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Abstract
Climate projections are uncertain; this uncertainty is costly and impedes progress on climate
policy. This uncertainty is primarily parametric (what numbers do we plug into our equations?),
structural (what equations do we use in the first place?), and due to internal variability (natural
variability intrinsic to the climate system). The former and latter are straightforward to
characterise in principle, though may be computationally intensive for complex climate models.
The second is more challenging to characterise and is therefore often ignored. We developed a
Bayesian approach to quantify structural uncertainty in climate projections, using the idealised
energy-balance model representations of climate physics that underpin many economists’
integrated assessment models (IAMs) (and therefore their policy recommendations). We define a
model selection parameter, which switches on one of a suite of proposed climate nonlinearities and
multidecadal climate feedbacks. We find that a model with a temperature-dependent climate
feedback is most consistent with global mean surface temperature observations, but that the sign of
the temperature-dependence is opposite of what Earth system models suggest. This difference of
sign is likely due to the assumption tha the recent pattern effect can be represented as a
temperature dependence. Moreover, models other than the most likely one contain a majority of
the posterior probability, indicating that structural uncertainty is important for climate
projections. Indeed, in projections using shared socioeconomic pathways similar to current
emissions reductions targets, structural uncertainty dwarfs parametric uncertainty in temperature.
Consequently, structural uncertainty dominates overall non-socioeconomic uncertainty
in economic projections of climate change damages, as estimated from a simple
temperature-to-damages calculation. These results indicate that considering structural
uncertainty is crucial for IAMs in particular, and for climate projections in general.

1. Introduction

Anthropogenic emissions increase the concentration
of greenhouse gases in the atmosphere, resulting
in radiative forcing F (Wm−2) on the Earth sys-
tem. The response of Earth’s global mean surface
temperature T (◦C, defined as an anomaly from a

preindustrial baseline) to this forcing has been highly
uncertain [1, 2] and will likely continue to be so.
This uncertainty hampers the design and implement-
ation of appropriate climate planning and policies,
which costs on the order of trillions of dollars [3].
A core objective of modern Earth system research is
thus to improve climate change projections. Earth’s
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climate system is extraordinarily complex and mulit-
faceted, meaning there are myriad sources of uncer-
tainty. On the one hand, very complex Earth sys-
tem models (ESMs), which attempt to represent as
many of these processes as possible, are too com-
putationally expensive to gauge how uncertainties
propagate into uncertainty in T or other proper-
ties of interest. Thus the Intergovernmental Panel
on Climate Change largely relies upon a heuristic
characterisation of uncertainties [2]. On the other
hand, simpler models of climate physics, such as the
energy balancemodels (EBMs) used within the integ-
rated assessmentmodels (IAMs) of economists [4], or
efficient reduced-complexity ESMs [5], can produce
large ensembles of simulations, intended to charac-
terise the uncertainty of the climate’s response to
a particular forcing or emissions trajectory. While
ESMs are typically the core tool for of climate sci-
ence projections such as in [2], EBMs are used to
emulate ESMs, to explore alternative scenarios, assess
parametric uncertainty and the economic impacts of
internal variability, constrain with observations, and
to represent climate physics within climate econom-
ics; thus both model frameworks are fundamentally
important in guiding climate policy.

Large ensembles of climate model simulations
tend to quantify parametric uncertainty—uncertainty
of the model response to emissions associated
with the numerical values of parameters used in
these models [5]—and uncertainty due to internal
variability—the natural variability intrinsic the cli-
mate system [6]. Another type of uncertainty, which
is rarely quantified because it is more difficult to
do so, is structural uncertainty—uncertainty of the
model response to emissions associated with not
being certain what equations to use for these mod-
els in the first place. Models along the entire axis
of complexity are subject to structural uncertainty
for different reasons; ESMs have many equations,
some of which are derived from first principles and
thus known with certainty but many of which are
not, while Earth’s climate is represented by simpler
sets of equations in EBMs and IAMs, which thus
may be less adequate for representing complex Earth
system processes. Therefore, structural uncertainty
may increase or decrease with model complexity,
and may either dwarf or be negligible compared to
parametric uncertainty and/or internal variability;
this is unknown because of the lack of quantitative
characterisation of structural uncertainty in climate
models across the full axis of complexity. Structural
uncertainty is heuristically and qualitatively captured
by model intercomparisons such as CMIP [7], but
these are necessarily qualitative and coarse character-
isations of structural uncertainty. While quantifying
structural uncertainty for ESMs is no less challenging
due to computational limitations, EBMs and IAMs
for which structural uncertainty has been neglected
do not suffer this limitation.

