)||s|β

(|s|/h)β|f ftε (s/h)|
1{|s| > cFh}

≤ c1c
−1
os,0(1 + cF )β‖K ft‖∞1{|s| ≤ c2}+

2|K ft(s)||s|β

cε
≡ ψ(s), (D.8)

where integrability of ψ(s) follows by ‖K ft‖∞ <∞, the ordinary smoothness of fε, and
´
|K ft(s)||s|βds <

∞. The second statement immediately follows by the change of variables t = s/h. �

The following lemma is an extension of Fan (1991a, Lemma 2.1) to the multivariate case.

Lemma 6. Suppose Kn : Rd → C is a sequence of functions satisfying

Kn(x)→ K(x) and sup
n
|Kn(x)| ≤ K∗(x),

where K∗ satisfies
´
|K∗(x)|dx < ∞. If f is bounded and c is a continuity point of f , then for

any sequence h→ 0 as n→∞,ˆ
h−dKn(h−1(c− x))f(x)dx = f(c)

ˆ
K(x)dx+ o(1).

Proof. Note that ∣∣∣∣ˆ h−dKn(h−1(c− x))f(x)dx− f(c)

ˆ
K(x)dx

∣∣∣∣
≤

∣∣∣∣ˆ Kn(z)
[
f(c− zh)− f(c)

]
dz

∣∣∣∣+ |f(c)|
∣∣∣∣ˆ [Kn(z)−K(z)

]
dz

∣∣∣∣ ,
where the inequality follows by the change of variables z = c−x

h . The second term converges
to zero, which follows by Kn → K, supn |Kn| ≤ K∗,

´
|K∗(x)|dx < ∞, and the dominated

convergence theorem. For the first term,∣∣∣∣ˆ Kn(z){f(c− zh)− f(c)}dz
∣∣∣∣ ≤ sup

‖z‖≤δ
|f(c− z)− f(c)|

ˆ
|K∗(z)|dz + (‖f‖∞ + |f(c)|)

ˆ
‖z‖>δ/h

|K∗(z)|dz,

where δ → 0 and δ/h → ∞ as n → ∞. The first term on the right-hand side converges to zero
because f is continuous at c and

´
|K∗(x)|dx < ∞, and the second term also converges to zero

because f is bounded and
´
|K∗(x)|dx <∞. �
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Lemma 7. Suppose f is continuous at x∗, fε is ordinary smooth of order β, ‖f ft′ε ‖∞ < ∞,
|s|β
∣∣f ftε (s)

∣∣ → cε, |s|β+1
∣∣f ft′ε (s)

∣∣ → βcε, ‖K ft‖∞ < ∞, ‖K ft′‖∞ < ∞,
´
|s|β|K ft(s)|ds < ∞, and´

|s|β|K ft′(s)|ds <∞. Then

lim
n→∞

h2β+1

ˆ
x

1

4π2

∣∣∣∣ˆ
t

K ft(th)

f ftε (t)
e−it(x

∗−x)dt

∣∣∣∣2 f(x)dx =
f(x∗)

2πc2ε

ˆ
|s|2β|K ft(s)|2ds.

Proof. First, observe that

lim
n→∞

hβ

2π

ˆ
K ft(s)

f ftε (s/h)
e−isxds = lim

n→∞

1

2π

ˆ
K ft(s)|s|β

(|s|/h)βf ftε (s/h)
e−isxds

=
1

2π

ˆ {
lim
n→∞

K ft(s)|s|β

(|s|/h)βf ftε (s/h)
1{|s| > cFh}

}
e−isxds =

1

2πcε

ˆ
K ft(s)|s|βe−isxds,

where the second and last equalities follow by Lemma 5 and the dominated convergence theorem.
Then it follows

h2β

4π2

∣∣∣∣ˆ K ft(s)

f ftε (s/h)
e−isxds

∣∣∣∣2 → 1

4π2c2ε

∣∣∣∣ˆ K ft(s)|s|βe−isxds
∣∣∣∣2 . (D.9)

Moreover, using integration by parts, we have
ˆ

K ft(s)

f ftε (s/h)
e−isxds =

1

ix

ˆ
K ft′(s)

f ftε (s/h)
e−isxds+

1

ixh

ˆ
K ft(s)f ft

′
ε (s/h)

f ft
2

ε (s/h)
e−isxds. (D.10)

