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I. INTRODUCTION

This Paper derives necessary and sufficient conditions for optimal
saving in a one-commodity world where income, utility and the planning
horizon are subject to risk. The usual technigque of dynamic programming
is replaced by an approach combining classical variational and concavity \
arguments with some concepts from the theory of discrete time martingales.

The results generalise known conditions of optimality, notably by

admitting a much wider class of risks.

The model considered is of standard neo-classical design, extended to
allow a sufficiently general description of risk and change, Income is
paftly exogenous, partly produced under diminishing or constant returns by
preceding inputs of capital; this allows interpretation of the model as
a theory of either personal or social saving. The influence of risk and
change - whether due to climate, technology, population, disease, fashion
or any other exogenous source - is representad by treating income for each
level of input, and utility for each level of consumption, as random
processes, i.e., as functions of state and time. The only assumptions of
substance made about these processes are (i} those which specify that the
planner has complete, up-to-date knowledge of the past evolution of the
 processes, (ii) those implicit in the formulation of the problem of optimal
saving, in particular the finite supremum condition mentioned below and the
existence of an optimum, and (iii) those which preclude constrained solutions.
Conditions of stationarity, period-by-period independence or Markov dependence,
often imposed in models of saving, are not required, Welfare is defined as
the sum over time of expected utilities of consumption, and the welfare
functional is supposed to have a finite supremum on the set of feasible plans.
In the main discussion the horizon i§ infinite, but varianfsuare considered
which allow for an exogenous random stopping time at which utility ceases

to accrue and assets become worthless to the planner,



The maiﬁ result for the infinite horizon model asserts. that a plan
for saving and consumption is optimal if, and only if, (a) the welfare
functional evaluated at that plan is finite, (b) the shadow prices
(marginal utilities) form a martingale when goods are denominated in
'reduced’ units, i.e. net of random compound interest at rates defined
by the marginal productivity of capital, separately for each state of
nature, and (¢} the mathematical expectation of the 'shadow value' of the
capital stock (product of shadow price and reduced quantity) tends to zero
as time tends to infinity. More precisely, these conditions are sufficient
under the general terms of the model, and also necessary if furtherx
assumptions are imposed to rule out constrained solutions and ensure the
convergence of certain sums, Modified results apply in the case of a random N
horizon; they depend on whether the stopping time varies with the state
of nature and, if so, whether it can be predicted by observing antecedent

events.

It is worthwhile to dwell briefly on the economic interpretation of
condition (b). A discrete time martingale - cee Neveu (1972) - is a finite
random process whose past and current values are known at each time t and
whose current value at t 1is equal to the conditional expectation, relative
to information at t, of the prospective value at t+l. Thus (b) expresses
an inter-temporal, stochastic version of the principle of equi-marginal
utility: at ecach time and state the planner chooses between consumption and
saving in such a way that the marginal utility of current consumption equals
the current conditional expectation of the marginal utility of future
consumption, adjusted for random compound interest. The necessity of this
condition, although intuitively eppealing and demonstrated previously in
special cases, should not too reédily be taken for granted. - A general proof
must pay attention to the problems of passing to the limit undex expectation

and swomation signs and to the non-negativity constraints for capital and



consumption,‘hhich are required to hold in each state of nature. These
difficulties can be overcome in discrete time, but they cause the proof
to break down when the present model is replaced by a corresponding

~ continuous one.

For brevity, discussion of previous literature will be limited to
Levhari and Srinivasan (1969), Mirman and zi}cha (1976) and Zilcha (1976);
reference may be made to Brock and Mirman (1972) for a survey and a full
description of the model used by Mirman and Zilché. The conditions of

roptimality stated above are, apart from the terminology of martingale52
and reduced units, essentially those given in the Papers cited, but their

the method of proof here is different and the scope of the conditions is

extended in certain respects. The following points may be noted. Levhari <
and Srinivasan (196%) assume that returns are proportional to capital and

prove the sufficiency of the conditions. Mirman and Zilcha (1976) introduce

Sea Foldes (1978}, where it is found that the reduced shadow prices
defined by an optimal plan will in general form a martingale only if

