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Abstract

Style transfer is a central problem of machine learning with numerous successful
applications. In this work, we present a novel style transfer framework building
upon infinite task learning and vector-valued reproducing kernel Hilbert spaces.
We consider style transfer as a functional output regression task where the goal
is to transform the input objects to a continuum of styles. The learnt mapping is
governed by the choice of two kernels, one on the object space and one on the style
space, providing flexibility to the approach. We instantiate the idea in emotion
transfer where facial landmarks play the role of objects and styles correspond to
emotions. The proposed approach provides a principled way to gain explicit control
over the continuous style space, allowing to transform landmarks to emotions not
seen during the training phase. We demonstrate the efficiency of the technique on
popular facial emotion benchmarks, achieving low reconstruction cost.

1 Introduction

Recent years have witnessed an increasing attention around style transfer problems [21, 67, 27] in
machine learning. In a nutshell, style transfer refers to the transformation of an object according to a
target style. It has found numerous applications in computer vision [62, 11, 47, 68], natural language
processing [20] as well as audio signal processing [25] where objects at hand are contents in which
style is inherently part of their perception. In computer graphics, need for efficiently animating digital
characters and avatars has led to several approaches for automatic style transfer on body motion
capture sequences [3, 1]. Style transfer is one of the key components of data augmentation [43] as a
means to artificially generate meaningful additional data for the training of deep neural networks.
Besides, it has also been shown to be useful for counterbalancing bias in data by producing stylized
contents with a well-chosen style (see for instance [22]) in image recognition. More broadly, style
transfer fits into the wide paradigm of parametric modeling, where a system, a process or a signal can
be controlled by its parameter value. Adopting this perspective, style transfer-like applications can
also be found in digital twinning [60, 5, 35], a field of growing interest in health and industry.

This work introduces a novel principled framework for style transfer with the aim of transforming
an input object to a continuum of styles. The framework is exemplified in the context of emotion
transfer. Given a set of emotions, the general task of emotion transfer refers to transforming the
representation of objects such as faces [11], hands [26], body movement [3] efc. according to these
target emotions. Object representations typically include 2D images, 3D meshes, body skeletons,
motion capture sequences. To highlight the relevance of our approach, we choose to instantiate it
on emotion transfer for faces and to use facial landmark locations as the object representations and
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emotions as the style. Landmarks [28] have proven to be a useful, interpretable low-dimensional
representation for capturing face expressions and dynamics in various applications such as facial
identification [39], expression analysis [14] and medical diagnosis [4]. They provide objects of
reasonable complexity (less than a hundred pairs of 2D coordinates for a single face) to demonstrate
the strength of our approach. To our best knowledge, this is a novel task with no existing studies.
Nevertheless, we briefly discuss below recent works from the related problem of emotion transfer on
facial images and discuss some of their shortcomings.

Pioneering works in emotion transfer for faces include that of Blanz and Vetter [6] who proposed a
morphable 3D face model whose parameters could be modified for facial attribute editing. Susskind
et al. [58] designed a deep belief net for facial expression generation using action unit (AU) anno-
tations. More recently, extensions of generative adversarial networks (GANs, [24]) have proven
to be particularly powerful for tackling image-to-image translation problems [70]. Several works
have addressed emotion transfer for facial images by conditioning GANs on a variety of guiding
information ranging from discrete emotion labels to photos and videos. In particular, StarGAN [11] is
conditioned on discrete expression labels for face synthesis. ExprGAN [15] proposes synthesis with
the ability to control expression intensity through a controller module conditioned on discrete labels.
TAAN [66] trains two GANS to generate more realistic face images and allow mixing and control of
discrete emotion intensities. Other GAN-based approaches make use of additional information such
as AU labels [46, 65], target landmarks [48], fiducial points [57] and photos/videos [23, 64].

While GANs have achieved high quality image synthesis, they come with some pitfalls: they are
particularly difficult to train and require large amounts of training data. While prior works only
synthesize outputs for a set of discrete labels or styles, we propose a framework to allow generation
by continuously varying style space parameters. Illustrated on facial emotion transfer, this novel
functional point of view translates into the following assumption: for a given person, the full range
of the emotional faces is modelled as a continuous function from emotions to faces. This view
exploits the geometry of the representation of emotions [50], assuming that one can pass a face
“continuously" from one emotion to another. We then propose to address the problem of emotion
transfer by learning a landmarks-to-function model able to predict for a given facial input image
represented by its landmarks [61], the continuous function that maps an emotion to the landmarks
transformed by this emotion.

This function-valued regression approach relies on a technique recently introduced by Brault et al. [§]
called infinite task learning (ITL). ITL enlarges the scope of multi-task learning [18, 19] by learning
to solve simultaneously a set of tasks parametrized by a continuous parameter. While strongly linked
to other parametric learning methods such the one proposed by Takeuchi et al. [59], the approach
differs from previous works by leveraging the use of operator-valued kernels and vector-valued
reproducing kernel Hilbert spaces (vv-RKHS; [45, 42, 9]). vv-RKHSs have proven to be relevant in
solving supervised learning tasks such as multiple quantile regression [S1] or unsupervised problems
like anomaly detection [55]. A common property of these works is that the output to be predicted is a
real-valued function of a real parameter.

