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Disruptive innovation and spatial inequality
Tom Kemenya , Sergio Petraliab and Michael Storperc,d

ABSTRACT
Although technological change is widely credited as driving the last 200 years of economic growth, its role in shaping
patterns of inequality remains under-explored. Drawing parallels across two industrial revolutions in the United States,
this paper provides new evidence of a relationship between highly disruptive forms of innovation and spatial
inequality. Using the universe of patents granted between 1920 and 2010 by the US Patent and Trademark Office
(USPTO), we identify disruptive innovations through their rapid growth, complementarity with other innovations and
widespread use. We then assign more and less disruptive innovations to subnational regions in the geography of the
United States. We document three findings that are new to the literature. First, disruptive innovations exhibit
distinctive spatial clustering in phases understood to be those in which industrial revolutions reshape the economy;
they are increasingly dispersed in other periods. Second, we discover that the ranks of locations that capture the most
disruptive innovation are relatively unstable across industrial revolutions. Third, regression estimates suggest a role for
disruptive innovation in regulating overall patterns of spatial output and income inequality.
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1. INTRODUCTION

Technological change has played a central role in two cen-
turies of unprecedented growth in productivity, incomes
and world population (Maddison, 2007). The most
important new technologies have not, however, trickled
out at a constant pace. At certain moments, they have gen-
erated major waves of new outputs, industries, firms and
types of work that together profoundly reshaped the econ-
omy (Bresnahan & Trajtenberg, 1995; Helpman, 1998).
These periods of intense change are commonly described
as industrial revolutions. The emergence of major technol-
ogies is also distinctively spatially unequal, both between
and within countries (Mokyr, 2010). For example, the
Second Industrial Revolution unfolded in chiefly in Wes-
tern Europe and North America during the second half of
the 19th and early 20th centuries. Within leading econ-
omies, some subnational regions grew large and prosper-
ous as they became centres of electrical and mechanical
technologies (e.g., Lamoreaux et al., 2004). Technological
leadership in these periods is also associated with a

growing divergence between the incomes in emergent
‘cores’ and the rest of the world (Pomeranz, 2001). Gradu-
ally, major technologies of the Second Industrial Revolu-
tion have spread out globally, if unevenly; with this
diffusion has come a degree of catch-up in development
(Comin & Hobijn, 2010; Kemeny, 2011).

Even as they now undergo worldwide diffusion, the
key, disruptive technologies of the Third Industrial
Revolution – such as semiconductors, computers and
related software – also originated from a relatively
small set of locations in the 1970s, with a few American
regions leading the way. Therefore, it may be no coinci-
dence that, around the same time, after a long period of
interregional wage compression, spatial income inequal-
ity started rising in the United States (Gaubert et al.,
2021; Kemeny & Storper, 2020a; Manduca, 2019; Mor-
etti, 2012). While accounts of the original causal deter-
minants of this divergence vary, it is widely agreed that a
proximate cause is the rising spatial concentration of col-
lege-educated workers (Card et al., 2021; Diamond,
2016; Giannone, 2017) – those same workers whose
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productivity the new technologies are said to augment
(Autor et al., 2008).

Nonetheless, the connections between geographical
dimensions of technological change and the spatial organ-
ization of work and its rewards remain insufficiently well
understood. In labour economists’ work on skill-biased
technological change, the focus has been squarely on
changes in the labour market. In this work, technologies
are said to increase wage inequality, but their effects are
mostly inferred rather than directly observed (i.e., Autor
et al., 2003; Berger & Frey, 2016). Separately, innovation
scholars and historians have sought to identify key disrup-
tive technologies (i.e., Feldman & Yoon, 2012; Moser &
Nicholas, 2004). But that work leaves the links between
these technologies and the distribution of economic out-
comes over time and space largely unexplored. These
hitherto distinct bodies of scholarship could benefit from
more interaction.

This paper fosters such interaction by directly linking
patterns of spatial inequality in income and output to the
geography of disruptive innovation in the United States.
Building on an approach developed by Petralia (2020b),
we draw on detailed data from the US Patent and Trade-
mark Office (USPTO) to distinguish more from less econ-
omically disruptive innovations over the long period from
1920 to 2010. Inventor and assignee addresses on granted
patents are used to locate these innovations geographically
in counties and commuting zones. Crucially, unlike most
work on subnational spatial inequality, our approach
enables description of two key waves of disruption: the
1920s, in which key electrical technologies of the Second
Industrial Revolution began to profoundly reshape the
US economy (David, 1990; Field, 2003); as well as the
post-1970 rise of the Third Industrial Revolution.

The United States is a particularly good case for analys-
ing the relationships between technology and spatial econ-
omic inequality. It has been a dynamic innovation economy
since at least the mid-19th century, at the forefront of both
the Second and Third Industrial Revolutions (Soskice,
2020). Through its frontier development and extension of
infrastructure, it experienced vigorous integration of its
internal markets, signalled by high rates of internal
migration from 1880 to 1980, along with significant capital
mobility and rapid and low-cost technology diffusion
(Ganong & Shoag, 2017; Molloy et al., 2011). This inte-
gration should generate strong forces pushing for interre-
gional convergence in productivity and wages. Hence, in
seeking to better understand the role of new, key technol-
ogies in shaping spatial economic inequality, our approach
offers key advantages: it affords opportunities for drawing
parallels and contrasts between the current and prior revo-
lutions, as well as a less disruptive period in between; it per-
mits comparison between the time- and space-paths of
most and least disruptive innovations; and it does so against
a backdrop of a highly innovative and increasingly spatially
integrated national economy.

Several of our findings are new to the literature. At
moments of rising spatial income inequality, the most disrup-
tive innovations – unlike the least disruptive innovations –

concentrate in space; conversely, when interregional econ-
omic inequality is in decline, disruptive innovations are
spreading out. We identify two historical episodes in which
disruptive innovations undergo marked concentration in
space: one between 1920 and 1930, and the other between
1980 and 2010. Between these periods – at the time of the
Great Levelling, when spatial economic and interpersonal
income inequality underwent major declines – disruptive
innovations spread out across the regions of the United
States. Moreover, multivariate results are consistent with
the idea that the spatial behaviour of disruptive innovation
plays an important role in shaping spatial inequality.

2. DISRUPTIVE INNOVATION AND
ECONOMIC INEQUALITIES: THE
LITERATURE

The present study builds on a large and varied literature
that explores the links between technological change, the
labour market and economic development. A first strand
of research examines the process of technological change
over the long run, starting with the European Industrial
Revolution as a key turning point in modern economic
history. Between c.1750 and 1820, a complex set of tech-
nological and organizational innovations enabled human-
ity to escape persistent cycles ofMalthusian boom and bust
with unprecedented and sustained growth in productivity,
incomes and population, which have now lasted more than
two centuries (Freeman & Soete, 1997; Landes, 2003;
Maddison, 2007; Mokyr, 2010).1

Within this two-century period, however, there has
not been a continuous flow of equally significant inno-
vations. Specific major new technologies emerge period-
ically, and they set off chain reactions of spreading uses
and additional innovations, as well as gradual spatial diffu-
sion. These changes sweep across the economy and
reshape employment, wages, skill requirements and ways
of life (Rosenberg & Nathan, 1982). Adopting biological
metaphors, Mokyr (1990) distinguishes between two
broad types of technological change: one marked by the
gradual accretion of new ideas; and another emanating
from comparatively rare, discontinuous mutations.