a random time change is first performed, whereby time in each state

of nature is measured by the depletion of reduced capital instead of

the cleck., It is this difference which has mainly prompted the writing

of the present peper as a companion to the above work. A systematic
comparison between the theories would unduly complicate the discussion,
but: a few points may be noted. %he model in Foldes (1978) assumes
constant returns to capital, whereas diminishing returns and an exogenous
income are permitted here because in the discrete case these extensions
demand little extyra effort; in the continuous case they are less straight-
forward, and will be considered separately elsewhere,Much of the present
derivation of the conditions of optimality for the infinite horizon model
can be transleted into continuous time, but certain steps break down
crucially: the 'integration by parts® in (17) below, and the use made of
the resulting equation in proving the sub-martingale inequality - see (18)
and part [}QJ of the necessity argument for Theorem 2. The theory of
random stopping times is also xichax in the continuous case., Finally,

the existence of optima is not studied here, but the new methods developed
in the continuvous—-time paper could be adapted to the present model.

The mexe re-interpretation of known ‘Buler' conditions of optimality as
rnartingale properties of shadow prices, though trivial enough mathematically,
is in itself not without iuterest. For erawmple, it points to easy proofs

of regsults about convergencs and unboundadness of shadow price processes,

and it suggests an approech bused on coplial theory to the study of

Lest of maxket prices. , .

o 4
ke

~d P IS " e
martingale propoax




a concéve production function and add a proof of necessity by dynamic
programming. Both of these Pépers assume that production risks in distinct
periods are identically and independently distributed. 2Zilcha (1976)

uses a more elaborate model, based on work by Radner and by Dana, in

vhich there are several goods and the 'i.i.d.' assumption is replaced

by one of stationarity; the proof of necessity again relies on dynamic
programning., The assumptions made in the above Papers about the processes
reprecenting risks in production are a good deal more restrictive than

those made here, as regards both inter-temporal dependence and boundedness
of random variables; in addition we allow random utility and a random
horizon, Certain regularity conditiocns for production and utility functions
are also relaxed here, notably the 'no input, no output' condition and the )
assumption (made by Mirman and Zilcha and by Zilcha) that utility is
non~negative, Finally, 4t is not difficult to extend the present approach

o . . ‘s 3
to models with several goodsz or securities.

31t should be mentioned that, whereas the finite supremum condition
is postulated directly hexe, it can be inferred from assumptions in
the models of BRrock and Mirman (1972), and Zilcha (1976); this
condition is, of course, needed for the necessity proofs in all
cases., The sufficiency proof in Levhari and Srinivasan (1969) is
valid without a finite supremum if optimality is defined by the
'overtaking criterion', and an analogous extension of the present
approach is given in Section IV below. Infinite supremum problems
generally are beyond the scope of this Paper,



The rest of the Paper is arranged as follows., Section II states
basic definitions and formulates the model for the case of an infinite
horizon. A brief discussion of directional dexivatives of concave
functionals appears in Section IIX, where alternative expressions for
derivatives are obtained and an optimum is characterised as a plan
such that the derivative of the welfare functional in the direction of
any other feasible plan is non-positive (Theorem 1). These results are
used in Section IV to show that conditions (a), (b) and (c) are suffiqient,
and under slight restrictions necessary, for optimality (Theorem 2). The

changes needed when the horizon is random are indicated in Section V.



Ir. TiHE MODEL

We begin with a formal description of the structure of events and
information. Let 7T s‘{o,l,...} represent discrete time and (R, A, P)a
probability space; £ is the set of states of nature (possible histories
of the environment for all time), A a o-algebra of subsets called events,
and P a probability on A, We write 'a.s.' for 'almost surely' or 'except
for an event of zero probability'. The information available at a fixed
time t is defined by a sub o-algebra ét of events, called events at t,
of which the planner knows at t whether or not they occur. The overali