We note that in a climate modelling context
uncertainty is sometimes grouped into forcing uncer-
tainty, model response uncertainty, and internal vari-
ability [8, 9], but that from a general uncertainty
quantification perspective as we adopt here, both for-
cing and model response uncertainty involve both
parameteric and structural uncertainty components.
In other words, uncertainties are involved in both the
parameters and equations that one uses to represent
both the forcing on, and response of, the climate sys-
tem. Furthermore, we note that internal variability
emerges naturally from the interactions of different
components of complex climate models, but can also
be included in simple EBMs via stochastic terms; as
the impact of internal variability on climate and eco-
nomic projections in EBMs has been quantified else-
where [10], here we focus on structural uncertainty.

Here we present a means to quantify struc-
tural uncertainty in a simple EBM used by several
IAMs, though our approach is generalisable to cli-
mate models with additional complexity. We show
that structural uncertainty is much larger than para-
metric uncertainty for projections of T, and con-
sequently for calculations of damages due to cli-
mate change. (We note that economic models have
additional uncertainties; here we are only interested
in how physical uncertainty propagates into uncer-
tainty in economic calculations.) This dominance
of structural uncertainty occurs despite a particu-
lar model structure being the most consistent with
observations. These results underscore that physical
structural uncertainty is substantial in climate eco-
nomics calculations, and in climate projections in
general. They also imply that reported uncertain-
ties of such projections may be appreciably under-
estimated, as is often the case with complex physical
phenomena [11].

2. Materials andmethods

Note that an extended description of the methods
is given in the supplemental material (SM). We are
interested in making projections of Earth’s global
mean surface temperature T due to radiative forcing
F resulting from greenhouse gases, aerosols, ozone
precursors, land use change, and other anthropo-
genic influences. A computational Bayesian approach
to this problem essentially (1) specifies a model that
represents this process, (2) specifies prior distribu-
tions for the parameters of this model, (3) draws
samples from these priors, (4) computes the relative
likelihood of these draws according to how well or
poorly they correspond to observations of this pro-
cess, (5) weighs these samples according to this like-
lihood, and (6) uses this weighted ensemble (i.e. the
posterior distribution) of samples to project into the
future probabilistically. The model that we start from
is the standard linear EBM used in IAMs like The
Climate Framework for Uncertainty, Negotiation and
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Distribution, and Policy Analysis for the Greenhouse
Effect [4]:

cṪ= F−λT

where in our implementation of this equation c is the
heat capacity of the surface layer represented by the
temperature anomaly T, the dot represents the first
time derivative, and λ is the climate feedback para-
meter. Here, the λ parameter includes both upwards
and downwards energy fluxes out of the layer towhich
T corresponds (see SM), which is more commonly
referred to as the climate resistance (given the sym-
bol ρ and is equal to the sum of the climate feed-
back λ and the ocean heat uptake efficiency κ) in
the climate physics literature e.g. [12]. However, we
retain the symbol λ and terminology of climate feed-
back to be consistent with the economics literature
(but see description of priors in the SM). Note this
also changes the interpretation of feedback depend-
ence somewhat in the λT and λF cases below.