Attempts to capture empirically the distinction
between major and less important innovations have
opened a Pandora’s box of competing terminology and
shifting emphases. Within this broad semantic field, our
preferred term is ‘disruptive’ innovation, signalling tech-
nologies that generate major discontinuities in terms of
the locations that produce them, and the skills and tasks
for which they complement and substitute.2 In the spirit
of Mokyr’s distinction described above, disruptive inno-
vations punctuate equilibria, and set the economy on a
new path. Historians sometimes label such technologies
as ‘general purpose’, signalling their ability to spur a
wide range of new uses, while also inspiring a chain of
many further innovations (Bresnahan & Trajtenberg,
1995). Meanwhile, other strands of research favour differ-
ent terms, such as ‘radical’ (Perez, 2010; Schumpeter,
1943), ‘sleeping beauties’ (Teixeira et al., 2017),
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‘unconventional’ (Berkes & Gaetani, 2021), ‘atypical’
(Mewes, 2019), ‘complex’ (Balland & Rigby, 2017),
‘breakthrough’ (Esposito, 2021; Phene et al., 2006) and
‘promiscuous’ (Foster & Evans, 2019).

Semantics aside, there have been multiple technologi-
cal–industrial revolutions since the 18th century, each cor-
responding to a wave of new, disruptive technologies.
Thus, water power and textiles are linked to the First
Industrial Revolution; steam power and railroads to the
Second Revolution (though for some this was a continu-
ation of the First Revolution); fossil fuels, electricity and
mechanization are widely considered the heart of the
Second Industrial Revolution; and of course semiconduc-
tors, computers and related digital technologies are the
enabling technologies of the Third Industrial Revolution.
Revolutions do not happen in an instant, of course. This
means there can be considerable differences in how differ-
ent scholars date the beginning and end of these waves.3

Within each wave, a major new technology initially has
a fallow period of slow productivity growth, later followed
by a period of ‘reaping’, as the disruptive innovation begins
to intensively reshape economic activity (David, 1990;
Helpman & Trajtenberg, 1998b; Lipsey et al., 2005). In
the case of the Second Industrial Revolution, David and
Wright (2005) and Petralia (2020a) find that the 1920s
was the major reaping period for the electricity and related
technologies that were initially invented between 1880 and
1910.4 Similarly, researchers were at first perplexed by the
‘missing’ productivity effects of the major innovations of
the 1970s and 1980s, but they subsequently started finding
them from the 1990s onward (Bresnahan et al., 2002).
Historians agree that although the electrical dynamo was
invented during the 1860s, and the 1880s witnessed the
emergence of the first electrical power stations, it was
not until the 1910s and 1920s that the effects of these
innovations began to powerfully reshape the economy of
the United States (David, 1990; Field, 2003; Freeman &
Louçã, 2001). Similarly, though silicon semiconductors
were conceptualized in the early 20th century, and key
working transistors came out of Nobel Prize-winning
work at Bell Labs in the 1940s and 1950s, it was not
until the late 1970s and 1980s that computers, and sub-
sequently the internet, begin to transform the organiz-
ational patterns of economic activity in the United States.5

Just as these key technologies emerge unevenly in time,
they also arise in specific national and subnational
locations. The First Industrial Revolution began with a
major pulse of innovation – the factory system – in Europe
during the 18th and early 19th centuries, and earliest in the
English Midlands. World manufacturing then concen-
trated in Britain, and subsequently developed in a broad
central arc of the European continent, as well as in the
Northeastern United States. Though there exist different
views on why the First Industrial Revolution happened
where it did (cf. Allen, 2009; Mokyr, 2010), the conse-
quences of the geographical concentration of industrial
activity are clear: incomes in the industrialized West shar-
ply diverged from the rest of the world (Pomeranz, 2001).
Related work documents the subsequent diffusion of these

and other key innovations, and their growth-enhancing
effects (Comin & Hobijn, 2010; Keller, 2004; Kerr,
2008), noting that absorption, and thus catch-up, is con-
ditional upon institutional and other features of lagging
economies (Abramovitz, 1986; Kemeny, 2010).

While this first strand of work has largely focused on
national economies, a second is explicitly concerned with
subnational regional variation in the production and
absorption of innovations. Much of this work has a shorter
time frame, tracing the geography of the current revolution
since the 1970s, within which it is clear that core technol-
ogies have emerged with a strongly spatially concentrated
form (Crescenzi et al., 2020; Duranton & Puga, 2004;
Saxenian, 1996; Storper, 1997). The important new tech-
nologies of the current period have emerged alongside
major changes in the interregional sorting of labour and
capital (i.e., Berger & Frey, 2016; Boschma & Van der
Knaap, 1999; Rosenberg & Trajtenberg, 2004; Storper
et al., 2015; Storper & Walker, 1989). Recent contri-
butions along these themes have documented how new
occupations and innovations that are disruptive and
more complex have emerged in a highly geographically
concentrated manner, in locations marked by larger popu-
lations and dense hubs of educated workers (Balland et al.,
2020; Bloom et al., 2021; Lin, 2011).

Although key innovations and the jobs linked to them
may initially exhibit strong spatial concentration, Vernon’s
(1966) intuition that they may eventually disperse, driven
by processes of maturation and standardization, is also
supported by considerable research. Norton and Rees
(1979) adapt the product-cycle framework, for example,
to explain the mid-20th-century rise of the Sunbelt and
decline of former Second Industrial Revolution hubs in
the Midwest and Northeast. Bloom et al. (2021) observe
that as work activities linked to disruptive innovations
spreads out over subnational space, they also become pro-
gressively deskilled. Meanwhile, Griliches (1957), Pred
(1975), Phene et al. (2006) and Feldman et al. (2015)
trace the spread of knowledge and certain key technologies
in subnational space. One implication of this work is that
technologies that are standardizing and spreading out will
continue to yield new adaptive innovations. But these
innovations and their geography are likely to be different
from those that are most disruptive.

A third major strand of relevant work, operating at a
more microeconomic level, is concerned with the links
between technological change and wage formation.
Such studies, emerging chiefly from labour economics,
start from a framework in which income or wage inequal-
ity is shaped by the introduction of new technologies.
New technologies complement workers performing
specific tasks or holding particular skills, while they act
as a substitute for the jobs of others (Acemoglu &
Restrepo, 2021; Autor et al., 2003; Bresnahan et al.,
2002; Gordon, 2017). Changes in labour demand are in
a race against the creation of the supply of workers with
suitable skills, with levels of inequality hanging in the bal-
ance (Goldin & Katz, 2009). More macro-approaches
look for other factors that can influence the overall
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income distribution, such as policy shifts, wars, inter-
national trade, urbanization, interregional integration
and the size of the financial sector (Lindert & William-
son, 2016). But these are debates about emphasis; there
are basically no accounts in which technological change
does not play a major role in shaping the income distri-
bution through its influence on wages, as well as through
other mechanisms such as returns to capital and changes
in the distribution of capital ownership associated with
new technologies (Acemoglu, 2002; Aghion et al.,
2019; Aghion & Howitt, 2000; Bresnahan & Trajten-
berg, 1995; Galor, 2011; Helpman, 2009; Storper et al.,
2015; Wright, 1990). This body of theory and empirical
work has added enormously to our understanding of
inequality. And yet, in that part of it exploring skill-
biased technological change, technologies are not
observed directly, hence their links to wage formation
remain oblique. Instead, their effects are said to be
observed through the trace elements of educational
attainment, occupational definitions, and task compo-
sition of work.