Since |s|β|f ftε (s)| → cε and |s|β+1|f ft′ε (s)| → βcε as s→∞, there exists a constant cF > 0 such
that |s|β|f ftε (s)| > cε/2 and |s|β+1|f ft′ε (s)| < 5βcε/4 for any s satisfying |s| > cF . Then we have∣∣∣∣∣ 1

ix

ˆ
K ft′(s)

f ftε (s/h)
e−isxds

∣∣∣∣∣ ≤ 1

|x|

ˆ
|K ft′(s)|
|f ftε (s/h)|

ds

≤ h

|x|

(
2cF max|s|≤cF h |K

ft′(s)|
min|s|≤cF |f ftε (s)|

)
+
h−β

|x|

ˆ
|s|>cF h

|K ft′(s)||s|β

(|s|/h)β|f ftε (s/h)|
ds

≤ h

|x|
2cF c

−1
os,0(1 + cF )β‖K ft′‖∞ +

h−β

|x|

(
2

cε

) ˆ
|K ft′(s)||s|βds = O(h−β|x|−1), (D.11)

and ∣∣∣∣∣ 1

ixh

ˆ
K ft(s)f ft

′
ε (s/h)

f ft
2

ε (s/h)
ds

∣∣∣∣∣ ≤ h−1

|x|

ˆ
|K ft(s)||f ft′ε (s/h)|
|f ftε (s/h)|2

ds

≤ 1

|x|

(
2cF max|s|≤cF h |K

ft(s)|max|s|≤cF |f
ft′
ε (s)|

min|s|≤cF |f ftε (s)|2

)
+
h−β

|x|

ˆ
|s|>cF h

|K ft(s)||s|β−1(|s|/h)β+1|f ft′ε (s/h)|
(|s|/h)2β|f ftε (s/h)|2

ds

≤ h

|x|
2cF c

−2
os,0(1 + cF )2β‖K ft‖∞‖f ft

′

ε ‖∞ +
h−β

|x|

(
5β

cε

) ˆ
|K ft(s)||s|β−1ds = O(h−β|x|−1). (D.12)

Thus, Lemma 5, (D.10), (D.11), and (D.12) imply there are a pair of constants c1, c2 > 0 such
that

sup
n
h2β

∣∣∣∣ˆ K ft(s)

f ftε (s/h)
e−isxds

∣∣∣∣2 ≤ min{c1, c2|x|−2}. (D.13)
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Therefore, the conclusion follows by

lim
n→∞

h2β+1

ˆ
1

4π2

∣∣∣∣∣∣
ˆ

t

K ft(th)

f ftε (t)
e−it(x

∗−x)dt

∣∣∣∣∣∣
2

f(x)dx

= lim
n→∞

ˆ
x

h2β−1

4π2

∣∣∣∣ˆ
s

K ft(s)

f ftε (s/h)
e−

is(x∗−x)
h ds

∣∣∣∣2 f(x)dx

=
f(x∗)

c2ε

ˆ
x

∣∣∣∣ 1

2π

ˆ
s
K ft(s)|s|βe−isxds

∣∣∣∣2 dx =
f(x∗)

2πc2ε

ˆ
|K ft(s)|2|s|2βds, (D.14)

where the first equality follows by the change of variables s = th, the second equality follows

by Lemma 6 with Kn(x) = h2β

4π2

∣∣∣´ Kft(s)
f ftε (s/h)

e−isxds
∣∣∣2 and K∗(x) = min{c1, c2|x|−2}, and the third

equality follows by Lemma 1 (1). �

Lemma 8. Suppose Assumptions 4 and 8 hold true. Then there exists a constant c > 0 such
that

he−µh
−γ
ˆ
|K ft(th)|
|f ftε (t)|

dt ≤ c, he−2µh
−γ
ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 dx ≤ c.
Proof. The first statement follows by
ˆ
|K ft(th)|
|f ftε (t)|

dt = h−1
ˆ
|K ft(s)|
|f ftε (s/h)|

ds ≤ c−1ss,0h
−1
ˆ
|s|≤1
|K ft(s)|eµ(|s|/h)γds = O(h−1eµh

−γ
),

where the first equality follows by the change of variables s = th, the inequality follows by the
supersmoothness of fε and the fact that K ft is supported on [−1, 1], and the last equality uses
‖K ft‖∞ <∞.