To solve the style transfer problem, we present an extension of ITL, vector ITL (or shortly vITL)
which involves functional outputs with vectorial representation of the objects and the styles, showing
that the approach is easily controllable by the choice of appropriate kernels guaranteeing continuity
and smoothness. In particular, the functional point of view by the inherent regularization induced
by the kernel makes the approach suitable even for limited and partial observation. We demonstrate
the efficiency of the VITL approach in a series of numerical experiments in emotion transfer on two
popular facial benchmarks.

The paper is structured as follows. In Section 2 we formulate the proposed general style transfer
problem and exemplify it in the context of emotion transfer. The solution of the resulting vITL
approach is elaborated in Section 3. Numerical experiments conducted on two benchmarks of the
domain are presented in Section 4. Discussion and future work conclude the paper in Section 5.
Proofs of auxiliary lemmas, additional details regarding implementation and experiments are collected
in the appendices.



2 Problem Formulation

In this section we first present the general style transfer problem and then instantiate it in the context
of emotion transfer of facial landmarks. Our aim is to design a system capable of transferring styles:
having access to the representation of an object, our goal is to convert this object to a specified target
style. In other words, the system should implement a mapping of the form

(object, style) — object. @))
In order to capture this relation, we propose to learn a function h that takes the following form
h:X x © — X, or equivalently i : X — (0 — X), ()

where O is the style space and X is the object space. The learning takes place based on training
samples (z; ;, 69" Y ])ze[n] jes, where x; ; € X corresponds to an object with input style 0”1 €0,

¥i,; € X is the same object with output style 90“‘ € 0, and for each object i € [n] we have access

to |9;| style transition pairs {( 9‘1“] , 024) }je . To measure the quality of the reconstruction using a

function h, one can consider a loss £: X x X — R on the object space, and then formulate the task of
style transfer as the minimization of the cost function

predicted output object

/_/\ﬁ

5 2w 2 ()@ e @
i€[n] JES: mput m output

object  style object

The risk Rg(h) captures how well the function / reconstructs on average the output objects y; ; when
applied to the input objects x; ; with target output style 0‘2’3‘ The minimization is performed in a
hypothesis space JH whose elements i model a relation from the input space X to a functional output
space F : © — X as it appears in the second part of (2). If the object space X is a Hilbert space, one
can leverage vector-valued reproducing Hilbert spaces (vv-RKHSs, [45]) hypothesis classes to model
JF by using a suitable kernel on the style space ©. Moreover, having access to a kernel on the object
space X allows to define H as a vv-RKHS; this is the choice we make for F and J throughout the
manuscript. The motivation of working with vv-RKHSs is three-fold: (i) vv-RKHSs provide rich
function classes under mild conditions [10], (ii) they are capable of encoding output similarities in a
principled way independently whether the outputs are finite-dimensional or not, (iii) despite their
flexibility vv-RKHSs are computationally tractable. These are the points we detail in the sequel.

We now instantiate the style transfer problem in the specific case of emotion transfer for facial
landmarks. In order to tackle this task, one requires a representation of the emotions, and similarly
that of the faces. The classical categorical description of emotions deals with the classes ‘happy’,
‘sad’, ‘angry’, ‘surprised’, ‘disgusted’, ‘fearful’. The valence-arousal model [S0] embeds these
categories into the 2-dimensional Euclidean space. The resulting representation of the emotions are
points 6 € R?, each coordinate of these vectors encoding the valence (pleasure to displeasure) and
arousal (high to low) associated to the emotions. This is the emotion representation we use while
noting that there are alternative encodings in higher dimension (© C RP, p > 2; see for instance
[63]) to which the presented framework can be naturally adapted. Throughout this work faces are
represented by landmark points. Landmarks are specific locations pinpointed on the face, like the
corner of the eyes, that of the mouth, and so on. They have proven to be a useful representation in
facial recognition [69, 54, 53], 3D facial reconstruction [13] and sentiment analysis [56]. Tautkute
et al. [61] have shown that emotions can be accurately recognized by detecting changes in the
localization of the landmarks. Given M number of landmarks on the face, this means a description
x € X := R?M; let the corresponding dimension be denoted by d := 2M.

The resulting mapping (1) is illustrated in Fig. 1a: starting from a neutral face and the target emotion
happy one can traverse to the happy face; from the happy face, given the target emotion surprise one
can get to the surprised face.

The observations z; ;, y; ; in (3) can be interpreted as follows. Each person ¢ € [n] is captured by a
trajectory z; € F, where z;(6) € X describes the landmarks associated to the emotion 6 € ©. These
trajectories z; are observed at emotion transition pairs { (9;“], 0;";) }je g, giving rise to the landmark
representation of these emotions:

T 1= ZZ(QTJ), Yij = ZL(H?:];), 1€ [n],j €S;. 4)
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(a) Ilustration of emotion transfer.  (b) Example triplets (x; ;, 07", yi,;) for the single emotional (left) &

joint emotional (right) input settings.