A fourth and final strand of relevant work is addressed
specifically to the post-1980 rise in spatial income inequal-
ity in the United States (Drennan et al., 1996; Ganong &
Shoag, 2017; Gaubert et al., 2021; Kemeny & Storper,
2012; Manduca, 2019; Moretti, 2012). One view postu-
lates that spatial inequality is largely due to barriers to
worker mobility, on the basis that frictionless mobility
will generate a tendency towards inter-place equalization
of real incomes. In some current versions of that perspec-
tive, limits on housing supply are the primary drivers
(Ganong & Shoag, 2017; Gyourko et al., 2013). In this
line of work, little attention is paid to changes in the spatial
structure of labour demand (Glaeser & Gottlieb, 2006;
Partridge, 2010; Roback, 1982). A contrasting argument
is that recent spatial inequality is indeed strongly shaped
by the geography of labour demand (Autor, 2019; Dia-
mond, 2016; Galbraith & Hale, 2014). Connecting some
of the strands reviewed thus far, this latter account can be
considered as a spatialization of arguments around skill-
biased technological change, in which the new technol-
ogies of the Third Industrial Revolution spawned indus-
tries that are highly spatially concentrated, employing
workers that enjoy task and education premiums, with
the overall result being rising spatial inequality (Berger &
Frey, 2016; Giannone, 2017; Kemeny & Storper, 2020b).
However, in empirical work on these themes, actual tech-
nologies remain under-explored. Moreover, almost all the
work remains narrowly focused on the recent period of
divergence, leaving open how technology or other factors
may have reduced inequality during the Great Levelling
from 1940 to 1980, when regions of the United States
were instead in a long period of income convergence.

This review motivates the priority tasks in the present
research: identifying particular kinds of innovation that are
likely to be economically disruptive; placing such technol-
ogies in space and time; and tracing directly the relation-
ship between the geographies of regional economic
performance and disruptive innovations.

3. DATA AND METHODS

3.1. Identifying disruptive innovations
We identify three features that distinguish more from less
disruptive innovations, drawing on the extensive historical
literature on general-purpose technologies (i.e., Aghion &
Howitt, 2000; Bresnahan & Trajtenberg, 1995; David &
Wright, 2003; Feldman & Yoon, 2012; Hall & Trajten-
berg, 2006; Helpman & Trajtenberg, 1998b, 1998a; Lip-
sey et al., 2005; Moser & Nicholas, 2004; Rosenberg &
Trajtenberg, 2010).

. Growth: Disruptive technologies have a particularly
wide scope for improvement and elaboration, expressed
as an intensive process through which technologies are
further developed and perfected. Consider, for instance,
Jack Kilby’s invention in 1958 of the first microchip
while at Texas Instruments. The vast potential for
improvement of this technology is evidenced by the
enormous quantity of subsequent refinements – from
Robert Noyce’s more practical silicon version invented
a year later to contemporary neural network-based
chips. The effects of these improvements can be seen
in dramatic increases in processing power that have
enabled the modern information economy.

. Innovation complementarity: When disruptive tech-
nologies are introduced, they introduce a wide array
of possibilities to complement with existing technol-
ogies. In a sequence of problem-solving, they enable
many technologies that are new to the world. Returning
again to Kilby’s integrated circuit, this technology
opened up possibilities to innovate in products and ser-
vices that did not exist before, particularly around the
creation of portable computing machines.

. Use complementarity: Disruptive technologies are also
characterized by their widespread use throughout the
economy, in products and processes. Electric power, for
example, became widely used in an enormous range of
products and processes: household appliances, transpor-
tation services, chemical reactions and information trans-
mission. After its introduction, it gradually became a
central input in nearly all manufacturing processes.

3.1.1. Operationalization
In order to identify disruptive technologies and their geogra-
phy, we use historical patenting information provided by the
USPTO, which makes available the patent document for
each patent it has granted since 1920.6 We make use of sev-
eral features of patent documents. First, we use the class
structure built into the patent system in which each patent
is assigned to at least one technology class.7 There are cur-
rently more than 400 different technological classes in use
in the US Patent Classification, and whenever a new class
is created, or an existing one redefined, all available patents
are reclassified to maintain temporal consistency. Patent
examiners are responsible for assigning each patent to at
least one technology class, according to type of invention to
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which it claims rights. All patent classifications in each patent
document are used, counting equally each appearance of a
technological class.8 In addition, wemake use of the aggrega-
tion of classes into six broad economically relevant categories:
Chemical; Computers & Communications (C&C); Drugs
& Medical (D&M); Electrical & Electronic (E&E); Mech-
anical; and Others.9 We also leverage the information con-
tained within each document’s detailed description.

In each year, we identify a set of the most disruptive
technologies, defined as patent classes in the USPTO ter-
minology, based on class averages of growth, use comple-
mentarity and innovation complementarity. Following
Petralia (2020b), we operationalize these characteristics
as follows:

. Growth: To capture a technology’s scope for improve-
ment and elaboration, we measure growth rates over
time of its patent class. This adapts an approach
found in work by Hall and Trajtenberg (2006) who
consider the growth of a specific subset of classes, and
Moser and Nicholas (2004) who measure growth at
the more aggregate category scale. Growth rates for
patent class c will be calculated as :

Pc = Pc,t − Pc,t−5

Pc,t−5
− 1,

where P represents the number of patents in a given
year t.

. Innovation complementarity: We count the average
number of patent classes with which each technology
co-occurs in patent claims, ignoring co-occurrences
within the same aggregate category (Chemicals, Mech-
anical, etc). Since patent claims identify the set of ‘new
to the world’ innovations in patent documents, technol-
ogies that co-occur with a wide and diverse set of claims
within patent documents outside their category are con-
sidered to enable a wider range of innovation than
classes with fewer co-occurrences.

. Use complementarity: We exploit the high-dimen-
sional information contained in patent descriptions in
order to identify the uses of different technologies.
For intuition, consider the case of technologies X and
Y. While X and Y may not co-occur frequently with
each other as described in the previous point, the
detailed description of patents in technology X may
nonetheless refer to core methods, concepts or notions
of technology Y. In this case we would consider X to be
a ‘user’ of Y. In this example, technology Y is not used
by X to create something new to the world (they do not
co-occur in patent claims); however, some of the core
methods, concepts or notions of technology Y enable
technology X. We operationalize this intuition by
developing a set of technology-specific keywords,
using a data-driven algorithm that identifies keywords
(bi-grams) that distinctively represent specific classes
of patents. Then, we trace these technology-specific
keywords within the detailed texts of individual patents
in other technologies. Technology X is defined as a user

of Y if it has a sufficient number of patents mentioning
at Y keywords. To arrive at a measure of the use com-
plementarity of Y, we then count all the technologies
(classes) that are users of Y.10

Each of these three characteristics is a necessary but insuf-
ficient indicator of a technology’s disruptiveness. For
instance, a mature technology might be pervasive and thus
have high levels of use complementarity, while having
exhausted its capacity for growth and innovation. Similarly,
a technology that grows quickly but has little scope for com-
plementarity will not produce economy-wide disruptive
effects. We therefore consider as disruptive only those tech-
nologies that rank above average in all three criteria. Note
that patent classes contain substantial heterogeneity – not
all within can be expected to be equally disruptive. Technol-
ogies least likely to be disruptive will be found in those classes
that score below average in all three characteristics. This
leaves a third, more indeterminate, middle category of inno-
vations that may be above average in certain features and
below average in others. In the empirical work that follows,
we mainly draw on the contrast between the two categories
at the extremes – the most and least disruptive.