information structure is represented by the family (ét;teg) y it is

assumed that this family is ascending, i.e. that A A for T < t, to

T t

represent learning without forgettinge. For simplicity, it is also

assumed that éo is the co-algebra generated by all the P-null sets of A,

All rendom variables considered below are finite or extended real-
valued, A-measurable functions on Q defined up to P-null sets, i.e. two
variables which are a.s. equal are treated as identical. The assumption
that the value of a random variasble v = v(w) is known to the planner
at t is expressed formally by the condition that v is ét—measurable, i.e.
that for each numerical interval I the event {we v(w) € I} belongs to
ét' All random processes considered are families of random variables
indexed by the whole of T or by {1,2,...}. Processes are denoted by
symbols like z, (zt;teg) or (zt) when regarded as families of variables,
by z or z(.,.) when regarded ss functions of the pair (w,t), the two
points of view beinyg used interchangeably; particular variables belonging
to a process z are dencted by Zos zt(.) or z(.,t), particular values by

zt(w) or z{w,t). A process (zt) is called adapted - more precisely,



adapted tc the family (ét) - if, for each t, the variable z, is

Atmmeasurable, Thus an adapted process is one whose previous history

is known at each time. BAll processes considered are assumed, or can

be shown to be, adapted, though for two distinct reasons: observed
processes such as the income from a given level of capital because

the saver is supposed to obgserve them immediately and precisely;
controlled processes such as consumption or capital plans because at
each time the current value can be chosen only on the basis of available

information.

Turning now to the description of opportunities, we postulate a

production function F=F(XK;w,t), defined foxr K e E?,é], we) and t > O,

with the following properties. For each fixed (w,t), Fl.;w,t) is finite

- s oo G . .

for K < «, continuocus and concave, and possesses a positive derivative
floiwet); moreover F(O;uw,t) > O, to allow for the possibility of a purely
exogenous, random income. Yor each fixed X, the process F(K;.,.) is
assumed tc bz adapted, and it follows that £(¥X;.,.) has the same property.
The influence of exogenous changes in technology, size of labour force,

etc. is jmplicit in the definition of the production function.

Let W > O denote the initial endowment. A (feasible) capital plan,

or simply plan, is defined as a non-negative, adapted process k = (kt)

such that a.s. the gystem

i

klw,t) + cln,t) F[%(w,tul),m,;j t=1,2,..,

(2}
W

it

Kw,0) 4+ clw, 0}

has a solvtion c(w,t) which is non-negative on T; of course, the

Note that the tering pos
used throughout in their strict sense,

creasing and decreasing are
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variables ko = k(w,0) and e, = ¢(w,0) are degenerate, and the process

c = (ct) is the consumption plan corresponding to k. We denote by K

the set of all capital plans, considered as a subset of the vector
space of adapted processes., This set is not empty (because c = O is

feasible) and it is convex by the concavity of F.

]

Next, the utility function U = U(C;uw,t) is supposed to be defined

(with an arbitrary but fixed choice of scale and origin) for

CsE?,é], wef? and teT and to have the following properties. For each
fived (w,t}, U(.;w,t) is finite on (0,»), continuous and concave, and
possesses a non-negative derivative u(.;w,t). For each fixed C,

U(Cs.,.) and u(C;.,.) are adapted processes. The welfare functional

is postulated in the form

gU) =& 5 Ufclw,t) su,t] keK (2)

where c is the consumption plan corresponding to k. It is assumed that

for each keK the expected sum of the positive terms appearing in (2) is

not + «; this ensures that the functional is well defined, and incidentally
that EL can be replaced by IE. We further assume the important condition

that
g* = sup{@(k): keK) is finite; (3)

this of course entails the existence of some keK for which gk} > - o,
The effect of (3) is to impose implicit restrictions on F and U jointly;
various explicit conditions which impiy (3} could be adepted, but for our
purposes it is unnecessary to make a choice. 2As an example, it is encugh

if U can bhe represented in the form
U{C;w,t) = V(C;w,t)qt ' , (4)

for all €, ¢ and t, where V is a bounded function and (q,) is a summable
[ 99



sequence of positive numbers (discount factors). As usual, an element
k*eK, and the corresponding c*, are called optimal if g(k*) = ¢*, and

the problem of optimal saving is to find such an element if one exists.