The second statement follows by
ˆ
x

∣∣∣∣ˆ
t
e−it(x

∗−x)K
ft(th)

f ftε (t)
dt

∣∣∣∣2 dx = 2π

ˆ
|K ft(th)|2

|f ftε (t)|2
dt = 2πh−1

ˆ
|K ft(s)|2

|f ftε (s/h)|2
ds

≤ 2πc−2ss,0h
−1
ˆ
|s|≤1
|K ft(s)|2e2µ(|s|/h)γds = O(h−1e2µh

−γ
),

where the first equality follows by Lemma 1 (1), the second equality follows by the change of
variables s = th, the inequality follows by the supersmoothness of fε and the fact that K ft is
supported on [−1, 1], and the last equality uses ‖K ft‖∞ <∞. �

Lemma 9. Under Assumptions 5, 6 and 10, there exist constants c2 ≥ c1 > 0 such that

c1 ≤ h2βE
∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd)
∣∣∣∣2 ≤ c2,

c1 ≤ h2βE

∣∣∣∣∣∣
ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd)
[
Y − µ−

∑
d′ 6=d

md′(Zd′)−md(zd)
]∣∣∣∣∣∣

2

≤ c2,

for all n large enough. Moreover, if supp g = I = [b1, b2] and sups
∣∣gft(− s

h) s
h2

∣∣ → 0 as n → ∞,
then

lim
n→∞

h2βE

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)g(x∗)dx∗Kh(zd − Zd)
∣∣∣∣2 = 0,
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lim
n→∞

h2βE

{ ´
x∗∈I Kh(x∗ −X)g(x∗)dx∗

´
x∗∈I Kh(x∗ −X)dx∗

×|Kh(zd − Zd)|2
[
Y − µ−

∑
d′ 6=dmd′(Zd′)−md(zd)

] } = 0.

Proof. By I = [b1, b2], decompose

h2βE

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd)
∣∣∣∣2

=
h2β

4π2

ˆ
u,v

∣∣∣∣ˆ
t
eitu

[
e−itb1 − e−itb2

it

]
K ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣2 fX,Zd(u, v)dudv ≡ J1 + J2 + J3,

where

J1 =
h2β

4π2

ˆ
u,v

∣∣∣∣∣
ˆ
|t|<M

eitu
[
e−itb1 − e−itb2

it

]
K ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣∣
2

fX,Zd(u, v)dudv,

J2 =
h2β

4π2

ˆ
u,v

∣∣∣∣∣
ˆ
|t|≥M

eitu
[
e−itb1 − e−itb2

it

]
K ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣∣
2

fX,Zd(u, v)dudv,

J3 =
h2β

2π2

ˆ
u,v
<


´
|t|<M eitu

[
e−itb1−e−itb2

it

]
Kft(th)
f ftε (t)

dt

×
´
|t|≥M eitu

[
e−itb1−e−itb2

it

]
Kft(th)
f ftε (t)

dt

 |Kh(zd − v)|2 fX,Zd(u, v)dudv,

and M is a constant such that |f ftε (t)||t|β > cε/2 and |f ft′ε (t)||t|β+1 < 5βcε/4 for any t satisfying
|t| > M . For J1, note that

|J1| ≤
h2β

4π2

(ˆ
|t|<M

∣∣∣∣e−itb1 − e−itb2it

∣∣∣∣ |K ft(th)|
|f ftε (t)|

dt

)2

E|Kh(zd − Zd)|2 = O(h2β−1),

where the second equality follows by
∣∣∣ e−itb1−e−itb2

it

∣∣∣ ≤ |b2−b1|, ‖K ft‖∞ <∞, ordinary smoothness
of fε, and hE|Kh(zd − Zd)|2 = fZd(zd)

´
K2(v)dv + o(h). Also, for J3,

|J3| ≤
h2β

π2

ˆ
|t|<M

∣∣∣∣e−itb1 − e−itb2it

∣∣∣∣ |K ft(th)|
|f ftε (t)|

dt

ˆ
|t|≥M

|K ft(th)|
|f ftε (t)||t|

dtE|Kh(zd − Zd)|2

= O

(
hβ−1

ˆ
|t|≥M

|K ft(s)||s|β−1

|f ftε (s/h)||s/h|β
ds

)
= O(hβ−1),

where the second equality follows by the choice of M and
´
|K ft(s)||s|β−1ds <∞.