The result is a classification that identifies disruptive
innovations relative to other innovations that have
emerged at the same time. Our approach allows cross-sec-
tional comparisons with other technologies, but it does not
track changes over time in the overall quantity of disrup-
tiveness present in the economy. Hence, with this measure
we cannot directly validate historians’ claims of bursts of
particularly disruptive innovation, though we do explore
how such arguments fit with the shifting geography of dis-
ruptive innovation over our study period.

Table 1 provides a snapshot of the most and least dis-
ruptive technology classes in 1925–30 and 2005–10, with
rankings based on the average values of the indicators, nor-
malized by demeaning and dividing by the standard devi-
ation. It offers a view of disruptive innovation that is
consistent with existing historical and anecdotal evidence,
where the 1920s are dominated by mechanical and electri-
cal categories and the most recent period by computers and
electronics (i.e., Freeman & Louçã, 2001). Individual dis-
ruptive technology classes can be seen to be clustered
together. Recently most of the highly disruptive electrical
and electronic technologies listed in the lower half of the
table – such as those related to the production of solid-
state devices – are linked to computers, broadly conceived.
Least disruptive technologies in the 1920s include scaf-
folding, wooden receptacles and railway draft appliances;
in 2005–10 scaffolding again appears, alongside several
technology classes related to paper goods.

3.2. Locating disruptive innovations in
subnational space
Patent documents list address information for inventors
and/or assignees. We obtain this information from two
data sources: For the 1920–75 period, we rely on the
HistPat dataset, which contains county-level
information identifying the location of the inventor(s)
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and/or assignee(s) for 99.3% of all patents granted
between 1836 and 1975 (Petralia et al., 2016).11 For
the period from 1975 to 2010, we use similar
information obtained directly from the USPTO.12 Indi-
vidual patents are then assigned to geographical
locations.13

As noted, we aim to identify the economic effects of
disruptive innovations at the scale of local labour markets.
The spatial extent of local labour markets has profoundly

changed over the nearly century-long study period. In
1920, there was less than one car for every 10 people in
the United States (Mom, 2014), and as recently as 1911,
horses outnumbered cars in New York City (Morris,
2007). By contrast, by 2010, the country contained almost
as many highway vehicles as people (US Department of
Transportation, 2021). The study period also includes
the rollout of the interstate highway system, which is
widely credited as having revolutionized patterns of

Table 1. Most and least disruptive patent classes in key periods of each industrial revolution.
Period Disruptiveness Category Class

1925–30 Most Electrical and Electronic Electricity: circuit makers and breakers

Mechanical Clutches and power-stop control

Mechanical Brakes

Others Liquid heaters and vaporizers

Mechanical Plastic and non-metallic article shaping or treating

Others Refrigeration

Mechanical Movable or removable closures

Mechanical Glass manufacturing

Electrical and Electronic Electric lamp and discharge devices

Electrical and Electronic Inductor devices

Least Others Hydraulic and earth engineering

Others Fire escape, ladder or scaffold

Drugs and Medical Dentistry

Chemical Ammunition and explosives

Chemical Fluid reaction surfaces (i.e., impellers)

Mechanical Railway draft appliances

Mechanical Vehicle fenders

Mechanical Ordnance

Mechanical Elongated-member-driving apparatus

Others Wooden receptacles

2005–10 Most Computers and Communications Communications: electrical

Electrical and Electronic Radiant energy

Electrical and Electronic Active solid-state devices

Electrical and Electronic Chemistry: electrical current producing apparatus

Computers and Communications Optical waveguides

Electrical and Electronic Illumination

Electrical and Electronic Television

Computers and Communications Telecommunications

Electrical and Electronic Measuring and testing

Mechanical Optical: systems and elements

Least Others Horizontally supported planar surfaces

Chemical Organic compounds – part of the class 532–570 series

Mechanical Manufacturing container or tube from paper

Others Excavating

Chemical Coating implements with material supply

Others Tent, canopy, umbrella or cane

Others Harvesters

Others Fire escape, ladder or scaffold

Chemical Organic compounds – part of the class 532–570 series

Others Envelopes, wrappers, and paperboard boxes
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settlement as well as economic activity (Allen &Arkolakis,
2014; Baum-Snow, 2007; Michaels, 2008). The suburba-
nization that emerged in part through these changes in
trade costs expanded the spatial extent of local labour mar-
kets, generating sprawling and integrated regional econ-
omies. This means that, in earlier portions of the period
under investigation, smaller spatial units are most likely
to capture the concept of interest; this is reflected in the
large volume of empirical work examining the 19th and
early 20th centuries in the United States focused at the
scale of counties (i.e., Abramitzky & Boustan, 2017; Akci-
git et al., 2017; Fishback & Cullen, 2013; Kim, 2007).
Closer to the present, meanwhile, larger units will be opti-
mal for measurement, reflecting the sprawl mentioned
above. This presents empirical challenges: we can either
use the same spatial units over the 90 years under investi-
gation, which risks introducing potentially significant
measurement error at one end of the full study period or
the other, or we can use one set of units to track changes
in one sub-period and a different set for the other.We pre-
fer the latter. We use units that best fit the spatial extent of
local labour markets in each period in question, though at
specific points in this paper when our analysis demands
common units, we make use of them.

For the period covering the Second Industrial Revolu-
tion (1920–30), we use counties as our unit of analysis.
Meanwhile, for the 1980–2010 period, we adopt commut-
ing zones as our primary spatial unit. Commuting zones
are groups of counties that are linked through the intensity
of travel patterns, and distinguished by weak inter-area
commuting; therefore, they effectively represent function-
ally integrated economic units (Tolbert & Sizer, 1996).
Commuting zones offer concrete advantages over other
competing measures: unlike metropolitan core-based stat-
istical areas, they can be constructed for the full study
period as needed; they cover the entire, contiguous 48
states; they also avoid problems of incomplete identifi-
cation present in metropolitan areas in public use data
since 1980. For this latter period, we adopt 1990 vintage
commuting zone definitions, consisting of 726 local labour
markets.

3.3. Exploring the relationship between
disruptive innovation and spatial inequality
In addition to univariate descriptive analyses, we also esti-
mate a series of simple panel regression models predicting
changes in local growth in either per capita manufacturing
output or income. Across these models, the independent
variable of interest is local disruptive innovation. Our
aim in these estimates is to consider how the marginal dis-
ruptive innovation may be related to patterns of growth in
output or income. We estimate variants of the following
baseline equation:

yc,t = dc,t + ldc,t + X
′
c,t + uc,t (1)

where y is log per capita output or income for location c in
time t. The log of the number of local patents in the most
disruptive classes taken out in either the most recent five or

10 years is captured by d . Similarly, ld represents log of
counts of local patents in classes that are deemed least
likely to be disruptive over the same period; X ′ is a vector
of location-specific features; and u is the standard disturb-
ance term. In X ′ we include some measures likely to be
related to the dependent variable that are common to
both periods, such as population. We also include some
control variables that are period specific. To identify any
in-built catch-up effects, as in a conventional convergence
model, we include a one-period lag of the dependent
variable.

For the observed decade during the Second Industrial
Revolution, estimates are generated by differencing values
of the dependent variable and patent measures between
1920 and 1930, with covariates set to initial-period values.
For the more recent period, a decadal panel spanning
1980–2010 allows the estimation of a two-way fixed-
effects model in which we include time-varying controls;
location-specific fixed effects that will absorb bias from
unobserved, but relatively stationary features of each
local economy, including their overall propensity to be
innovative; and year fixed effects that can account for
unobserved national-level dynamics, such as business
cycles. In each time period, the key independent variable
of interest is d ; all else being equal, we expect changes in
d to be positively related to changes in local levels of out-
put or income per capita.