Consider a fixed capital plan, say k*; together with the correspon-~

ding conzumption plan c¢* this induces a number of furtherx processes,

namely a production plan F¥ = (FE), a marginal productivity plan f*, a

utility plan U* and a marginal utility plan u*. To define these, and

at the same time establish an abridged notation, we write

F¥ = F*(u,t) = F (ki ) = F[k*(a,t-1);0,t] t=1,2,... (5)
£ = £ (0,t) = £ (kF ) = £{k*(0,t-0) s0,t] t=1,2,... (6)
U¥ = G¥(u,t) = Ule}) = ufero,t)0,t] t=0,1,... &)
ug = u*(w,t) = u(cz) = u!b*(m,t);g,?] t=0,1,... (8)

Analogous notation will be used below for processes induced by cther

. o1 1 1 1 . o o
capital plans; for example, ¢, P and U correspond to k™, while ¢, F

a . o \ ‘g
and U~ correspond to k. It can be verified that all these processes are

adapted.
The particular element denoted by k* ~ usually the one whose

optimality is in question - plays a special part., From it we define the

(compound) interxest process r = (r_; teT) by writing
¢ .

r, = ri{w,t) = fif*...f* t=1,2,... (9)

and r, = 1. Sometimes it will be convenient to reckon gquantities of goods

in reduced units, i.e. net of random compound interest, separately for

5
for each ctate of nature, The transformztion from natural to reduced

[

-~ 4 - > - 0 s+ .
The term 'discounted' is avoided for fear of confusion with eitherx
subiective or ordinary co reial discounting. Both of these operations
apply the same discount factors to all states of nature.
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units, written
k(w,t) = klw,t)/rls,t) ; cle,t) = clu,t)/zluw,t), wed, teT, (10)

will always be defined by the fixed plan k* but applied to all k and

¢. Thus we have, for example,

~1 i

o= e . 11)
Ct Ct/rt (

* o L ot
kt kt/rt, i

= . r
c.t/rt f
When units of goods are transformed by dividing by L the corresponding
marginal utilities oxr shadow prices nust cbviously be multiplied by the

same number., Accordingly we define - for the plan k* only -~ the (reduced)

shadow price process y = (yt; teT) by setting

viw,t) = r{w,t)u*(w,t) wefd,  teT. (12)

This process is non-negative, finite and adapted. Speaking informally,
ocne might imagine the values y{w,t) implemented as prices at zevro time
in a perfect warket for ‘dated contingent goods at (w,t) expressed in
reduced units', one contract being a promise to deliver one reduced unit

of goods at t iff history until then is consistent with w.

-

The assumption that f > 0 evexywhere, which is designed to ensure that
the transfommation to reduced uvnits is well defined, can be weakened to
£ > 0 if certain conventions are observed. Suppose that f; = O on

Aeb | for some T. Then x

'1 t:y't t

are either infinite or undefined; however, the products ktyt = ktuz and

Ctyt = cfuf may still be read as zero. On this basis the argument of
.

= 0 on A for t > T, so that Et and ¢

Sections TII-IV goes through, subjoct to minor changes in part (3) of
the necessity proof for Theorsem 2.
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IXI. DIRECTIORAL DERIVATIVES

We begin with conditiens of optimality expressed in terms of
directional derivatives of the functional ¢ on the convex set K.
1 .
Let k* and k” = k* + 8k be arbitrary elements of K with dlk*) > - »;

the process 6k is called a (feasible) direction or variation at k*,

and the directional derivative of ¢ at k* in the direction 8k is

defined by

Dg = Dg(k*,8k) = Lim(L/a) [¢(k*+abk) - @(k*)] . (13)
utvo -

This limit certainly exists (although it may take the values & «),
since glu) = g(k*+adk) - ¢g(k*) is an ordinary concave function of
T LI i : O o
o on tg,Ij, and g* (g+) = D@. Now write k> = k*+gék, let c  be the

consumption plan corresponding to k% - see {1) -~ and abridge the

notation as in (5)-(8); then the definition (13) reads
Dg = 1im (1L/a) E 5 (0% - u%), (14)
():i-o o) t [

We shall show that, if ¢(k) » - «, the limit in (14) can be evaluated

by differentiating uwnder EI to cbtain
o -
A = RB{Y £% 8k - ¥ - 15
o = e{z [ £rék - k] wr ) © ‘ (15)

where fg&k is to be read as zero. To see this, restrict a to (O,ij
o -

1

and check that for each (w,t) ths concavity of U(.;w,t) and F{.;w,t)

implics

1 PR )
U -y ; T -
RS (l/u)(tf U

x) % sas = (£x 6k __, -6k Ju}, a0 . (16
U 4 (dbt/du)]auo (£% Ok -1 aﬂt)uté a0 - (16)

t e

.