Figure 1: Visual illustration of (a) emotion transfer and (b) our tasks.

In this context, the minimizer of (3) allows to predict the landmarks from face = and target emotion 6
as h(zx)(0). We focus on two specific cases of the problem family:

* Single emotional input: In this case, the input emotion is assumed to be identical and fixed for
each person (6p) and the same m number of output emotions are considered. Hence the input-output
emotion pairs used for learning take the form { (6o, 0; )}, cm)> and |Si| = m foralli € [n].

* Joint emotional input: Here, for each individual /m emotions are considered ({Hi,a}ae[m]), and the
input-output emotion pairs in learning are taken in all possible combinations as {(6; 4, 0 4)}

and |S;| = m? for all i € [n].

a,be[m]’

For a visual illustration of these tasks, see Fig. 1b. Throughout the manuscript we will use the
squared loss {(z,2') = ||z — o'||3.

3 Learning in vv-RKHSs

In this section, we propose a principled way to solve the task introduced in Section 2. As mentioned,
we leverage the flexible class of vector-valued reproducing kernel Hilbert spaces (vv-RKHS; [10]) for
both the functional output space F and the hypothesis class J{. The notion of vv-RKHS extends those
of RKHS, allowing to generalize kernel methods to vector-valued regression tasks. Instead of relying
on scalar-valued kernels, vv-RKHS are based on kernels whose values are operators on the output
space. As emphasized by the seminal work of Micchelli and Pontil [42], multi-task learning is the
most emblematic use of vv-RKHS when kernels are matrix-valued, allowing to cope with dependency
among a finite number of tasks. Similarly, learning within vv-RKHS has been shown to be relevant
for tackling function-valued regression [29, 31] when using kernels whose values are operators on
output functional space. The organization of the section is as follows: in Section 3.1 we introduce
formally vv-RKHSs and phrase the task as a regularized empirical risk minimization problem, before
delving into the numerical solution in Section 3.2.

3.1 Operator-valued Kernels and vv-RKHSs

We provide a short overview of vv-RKHSs, instantiated to our problem. First we focus on the
definition of F, the emotion-to-landmark function space that we choose as the vv-RKHS Hg
associated to a matrix-valued kernel G (§F := H¢). Next, we define the hypothesis space HH as the
vv-RKHS - associated to an operator-valued kernel K (JH := H ). The construction follows the
scheme:

h:X+— (0—X). 5)
ceF.=Hg
cH:=Hg



Definition 1. A matrix-valued kernel on © is a function G: © x © — L(R?) such that the following
two conditions hold: (i) G(0,0") = G(0',0)T forall (0,0") € ©72, (ii) > ijem) v G(0;,0;)v; >0
foralln € N*, (6;)icn] € O™, (vi)iepn) C R? where N* := {1,2,...} denotes the set of positive
integers, (-) 7 stands for transposition, and £L(R?) is the space of bounded linear operators on X (i.e.
the set of d X d-sized matrices).

Such kernels can be associated to functional spaces whose elements model the © — X relation. In
particular, any G satisfying Def. 1 gives rise to a unique Hilbert space of functions H¢, so-called
vector-valued RKHS associated to G: H¢g = Span {G(-,60)z : (,2) € © x R?}, where Span(-)
denotes the linear hull of its argument and the closure is taken with respect to the scalar product
induced by the positive quadratic form in Definition 1. While these objects can be fairly complex, a
simple and popular choice of kernel is given by the so-called separable kernels, which can be written
as

G(979/) = k@(evol)Av (6)
for a (scalar-valued) kernel kg : © x © — R and a symmetric, positive definite matrix A € R%*,

The choice of kernel G governs the inner product in the Hilbert space ¢, and thus the corresponding
norm which is often a key component of regularization. More precisely, smoothness (analytical
property) of an emotion-to-landmark output function f € I can be induced for instance by
choosing a Gaussian kernel kg (6,60') = exp (—7||0 — ¢||3) with v > 0. The matrix A is known to
capture inter-dependency between the output landmarks [2], and suitable choices of A can encode
prior knowledge about this. In particular, choosing A = I, corresponds to independent landmarks
coordinates. We use analogous tools for modeling the function & : X — H illustrated in (5).

Definition 2. An operator-valued kernel on X is a function K: X x X — L(Hqg) such
that the following two conditions hold: (i) K(z,2') = K(z',z)* for all (z,2") € X2 (ii)
Zi}je[n]<fi7K(xi7xj)f7‘>j{(; > 0 foralln € N* (2;)icin) € X", (fi)iem) € H, where (-)*
means the adjoint operator.

