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Abstract

Background: Markov models are a key tool for calculating expected time spent in a state, such as active life

expectancy and disabled life expectancy. In reality, individuals often enter and exit states recurrently, but standard

analytical approaches are not able to describe this dynamic. We develop an analytical matrix approach to calculating

the expected number and length of episodes spent in a state.

Methods: The approach we propose is based on Markov chains with rewards. It allows us to identify the number of

entries into a state and to calculate the average length of episodes as total time in a state divided by the number of

entries. For sampling variance estimation, we employ the block bootstrap. Two case studies that are based on

published literature illustrate how our methods can provide new insights into disability dynamics.

Results: The first application uses a classic textbook example on prednisone treatment and liver functioning among

liver cirrhosis patients. We replicate well-known results of no association between treatment and survival or recovery.

Our analysis of the episodes of normal liver functioning delivers the new insight that the treatment reduced the

likelihood of relapse and extended episodes of normal liver functioning. The second application assesses frailty and

disability among elderly people. We replicate the prior finding that frail individuals have longer life expectancy in

disability. As a novel finding, we document that frail individuals experience three times as many episodes of disability

that were on average twice as long as the episodes of nonfrail individuals.

Conclusions: We provide a simple analytical approach for calculating the number and length of episodes in Markov

chain models. The results allow a description of the transition dynamics that goes beyond the results that can be

obtained using standard tools for Markov chains. Empirical applications using published data illustrate how the new

method is helpful in unraveling the dynamics of the modeled process.
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Background
Markov chains are routinely applied to model transitions

between states. They are popular in part because they

are easy to apply [1]. Given a set of probabilities or rates

that describe the transitions between states, many useful

quantities can be calculated with Markov chains, such as

the expected time spent in a state [2–4]. In epidemiologi-

cal and health research, Markov chains and other Markov

models are, for example, often used to analyze active life

expectancy and disability-free life expectancy [5–8], or life

expectancy spent with or without specific conditions [9–

12]. These health expectancies based on Markov mod-

els are in turn used as summary measures for assessing

population health and the medical effectiveness and cost

effectiveness of interventions [1, 13, 14].

While the time spent in a specific state derived from

a Markov chain has many applications, this indicator

may hide the dynamics of the underlying process. The

expected time spent in a state gives us no information

about how often a state is entered or left, e.g., whether it

is entered only once for one long episode, or whether it is

entered and left multiple times for many short episodes.

While it can be safely assumed that some transitions occur

only once—i.e., that the expected time in the state equals

the length of the episode—in other cases a large number

of repeated transitions to and from a state are possible.

For example, this has been shown to be the case for frailty

and disability [15, 16]. Up to now,mostly simulationmeth-

ods were used for assessing this dynamic aspect ofMarkov

processes [17], and analytical solutions have been limited

to specific cases [18].

Using a discrete-time, homogeneousMarkov chain with

finite state space, we show how a general method for

Markov chains with rewards presented by van Daalen

and Caswell [19] and recently discussed in this journal by

Caswell and Zarulli [20] can be used for the calculation

of the expected number and length of episodes spent in a

state.Modifying their method suffices to arrive at an easily

applicable approach. We offer two empirical case studies

to demonstrate the insights that can be gained by using

our approach. Our first case study is a textbook exam-

ple discussed by Andersen et al. that has been analyzed

in numerous papers [21]. It is based on data from a clini-

cal trial that assessed the survival and liver functioning of

liver cirrhosis patients after treatment with prednisone, a

steroid hormone. The second case study is based on recent

work by Hardy and colleagues [15] and analyzes how

the number and length of episodes of disability among

older individuals vary depending on their levels of physical

frailty.

To assess the statistical uncertainty of our calculations,

we propose the block bootstrap as a method for esti-

mation of the sampling variance when using longitudi-

nal data. Estimating the sampling variance to conduct

statistical inference and to, for instance, calculate confi-

dence intervals has received relatively little attention in

the literature. We use simulations to assess how reliable

inference based on the block bootstrap is, and we compare

it with other methods found in the literature.