Digcussions of the derxivaties of functionals usuvally assume more
analytic structure in the domain than is reguired here. It is there-

fore convenient to give a short self-contained statement.
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‘
The functions of {(w,t) defined by (l/a)(anu*) are thus bounded below
by the function Ule*, which is summable (with respect to EX), and they
ascend pointwise to the limit function; the result folloﬁs from the

monotone convergence theorem.

It is useful for later reference to rewrite (15} in various forms,

using the definitions (10-12) of reduced quantities and shadow prices:

D¢

]

E{5T (8k §k. v, }
"o -1 OFe! Ve

il

0 oY BL (SR - &k
fim o B{(6k_ ) ~ &k )y}

T el - - &%
Jim E{Z "7 &k (v, o y.) 8k .} (17)

P AR

According to elementary properties of conditional expectation we have

t o g i . o
E = EE  fcr each t, and Effﬁktyt+i] = 6ktEtyt+l a,s. since th is A -

measurable; conseguenily

D¢ = lim u{ go-t
Teyoy o

- ‘t ~ .
Sk BTy .y~ vy) GkTyT}° (18]

It is easily shown tﬁat an element k*cK is optimal iff g(h*) > - o
and D@ {k*, k) < 0 for all kl = k*+6k e K. . Indeed, if k* is optimal,
then @g(k*) is finite by definition and &(k*) > & (k*+adk) for any feasible
8k and ue(O,i] : hence [5(k*+udk)~¢(k*{]/a < O and it only remains to go

to the limit. Conversely, concavity implics ¢(k*+8k)-g(k*) < D¢

and the assertion follows,

The preceding paragraph does not rely on (15); but for the neceséity
argument in Section IV we shall reguire this formula to hold when k¥ is
optimal for every &k, even if g(k*+8Kk) = ~ o, To ensure this, we shall
impose a furthex slight restriction on ¢, to the effect that the value

of the functional ¢ remains finite when an optimal consuvmption plan is
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scaled Jown in a gpall proporticn. To be precise, let k* with

corresponding c* be optimal, and for ce{0,l) let k*l-a be the

capital plan corresponding to (l-a)c* ; such plans are clearly

feagible. We state

ASSUMPTION (i). ITf£ k* is optimal, there is an oe(0,1) such that
¢(kt_a) > - @ for oe EO,;;_].
For natural choices of T and U this assunption is satisfied by all

plans, not just optima; in particular, it holds if U > O everywhere,

The proof of (15) is like that given above, except that the inequality

in (16} is replaced by

(1/2) [Uteiack) ~UleH) ] (1/a) U (ct-ack) ~ul 1/@)[p(c )-u(et)]
= (1/a} (Ut t) (19)

0 <o < a. Here the first ineguality follows from the concavity of U,

o
the second from (l- a)cz < Lt' which in turn results from the concavity

of F. The expected sum of the left-~hand side of (19) is
(1/a) B [Ble* ~ach) = Uleil]= (1/a) [Bk%) ) - g%V, (20)

which by A.{(i} is finite. The function on the left of (19) thus sexves
as a swmable lower bound for the functions in (16), and the result
follows as before by monotons convergence. Reference to (14) further

shovs that (20) defines a finite lower hound for all values of DE(k*,6k)

when k* is optimzl. To sum up, we have

Theore:m g: Let P*fY'be guch that ¢k*) > -~ «, and let vy be defined from

E* as in (12). Then {8) k* is optimal iff the directional derivative
L .
D& (k*,8%) is nonwpo<3tle for every "k = k¥+ 8k ¢ X, and for d(kl) > - o

the value of PF(k*,8k) is given by (15), (17) or (18). Moreover (b) if

L3

k* is optimel and A, (i) holds, the valus of DE(k*,8k) is given by (15),

- . 1 s
(17) or (18) for every k ¢ ¥, all thesa numbers are non-positive and are

boundzd below by the finite number (20).