In this work, we choose K as a separable kernel with identity operator, defined as
K(z,2') = kx(z, 2")dg., (7)

where Idg(, is the identity operator on Hg and kx: X x X — R is a (scalar-valued) ker-
nel. Similarly to the matrix-valued case, the kernel K gives rise to a vwv-RKHS Hyx =
Span {K(-,z)f : (z, f) € X x Hg} used for modeling the X — Hg relation. The smoothness
of functions i € H i can be driven by the choice of a Gaussian kernel over X. The identity operator
on Hg is the simplest choice to cope with operator-valued kernel, leading to computable scalar
products on simple elements: (K (-, x)f1, K(-,2') f2)3c, = kx(x,2"){f1, f2)3c, forall (z,2’) €
X2, (f1, fo) € HE..

One advantage of working with vv-RKHSs is to make use of a natural regularization given by
the associated norm, denoted by ||-||4, . Thus, we propose to solve the regularized empirical risk
minimization problem

A

Join Ry (h) = Rs(h) + 5 [ ®

with a regularization parameter A > 0 which balances between the data-fitting term (Rs(h)) and
smoothness (||h||§CK). We refer to (8) as vector-valued infinite task learning (vITL).

Remark: This problem is a natural adaptation of the ITL framework [8] learning with operator-valued
kernels mappings of the form X — (© — Y) where Y is a subset of R; here Y = X.

3.2 Optimization Task

This section is dedicated to the solution of (8) which is an optimization problem over functions
(h € Hg). To get a unified solution for both the single and the joint emotional input task, we briefly
introduce two dataset notations that allow to rephrase the empirical risk from (3) as

1
Rs(h) = o DY U@ (6i ), yis)- ©)
i€ft] j€[m]
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Figure 2: Illustration of the landmark edge maps for different emotions on KDEF

Intuitively, this corresponds to a reordering of the datasets so that the (z; j)ic[n),jes, are only indexed

as (x;);ef). The size t of the datasets captures the complexity of both tasks: we have ¢ := % with
t = n for the single emotional input case and with ¢ = nm for the joint setting. The corresponding

schemes allowing to get these datasets are summarized in Appendix B.

The following representer lemma provides a finite-dimensional parameterization of the optimal
solution.

Lemma 1 (representer). Problem (8) has a unique solution h and it takes the form h(z)(0) =
25:1 Z;"Zl kx(x,x;:)ke(0,0; ;)Aé; ;, for all¥(z,0) € X x © with some {éi,j}ie[t],je[m] C R4,

Based on this lemma finding his equivalent to determining the coefficients {¢; j }ic[4], je[m]- Recall

that we consider the squared loss {(z,z') = %||z — #’||3; in this case the task boils down to the
solution of a linear equation as detailed in the following result.

Lemma 2 (optimization task for C). Define the matrix C = [Ci]ie[tm] e RUMXd contain-

(tm)x (tm),

ing all the coefficients, the Gram matrix K = [k; jl; je(rm) € R and the matrix con-

sisting of all the observations Y = [Yi|icm) € REMIxd g Cm(i,l)ﬂ» = ézj, (i,5) €
[t] X [m], km,(i1—1)+j1,rn(i2—1)+j2 = kx(ximxiz)k@(eihjuaimh)’ (ilajl)a (Z‘Q’j?) € [t] X [WL]’
Yon(i—1)+5 = Yi;» (i,5) € [t] x [m]. Assume moreover that K is invertible. Then C is the solution
of the following linear equation

KCA + tmAC =Y. (10)
When A = 1, (identity matrix of size d X d), the solution is analytic: C= (K + tm/\Itm)_l Y.

4 Numerical Experiments

In this section we demonstrate the efficiency of the proposed vITL-based style transfer framework in
emotion transfer. We first introduce the two benchmark datasets used in our experiments and give
details about data representation and choice of the hypothesis space in Section 4.1. In Section 4.2,
we provide a quantitative performance assessment of the vITL approach (in mean squared error and
classification accuracy sense) with a comparison to the state-of-the-art StarGAN method, modified to
work on landmarks. These results are augmented with a qualitative analysis in Section 4.3. Additional
properties of VITL are elaborated in Appendix C.4. The code used to run the experiments presented
in this paper is available on github.

4.1 Experimental Setup

We used two popular face datasets for evaluation, namely Karolinska Directed Emotional Faces
(KDEF; [37]) and Radboud Faces Database (RaFD; [34]). In our experiments, we used frontal images
and seven emotions from each of these datasets. An edge map illustration of landmarks for different
emotions is shown in Fig. 2; detailed description of the datasets is provided in Appendix C.1.