We contribute to the literature in several ways. First,

we extend the Markov chain toolbox by discussing a sim-

ple method to assess the dynamics captured by Markov

chains. Second, extensive simulations included in the sup-

plementary materials show that when using longitudinal

data the block bootstrap is preferable compared to stan-

dard model-based bootstrap approaches. Third, we re-

analyze datasets taken from the literature from a new

perspective focusing on the number of episodes in good

and bad health and the average length of these episodes.

While we keep analyses simple, they highlight how our

method could be used to shed new light on the dynamics

of liver cirrhosis and prednisone treatment and disabil-

ity and frailty. Fourth, the R code for the case studies and

simulations is available online and readily implements the

approach.

Methods
Preliminaries and basic notation

AMarkov chain describes the transitions between a given

set of states using transition probabilities. The set of

possible states is called state space. For instance, in a clas-

sic illness-death model, the state space consists of three

states: “healthy,” “ill,” (i.e., having a specific condition),

and “dead.” A Markov chain evolves in discrete time and

moves step by step from state to state; the step size can

be chosen arbitrarily, and depending on the application,

it could be 1 day, or 1 month, or 1 year. For instance, in

an illness-death model with a step size of 1 month, at the

beginning of the process, the state could be “healthy”; after

1 month, the state does not change and stays “healthy”;

after another month, it changes to “ill”; and so on, until the

state “dead” is reached, which is the so-called absorbing

state which cannot be left. States which are not absorbing

are called “transient.”

To formalize these ideas, our notation follows standard

textbook treatments of Markov chains [2–4]. Let Zt ∈ S

denote the state a discrete-time Markov chain is in at

t = 0, 1, 2, . . . , for some finite state space S consisting of

m states. The transitions between states are governed by

transition probabilities Pr
(

Zt+1 = sj|Zt = si
)

= pij with

si, sj ∈ S , which capture the probability of moving from

state si at time t to state sj at time t + 1. Transition proba-

bilities only depend on the current state the Markov chain

is in at time t, and not on any previous states at t−1, t−2,

. . . . TheMarkov chain thus has theMarkov property and is

memoryless [2]. Throughout, we assume that the Markov

chain is homogeneous, i.e., that it does not vary with t.

Moreover, we assume that the Markov chain is absorbing,
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meaning that there are q > 0 states that will definitely

be reached and that will not be left. In the example of the

illness-death model, the state “dead” is absorbing.

Expected time in a state

Markov chains are usually analyzed in matrix notation.

Transition probabilities are collected in the transition

matrix P =
[

pij
]

, which is of dimension m × m, that is,

the entry in the ith row and jth column of P is equal to

Pr
(

Zt+1 = sj|Zt = si
)

. Arranging transition probabilities

in this way has been called a row-to-column orienta-

tion. Using the transition matrix, several quantities can

be calculated [2–4]. The time spent in any non-absorbing

(transient) state sj starting from any transient state si, nij,

can be calculated as

N =
[

nij
]

= (In − U)−1 , (1)

where U is a transition matrix that does not include

absorbing states and thus only transition probabilities for

moving between transient states; In is an identity matrix

of dimension n×n, where n = m−q is the number of tran-

sient states; and the superscript −1 indicates the inverse

matrix. The derivation can be found, for instance, in [2].

The row sums ofN give the life expectancy conditional on

starting in state si. In the illness-death model from above,

there are two transient states: healthy and ill. This means

that the matrix N has two rows and two columns, and

the row sums equal the life expectancy starting from the

healthy state and the ill state, respectively.

Markov chains with rewards

To estimate the expected number and length of episodes,

we use Markov chains with rewards [22, 23]. An excellent

introduction to Markov chains with rewards with applica-

tion to population health was given by Caswell and Zarulli

[20]. Generally, Markov chains with rewards are based on

assigning rewards to transitions between states, and then

allow for the calculation of the expected value of rewards.