IV, MARTINGRLE CONDITIONS

Zn optimum will now be characterised by means of ‘Euler' and
'transversality' conditions involving the shadow prices. Two further
assumptions, designed to rule out constrained sclutions, will be
adopted in the necessity argument; these assumptions, and the first
two parts of the necessity proof below, may be omitted if attention
is confined to an optimun such that cg > 0 and k; > O a.s. for each
teT.

ASSUMPTION (ii). For each (w,t), u(Orw,t) = e,
ASSUMPTION (iii). For each tel and each event Aegt with positive
probahility, either

{0) the event AjHw: F{Q;w,t+l) = O} has positive probability; or

(B ulCiw,t) » O for C < @ and F(O;w,.t) = », a.s, for weh.

Theorem 2. Let k*ecK be a‘capital plan such that

(a) S(x*) > ~ oo

(b) the corresponding shadow process y = (yt;tfg), defined as in (12),
is a maxtingale;‘and

(c) Lin E{}z%y‘l‘} = Lim E{kivi} = 0 ;
then k* is optimal. Conversely, if Assumptions (i), (ii) and (iii) hold,

an optimal plan k* satisfies (&), (b) and (c).

’ . 1 . 1
Proof of sufficiency. Let k™ = k*ték £ K and suppose that ¢g(k™) > - «o;

(otherwise there is nothing to prove). The assertion that y is a
martingale means that this process is finite and adapted, and satisfies
. t .
vi{w,t) = Ey(w,ttl) a.s. (21).

for each teT. When (21} is substituted into the formula (18) for



DF(k*,8k) the latter is reduced to

~3, . Tl
DF = lim BE{-8k_y_} = lim E{(x* - k.)y.}. (22)
I T4 Tores T g

Now (¢) implies D¢ < O since iéYT > 0, and the result follows from

Theorem 1(a).

Proof of necessity. From now on, k* with corresponding c¢* is a fixed

optimum and kl = k*+8k with corresponding cl another plan.

El] We first check ﬁhat cz > 0 a.s. for each ts?.e If not, let T be
the earliest time such that, for some AséT with PA > O, we have

c; = 0 on A. Then uR = « on A by A.(ii)., Suppose first that, at the
given time T, we can choose A such that k; > 0 on A. Then clearly we
can constiuct a variation 8k such that GkT < 0 on &, while th = 0 on
Q for t <T (if T > 0). For such a variation, the formula (15) for

D# contains the term
E{(f* 3 - * , 3
(0] Ok g = Sk dux 1)), (23)

shere IT(A) denotes the indicator of the event A. The value of this

term is 4w, which by Theorem 1l(k) contradicts cptimality, since it
implies that cither D¢ = « or (15} is undefined because it contains
infinite terms of oppcsite sign. ZAliternatively, suppose that ét T the
only possible choice of A is sucﬂ thet k% = 0 on A; this can happen oﬁly

if T » 0, since we are assuming that c; = O on A, Now c% 1 >0 on @

hy the choice cf T, so that we can construct a variation with GkT 17 0

ocn @ and ﬁkT = O on A; once agaln the value of (23) is 4w and the result

follows,

8 prom now on, the qualification ‘a.s.' is sometimes omitted,



[2] We next check that k; > 0 a.s. for each teT. Suppose, on the

contrary, that k¥ . = O on AshA_ ., with T > 1, If A,(iii) (o) applies,
i bl Sl -