So, J2 is the dominant term and can decomposed as J2 = J2,1 + J2,2 + J2,3, where

J2,1 =
h2β

4π2

ˆ
u,v

∣∣∣∣∣
ˆ
|s|≥Mh

e
is(u−b1)

h
K ft(s)

f ftε (s/h)s
dsKh(zd − v)

∣∣∣∣∣
2

fX,Zd(u, v)dudv,

J2,2 =
h2β

4π2

ˆ
u,v

∣∣∣∣∣
ˆ
|s|≥Mh

e
is(u−b2)

h
K ft(s)

f ftε (s/h)s
dsKh(zd − v)

∣∣∣∣∣
2

fX,Zd(u, v)dudv,

J2,3 =
h2β

2π2

ˆ
u,v
<


´
|s|≥Mh e

is(u−b1)
h

Kft(s)
f ftε (s/h)s

ds

×
´
|s|≥Mh e

is(u−b2)
h

Kft(s)
f ftε (s/h)s

ds

 |Kh(zd − v)|2fX,Zd(u, v)dudv.
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For J2,1 and J2,2, we show

J2,1 →
fX,Zd(b1, zd)

2πc2ε

ˆ
|K ft(s)|2|s|2β−2ds

ˆ
K2(v)dv,

J2,2 →
fX,Zd(b2, zd)

2πc2ε

ˆ
|K ft(s)|2|s|2β−2ds

ˆ
K2(v)dv. (D.15)

In particular, letting Kn(u, v) = h2β

4π2

∣∣∣´|s|≥Mh e
−isu Kft(s)

f ftε (s/h)s
dsK(v)

∣∣∣2, we have

J2,1 =

ˆ
h−2Kn

(
b1 − u
h

,
zd − v
h

)
fX,Zd(u, v)dudv,

J2,2 =

ˆ
h−2Kn

(
b2 − u
h

,
zd − v
h

)
fX,Zd(u, v)dudv.

Note Kn(u, v)→ K(u, v) = 1
4π2c2ε

∣∣e−isuK ft(s)sβ−1dsK(v)
∣∣2 and´

K(u, v)dudv = 1
2πc2ε

´
|K ft(s)|2|s|2β−2ds

´
K2(v)dv by Plancherel’s isometry. Then by Lemma

6, if there exists K∗ such that supn |Kn| ≤ |K∗| and
´
K∗(u, v)dudv <∞, (D.15) would follow.

To see this, using integration by parts, we have

hβ
ˆ
|s|≥Mh

e−isu
K ft(s)

f ftε (s/h)s
ds =

hβe−isuK ft(s)

iuf ftε (s/h)s

∣∣∣∣Mh

−Mh

+
hβ

iu

ˆ
|s|≥Mh

e−isu
(

K ft(s)

f ftε (s/h)s

)′
ds,

where
∣∣∣hβe−iMhuKft(Mh)

iuf ftε (M)Mh

∣∣∣→ 0 and
∣∣∣hβeiMhuKft(−Mh)

iuf ftε (−M)Mh

∣∣∣→ 0 if β > 1, and

hβ
ˆ
|s|≥Mh

e−isu
(

K ft(s)