Rewards are collected in a matrix R =
[

rij
]

, where rij cap-

tures the reward for moving from state si to state sj. The

expected number of rewards can be calculated as [19, 24]

e = NZ (P ◦ R) 1m. (2)

1m is a column vector of length m with every entry equal

to 1; Z equals
(

In|0n,m−n

)

, with 0n,m−n being a matrix of

dimension n × (m − n) with all entries being equal to

0; and ◦ is used to denote the Hadamard product (i.e.,

the element-wise product). e is a vector of length n with

the ith entry, ei, giving the expected number of rewards

starting from transient state si. Note that van Daalen and

Caswell use a column-to-row orientation of the matrices,

and not a row-to-column orientation like we do here. That

means that Eq. (2) is a transposed version of the equations

provided by van Daalen and Caswell [19, 24].

The intuition behind this is as follows. N captures the

expected time spent in a state, which in the Markov chain

is equivalent to the number of visits to a state. Given that

we know how often a certain state sj is visited, P includes

the transition probabilities starting from this state, i.e.,

how probable it is that some other state sk will be visited.

If this state is visited, the reward is equal to rjk captured by

R. This means that Eq. (2) somewhat simplified amounts

to checking for each state how often it will be visited; then

checking how likely visits are to the other states; and what

the reward is if such a transition happens. Z and 1m are

used to calculate the overall sum of rewards.

Expected number and length of episodes

Given Eq. (2), it turns out to be rather easy to calculate the

number and length of episodes. Specifically, to calculate

the expected number of episodes in a specific state s∗, we

will set

rij =

{

1 si �= s∗, sj = s∗

0 otherwise
. (3)

Moving from some state si to s∗ thus adds 1 to the value

of rewards, i.e., the number of episodes. Other transitions,

such as staying in state s∗ or moving from s∗ to some

other state, do not add to the value of rewards. Given R,

the expected number of episodes can be calculated using

Eq. (2). The average length of episodes spent in s∗ = sj
and starting from state si, aij conditional on experiencing

at least one episode can then be calculated using

aij = nij/ei. (4)

See the supplementary materials for a proof. As an exam-

ple, consider again the illness-death model introduced

above. If the entry of R corresponding to the transition

from healthy to ill is set to one, then e will give the num-

ber of episodes in the ill state; more specifically, e will

have two entries: one entry for the expected number of

episodes of illness starting from the healthy state, and one

entry for the expected number of episodes starting from

the ill state. Combining this with entries from N like, for

instance, the expected time in illness starting from the

healthy state, allows to calculate aij.

It is also possible to calculate the number of episodes in

a subset of S , i.e., the number of episodes in several states.

This might be of interest if, for example, the state space

includes several unhealthy states, and sickness episodes

are being calculated. If S∗ denotes this subset, the entries

of R are set to

rij =

{

1 si �∈ S∗, sj ∈ S∗

0 otherwise
. (5)

Note that the interpretation of the results obtained

using one of above variants in combination with Eq. (2)

depends to some degree on the structure of the Markov

chain. If, for instance, s∗ is a state that can only be left
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through an absorbing state—i.e., there can be at most one

episode of that state—then the entries of e will give the

probability of entering s∗ starting from si. Otherwise, the

approach essentially counts all transitions to state s∗ or

subset of states S∗. Replacing R in Eq. (2) with its trans-

pose RT will give the expected number of transitions out

of state s∗, which can be used to calculate the number of

recoveries.

Sampling variance estimation

Estimating the sampling variance of e as given by Eq. (2) is

not straightforward. The underlying issue is that while the

sampling variance of transition probabilities can easily be

calculated [25], this is not the case for highly non-linear

functions of the transition matrix [26].