At this point, it is worth recalling that we are learning a function-valued function, i : X — (0 — X)
using a vv-RKHS as our hypothesis class (see Section 3). We aligned the facial images and extracted
68 2D landmark points; this gave rise to the vectorized landmarks x € R136=2%68 The emotion
labels were represented as points in the 2D valence-arousal (VA) space [50]. We took the kernels
kx, ko to be Gaussian on the landmark representation space and the emotion representation space,
with respective bandwidth v and vg. These kernels are known to induce smooth spaces of functions
which aligns well with our goal. A was assumed to be I; unless specified otherwise. Further
implementation details are provided in Appendix C.2.


https://github.com/allambert/torch_itl/tree/master/demos/emotion_transfer

4.2 Quantitative Performance Assessment

Performance measures: We applied two metrics to quantify the performance of the compared
systems, namely the test mean squared error (MSE) and emotion classification accuracy, which are
commonly used for landmarks prediction [28]. The MSE provides a direct measure of the accuracy
of the landmarks predictions and can be considered as the primary way to assess performance. The
classification accuracy can be thought of as an indirect evaluation and reflects the ability of the
functional model to produce the correct emotion on the predicted landmarks [14]. To compute this
measure, for each dataset we trained a ResNet-18 classifier to recognize emotions from ground-
truth landmark edge maps (as depicted in Fig. 2). The trained network was then used to compute
classification accuracy over the predictions at test time. To rigorously evaluate outputs for each split
of the data, we used a classifier trained on RaFD to evaluate KDEF predictions and vice-versa; this
also allowed us to make the problem more challenging. The ResNet-18 network was appropriately
modified to take grayscale images as input. During training, we used random horizontal flipping
and cropping between 90-100% of the original image size to augment the data. All the images were
finally resized to 224 x 224 and fed to the network. The network was trained from scratch using
the stochastic gradient descent optimizer with learning rate and momentum set to 0.001 and 0.9,
respectively. The training was carried out for 10 epochs with a batch size of 16.

We report the mean and standard deviation of the aforementioned metrics over ten 90%-10% train-
test splits of the data. The test set for each split is constructed by removing 10% of the identities
from the data. For each split, the best vx, yo and A values were determined by 6-fold and 10-fold
cross-validation on KDEF and RaFD, respectively.

Baseline: We designed the baseline with two objectives in mind: (i) a generative adversarial network
with state-of-the-art properties as imposed through the loss functions (adversarial, cycle consistency
and domain classification loss), (ii) a model that takes exactly the same inputs as the proposed system.
To this end, we used the popular StarGAN [11] system as our baseline with appropriate modifications
to work with landmarks. Other GAN-based studies that operate on image representations use
additional information and are not directly comparable to our setting. For fair comparison, the
generator G and discriminator D were modified to be fully-connected networks that take vectorized
landmarks as input. In particular, G was an encoder-decoder architecture where the target emotion,
represented as a 2D emotion encoding as for our case, was appended at the bottleneck layer. It
contained approximately one million parameters, which was chosen to be comparable with the
number of coefficients in VITL (839, 664 = 126 x 7 x 7 x 136 for KDEF). ReLLU activation function
was used in all layers except before bottleneck in GG and before penultimate layers of both G and D.
We used their default parameter values in the code.” Experiments over each split of KDEF and RaFD
were run for 50K and 25K iterations, respectively. Henceforth, we refer to this modified system as
“Landmark-StarGAN".

MSE results: The test MSE for the compared systems is summarized in Table 1. As the table
shows, the VITL technique outperforms Landmark-StarGAN on both datasets. One can observe low
reconstruction cost for vITL in both the single and the joint emotional input case. Interestingly, a
performance gain is obtained with vITL joint on the RaFD data in MSE sense. We hypothesize that
this is due to the joint model benefiting from input landmarks for other emotions in the small data
regime (only 67 samples per emotion for RaFD). Despite our best efforts, we found it quite difficult
to train Landmark-StarGAN reliably. Its outputs had low diversity and were visibly more distorted.

Classification results: The emotion classification accuracies are available in Table 1. The classifica-
tion results clearly demonstrate the improved performance and the higher quality of the generated
emotion of VITL over Landmark-StarGAN; the latter also produces predictions with visible face
distortions as it is illustrated in Section 4.3. Confusion matrices are presented in Appendix C.3 for
further insight into the classification performance.

4.3 Qualitative Analysis

Here we show example outputs produced by vITL in the context of discrete and continuous emotion
generation. While the former is the classical task of synthesis given input landmarks and target
emotion label, the latter serves to demonstrate a key benefit of our approach, which is the ability to
synthesize meaningful outputs while continuously traversing the emotion embedding space.

’The code is available at https://github.com/yunjey/stargan.
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Methods MSE Error | Emotion Classification Acc. T

KDEEF frontal RaFD frontal KDEEF frontal RaFD frontal
VvITL: 6y = neutral 0.010 + 0.001 0.009 + 0.004 76.12 £ 4.57 79.76 £+ 7.88
vITL: 69 = fearful 0.010 + 0.001 0.010 + 0.005 76.22 £ 4.91 78.81 + 8.36
VITL: 6y = angry 0.012 4+ 0.002 0.010 + 0.005 74.49 £+ 2.31 78.10 £ 7.51
VITL: 6y = disgusted 0.012 4+ 0.001 0.010 + 0.004 74.18 + 4.22 78.33 £ 4.12
VITL: 8y = happy 0.011 + 0.001 0.010 #+ 0.004 73.57 £ 2.74 80.48 + 5.70
VvITL: 6y = sad 0.011 4+ 0.001 0.009 £+ 0.004 75.82 £ 4.11 77.62 +£5.17
VITL: 6y = surprised 0.010 + 0.001 0.011 + 0.006 74.69 £ 2.25 80.71 £+ 5.99
vITL: Joint 0.011 + 0.001 0.007 £ 0.001 74.81 + 3.10 77.11 £ 3.97