We then use this model, a multidecadal feedback
λs [13], or one of four Taylor-expansion-based non-
linearities (a F-/T-dependent c/λ) [14] depending on
the value of a model selection parameter µ. Formally
this is written

c(1+ ν1µ=2T+ ν1µ=3F) Ṫ

= F+λ(1+ ν1µ=4T+ ν1µ=5F)T

+1µ=6λs

ˆ 0

−∞

1

τ
T(t ′)et

′/τ dt ′ (1)

where ν is the amplitude of the nonlinearity selected
by µ, and 1 is an indicator function. Different values
of µ correspond to the following ‘sub-models:’

• cṪ= F−λT (linear)
• c(1+ cTT)Ṫ= F−λT (T-dep. heat capacity)
• c(1+ cFF)Ṫ= F−λT (F-dep. heat capacity)
• cṪ= F−λ(1+λTT)T (T-dependent feedback)
• cṪ= F−λ(1+λFF)T (F-dep. feedback)

• cṪ= F−λT−λs

´ 0
−∞

1
τ T(t

′)et
′/τ dt ′ (slow feed-

back).

We also explored additional model structures and
dropped them because they were excluded by our
analysis, either because they ultimately held negli-
gible posterior mass or because their correspond-
ing parameters were constrained to be small enough
that they reduced to other model types included
in the above equation (see SM). Prior distribu-
tions for each of these parameters are then spe-
cified based on knowledge from fundamental physical
principles, ESMs, similar Bayesian climate model-
ling approaches, observational products other than
the one used to construct the likelihood function,
and to construct the problem in a fashion well-
suited to answering the scientific question at hand.

Prior choices are described in detail in the SM. Most
notably, with respect to the last of these, we specify
a uniform prior for µ so that all six model formula-
tions (linear,λT,F, cT,F, andλs) are initially considered
equally plausible. Note that one may also think of
this equivalently as each model described in the SM,
where µ is set to a particular integer value and all, or
all but one, of the terms multiplied by the indicator
function in the equation above is thereby cancelled
out, is fit to the observations separately. Then, the
grand ensemble is built from a combination of each
individualmodel ensemble, weighted by its respective
posterior.

We then draw many samples from these priors
and from an ensemble of radiative forcing time series
[2, 15] to generate many model temperature time
series, and evaluate how well each time series cap-
tures the observed time series [16] from 1850–2020
to assign each sample a likelihood. We then force this
ensemble with future projections of radiative forcing
under different emissions scenarios [17] to gener-
ate probabilistic projections. We then use the damage
function and discount rate of 4.255% from [10] (cor-
responding to a 1.5% pure rate of time preference, a
global growth rate of 1.9%, and an elasticity of the
marginal utility of consumption of 1.45) to translate
these temperature projections into economic dam-
ages due to climate change. To test for sensitivity to
these assumptions we also use the 2.955% ‘patient’
discount rate from [10], substituting a pure rate of
time preference of 0.1%, and/or alternative damage
functions from [18, 19], the latter with and without
considering changes to economic productivity.

When restricting to the ensembles for individual
µ values, these projections capture parametric uncer-
tainty for eachmodel structure. The remaining spread
in the projections across all µ values is then due to
structural uncertainty. We define a simple metric for
the importance of structural uncertainty:

u(X) =
IQR(X)

IQRp(X)
− 1

where IQR(X) is the interquartile range of the multi-
model projection of the quantity X (e.g. T in 2100, or
total damages due to climate change), and IQRp(X)
is the interquartile range of the projection of X by
the preferred model structure, i.e. the one with the
highest posterior µ mass. If u(X) is close to zero,
then either the preferredmodel structure holds nearly
all of the posterior probability, or the differences
between model structures do not make an appre-
ciable difference to the projection. If u> 1, however,
then the uncertainty in X due to uncertainty in the
model structure is greater than that due to the uncer-
tainty in the preferred model’s parameters (because
the structural-plus-parametric uncertainty is more
than double the parametric uncertainty).
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3. Results and discussion