Both simulation-based methods and the bootstrap have

been proposed as solutions for variance estimation for

Markov chains. We adopt bootstrap approaches. A com-

monly used model-based bootstrap proceeds as follows

[27]. Let ci denote the observed number of individuals in

state si, and cij denotes the observed number of transitions

from state si to sj. The maximum likelihood estimator of

pij is cij/ci. Bootstrap samples are constructed assuming

a multinomial distribution with distribution pi1, . . . , pim
and taking samples of size ci. For each bootstrap sample,

the transition matrix is calculated and, based on this, the

statistic of interest, such as e. The variance of e across

samples is used as an estimator of its sampling variance.

This approach has the major shortcoming that it

assumes that the data-generating process is (row-wise)

i.i.d., i.e., that the data follows the Markov property. In

applications with longitudinal data, the i.i.d. assumption

is potentially invalid, as repeated transitions of the same

individual are likely to be correlated.

Because of this shortcoming, we propose using a sim-

ple resampling procedure for longitudinal data based on

the block bootstrap, as discussed by Cameron and Travedi

[28] and Caswell [29], and sometimes applied in the con-

text of multistate models [30]. All data belonging to the

same individual is treated as one “block.” This could be,

for instance, a sequence of health states: at t = 0, the indi-

vidual is healthy; at t = 1, she is still healthy; at t = 2, she

has become sick, etc. Let the number of blocks be denoted

by B, and the set of all blocks is B = {b1, . . . , bB}, with bk
being the block of data belonging to individual k. For each

bootstrap replication, a new sample B∗ is formed by sam-

pling with replacement B blocks from B. As in the case of

the model-based bootstrap, the quantity of interest is cal-

culated for each sample, and its variance across sample is

used as an estimate of the sampling variance.

In the supplementary materials, we provide results of

extensive simulations showing that the block bootstrap

gives reliable variance estimates and that it performs con-

siderably better than model-based bootstrap approaches.

More specifically, the relative bias of the variance esti-

mates of the block bootstrap is much smaller than the

relative bias of model-based approaches, at least for most

simulation variants. Because of this, we apply the block

bootstrap in our first case study; for the second case

study, we do not provide variance estimates due to data

limitations.

Results
Case study 1: Prednisone treatment of liver cirrhosis

Background Worldwide, liver cirrhosis is a leading cause

of disability and death [31, 32]. Once established, liver cir-

rhosis cannot be cured and is accompanied by severe com-

plications and a greatly increased risk of mortality [33].

Medication is prescribed to prevent or alleviate complica-

tions and to reduce mortality rates among patients with

liver cirrhosis. Prednisone, a steroid hormone that was

discovered in the 1950s, has been used in the treatment of

cirrhosis complications. The results of early studies of this

therapeutic approach were promising [34].

Study population The first case study is based on a

dataset used in a classic, textbook example discussed by

Andersen et al. [21], which has been made available in

the mstate package for R [35, 36]. The dataset consists

of information on liver cirrhosis patients who entered

a clinical trial in Copenhagen from 1962 to 1969. The

main aim of the trial was to determine whether pred-

nisone would increase the survival rates of these cirrhosis

patients. The treatment group consisted of 251 individu-

als who received prednisone, and a control group of 237

patients who received a placebo. The survival rates and the

prothrombin indexes were recorded for all of the patients.

The prothrombin index is an indicator of the functioning

of the liver, expressed as a percentage, with 100% indicat-

ing normal functioning. The patients were followed until

1974.

Model The model of the first case study, shown in Fig

1, is a reversible illness-death model, i.e., an illness-death

model with recovery. The two states “normal” and “low,”

which form the state space together with the absorbing

state “dead,” are based on the prothrombin index and rep-

resent liver functioning. Prothrombin index values of less

than 70% are classified as low functioning, while index val-

ues of 70% or higher are classified as normal functioning

[35].