Landmark-StarGAN 0.029 + 0.003 0.024 + 0.007 70.69 £ 8.46 65.88 + 8.92

Table 1: MSE error and emotion classification accuracy (mean =+ std) on test data for the vITL single
(top), the VITL joint and the Landmark-StarGAN system (bottom). The best results are in bold when
relevant.

Neutral Disgusted Fearful Surprised

Ground Truth

vITL

Landmark-StarGAN

Figure 3: Discrete expression synthesis results on the KDEF dataset with ground-truth neutral
landmarks as input.

Discrete emotion generation: In Fig. 3 we show qualitative results for generating landmarks using
discrete emotion labels present in the datasets. For vITL, not only are the emotions recognizable, but
landmarks on the face boundary are reasonably well synthesized and other parts of the face visibly
less distorted when compared to Landmark-StarGAN. The identity in terms of the face shape is also
better preserved.

Continuous emotion generation: We show in Fig. 4 the capability to generate intermediate emotions
by changing the angular position in the emotion embedding space, in this case from ‘happy’ to
‘surprised’. For a more fine-grained video illustration traversing from ‘happy’ to ‘sad’ along the
circle, see the supplements. Additional qualitative results are presented in Appendix C.5.

5 Conclusion

We introduced a novel general framework for style transfer based on function-valued regression, and
exemplified it on the problem of emotion transfer for facial landmarks. The proposed framework
is quite general and can be applied as long as one is able to define kernels on the object and the

happy - surprised

Figure 4: Continuous expression synthesis with vITL technique on the RaFD dataset, with ground-
truth neutral landmarks. The generation is starting from ‘happy’ and proceeds by changing angular
position towards ‘surprised’. For a more fine-grained video illustration traversing from ‘happy’ to
‘sad’ along the circle, see the demo in supplements.



style spaces, allowing for a wide range of applications. The vector-valued infinite task learning
(VITL) formulation relies on operator-valued kernels. vITL (i) is capable of encoding and controlling
continuous style spaces, (ii) benefit from a representer theorem for efficient computation, and (iii)
facilitates regularity control via the choice of the underlying kernels. The framework can be extended
in several directions. The most natural one would be to apply this framework to more complex
object and style spaces, for instance time series for motion transfer [1]. In this case, the choice of
kernel would be critical and could be tackled by learning deep kernel architectures [41, 36] instead
of designing the kernel prior to learning. Finally, other losses [52, 33] can be leveraged to produce
outlier-robust or sparse models.
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Appendices

We provide proofs of auxiliary lemmas in Appendix A. Appendix B presents additional remarks on
modeling and optimization in vvRKHSs. Implementation details, additional remarks and numerical
illustrations are shown in Appendix C.

A Proofs

This section contains the proofs of our auxiliary lemmas.

Proof. (Lemma 1) For all g € Hg, let K, g denote the function defined by (K,g)(t) = K(t,z)g
vt € X. Similarly, for all ¢ € X, Ggyc stands for the function ¢ — G(t, 0)c where t € O. Let us take
the finite-dimensional subspace

E = span (K,,Gy,,c : i € [t],j € [m],c € Rd).

The space H can be decomposed as E and its orthogonal complement: E & E+ = Hy. The
existence of h follows from the coercivity of R (i.e. Rx(h) — +oc as ||kl — +00) which is the
consequence of the quadratic regularizer and the lower boundedness of /. Unlqueness comes from

the strong convexity of the objective. Let us decompose h=hg+h gL, and take any ¢ € R%. Then
for all (¢, j) € [t] X [m], one has

(s (@) (0:1). ) ©

(a) <hEL (x3), G9i10>% ® <}ALEL’K:ciGGMC>g.CK = 0.
G NI

er

Rd

(a) follows from the reproducing property in Hq, (b) is a consequence of the reproducing
property in Hy, and (c) comes from the decomposition £ & E+ = 3. This means that

hir(x:)(0i;) = 0 Y(i,5) € [t] x [m], and hence Rs(h) = Rs(hg). Since AH;}H;K =
A ( h H;K) > 2 .. We conclude that hpr = 0 and get that there exist coeffi-
cients ¢ ; € RY such that h = Yielt] 2je(m) Ka.Go, ;¢ j- This evaluates for all (z,6) € X x © to
h(z)(0) = Yo doiy kx(z, xi)ke (0, 0;,7) Aéij as claimed in Lemma 1. m

Proof. (Lemma 2) Applying Lemma 1, problem (8) writes as

A
KCA -Y Tr (KCAC"
CeR(tI'I'}Md 2tm I HF + r( )

where ||| denotes the Frobenius norm. By setting the gradlent of this convex functional to zero, and
using the symmetry of K and A, one gets

1

t—K(KCA —Y)A+)MKCA =0
m

which implies (10) by the invertibility of K and A. O

B Remarks on the Problem Formulation and Optimization

Schemes to construct datasets for single and joint emotional input tasks are presented in Table 2.
Following are some additional remarks on modeling and optimization in vv-RKHSs:

* The considered squared loss leads to closed-form solution; see Lemma 1 and Lemma 2. Alternative
loss functions, for instance to encode robustness, would similarly be applicable at the price of using
iterative optimization schemes.