f ftε (s/h)s

)′
ds =

ˆ
|s|≥Mh

e−isu
K ft′(s)sβ−1

f ftε (s/h)(s/h)β
ds+

ˆ
|s|≥Mh

e−isu
K ft(s)sβ−2

f ftε (s/h)(s/h)β
ds

+

ˆ
|s|≥Mh

e−isu
K ft(s)sβ−1f ft

′
ε (s/h)(s/h)β+1[

f ftε (s/h)(s/h)β
]2 ds,

with∣∣∣∣∣
ˆ
|s|≥Mh

e−isu
K ft′(s)sβ−1

f ftε (s/h)(s/h)β
ds

∣∣∣∣∣ ≤
ˆ
|s|≥Mh

|K ft′(s)||s|β−1

|f ftε (s/h)||s/h|β
ds ≤ 2

cε

ˆ
|K ft′(s)||s|β−1ds,∣∣∣∣∣

ˆ
|s|≥Mh

e−isu
K ft(s)sβ−2

f ftε (s/h)(s/h)β
ds

∣∣∣∣∣ ≤
ˆ
|s|≥Mh

|K ft(s)||s|β−2

|f ftε (s/h)||s/h|β
ds ≤ 2

cε

ˆ
|K ft(s)||s|β−2ds,

and∣∣∣∣∣
ˆ
|s|≥Mh

e−isu
K ft(s)sβ−1f ft

′
ε (s/h)(s/h)β+1[

f ftε (s/h)(s/h)β
]2 ds,

∣∣∣∣∣ ≤
ˆ
|s|≥Mh

|K ft(s)||s|β−1|f ft′ε (s/h)||s/h|β+1[
|f ftε (s/h)||s/h|β

]2 ds

≤ 5β

cε

ˆ
|K ft′(s)||s|β−1ds.

By
´
|K ft′(s)||s|β−1ds <∞ and

´
|K ft(s)||s|β−2ds <∞, there exists a constant c2 > 0 such that

supn |Kn(u, v)| < c2|K(v)|2
u2

. Also, we note

hβ

∣∣∣∣∣
ˆ
|s|≥Mh

e−isu
K ft(s)

f ftε (s/h)s
ds

∣∣∣∣∣ ≤
ˆ
|s|≥Mh

|K ft(s)||s|β−1

|f ftε (s/h)||s/h|β
ds ≤ 2

cε

ˆ
|K ft(s)||s|β−1ds <∞.
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Then we can choose K∗(u, v) = min
(
c1|K(v)|2, c2|K(v)|2

u2

)
, and it is easy to verify that K∗

satisfies the required conditions and (D.15) is obtained.
For the cross-product term J2,3, by the Cauchy-Schwarz inequality, we have

|J2,3| ≤ 2
√
J2,1J2,2 →

√
fX,Zd(b1, zd)fX,Zd(b2, zd)

πc2ε

ˆ
|K ft(s)|2|s|2β−2ds

ˆ
K2(v)dv.

Thus, by J2,1 + J2,2 − |J2,3| ≤ J2 ≤ J2,1 + J2,2 + |J2,3|, if {fX,Zd(b1, zd) + fX,Zd(b2, zd)} >
2
√
fX,Zd(b1, zd)fX,Zd(b2, zd), there exist constants c2 ≥ c1 > 0 such that c1 ≤ J2 ≤ c2 as n→∞,

and the first statement follows by J1 = o(1) and J3 = o(1).
By replacing fX,Zd with E[|g(X∗) + md(Zd) + U −md(zd)|2|X,Zd]fX,Zd , a similar argument

yields the second statement.
The proofs of the next two statements are similar, so we focus on the third statement. If

supp g = [b1, b2], we have

h2βE

∣∣∣∣ˆ Kh(x∗ −X)g(x∗)dx∗Kh(zd − Zd)
∣∣∣∣2

=
h2β

4π2

ˆ
u,v

∣∣∣∣ˆ
t
eitugft(−t)K

ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣2 fX,Zd(u, v)dudv

=
h2β

4π2

ˆ
u,v

∣∣∣∣∣
ˆ
|t|≥M

eitugft(−t)K
ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣∣
2

fX,Zd(u, v)dudv + o(1),

where the last equality follows by a similar argument as in the proof of the first statement. Also,

hβ

∣∣∣∣∣
ˆ
|t|≥M

eitugft(−t)K
ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣∣
≤
ˆ
|s|≥Mh

∣∣gft(−s/h)(s/h2)
∣∣ |K ft(s)||s|β−1

|f ftε (s/h)||s/h|β
dtK

(
zd − v
h

)
≤

2 sup|s|≥Mh |gft(−s/h)s/h2| ‖K‖∞
cε

ˆ
|K ft(s)||s|β−1ds,

and the conclusion follows because sups |gft(−s/h)s/h2| can be arbitrarily small for all n large
enough. The last statement can be shown in the same manner. �

Lemma 10. Under Assumptions 4, 5, 8 and 11, there exist constants c, c′ > 0 such that

h3e−2µh
−γ
E

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd)
∣∣∣∣2 ≤ c,

h3e−2µh
−γ
E

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)g(x∗)dx∗Kh(zd − Zd)
∣∣∣∣2 ≤ c′,

for all n large enough.
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Proof. Let I = [b1, b2]. For the first statement, we have

h3e−2µh
−γ
E

∣∣∣∣ˆ
x∗∈I

Kh(x∗ −X)dx∗Kh(zd − Zd)
∣∣∣∣2

=
h3e−2µh

−γ

4π2

ˆ
u,v

∣∣∣∣ˆ eitu
[
e−itb1 − e−itb2

it

]
K ft(th)

f ftε (t)
dtKh(zd − v)

∣∣∣∣2 fX,Zd(u, v)dudv

≤ (b2 − b1)2

4π2

(
he−µh

−γ
ˆ
|K ft(th)|
|f ftε (t)|

dt

)2

hE|Kh(zd − Zd)|2,

where the inequality follows by Lemma 8. The conclusion follows by Lemma 8 and hE|Kh(zd −
Zd)|2 = fZd(zd)

´
K2(v)dv + o(h). The second statement is shown in the same manner by using

‖gft‖∞ <∞. �

Lemma 11. Under Assumptions 12 and 13 (1), for any τn →∞, we have

sup
|t|≤τn

|{f̌ ftε (t)}2 − {f ftε (t)}2| = Op(n
−1/2 log(τn)).

Proof. Since |{f̌ ftε (t)}2 − {f ftε (t)}2| ≤ | 1n
∑n

j=1 e
it(εj−εrj ) − {f ftε (t)}2|, the conclusion follows from

Assumption 13 (1) and Kurisu and Otsu (2020, Lemma 1). �

Lemma 12. Suppose Assumptions 12 and 13 hold true. Under Assumption 3 or 4, we have

|Ě[PκP
′
κ]− Ê[PκP

′
κ]|2 = Op

(
κ2n−1/2+3ζ log(ρε,n,ζ,1) + κ2n3ζ max

1≤k≤κ

ˆ
Gε,n,ζ,0

|pftk (t)|dt

)
,

|Ě[PκY ]− Ê[PκY ]|2 = Op

(
κn−1/2+3ζ log(ρε,n,ζ,1) + κn3ζ max

1≤k≤κ

ˆ
Gε,n,ζ,0

|pftk (t)|dt

)
,

where ρε,n,ζ,ι denotes c
1/β
os,ιnζ/β − 1 under Assumption 3 and µ−1/γ log(css,ιn

ζ)1/γ under Assump-
tion 4, and Gε,n,ζ,ι = {t ∈ R : |t| > ρε,n,ζ,ι} for ι = 0, 1.

Proof. Since the proof is similar, we focus on |Ě[PκP
′
κ] − Ê[PκP

′
κ]|2. Elements of Ě[PκP

′
κ] −

Ê[PκP
′
κ] are in the form of Ě[p(X∗)Q]− Ê[p(X∗)Q], which for r = 0 can be expressed as

Ě[p(X∗)Q]− Ê[p(X∗)Q] = R1,p,Q +R2,p,Q,

where

R1,p,Q =

ˆ
Ξp,Q(t)

f̌ ftε (t)− f ftε (t)

{f̌ ftε (t) ∨ n−ζ}2
dt, Ξp,Q(t) =

pft(−t)
2πn

n∑
j=1

Qje
itXj ,

R2,p,Q =

ˆ
Ξp,Q(t)f ftε (t)

{
1

{f̌ ftε (t) ∨ n−ζ}2
− 1

{f ftε (t) ∨ n−ζ}2

}
dt.

Here, we use the fact that f ftε (−t) = f ftε (t) and f ftε (t) > 0 for all t ∈ R under Assumption 12.
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First, decompose R1,p,Q = R11,p,Q+R12,p,Q, where R11,p,Q and R12,p,Q are the integration over
Gcε,n,ζ and Gε,n,ζ , respectively. For R11,p,Q, we have

|R11,p,Q| ≤
∑n

j=1 |Qj |
2πn

ˆ
Gcε,n,ζ

|pft(−t)|
{

|{f̌ ftε (t)}2 − {f ftε (t)}2|
{f̌ ftε (t) + f ftε (t)}{f̌ ftε (t) ∨ n−ζ}2

}
dt

≤
∑n

j=1 |Qj |
2πn1−3ζ

ˆ
|pft(t)|dt sup

t∈Gcε,n,ζ,1
|{f̌ ftε (t)}2 − {f ftε (t)}2|

= Op(n
−1/2+3ζ log(ρε,n,ζ,1)), (D.16)