Methods We calculated day-to-day transition probabil-

ities in two steps. First, occurrence-exposure transition

rates were estimated for both the treatment and the con-

trol groups, i.e., the number of transitions divided by
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Fig. 1 State space of the reversible illness-death model for the liver cirrhosis example: low prothrombin index value, normal prothrombin index

value, dead

exposure measured in days. Transition rates were col-

lected in a matrix B, which was transformed into tran-

sition probabilities P through (Im − 1/2B) (Im + 1/2B)−1

[37]. Using these transition probabilities, the expected

number of episodes of normal functioning and the

expected length of episodes of normal functioning were

calculated using the approach presented in this paper.

In addition, the following quantities were estimated: the

expected time with low functioning, the expected time

with normal functioning, and the (partial) life expectancy.

All of the calculations covered a 10-year period and were,

for simplicity, based on the assumption that daily tran-

sition probabilities do not change over time or with age.

Low functioning was the starting state. This means, for

instance, that life expectancy for the control group shows

the (partial) life expectancy for the next 10 years, given

that liver functioning was abnormal. To calculate confi-

dence intervals, the block bootstrap was used. Resampling

proceeded at the level of patients, i.e., either all or none

of the exposures and transitions of an individual was

included in a bootstrap sample. 95% confidence intervals

were based on the corresponding percentiles of the boot-

strap distribution of the parameters resulting from 1000

bootstrap samples.

Results The results are shown in Table 1. In line with

well-known findings from the literature, we can see that

the remaining life expectancy of the control and the treat-

ment groups did not differ and that prednisone did not

seem to prolong survival [21, 35]. But prednisone is shown

to have affected how the patients’ remaining lifetime was

spent: members of the treatment group spent an average

of 3.7 years, or 62% of their remaining life expectancy, with

normal liver functioning, compared to only 3.1 years, or

52% of remaining life expectancy, for the control group.

Interestingly, taking prednisone was not found to increase

the number of transitions from low to normal functioning:

on average, members of the treatment group recovered

from phases of low functioning as often as members of

the placebo group. The increased lifetime with normal

liver functioning found for the treatment group seems to

have been solely due to longer episodes of normal func-

tioning, conditional on having experienced such episodes.

This result implies that prednisone neither prolonged sur-

vival nor increased the chances of recovery, but prevented

relapse and helpedmaintain normal liver functioning after

recovery, at least as measured through the surrogate out-

come of the prothrombin index.

Case study 2: Physical frailty and disability in activities of

daily living

Background In the context of population aging, disabili-

ties in activities of daily living (ADL) have been identified

as a growing public health concern and have been inten-

sively studied [38, 39]. Recovery from disability is not

uncommon. Thus, individuals often experience multiple

episodes of disability [40]. Based on the strong evidence

that physical frailty is a major driver of disability [41], we

Table 1 Results on partial durations in states for case study 1 on

liver cirrhosis and prednisone treatment

Control Treatment

Remaining life expectancy (years) 5.9 5.9

95% confidence interval [5.6, 6.3][5.5, 6.3]

Expected time low functioning (years) 2.8 2.2

95% confidence interval [2.6, 3.0][2.0, 2.5]

Expected time normal functioning (years) 3.1 3.7

95% confidence interval [2.8, 3.4][3.4, 4.0]

Expected number of episodes (normal functioning) 0.8 0.8

95% confidence interval [0.7, 0.9][0.7, 0.9]

Expected length of episodes (normal functioning, years)3.9 4.5

95% confidence interval [3.6, 4.2][4.3, 4.8]
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can expect that frail individuals will experience more and

longer episodes of disability than nonfrail individuals.

Study population Our second case study uses the results

of an analysis by Hardy et al. of data collected in New

Haven, CT, USA, from 1998 to 2004 [15]. The dataset cap-

tures the disability status of 754 study participants aged 70

and older, with a median follow-up period of 60 months.

The participants’ disability levels were assessed during

monthly telephone interviews, in which they were asked

about their levels of independent functioning in four

activities of daily living: bathing, dressing, walking, and

transferring. The participants’ physical frailty levels were

measured based on whether their rapid gait test score was

higher than 10 s. Each individual’s disability status was

assessed at baseline and then every 18 months.