* In (1), the space X plays the role of both the input and the output representation. One can imagine
scenarii where the output space (denoted by Y) is different from the input space, leading to a model

heX s (©mY), (1)

In this case, the developed methodology would still be applicable provided that Y is a Hilbert space,
and X could be any representation set over which one can design a kernel, for instance time series
[12], or graphs [38, 7].
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Table 2: Dataset generation corresponding to the single and joint emotional models.

Dataset : Single Emotional Input Dataset : Joint Emotional Input
init iti=n init it i=nm
for i € [t] do for i € [t] do
x; = 2;(0p) Define (I, k) such that
for j € [m] do i=(—1)m+ (k- 1) (Euclidean
05 = 07 division of i by m)
Yij 1= 21(9?};) Ti = Zl(eaukt)
. , for j € [m] do
return (i, (yi;)71),_, (0i3)i7<1 05 =05
Yi,j = 21(67%)

t t,
return (x’b (yi,j);ﬂzl)i:y (9i7j)i,;n:1

Computational complexity: In case of A = I, the complexity of the closed-form solution is
O ((tm)?). If all the samples are observed at the same locations (6 ;); je(]x[n]- i-€- 0i,; = 015
for V(i, 1, j) € [t] x [t] x [m], then the Gram matrix K has a tensorial structure K = Ky ® Kg
with Ky = [k‘x(xi,xj)]i’je[t] € R¥* and Ko = [k@(el,iyel,j)]i,je[m] € R™>™_1n this case,
the computational complexity reduces to O (t3 + m3). If additional scaling is required one can
leverage recent dedicated kernel ridge regression solvers [49, 40]. If A is not identity, then
multiplying (10) with A~! gives KC + tmACA~! = YA~ which is a Sylvester equation for
which efficient custom solvers exist [17].

Regularization in vv-RKHS: Using the notations above, for any h € J{x parameterized by a matrix

C, it holds that ||A[|5;, = Tr (KCACT). Given two matrices A1, Ao and associated vv-RKHSs

Hi, and Hg,, if A; and Ay are invertible then any function in H g, parameterized by C also

belongs to H g, (and vice versa), within which it is parameterized by CA5 ' A 1. This means that
the two spaces contain the same functions, but their norms are different.

C Experiment Details and Additional Results

This section is arranged as follows:

Section C.1 gives details about the two benchmark datasets KDEF and RaFD considered in our
experiments.

Section C.2 provides exact implementation details for the applied landmark and emotion represen-
tation pre-processing steps.

Section C.3 shows the VITL joint model confusion matrix for emotion classification results.
Section C.4 presents quantitative analysis of properties of VITL pertaining to the choice of A (in
kernel GG) and the robustness w.r.t. partial observation.

Section C.5 illustrates additional results for discrete and continuous generation capabilities of vITL.
In particular, discrete generation results on RaFD and continuous generation in the radial direction
are presented.

C.1 Details on the Used Benchmarks

We used the following two popular face datasets for evaluation.

Karolinska Directed Emotional Faces (KDEF; [37]): This dataset contains facial emotion pictures
from 70 actors (35 females and 35 males) recorded over two sessions which give rise to a total of
140 samples per emotion. In addition to neutral, the captured facial emotions include afraid, angry,
disgusted, happy, sad and surprised.

Radboud Faces Database (RaFD; [34]): This benchmark contains emotional pictures of 67 unique
identities (including Caucasian males and females, Caucasian children, and Moroccan Dutch
males). Each subject was trained to show the following expressions: anger, disgust, fear, happiness,
sadness, surprise, contempt, and neutral according to the facial action coding system (FACS; [16]).
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C.2 Implementation Details

This section is dedicated to implementation details.