The long-run timeframe of this study entails some
compromises in terms of measuring our dependent vari-
able of interest.14 Recall that the theoretical motivation
is to capture spatial economic inequalities, by which we
mean indicators of inequalities in development. In the
economic development literature generally, development
is almost always operationalized through per capita output,
incomes or wages, acting as proxies for productivity and
well-being. For the period around the Second Industrial
Revolution, we use information from historical iterations
of the Census of Manufactures made available by Haines
(2005) as a means of constructing measures of local man-
ufacturing output per head.15 They key innovations in this
period were largely in electrical and mechanical areas
related to manufacturing activity, hence this indicator
should reasonably accurately gauge their economic
impacts. Over the 1980–2010 period, we again cannot
directly measure per capita gross domestic product
(GDP), but we follow common practice in the literature
on regional convergence (i.e., Barro & Sala-i-Martin,
1991; Carlino & Mills, 1993; Drennan & Lobo, 1999),
proxying development performance by using income-side
data from the National Income and Product Accounts
(NIPA), made available by the Bureau of Economic
Analysis (BEA).16 We aggregate per capita personal
income (PCPI) to the commuting zone level and adjust
it for inflation to constant 2010 US dollars using the
Bureau of Labor Statistics’ (BLS) consumer price index
for all urban consumers (CPI-U).

We supplement our key dependent and independent
variables with other measures of local economic structure.
In both periods, we account for differences in industrial
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structure and population. In the period spanning the
Second Industrial Revolution, these data are again drawn
from Haines (2005). From that source we also include a
measure of the urban population share in each county,
on the basis that the shift from rural to a more urban man-
ufacturing pattern could partially explain growth accelera-
tions (Atack & Bateman, 1999; Kim, 2005). Additional
measures from Haines (2005) include the share of foreign
born in 1920 in each county, motivated by a range of
potentially beneficial effects, including entrepreneurship,
innovation and labour market recomposition (Hunt &
Gauthier-Loiselle, 2010; Ottaviano & Peri, 2012; Rodri-
guez-Pose & Von Berlepsch, 2014). Furthermore, we
include a variable measuring the availability and exploita-
tion of natural resources, the share of primary inputs used
in manufacturing (PI), since natural resource exploitation
during this period is often mentioned as crucial factor of
the early US development process Wright (1990). We
use additional sources of data to account for specific factors
that may have played a role in the early development of
regions in the 1920s. Following Acemoglu et al. (2016),
to capture variation in local state capacity, we include
information on the number of post offices per county.17

Furthermore, since it has been argued that the presence
of a university in a city has a considerable impact on
local wages and capabilities (Moretti, 2004), we count
the local presence of land-grant colleges.

In the later period, control variables are largely drawn
from public use extracts of population censuses, harmo-
nized and made available to the public via IPUMS (Rug-
gles et al., 2021). These data are drawn from the largest
available public-use sample in each available year; this
means 5% samples for 1980, 1990 and 2000, and a 3%
sample covering 2009–11 (which for convenience we call
2010). Adapting the probabilistic method described by
Dorn (2009), we assign fractions of individuals in the cen-
sus to 1990 vintage commuting zones based on the pro-
portion of each county group (1980) or public-use
microdata area (PUMA; 1990–2010) that belongs in
each commuting zone. From the resulting data, we
measure the share of local workers having attained at
least four years of college education; as well as employment
shares in computer and data-processing sectors; in finance,
insurance and real estate (FIRE) and manufacturing.

Table 2 presents summary statistics, separated by major
period. In the period spanning the 1920s, the average
county was granted 145 patents, though the large standard
deviation indicates the considerable dispersion of this indi-
cator. The average county generated 28 more-disruptive
patents and 10 least disruptive. In the more recent period,
the average commuting zone had a decadal patent rate of
over 1000, again with the standard deviation indicating
the presence of major geographical variation. The most
and least disruptive patents follow a similar pattern.
There is a strong, substantive logic to the abundance of
the most disruptive patents relative to the least. These
most disruptive patents should be strongly growing in
importance and number. Meanwhile, the least disruptive
technologies are by definition nearing a stage of saturation,

hence their size should be comparatively diminutive. The
average county in 1920 had 47,000 residents; between
1980 and 2010, the average commuting zone had around
10 times that population. In each case there are major
differences in population indicated by the dispersion in
the series. In practical terms, commuting zones include
locations as small as Murdo, South Dakota, with a popu-
lation of under 1000, and as large as Los Angeles, at over
15 million residents in 2010. Other features of regional
economies appear distributed as expected, including
meaningful variation around educational attainment,
industrial structure, immigration and, of course, output
and income.

4. RESULTS: GEOGRAPHIES OF
TECHNOLOGICAL DISRUPTION AND
DEVELOPMENT

4.1. Disruptive technologies concentrate in
space in periods of industrial upheaval
Figure 1 displays the evolution of geographical concen-
tration in patents that fall into patent classes we consider
disruptive, with variation in disruptiveness defined on
the basis of methods described in section 3.1. The leftmost
panel of Figure 1 displays the evolution of Gini coeffi-
cients, Theil indices and coefficients of variation, each
describing how patterns of disruptive technologies across
counties have changed over the 1920s. The three measures
present largely consistent but slightly different pictures of
the location of new, disruptive technologies. The Theil
index presents a somewhat turbulent narrative in which
concentration rises between 1920 and 1925, then falls up
to 1929, and then begins to rise again. Over the same
period, the Gini coefficient and coefficient of variation
both suggest that disruptive innovations are progressively
concentrating at the county level over the decade.

The right panel of Figure 1 displays the analogous
evolution of the geography of disruptive innovation for
the 1980–2010 period, at the level of commuting zones.
Across the different measures of spatial inequality, each
series rises quite consistently over the 30-year period.
Over this recent period in which new, key technologies
are believed to be most profoundly disrupting economic
activity in the United States, they are emerging in an
increasingly selective regional geography.

One might reasonably wonder whether such geo-
graphical patterns are, as we suggest, cyclical. A competing
possibility is that the growing geographical clustering of
disruptive innovations merely reflects more fundamental
shifts in patterns of settlement and overall economic
activity. On that logic, since 1980 at least, the United
States has been experiencing growing concentration of
population and output in larger urban centres (Balland
et al., 2020; Black & Henderson, 2003). In reality, these
processes are likely to be endogenously related to one
another, with innovation as both outcome and driver of
agglomeration (Asheim et al., 2011; Duranton & Puga,
2001; Gordon & McCann, 2005). Consideration of
these relationships during the Second Industrial
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Revolution is illuminating. Over the late 19th and early
20th centuries, the US urban system had not yet fully com-
pleted its frontier transition (Leyk et al., 2020). The settler
population was actively expanding and spreading toward
the West and South, widening markets as well as the
range of feasible locations for many traded goods to be
produced (Kim, 1995). In this light, the patterns in
Figure 1 indicating a growing concentration of disruptive
innovations are all the more striking. Technological con-
centration in one period marked by dispersal in popu-
lation, employment and output hints at the existence of
a distinctive and powerful logic shaping the geography of
these innovations.

In Figure 2 we seek to further contextualize these find-
ings, revisiting the geography of innovation shown in
Figure 1 with some significant differences. First, Figure 2
describes changes in the location of innovation across the
entire 90-year study period – a shift that necessitates con-
sistent spatial units (in this case, commuting zones).
Second, while the left panel visualizes changes in the
geography of the most disruptive innovations, for contrast
the right panel shows the spatial evolution of the least dis-
ruptive new technologies.