where the second step follows from the fact that f ftε (t) > n−ζ for t ∈ Gcε,n,ζ , f̌ ftε (t) ≥ 0, f̌ ftε (t) ∨
n−ζ ≥ n−ζ , and Gcε,n,ζ j Gcε,n,ζ,1, and the last step follows from 1

n

∑n
j=1 |Qj | = Op(1) and´

|pft(t)|dt <∞ (Assumption 13 (2)), and Lemma 11. For R12,p,Q, we have

|R12,p,Q| ≤
∑n

j=1 |Qj |
2πn

ˆ
Gε,n,ζ

|pft(−t)|
{
|f̌ ftε (t)− f ftε (t)|
{f̌ ftε (t) ∨ n−ζ}2

}
dt

≤
∑n

j=1 |Qj |
πn1−2ζ

ˆ
Gε,n,ζ,0

|pft(t)|dt = Op

(
n2ζ
ˆ
Gε,n,ζ,0

|pft(t)|dt

)
, (D.17)

where the second step follows from the fact that f̌ ftε (t) ∨ n−ζ ≥ n−ζ , |f̌ ftε (t) − f ftε (t)| ≤ 2, and
Gε,n,ζ j Gε,n,ζ,0, and the last step follows from 1

n

∑n
j=1 |Qj | = Op(1) (Assumption 13 (2)).

Similarly, decompose R2,p,Q = R21,p,Q +R22,p,Q, where R21,p,Q and R22,p,Q are the integration
over Gcε,n,ζ and Gε,n,ζ , respectively. For R21,p,Q, we have

|R21,p,Q| ≤
∑n

j=1 |Qj |
2πn

ˆ
Gcε,n,ζ

|pft(−t)|
{
|{f̌ ftε (t)}2 − {f ftε (t)}2|
f ftε (t){f̌ ftε (t) ∨ n−ζ}2

}
dt

≤
∑n

j=1 |Qj |
2πn1−3ζ

ˆ
|pft(t)|dt sup

t∈Gcε,n,ζ,1
|{f̌ ftε (t)}2 − {f ftε (t)}2|

= Op(n
−1/2+3ζ log(ρε,n,ζ,1)), (D.18)

where the first step follows from the fact that f̌ ftε (t) ∨ n−ζ ≥ f̌ ftε (t), the second step follows
from f ftε (t) > n−ζ , f̌ ftε (t) ∨ n−ζ ≥ n−ζ , and Gε,n,ζ,1 ⊆ Gε,n,ζ , and the last step follows from
1
n

∑n
j=1 |Qj | = Op(1) and

´
|pft(t)|dt <∞ (Assumption 13 (2)), and Lemma 11. For R22,p,Q, we

have

|R22,p,Q| ≤
∑n

j=1 |Qj |
2πn1−ζ

ˆ
Gε,n,ζ

|pft(−t)|
{
|n−2ζ − {f̌ ftε (t) ∨ n−ζ}2|
{f̌ ftε (t) ∨ n−ζ}2

}
dt

≤
∑n

j=1 |Qj |
2πn1−3ζ

ˆ
Gε,n,ζ

|pft(−t)||{f̌ ftε (t)}2 − n−2ζ |dt

≤
∑n

j=1 |Qj |
πn1−3ζ

ˆ
Gε,n,ζ,0

|pft(t)|dt = Op

(
n3ζ
ˆ
Gε,n,ζ,0

|pft(t)|dt

)
, (D.19)

where the second step follows from n−2ζ − {f̌ ftε (t) ∨ n−ζ}2 = 0 if f̌ ftε (t) ≤ n−ζ , the third step
follows from |{f̌ ftε (t)}2 − n−2ζ | ≤ |{f̌ ftε (t)}2 − {f ftε (t)}2| ≤ 2 for t ∈ Gε,n,ζ and Gε,n,ζ j Gε,n,ζ,0,
and the last step follows from 1

n

∑n
j=1 |Qj | = Op(1) (Assumption 13 (2)). The conclusion then

follows by combining (D.16), (D.17), (D.18), and (D.19). �
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