1 1

the event A{i{c*

.= 0}, which belongs to A

o has positive probability,
contrary to [l] above., If A.(iii)(B) applies, we choose dk so that
SkT—l > 0 on A; then, since f; = o on A while ékT is finite, the

coefficient of u; in (23) is e, Since u% > 0, the value of (23) is

EBJ Turning now to the proof proper, we show that (yt) = (rtuz) is a
super-nartingale. Since the process is certainly finite and adapted, we

need only show that
‘VT\T
Yp 2 B ¥ a.s. : (24)

for an arbitrary Tel. For this purpose we construct a variation which
increases reduced capital at T and consumes the additional output at
T+l. To be precise, choose any AEAT and € > O, write

Ae = Aﬂ{c; > ¢}, and define &k by setting

" = N " == - 25
GkT el(As), dkt 0 for t # 7T. (25)
It is clear that this variation is fecasible, and Theorem l(b) with (15)
yvields
A =z D) -
0 > Dd eL{(yT+l yT)I(As)}g (26)

Now cancel ¢, rewrlte as

E{y, I} > E{yT+lI(A8)} (27)

and let £ ¥+ O; then I(AE) + I(s) since c% > 0 a.s. by (1) above, and

since y » O the monotone convergence theorem yields

Ely 1)} > Bly, ,T(8)}, ‘ (28)
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This implies (24) since A is an arbitrary event in éT'
[4] To show that y is a martingale, we consider any variation such
that 6kt < 0 a.s. for each t > O - such variations clearly exist by
virtue of [2jabove - and refer to tha»formula (18) for DF. It follows
from (24) that each of the variables Git(Etyt+l~yt) is a.s. non-negative,
and the same is true of _GgTYT’ Thus, if any of the numbers
E{dgt(Etyt+l - yt)} were positive, we should have Dg > O, contrary to
Theorem 1(b). Consequently each of the variables éﬁt(Etyt+l - yt)
vanishes a.s. and (24) may be read as an equality.
[53 The transversality condlition (c) follows immediately. Indeed,
Theorem 1{b) and (18) as simplified by the preceding argument yield

. -~ e ~1
> = 1 = £ ¥ ES 3 D k&
0 > Dpg %ﬁg E{~8 TYT} %ig E{( 3 kT)yT} (29)

for each kl e K, and it suffices to set kl = 0 and note that E;YT >0
a.5. This completes the proof.,

Extension. The sufficiency argument is easily cxtended to certain
problems - otherwise beyond the scope of this Paper - in which the
supremun ¢* is not finite. Suppose, for example, that U is bounded, so

that for each plan and each teT the expectation EUt = Eu[ﬁ(w,t);w,ﬁ] is

P, o . . 1 .=
defined and finilte. We say that k¥ overtaekes x~ = k*+fk if

PR

; T .1
1ms E {
l%m$ug EO (U

- U¥) ‘<0, (30}
™ £t -
and call k* optimal if it overtdé&es any other plan. Conditions (b) and

{c} of Theorem 2 are now sufficient for kX* to be optimal, and 'lim' may

be replaced by 'limsup® in (¢}. Explicitly, concavity implies

S L T
R L{UT - UF) < RB{5T(£*8k
E X (U - Up) < E{E_(£Fdk,

- * Tt
9% 6kt)ut} ’ TeT (31)

- ¢f, (16) - and the right-hand side may be rewritten
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Tl .= 1 ~ )
B{ % k(B -y ~ 8k
{ % 6kt.b Yeal yt) LhTyT} (32)
as in (18). If v is a martingale the terms under the swmation sign

drop out, and the result follows from

limsup E{G}z:}; yT} < l%m;up E{}:L;YT} = 0, (33)

o
This incidentally shows that the sufficiency argument is easily stated

without reference to directional derivatives.
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V. RANDOM HORIZON

The planning horizon has been treated so far as infinite, but it
! g

is not difficult to wmodify the theory to allow for an exogenous random

stopping time at which utility ceaszs to accrue and remaining assets
are worthless to the planner, We shall not introduce the usual
‘utility of bequest® function, but rathexr suppose that any vicarious
satisfaction which today's planner derives from the prospect of
consumption by his heirs is reflected in the formulation of the utility
function. Thus, although we shall refer to the stopping time as the
planner's ‘time of death' to maeke the model more vivid, it may be
interpreted in varicus ways, for ezample as the time of death or
departure from office of the last successor whose welfarse concerns
today's planner.