Model Hardy et al. distinguished between four states,

shown in Fig. 2: “no disability,” “mild disability,” “severe

disability,” and the absorbing state “dead” [15]. The par-

ticipants were classified as having mild disability if they

were disabled in one or two ADLs, and they were clas-

sified as having severe disability if they were disabled

in three or four ADLs. Hardy et al. published counts of

transition events and exposures, which allow for the cal-

culation of monthly transition rates between the states.

The transition rates were transformed into monthly tran-

sition probabilities, as described for the first case study.

These transition probabilities were used to calculate the

expected time spent in each state, the expected num-

ber of episodes of disability, and the expected episode

length. For the number of episodes, we counted the tran-

sitions to disability, i.e., we counted both the transitions

to mild or severe disability from the no disability state.

All of these measures were calculated over a period of

60 months (i.e., the median follow-up period) and differ-

entiated between frail and nonfrail states. For this case

study, the block bootstrap cannot be applied, as it requires

patient-level data and information on individual trajecto-

ries, while we only have access to the aggregated transition

rates. Because of this, we refrain from resampling and do

not report confidence intervals or standard errors.

Results Table 2 shows the results for the expected time

in each of the states, the expected number of disability

episodes, and the average length of disability episodes.

All of these results are conditional on starting in the no

disability state at the beginning of the 60-month period

under consideration. This means, for instance, that a non-

frail and non-disabled older individual over a period of

60 months can expect to spend roughly 53 months, or

89% of the period under consideration, in the no disabil-

ity state. For a frail individual, on the other hand, only

36 months, or 60% of the period under consideration,

were lived without disability. When we added together

the time spent in mild and severe disability, we found

that frail individuals spent a considerably longer average

period time in disability (13.6 months) than nonfrail indi-

viduals (2.2 months). This difference was partly driven by

the expected number of disability episodes experienced

during the 60-month period. On average, frail individu-

als experienced three times as many episodes of disability

as nonfrail individuals. In addition, the disability episodes

Fig. 2 State space of the model of Hardy et al. [15]
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Table 2 Results on partial durations in states for case study 2

based on transition rates taken from [15]

Nonfrail Frail

Expected time non-disabled (months) 53.4 36.2

Expected time mild disability (months) 1.8 9.5

Expected time severe disability (months) 0.4 4.0

Expected number of disability episodes 0.7 2.2

Expected length of disability episodes 3.1 6.2

were twice as long for frail than for nonfrail older individ-

uals.

Discussion
The two empirical case studies presented here high-

light the usefulness of assessing the expected number

and length of episodes. The first case study found that

prednisone treatment neither prolonged survival nor

increased the probability of recovery, but that it reduced

the likelihood of relapse and extended episodes of nor-

mal liver functioning, thus showing its efficacy compared

to a placebo treatment. The second case study showed

that there were considerable differences in both the num-

ber and the length of disability episodes between frail

and nonfrail elderly individuals. Both examples show that

the new perspective presented in this paper is helpful in

unraveling the dynamics of the modeled process and that

it allows for a detailed assessment of differences between

groups. The results of our approach could also be used

to enrich analyses of cost effectiveness of a given treat-

ment like prednisone by, for instance, assessing the costs

of increasing the number of episodes in good health.

While our analyses show the usefulness of the method

discussed in this paper, they servemostly as examples, and

their validity might be somewhat limited by, for instance,

not controlling for important stratifying variables. The

second example might also suffer from its reliance on

monthly transition data, which could be too coarse to give

reliable estimates of the number of episodes [42]. While

the use of such data might also affect estimates of the

expected time spent in a state [43], there is evidence that

for many applications, the estimation of the time spent

in a state is relatively insensitive to the time unit used

[44]. Thus, calculating the number and length of episodes

might require additional care.

More generally, for the approach presented in this paper

to yield valid results, valid estimates of transition probabil-

ities are required, and theMarkov chainmust be an appro-

priate representation of the process that is being modeled.