Comparing across the two panels, Figure 2 shows that
the most and least disruptive innovations exhibit strongly
differentiated locational patterns. The leftmost panel cap-
tures the rising spatial concentration of disruptive inno-
vations over the 1920s, with some of the instability seen
at the county scale in the Theil series, but also the broadly
rising pattern of concentration; this is followed by a gra-
dual spreading out of disruptive innovations from the
mid-1930s to approximately 1980, after which we observe

once again the spatial concentration during the Third
Industrial Revolution. We interpret this to mean that
innovations with greater disruptive potential follow a
wave-like pattern of rising and then falling spatial concen-
tration that mirrors temporal patterns that economic his-
torians highlight as peaks and troughs of industrial
revolutions.

Examining the right panel of Figure 2, we observe that
technologies that have the least potential for disruption
appear to be spreading out over space over the entire 90-
year period. This hints at a deepened diffusion process
for the creation of new ideas whose underlying concepts
and knowledge bases are more peripheral to the overall
technological frontier. As we have seen that some of the
least disruptive innovations involve ‘mature’ technologies,
it suggests these became more easily accessible, perhaps
driven by the wider settlement process underway in the
United States. Nonetheless, it is striking that the progress-
ive dispersal of such innovation in an ever-widening circle
of locations proceeds even during periods of peak techno-
logical upheaval, and even when indicators of population
and output grow increasingly concentrated.

4.2. Waves of concentrated disruptive
innovation reshape the ranks of regional
technological leadership
In this section we explore which cities have become sites of
concentrated disruptive innovation. We also consider
whether holding a leadership position in disruptive inno-
vation in one period leads to being a leader in a subsequent
one.

Table 2. Summary statistics for disruptive innovation and other key variables.
1920–30 1980–2010

Mean SD Mean SD

Total patents 145 1037 1126 6075

Most disruptive patents 28 200 586 2995

Least disruptive patents 10 70 66 207

Per capita manufacturing output, 1850 US$ 112 159 – –

Per capita personal income, 2010 US$ – – 29,848 6755

Population (thousands) 47 151 464 1120

Share urban population 0.07 0.2 – –

Share foreign-born 0.05 0.06

Number of post offices 18 14 – –

Land grant university 0.03 0.16 – –

Share of primary inputs 0.54 0.151

Share 4+ years of college – – 0.20 0.07

Share computer industry employment – – 0.007 0.01

Share manufacturing industry employment 0.20 0.09

Share FIRE industry employment – – 0.05 0.02

Observations 2438 2236

Locations 2438 655

Note: Units of observation in the 1920–30 period are counties; in the 1980–2010 period they are commuting zones. During the 1920–30 period, all
patenting variables are described in terms of decadal flows; in the 1980–2010 period they are measured in terms of five-year flows. FIRE refers to industries
classed as finance, insurance or real estate. See the text for a more detailed description of variables.
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In a five-year window within each industrial revolu-
tion, Table 3 lists the top 25 regions based on counts of
disruptive innovation per 1000 inhabitants. It lists counties
that are hubs of disruptive innovation in 1925–30, while
for the later period it lists commuting zones. Over the
1925–30 period, leading disruptive technology regions
were mostly concentrated in the Northeast and Midwest
– the old industrial heartland of the electrical–mechanical
age. The distribution of disruptive innovations per 1000
across these centres is relatively even, such that those in
the middle of the list generate about a third of the number
of disruptive innovations per capita as those at the very top.
At the very top of the list is Schenectady, home of General
Electric, as well as the American Locomotive Company,
the latter focused on steam and diesel locomotives, as
well as steel production. Larger counties on the list, such
as Lucas, Hamilton, New York, Allegheny and Cook,
each represent significant industrial cities of the Second
Industrial Revolution: respectively, Toledo, Cincinnati,

New York, Pittsburgh and Chicago. Though we show
measures scaled to population in Table 3, absolute counts
of disruptive innovation over this period favour large
locations, including many of the biggest urban counties
such as Wayne (Detroit), Los Angeles, Cuyahoga (Cleve-
land), Philadelphia, Milwaukee, St. Louis and
San Francisco.

The list describing the 2005–10 period looks different
in a number of ways. It is more consistently made up of
large population centres, which are also drawn from a
wider range of regions of the United States. Almost a
quarter lie on the Pacific coast, and Sunbelt cities such
as Austin and Raleigh bring in the Old South. Regional
economies known for leadership in high-technology sec-
tors of the Third Industrial Revolution appear on the
list, including San Francisco, San Jose, Austin, Boston
and Seattle. Among the smaller places, Rochester, Minne-
sota and Poughkeepsie, New York, both host large IBM
research and design facilities. One difference between

Figure 1. Tracing the geographical concentration of disruptive innovation in the United States, 1920–30 and 1980–2010.
Note: Geographical units are counties in the left panel, and commuting zones in the right panel. See section 3.2 for a detailed
discussion of geographical definitions.
Source: Authors’ elaboration based on HistPat & Lai Database.

Figure 2. Tracing the geographical concentration of more and less disruptive innovation in the United States, 1920–2010.
Note: Geographical units are commuting zones. See section 3.2 in the text for a detailed discussion of geographical definitions.
Source: Authors’ elaboration based on HistPat & Lai Database.
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the two periods is the degree of concentration of disruptive
patents in the more recent period, with San Jose having
generated approximately 1.6 times as many disruptive
patents as the second-placed location, and almost seven
times as many as the middle of the list. By contrast, over
the 1925–30 period, the leading county had 1.2 times as

many as the second-placed location, and fewer than
three times as many as the middle of the list.

Based on this picture, we can ask whether the same
regional economies are hubs of innovation across the two
study periods. To respond to this question, we again
require consistent units. Hence, in Table 4 we aggregate
up to the level of 1990 vintage commuting zones. Only
four regions that out of the top 25 most disruptive
locations in 1925–30 remain so in 2005–10. The over-
whelming majority of leading places are leaders in only
one period. A similar picture emerges if we measure
total patents, such that only half the locations that are in
the top 25 in the 1920s remain so in the 2000s. This
greater intertemporal consistency no doubt emerges as a
consequence of the fact that big populations exhibit
greater long-run persistence.

Being at the top in per capita terms means being a
centre of the disruptive technologies of the specific indus-
trial revolution at hand. There is substantial turbulence or
difference in regional leadership of disruptive technologi-
cal change from one revolution to another. On a total
patenting basis, however, there is less volatility over
time, perhaps reflecting some long-term advantage of

Table 3. Top 25 most disruptive places in each period, according to the number of disruptive patents per 1000 inhabitants.
1925–30 2005–10