[y

Rocall that a random variable A = A{w) is called a (random)

stopping & it takes values in TU{»}land if, for each teT, the

event {w: A(w)= t} belongs to At— see Neveu (1972) p.l19. We amend
the model of saving by introduning the time of death 4 as a positive

stopping time, set
Ul.;w,t) = O identically for t > Alw), WeQ, (34)

end medify Assumptions (1i) and (iil) accordingly. It is convenient
still to regard the information structure (A,) and all processes,
bl ¥

including plane, as defined formally for all values of t, while

identifying elements of X which agree a.s. for 0 < t < A{w). Informally,

we think cf cbservation and action as stopping at Al(w) - 1. In



¥
particular, the actval time of death is excluded from the interval

when ‘action can affect utility; we thercfore imagine ‘death at t'

as occurring before action can be taken at that time to consume the
remaining capital., Note that in general A can take infinite as well
as finite values, although A = O is excluded; various special cases
may be considered when A is finite, for example EA finite, A bounded,

ox A egual to a fixed time H.

The implications of a random time of death depend mainly on the
accuracy with which it can be predicted; two esxtreme cases will be
considered. We say that A is predictable if it is a.s. finite and

for each t > O the event {A = ¢} is in & i.e. a sure augury of

t-1'
death is observed at least one period in advance. We say that A

-

is unpredictable if, for each t and each AcAt with PA > O and

Ac {t < A}, we have P{al{t+l < A}} > 0; in other words, whatever
event of positive probability is observed during life, the conditional

probability of survival beyond the next period is positive.

A review of earlier Sections shows that the theory is almost un~
change& in the unpredictable case. Theorems 1 and 2 remain true, the
proofs being altered in trivial ways to allow for the arbitrary definition
of plans after death. Note that the capital will never be entirely
depleted during life, for fear of a terminal period without consumption;
thus, if A{w) < ® thexe will be a ‘'reluctant bequest' k*[@,A(mﬂj > 0.

The martingale condition (b) is formally the same, although its content

is slightly altexed: if at t the planner is alive, he equates the current
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€
value of Y with a value of L Yial which takes inte account the
conditional probability of death at t+l; and if he is dead, the

g
equality yt = Yt+1 = ... = 0 holds by definition.

In the predictable case, it is found that T.1 and the sufficiency
part of 7.2 hold true but that the necessary conditions must be amended.
Suppose for example that u(Cj;w,t} > O for all C < » when t < A (w);
then clearly (y ;teT)cannot be & martingale, because for t = Alw) -~ 1
there can a.s. be no equality hetween the positive value of Y anq the
zerc value of Etyt+l' On the other hand the terminal condition can be
strengthened, since if the planner knows at the finite time A-1 that he
will die at A he will consume everything. More precisely, iﬁ can now
ba shown that the following conditions ére gufficient for an element

of k*eK to he optimal, and also necessary vnder A.(1)y, (ii) and (iii)
as modified:
(a) @(k*) > - o 4

(b) the process (y ); teI) is a mart i”g le, where A means 'the

t A~ (A-1
Somy ¥ =z [ 4
lesger of' and Yo A(A=1) y[@ LA,A (w) JT J ; and

(¢) k*A—l = 0 a.s.

In the spacial caze where the time of death is 1ndnpendent of all A
(and is therefore unpredictable), the machinery of stopping time

can be avoided and the model of earlier Sections used with no moré
than a change of interpretation. Briefly, it suffices to write

U = Vq as in (4) and to interpret V(C;w,t) as the uvtility of

consumpition at t conditional uvpon survival besyond t, qt as the

probability of such survival. Here V has the properties previously
ascribed to U and (qt) is a non-increasing sequence of non-negative
numbers with q, = 1, the probability assigned to infinite life being

lim q.+ (the special assumptions previously made in conmection with

(4} do rniot necess atily apply here). The functional (2) now represents
texpected lifetime utility' in the ordinary sence rather than a sum
of expcclod utilities., The optimal plans cobtained ave the sams as in
the case of an infinite horizon, except that they are now to be
interprated as plans vhose execution is conditional on survival,

e
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