The assumptions about, for example, theMarkov property

or the homogeneity of the Markov chain, must accurately

reflect this process. While many potential issues associ-

ated with Markov process modeling have been tackled in

the literature, and can often be addressed when estimat-

ing transition rates or probabilities, our method does not

account for these issues specifically [11, 45–47]. Our sim-

ulation results presented in the supplementary materials

show that in case of correlated longitudinal data variance

estimates can be improved by using a block bootstrap.

Not taking into account the correlation structure can

lead to substantially overestimating the sampling variance,

although its data demands are higher than for simpler

bootstrap methods. Irrespective of the bootstrap vari-

ant, resampling yields rather unreliable results for small

samples, though.

Our approach can be applied to arbitrary complex

state spaces. This feature could, for instance, be use-

ful when transition probabilities are age-dependent (or

time-dependent). In such a case, the state space could be

expanded to include age: e.g., “aged 50 and non-disabled,”

“aged 51 and non-disabled,” and so on. In this case, the

values in the matrix of rewards R that relate to transitions

from “non-disabled” to “disabled” are set to 1, e.g., for the

transition from “aged 50 and non-disabled” to “aged 51

and disabled”. Furthermore, our method can be applied

not only to cases in which the number and length of

episodes are themselves of interest, but also to the assess-

ment of the fit of the model: in cases in which a Markov

approach is used and a priori knowledge about the process

and the number of episodes is available, the results can be

compared to the predictions of the model.

Conclusions
In this paper, we built on previous work by van Daalen and

Caswell and presented a method based on Markov chains

with rewards that can be used to calculate the expected

number and length of episodes in a state for a discrete-

time, finite-state Markov chain [19]. Variance estimation

can proceed using the block bootstrap. To illustrate how

easily this approach can be applied, we presented two case

studies: an illness-death model of liver functioning with-

out recovery, and a more complex model of disability. In

both cases, our approach yielded insights into the mod-

eled process that went beyond the results that could be

obtained using standard tools for Markov chains.

Supplementary information
Supplementary information accompanies this paper at

https://doi.org/10.1186/s12963-020-00217-0.

Additional file 1: This file contains a proof of Eq. (4), a description of the

simulations we conducted to assess the performance of the bootstrap

approaches, and the results of the simulations.

Additional file 2: We provide twelve files of R code which allow to

replicate our examples and simulations, and an additional file containing a

brief description of the individual files of code.

https://doi.org/10.1186/s12963-020-00217-0


Dudel and Myrskylä Population HealthMetrics           (2020) 18:15 Page 8 of 9

Abbreviations

ADL: Activities of daily living

Acknowledgements

CD and MM thank Hal Caswell, who introduced them to Markov chains with

rewards. Maarten Bijlsma provided comments on an earlier version of this

manuscript. All errors remain our own.

Authors’ contributions

CD and MM initiated the study and defined the questions. CD adapted the

mathematical model to the applications studied in this paper and obtained

and analyzed the data. CD and MM wrote and revised the manuscript. Both

authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data andmaterials

All R code needed to replicate the results is available in supplementary files.

The data of the first case study is available as part of the R package mstate

which is available via CRAN: https://cran.r-project.org/web/packages/mstate/

index.html. The data of the second case study was directly taken from a table

given in the paper by Hardy and colleagues [15] and is reproduced in our R

code.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1Laboratory of Population Health, Max Planck Institute for Demographic

Research, Konrad-Zuse-Str. 1, 18057 Rostock, Germany. 2Department of Social

Policy, London School of Economics and Political Science, London, UK.
3Population Research Unit, University of Helsinki, Helsinki, Finland.

Received: 21 August 2018 Accepted: 9 July 2020

References

1. Briggs A, Sculpher M. An introduction to Markov modelling for economic

evaluation. PharmacoEconomics. 1998;13:397–409.