County
Disruptive patents

(thousands) Population
Largest city in

commuting zone
Disruptive patents

(thousands) Population

Schenectady, NY 3.111 125,021 San Jose, CA 14.453 2,521,876

Branch, IN 2.463 23,950 Boise City, ID 8.863 645,142

Sullivan, NH 2.347 24,286 Burlington, VT 6.951 334,495

Lucas, OH 1.585 347,709 Fort Collins, CO 4.998 582,859

Coos, NH 1.489 38,959 San Francisco, CA 4.783 4,896,022

Warren, OH 1.463 27,348 Rochester, MN 4.649 253,379

New York, NY 1.458 1,867,312 Poughkeepsie, NY 4.238 931,061

Hamilton, OH 1.435 589,356 Austin, TX 3.952 1,779,457

Rock, WI 1.267 74,306 Lawton, OK 3.299 183,112

Essex, MA 1.179 498,040 Portland, OR 2.803 2,133,238

Knox, OH 1.125 39,338 San Diego, CA 2.679 3,104,346

Essex, NJ 1.103 833,513 Elmira, NY 2.599 350,074

Brule, SD 1.079 7416 Boston, MA 2.561 5,163,543

Washington, CO 1.043 9591 Raleigh, NC 2.508 1,876,821

Allegheny, PA 1.038 1,374,410 Palm Bay, FL 2.424 682,251

Union, NJ 1.032 305,209 Minneapolis, MN 2.303 3,197,939

Fairfield, CT 0.996 386,702 Albany, NY 2.231 1,112,237

Cook, IL 0.967 3,982,123 Seattle, WA 2.181 4,285,519

Hartford, CT 0.962 421,097 Eugene, OR 2.122 1,045,295

Bossier, LA 0.951 28,388 Buffalo, NY 2.095 2,353,374

Fairfax, VA 0.950 25,264 Binghamton, NY 2.014 294,870

Hampton, VA 0.940 6382 Manchester, NH 1.982 1,271,163

Erie, OH 0.902 42,133 Brick Township CDP, NJ 1.909 1,208,464

Westchester, NY 0.898 520,947 Pullman, WA 1.901 82,075

Richland, OH 0.895 65,902 Cedar Rapids, IA 1.878 274,746

Table 4. Turbulence in the leadership ranks of commuting
zones across the 1925–10 period.

2005–10

Not in
top 25

Top
25

Disruptive

patents/capita

1925–

30

Not in

top 25

527 21

Top 25 19 4

Total disruptive

patents

1925–

30

Not in

top 25

534 12

Top 25 12 13

Note: Because of the need for consistent units in this analysis, we aggre-
gate counties over the 1925–30 period up to the level of commuting
zones.
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being a large city-region in the urban system in successfully
transitioning as a technology centre from one period to
another. Still, almost half of the leaders in the 2000s
were not to be found there during the Second Industrial
Revolution, reflecting the entrance of major new inno-
vation centres as new technologies rely less on the innova-
tors and inputs from previous rounds, creating what has
been termed a ‘window of locational opportunity’ (Scott
& Storper, 1987; Storper & Walker, 1989). Long-run
stability is most evident among the non-innovative
laggards.

4.3. Spatially concentrated disruptive
innovation is associated with greater spatial
economic inequalities
Next we turn to regression estimates measuring the associ-
ation between disruptive innovation and either output or
income. Table 5 reports estimates for variants of equation
(1), which relates changes in location-specific measures of
disruptive innovation to changes in local per capita output.
In both industrial revolutions, we detect a robust, positive
relationship between the marginal instance of local disrup-
tive innovation and economic performance. Models 1 and
2 are differenced between 1920 and 1930, such that the
dependent variable is the change in log manufacturing
output per worker. In model 1, innovative output, as rep-
resented by total patents, is positively and significantly
linked to growth in per capita output in manufacturing.
Controls behave approximately as expected, including a
lagged dependent variable that is negatively and signifi-
cantly linked to output, indicating a conditional conver-
gence dynamics that fit with state-level evidence on
income spanning this period (Barro, 1991). Model 2 dis-
aggregates total patents, with key predictors capturing
additional patents granted in the most and least disruptive
technology classes over the study period. Disruptive
patents remain positively and significantly associated
with growth in output per worker. Meanwhile, the
addition of least disruptive patents is not significantly
related to changes in manufacturing output over this
period.

Based on a decadal panel specification with two-way
fixed effects, results for the more recent period up to
2010 track the relationship between changes in disruptive
innovation and log PCPI. The inclusion of local fixed
effects should absorb bias that arises from differences in
overall innovative capacity, as long as this characteristic
is relatively stationary; it also accounts for other unmea-
sured but relatively non-dynamic features of locations.
As in model 1 for the 1920s, model 3 confirms that,
over this more recent period, increases in local patenting
are linked to rising output per head, significant against a
threshold of 0.05. Mirroring the estimates for the Second
Industrial Revolution shown in model 2, in model 4 we
decompose total patents into their extremes: patents in
the most disruptive classes, and those in classes deemed
to be least likely to be disruptive. The coefficient on dis-
ruptive patents is positive and statistically significant at a
0.01% level, the greater precision in the estimate as

compared to all patents in model 3 indicating the greater
clarity offered by a focus on disruptive innovation. In
keeping with model 2, the addition of new, least-disrup-
tive patents is unrelated to changes in PCPI. Meanwhile,
the b-convergence process detected in the early period is
no longer in evidence.18

Overall then, for each of the key periods in two indus-
trial revolutions, the regressions in Table 5 suggest that the
relationship between overall local patenting and local out-
put or income is partly a function of those innovations that
are most disruptive. Considering these relationships in
light of the distinctive patterns of geographical concen-
tration of disruptive innovations we document in Figure
1 suggests that disruptive innovation acted as a force spur-
ring growing regional inequalities, whether in terms of
manufacturing output per capita in the 1920s, or PCPIs
as the Third Industrial Revolution unfolded.

Exploring this idea further, Figure 3 visualizes changes
in spatial inequality that emerge from predicted values of
local PCPI that emerge from model 4, Table 5, setting
all independent variables to 1980 mean levels, except for
disruptive innovation, which we allow to change according
to actual values. These predictions are then used to build
standard inequality indices used above. This figure is not
meant to be interpreted as a direct gauge of disruptive
innovation’s marginal effects; rather, it represents a coun-
terfactual scenario that more directly highlights the how
the growing concentration of disruptive innovations in
space yields tangible increases in spatial inequality.

5. CONCLUSIONS: THE FUTURE OF
DISRUPTION AND ITS GEOGRAPHIES

Over the past century, disruptive innovations in the Uni-
ted States follow alternating wave-like patterns of rising
and falling spatial concentration that closely mimic peak
and trough periods of industrial revolutions (David,
1990; Field, 2003). The least disruptive innovations, by
contrast, were quite consistently spreading out over the
regional geography of the country. Further, there was
only partial overlap in the geography of disruptive inno-
vations across the two Industrial Revolutions, with turbu-
lence in the ranks of the most innovative places and thus
limited path dependence in disruptive innovation. In con-
trast, there was mostly stability in the geography of places
excluded from the business of leading in the generation of
the most disruptive innovations. Finally, we found a robust
association between regional disruptive innovation and
measures of economic performance. This relationship
remains after accounting for the influence of a host of
other factors shaping such outcomes, including other mar-
kers of innovative effort. Taken together, these results are
consistent with the idea that disruptive innovation has
played an important role in shaping patterns of spatial
economic inequality over the past century.

Still, much more work is required to understand the
links between technology and the geography of inequality.
It would be particularly interesting to understand more
precisely the nature and geography of technology during
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Table 5. Local disruptive innovation and development indicators for the Second and Third Industrial Revolutions, 1920–1930
and 1980–2010.