Landmark representation, pre-processing: We applied the following pre-processing steps to get
landmark representations which form the input of the algorithms. To extract 68 landmark points for
all facial images, we used the standard d11ib library. The estimator is based on d1ib’s implementation
of [32], trained on the iBUG 300-W face landmark dataset. Each landmark is represented by its 2D
location. The alignment of the faces was carried out by the Python library imutils. The method
ensures that faces across all identities and emotions are vertical, centered and of similar sizes. In
essence, this is implemented through an affine transformation computed after drawing a line segment
between the estimated eye centers. Each image was resized to the size 128 x 128. The landmark
points computed in the step above were transformed through the same affine transformation. These
two preprocessing steps gave rise to the aligned, scaled and vectorized landmarks x € R136=2%68,

Emotion representation: We represented emotion labels as points in the 2D valence-arousal (VA)
space [50]. Particularly, we used a manually annotated part of the large-scale AffectNet database [44].
For all samples of a particular emotion in the AffectNet data, we computed the centroid (data mean)
of the valence and arousal values. The resulting /5-normalized 2D vectors constituted our emotion
representation (see Fig. 5). The normalization is akin to assuming that the modeled emotions are of
the same intensity. In our experiments, the emotion ‘neutral’ was represented by the origin. Such an
emotion embedding allowed us to take into account prior knowledge about the angular proximity of
emotions in the VA space, while keeping the representation simple and interpretable for post-hoc
manipulations.

1.00 /kﬁ//,,,,éEanuL\;gigfjii
0.75 .
‘égusted
0.50 /
0.25
0.00 aNeutral
-0.25 \
kad
—0.50 \
o \/
-1.00

-1.0 -0.5 0.0 0.5 1.0
Valence

Happy

Arousal

A\
\
|
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Figure 5: Extracted ¢5-normalized valence-arousal centroids for each emotion from the manually
annotated train set of the AffectNet database.

C.3 Quantitative Results: Confusion Matrix for Emotion Classification

To provide further insight into the classification performance we also show the confusion matrices for
the joint VITL model on a particular split of KDEF and RaFD datasets in Fig. 6. For both the datasets,
the classes ‘happy’ and ‘surprised’ are easiest to detect. Some confusions arise between the classes
‘neutral’ vs ‘sad’ and ‘fearful” vs ‘surprised’.

C.4 Additional Properties of vITL

This section is dedicated to the effect of the choice of A (in kernel G) and to the robustness of VITL
w.r.t. partial observation.

Influence of A in the matrix-valued kernel GG: Here, we illustrate the effect of matrix A (see (6))
on the vITL estimator and show that a good choice of A can lead to lower dimensional models,
while preserving the quality of the prediction. The choice of A is built on the knowledge that the
empirical covariance matrices of the output training data contains structural information that can
be exploited with vv-RKHS [30]. In order to investigate this possibility, we performed the singular
value decomposition of Y 'Y which gives the eigenvectors collected in matrix V € R%*¢_ For a
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Figure 6: Confusion matrices for classification accuracy of VITL joint model. Left: dataset KDEF.
Right: dataset RaFD. The y axis represents the true labels, the = axis stands for the predicted labels.
More diagonal is better.
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Figure 7: Test MSE (mean =+ std) as a function of the rank of the matrix A. Smaller MSE is better.

fixed rank r < d, define J, = diag(1,---,1,0,---,0),set A=V J, VT and train a vITL system
—— N——

T d—r

with the resulting A.. While in this case A is no longer invertible, each coefficient ¢; ; from Lemma 1
belongs to the r-dimensional subspace of R¢ generated by the eigenvectors associated to the r largest
eigenvalues of Y T'Y. This makes a reparameterization possible and leads to a decrease in the size of
the model, going from ¢ X m x d parameters to ¢t x m X r. We tested this idea in the joint emotional
input setting, and report in Fig. 7 the resulting test MSE performance (mean =+ standard deviation)
obtained from 10 different splits, and empirically observe that = 20 suffices to preserve the optimal
performances of the model.

Learning under a partial observation regime: To assess the robustness of VITL w.r.t. missing
data, we considered the joint emotional setting, and a random mask (7; ;)ic[n],je[m] € 10, 1}"*™;
a sample z;(6; ;) was used for learning only when 7; ; = 1. Thus, the percentage of missing data
was p 1= - 2 i je[n]x[m] Mi.j- The experiment was repeated for 10 splits of the dataset, and on
each split we averaged the results using 4 different random masks (7; ;)ie[n],je[m]- The resulting test
MSE of the predictor as a function of p is summarized in Fig. 8. As it can be seen, the vITL approach
is quite stable in the presence of missing data on both datasets.
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Solid line: mean; dashed line: min-max. Smaller MSE is better.

C.5 Additional Qualitative Results

In this section additional quantitative results are shown.

Discrete generation: For discrete expression synthesis results on the RaFD benchmarks, see Fig. 9.

Neutral Angry Disgusted Fearful Happy Sad Surprised

Ground Truth

vITL

Landmark-StarGAN

Figure 9: Discrete expression synthesis results on the RaFD dataset with ground-truth neutral
landmarks as input.

Continuous generation: Starting from neutral emotion, continuous generation in the radial direction

is illustrated in Fig. 10. The landmarks vary smoothly and conform to the expected intensity variation
in each emotion on increasing the radius of the vector in VA space.
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Figure 10: Continuous expression synthesis results with vITL on the KDEF dataset, with ground-truth

neutral landmarks. The generation is starting from neutral and proceeds in the radial direction towards
an emotion with increasing radii r.
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