Figure 1 shows the posterior for µ and the posteri-
ors of the associated nonlinear parameters resulting
from the analysis above. The temperature-dependent
feedbackmodel (i.e.µ= 4) hasmore probabilitymass
than the other models, with p(µ= 4) = 0.45. Inter-
estingly, the sign of λT (or equivalently ν condi-
tional on µ= 4) is well-constrained as positive, i.e.
p(ν > 0|µ= 4) = 0.98. This is a dampening nonlin-
earity, i.e. the warmer the Earth gets, more radiat-
ive forcing is required to warm it, or equivalently the
lower its climate sensitivity, which is the opposite of
what is typically seen in ESMs [14]. This dampen-
ing nonlinearity is likely due to a pattern effect, as
warming in recent decades has been more focused
in regions of tropical convection [20], where warm-
ing is more efficient at countering radiative forcing
[21, 22]. Note that this pattern effect is likely to be
a robust feature of the climate system; while ESMs
currently struggle to reproduce the full amplitude of
the observed pattern effect, the existence of a pattern
effect analogous to observations is a robust feature of
ESMs [13]. Given that this shift is unlikely to con-
tinue as warming continues [23], the temperature-
dependent feedback model may be underestimating
future warming. As both the magnitude and rate of
change in warming are increasing over time, while
the model expresses the magnitude of climate feed-
back as dependent on the magnitude of warming, the
sign of the posterior for λT may also reflect any pro-
cess that causes a lag in climate feedback response
that is dependent on the rate of change in warm-
ing. Either option could be due to a delayed change
in the pattern of surface warming. Further analysis
accounting for spatial variations is needed to dis-
tinguish between transient pattern effects and ongo-
ing temperature dependence [24]. The methods pro-
posed in this work would be of significant value in
achieving more robust assessments of the structural
uncertainty associated with these effects.

Other posteriors are relatively informative; the
posteriors for the other nonlinear terms are not
sign-definite, while the posteriors for c, τ , and λs

closely resemble their priors. One exception is that
the lower-than-average time series of F are excluded
from the posterior; >99% of posterior probability
is concentrated in ensemble members with an aver-
age of >2.1Wm−2 over 1990–2020 (see figure S1 in
SM), corresponding to greater than the 64th percent-
ile of the F time series ensemble (i.e. prior). This is
in agreement with the finding in [5] that the most
negative prior aerosol forcing values were excluded
from the posterior (figure 3 therein). Additionally,
λ is fairly well-constrained to be on the upper end
of its prior for models without a nonlinear feedback
term, or close to the modal value for λ for those
with a nonlinear feedback term (µ= 4 or 5; see figure
S2 in SM). These together suggest that the historical

Figure 1. Top: posterior mass for the model selection
parameter µ. Non-λT refers to all models other than the
temperature-dependent feedback model. Bottom: posterior
density for the nonlinear term ν in the four models with
such a term.

T observations are more consistent with a high-
radiative forcing and corresponding high-feedback
parameter set.

Despite there being a clear preferred model struc-
ture, 55% of the posterior mass is in the remain-
ing models, i.e. p(µ ̸= 4) = 0.55. This strongly indic-
ates an important role for structural uncertainty,
especially given that the priors for the nonlinear
terms in figure 1 are fairly broad, which is also
the case for λs. Figure 2 shows that indeed struc-
tural uncertainty is dominant for temperature projec-
tions under shared socioeconomic pathway SSP4-6.0;
in this case u(T(2100)) = 2.0 and u(T(2300)) = 2.7,
indicating that structural uncertainty is far lar-
ger than parametric uncertainty (u is our metric
for the importance of structural uncertainty; see
Materials and methods). This is even more pro-
nounced for SSP3-7.0 (see figure S3 in SM), where
u(T(2100)) = 2.3 and u(T(2300)) = 4.1. The multi-
model median projection is also higher than the
preferred-model-only projection; our focus here is on
the uncertainty, however, especially given the discus-
sion of the pattern effect above.

The primacy of structural uncertainty in temper-
ature projections propagates into economic damages
resulting from climate change as well. Figure 3 shows
the interquartile range of damage calculations using
the approach and default assumptions from [10] for
SSP4-6.0 and SSP3-7.0. These assumptions include
the damage function from Weitzman [25] and a dis-
count rate of 4.255%, corresponding to a 1.5% pure
rate of time preference, a global growth rate of 1.9%,
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Figure 2. Projection of global mean surface temperature
anomaly under the shared socioeconomic pathway
SSP4-6.0. Lines denote the median projection of each
model and of the multi-model ensemble. Purple (grey)
shading denotes the interquartile range of projections for
the temperature-dependent feedback model (multi-model
ensemble).