2. Kemeny JG, Snell JL. Finite Markov chains. New York: Springer; 1971.

3. Iosifescu M. Finite Markov processes and their applications. Mineola, NY:

Dover; 1980.

4. Taylor HM, Karlin S. An introduction to stochastic modeling. Boston:

Academic Press; 1984.

5. Robine J-M, Ritchie K. Healthy life expectancy: evaluation of global

indicator of change in population health. Br Med J. 1991;302:457–60.

6. Rogers A, Rogers RG, Branch LG. A multistate analysis of active life

expectancy. Public Health Rep. 1989;104(3):222–6.

7. Ferrucci L, Izmirlian G, Leveille S, Phillips CL, Corti M-C, Brock DB,

Guralnik JM. Smoking, physical activity, and active life expectancy. Am J

Epidemiol. 1999;149(7):645–53.

8. Majer IM, Nusselder WJ, Mackenbach JP, Kunst AE. Socioeconomic

inequalities in life and health expectancies around official retirement age

in 10 Western-European countries. J Epidemiol Community Health.

2011;65:972–9.

9. Peeters A, Mamun AA, Willekens F, Bonneux L. A cardiovascular life

history. A life course analysis of the original Framingham Heart Study

cohort. Eur Heart J. 2002;23:458–66.

10. Xie H, Chaussalet TJ, Millard PJ. A continuous time Markov model for the

length of stay of elderly people in institutional long-term care. J R Stat Soc

Ser A. 2005;168:51–61.

11. Van Den Hout A, Matthews FE. Estimating stroke-free and total life

expectancy in the presence of non-ignorable missing values. J R Stat Soc

Ser A. 2009;173(2):331–49.

12. Zimmer Z, Rubin S. Life expectancy with and without pain in the US,

elderly population. J Gerontol A. 2016;71(9):1171–6.

13. Nusselder WJ, Peeters A. Successful aging: measuring the years lived with

functional loss. J Epidemiol Community Health. 2006;60:448–55.

14. Stiefel MC, Perla RJ, Zell BL. A healthy bottom line: healthy life

expectancy as an outcome measure for health improvement efforts.

Milbank Q. 2010;88(1):30–53.

15. Hardy SE, Dubin JA, Holford TR, Gill TM. Transitions between states of

disability and independence among older persons. Am J Epidemiol.

2005;161(6):575–84.

16. Gill TM, Gahbauer EA, Allore HG, Han L. Transitions between frailty states

among community-living older persons. Ann Intern Med. 2006;166:

418–23.

17. Laditka SB, Wolf DA. New methods for analyzing active life expectancy. J

Aging Health. 1998;10:214–41.

18. Minin VN, Suchard MA. Counting labeled transitions in continuous-time

Markov models of evolution. J Math Biol. 2008;56:391–412.

19. van Daalen S, Caswell H. Lifetime reproduction and the second

demographic transition: stochasticity and individual variation. Demogr

Res. 2015;33:561–88.

20. Caswell H, Zarulli V. Matrix methods in health demography: a new

approach to the stochastic analysis of healthy longevity and DALYs. Popul

Health Metrics. 2018;16:8.

21. Andersen PK, Borgan Ø, Gill RD, Keiding N. Statistical models based on

counting processes, 2nd edn. New York: Springer; 1993.

22. Howard RA. Dynamic programming and Markov processes. Cambridge,

MA: MIT Press; 1964.

23. Caswell H. Beyond R0: demographic models for variability of lifetime

reproductive output. PLoS ONE. 2011;6(6):e20809.

24. Van Daalen S, Caswell H. Lifetime reproductive output: individual

stochasticity, variance, and sensitivity analysis. Theor Ecol. 2017;10:355–74.

25. Anderson TW, Goodman LA. Statistical inference about Markov chains.

Ann Math Stat. 1957;28:89–110.

26. Kulperger RJ, Rao BLSP. Bootstrapping a finite state Markov chain. Sankyā:
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