Second Industrial Revolution Third Industrial Revolution

Differenced yc Decadal FE panel

(1) (2) (3) (4)

All patents (log) 0.085*** 0.011*

(0.018) (0.005)

Most disruptive patents (log) 0.054*** 0.011**

(0.020) (0.0043)

Least disruptive patents (log) 0.036 0.0059

(0.02) (0.0034)

Population (log) 0.074* 0.094* −0.072 −0.102
(0.037) (0.042) (0.024) (0.027)

Urban population share 0.00003 −0.00001
(0.0001) (0.0001)

Foreign-born share −0.0001 −0.0002
(0.0005) (0.0005)

Primary inputs 0.914*** 0.922***

(0.172) (0.174)

Land grant university −0.052 −0.045
(0.062) (0.064)

Post offices −0.004** −0.005**
(0.002) (0.002)

yc,t−1 −0.204*** −0.199*** −0.049 −0.041
(0.028) (0.029) (0.023) (0.026)

4+ Years College share 0.146 0.078

(0.108) (0.116)

Computer employment share 0.279 0.308

(0.339) (0.339)

FIRE employment share 2.66*** 2.853***

(0.371) (0.461)

Manufacturing employment share 0.397*** 0.447***

(0.073) (0.086)

Period 1920–30 1920–30 1980–2010 1980–2010

State FEs Yes Yes No No

CZ FEs No No Yes Yes

Year FEs No No Yes Yes

Observations 2438 2438 2900 2900

R2 0.148 0.146 0.934 0.904

Note: *p , 0.05, **p , 0.01, ***p , 0.001. Panel models report cluster-robust (CZ-level) standard errors in parentheses. The 1920–30 period reports
cluster-robust (state-level) standard errors in parentheses. Unit of observation in models 1 and 2 is the county; and in models 3 and 4 it is the commuting
zone. The dependent variable in models 1 and 2 is change in log manufacturing output per worker; the dependent variable in models 3 and 4 is log per
capita personal income (PCPI). PCPI is inflation-adjusted to constant 2010 US$.
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the peak spatial and interpersonal convergence period of
the American economy from 1940 to 1960. What we do
not know from this analysis is the precise extent to
which the technological contribution to the 1940–80
Great Levelling in both regional development and income
inequality was due to the spatial deconcentration of dis-
ruptive innovations; to an overall decline in disruptiveness;
to a decline in the skill bias of disruptive innovations; or to
some as yet unobserved quality of disruptiveness that may
have changed between the two high inequality and con-
centration periods and the intervening Great Levelling.
These questions are therefore urgent for further research
that would build upon the present results.

Building such an understanding is particularly urgent as
we appear to be on brink of a Fourth Industrial Revolution,
perhaps based upon breakthroughs in robotics, artificial
intelligence, genomics and decarbonization technologies.
Historical research, such as we report on in this paper,
does not promise the prediction of future processes, but
provides a useful framework of questions to ask as such pro-
cesses begin to unfold. In particular, as these technologies
emerge from their current experimental phase, we should
carefully consider whether they manifest analogous forms
of geographical concentration to their forebears, reinfor-
cing ‘superstar’ agglomerations of knowledge workers,
major firms and supply chains, and incomes, but also poss-
ibly generating some new superstars in the urban–regional
system (Kemeny & Storper, 2020a). In this case, then the
contemporary geography of regional economic divergence
may be a prelude to another round of uneven development
within innovative countries. At the global scale, the current
period is different from the Great Divergence of the First
Industrial Revolution, as East Asia has now arisen as a
third great pole of innovation and world economic growth,
and – at least among the three poles of North America,
Western Europe and East Asia – per capita incomes are
converging. And yet within that third great pole of the
world economy, the subnational geography of innovation
is highly concentrated. On the other hand, if the upcoming
waves of technological disruption are more similar to the
disruptions of theGreat Levelling, the future of interperso-
nal and spatial development indicators might look more

egalitarian. The social, economic, political and cultural
consequences of more versus less egalitarian technological
disruption processes are profound; hence, it behoves us to
continue deepening the historical understanding of why
some disruptions are more spatially concentrated and ine-
galitarian than others, and to be highly attentive to how
the now unfolding new waves of innovation fit in this
picture.
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NOTES

1. While some eschew the term ‘revolution’, preferring
instead an image of gradual unfolding, it is widely agreed
that a major phase change occurred with early industrializ-
ation (Crafts, 2004).
2. The term ‘disruptive’ is itself highly polysemic, used by
varied strands of academic work, as well as by journalists,
pundits and tech entrepreneurs, through which it has
entered the general lexicon. In academicwork, the literature
in business studies explores the positions of firms whose
practices or products disrupt existing industries and mar-
kets (e.g., Bower & Christensen, 1995; Christensen et al.,
2018). In economics, it is used mostly to characterize
major effects on the economy as a whole, wrought through
changes in employment, industry structure, productivity,
incomes, wages, overall growth and geography (i.e.,
Bloom et al., 2021). As our reviewmakes clear, the research
reported in this paper is situated within this latter tradition.
3. For instance, Lindert and Williamson (2016) date the
start of the second industrial revolution at c.1870 and the
end c.1920, whereas Jovanovic and Rousseau (2005)
argue it spanned the period 1889–1929.
4. Field (2003) has a different, but partially overlapping,
formulation, one that puts greater emphasis on the 1929–
41 period.
5. While it is worth noting the lively debate around the
measurement of the productivity effects of the digital

Figure 3. A counterfactual scenario relating disruptive innovation and spatial inequality, 1980–2010.
Note: The graph shows changes in per capita personal income (PCPI) inequality, based on model 4 in Table 5, with all predictors
except the most disruptive innovations set to 1980 means.

14 Tom Kemeny et al.

REGIONAL STUDIES



revolution (i.e., Brynjolfsson & Hitt, 1996; Gordon,
2000), there remains little dispute about the broad timing
with which information technologies began to restructure
the US economy.
6. For all patent documents granted since 1920, see
https://bulkdata.uspto.gov/.
7. See http://www.uspto.gov/learning-and-resources/
electronic-bulk-data-products/.
8. Each class appearance counts as 1 – there are no frac-
tional counts. However, as explored by Petralia (2020b),
an alternate strategy that uses fractional counts produces
material similar results.
9. See Hall et al. (2001) for details. For the concordance,
see http://www.nber.org/patents/.
10. Our implementation is identical to that described by
Petralia (2020b). See Appendix B in the supplemental data
online for a detailed explanation of the procedure.
11. For the latest version of this HistPat, see https://
dataverse.harvard.edu/dataverse/HistPat/. Petralia et al.
(2016) contains a detailed documentation of the method-
ology used to create it, and a set of tests to discard the
existence of potential biases using manually collected data.
12. For the data, see https://www.patentsview.org/
download/.
13. We assign patents to locations without taking into
consideration the share of inventors per location. For
instance, if a patent contains three inventors from Boston
and one from Los Angeles, we assign 1 count to each
location. We do this for two reasons. This procedure
help us to net out the effect of inventive activity becoming
more collaborative over time. Using this procedure pre-
vents more populous locations from receiving a dispropor-
tionate amount of patent counts. Additionally,
disregarding fractional counts makes the comparison
between HistPat and more recent data possible. This is
because the HistPat database identifies locations in patents
but not the inventors, making it impossible to weight
contributions.
14. These limitations mean that we cannot simply run
one model that spans the entire 90-year study period.
15. For ICPSR 2896, see https://www.icpsr.umich.edu/
icpsrweb/.
16. At a detailed subnational scale, information on per
capita GDP are only available after 2000.
17. For the original records, see https://catalog.
hathitrust.org/Record/002137107/.
18. Concerned with the possibility that our inclusion of a
lagged dependent variable might render our estimated
standard errors inconsistent, the Appendix in the sup-
plemental data online reports a version of model 4 using
the Arellano–Bond estimator. The results remain materi-
ally consistent with those presented in the main table.
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