and an elasticity of the marginal utility of consump-
tion of 1.45. In both cases, the dominance of struc-
tural uncertainty is even more pronounced than in
temperature; u for damages is 2.9 for SSP4-6.0, and
4.6 for SSP3-7.0. The importance of structural uncer-
tainty holds for other discount rates and damage
function assumptions; the bottom panel of figure 3
shows that the ‘patient’ discount rate of 2.955% from
[10], corresponding to a pure rate of time prefer-
ence of 0.1% rather than 1.5%, and/or alternate dam-
age functions from [18] or [19] (the latter with or
without changes to economic productivity) result in
u> 1, i.e. greater economic uncertainty due to phys-
ical structural uncertainty than physical parametric
uncertainty. However, the highest u values for dam-
ages occur for theWeitzman damage function used in
[10], as do the discrepancies between themulti-model
median and λT model median damages.

These results demonstrate the importance of
characterising structural uncertainty for physical and
economic projections of climate. While we have
focused on arguably the simplest representation of
climate physics, even this single-equation energy-
balance model is used in a variety of applications
for which structural uncertainty has real physical and
economic consequences. Our approach to charac-
terising structural uncertainty is equally applicable
to more complex representations of climate phys-
ics, such as the model used in [5]; if such a model
is computationally efficient enough to generate an
ensemble that captures parametric uncertainty, one
can also use model selection parameters for its differ-
ent components (e.g. a parameter choosing between
several representations of the ocean circulation) in
the same fashion. Doing so will be critical for robust
uncertainty characterisation of thesemodels. Even the

Figure 3. Top: median (squares) and interquartile range
(error bars) of damages projected under the socioeconomic
pathways SSP4-6.0 and SSP3-7.0 for the temperature-
dependent feedback model and the multi-model ensemble,
in trillions of 2019 USD. Damages are calculated over the
period 2020–2300, with the default 4.255% discount rate
and Weitzman damage function [25] from [10]. Bottom: u
(i.e. ratio of structural vs. parametric uncertainty) for
economic damages using different damage functions
(shape), shared socioeconomic pathways (color), and
discount rates (un/filled points), versus the corresponding
ratio of median multi-model versus λT model damage
estimates. u> 1 in all cases, as shown by the dashed black
line for u= 1.

most complex ESMs are subject to such structural
uncertainty—possibly evenmore so as they involve so
many parameterisations—though it is challenging to
quantify either parametric or structural uncertainty,
or the influence of internal variability, with such com-
putationally expensive models.

Reductions in structural uncertainty may be pos-
sible by incorporating known phenomena such as the
El Niño Southern Oscillation or the pattern effect
more explicitly than we have done here, or lever-
aging other observations such as that of ocean heat
content [26]. However, not accounting for temperat-
ure fluctuations due to climate oscillations can lead
to overfitting, i.e. overconfidence in the ‘preferred’
model structure, because stochastic interannual and
decadal natural climate variability unduly influences
the inference of parameters like λ; the same goes for
neglecting autocorrelation of residuals because the
information content in a time-series is overestim-
ated. Similarly, paleorecords provide a wider dynamic
range of radiative forcing and temperature than the
observational record, suggesting an opportunity to
constrain structural uncertainty further. However,
these temperature and radiative forcing changes are
being continuously revised for even the most recent
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period used for such purposes, the Last Glacial Max-
imum [27]. Scientists tend to substantially underes-
timate uncertainty in these contexts [11] and model
selection is very sensitive to such changes and what
paleo-periods are considered (figures S4–S7). Paleo-
observations either need to be used with a sub-
stantially inflated uncertainty and/or with extreme
caution.We have also only considered a single nonlin-
ear term at a time; it may also be fruitful to consider
mixtures or combinations of these nonlinearities, or a
nonlinear term that accounts for the pattern effect by
having a λ term that first increases and then corres-
pondingly decreases. In any case, we have shown here
that structural uncertainty plays an important role
in reduced complexity climate models’ total uncer-
tainty, which must be accounted for in their physical
projections, and especially in the socioeconomic pro-
jections that use such simple representations of cli-
mate physics.
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