
Received: 6 November 2020 Accepted: 9 September 2021

DOI: 10.1002/rsa.21106

R E S E A R C H A R T I C L E

Asymmetric Ramsey properties of random graphs
involving cliques and cycles

Anita Liebenau1 Letícia Mattos2 Walner Mendonça3 Jozef Skokan4

1
School of Mathematics and Statistics, UNSW

Sydney, Sydney, New South Wales, Australia

2
Freie Universität Berlin and Berlin Mathematical

School (BMS/MATH+), Berlin, Germany

3
IST Austria, Klosterneuburg, Austria

4
Department of Mathematics, LSE, London, UK

Correspondence
Letícia Mattos, Freie Universität Berlin and Berlin

Mathematical School (BMS/MATH+),

Arnimallee 3, 14195 Berlin, Germany.

Email: leticiadmat@gmail.com

Funding information
ARC DECRA, Grant/Award Number:

DE170100789; CAPES, Grant/Award Number:

88882.332408/2010-01; Deutsche

Forschungsgemeinschaft (DFG, German Research

Foundation), Grant/Award Numbers:

EXC-2046/1, 390685689.

Abstract
We say that G → (F,H) if, in every edge coloring c ∶
E(G) → {1, 2}, we can find either a 1-colored copy of

F or a 2-colored copy of H. The well-known states that

the threshold for the property G(n, p) → (F,H) is equal to

n−1∕m
2
(F,H)

, where m2(F,H) is given by

m2(F,H) ∶= max

{
e(J)

v(J) − 2 + 1∕m2(H)
∶ J ⊆ F, e(J) ≥ 1

}
,

for any pair of graphs F and H with m2(F) ≥ m2(H).
In this article, we show the 0-statement of the Kohayakawa–

Kreuter conjecture for every pair of cycles and cliques.

KEYWORDS

Kohayakawa-Kreuter conjecture, Ramsey theory, random

graphs

1 INTRODUCTION

We say that a graph G is a Ramsey graph for the pair of graphs (F,H) if, in every edge coloring

c ∶ E(G) → {1, 2}, we can find either a 1-colored copy of F or a 2-colored copy of H. We write

G → (F,H) if G is Ramsey for (F,H), and G�(F,H) otherwise. It follows from Ramsey’s

theorem [11] that, for each pair of graphs (F,H), there exists a graph G such that G → (F,H).
The study of whether or not the binomial random graph G(n, p) is Ramsey for a symmetric pair of

graphs was initiated by Frankl and Rödl [2], and Łuczak et al. [8]. They showed that the probability

threshold for having G(n, p) → (K3,K3) is of order n−1∕2
. In 1995, Rödl and Ruciński [12, 13] deter-

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and

reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Random Structures and Algorithms published by Wiley Periodicals LLC.

Random Struct Alg. 2022;1–21. wileyonlinelibrary.com/journal/rsa 1

http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frsa.21106&domain=pdf&date_stamp=2022-07-21

2 LIEBENAU ET AL.

mined the probability threshold for G(n, p)→ (F,F) for almost all non-empty graphs F. They showed

that, if F has a component which is not a a star or a path of length three, then the threshold is of order

n−1∕m
2
(F)

, where

m2(F) ∶= max

{
e(J) − 1

v(J) − 2
∶ J ⊆ F, v(J) ≥ 3

}
.

The parameter m2(F) is called the m2-density of the graph F. Here, v(J) and e(J) denote the size of

the vertex set and of the edge set of the graph J, respectively. The remaining cases were addressed

subsequently by Friedgut and Krivelevich [3].

A natural generalization of this problem is to determine a threshold function p(F,H) for the

property G(n, p)→ (F,H), for any asymmetric pair of graphs (F,H). This problem was posed in 1997

by Kohayakawa and Kreuter [5], who proved that p(C𝓁 ,Ck) = Θ(n1−𝓁((𝓁−1)k)−1) for any pair of cycles

(C𝓁 ,Ck) with k ≥ 𝓁 ≥ 3. In the same paper, they conjectured that p(F,H) = Θ(n−1∕m
2
(F,H)), where

m2(F,H) ∶= max

{
e(J)

v(J) − 2 + 1∕m2(H)
∶ J ⊆ F, e(J) ≥ 1

}
,

for any pair of graphs F and H with m2(F) ≥ m2(H) ≥ 1. Since the Kohayakawa–Kreuter conjecture

was posed, there have been many attempts to solve it (see, e.g., [4, 6, 9]). In a recent breakthrough,

Mousset et al. [10] showed that p(F,H) = O(n−1∕m
2
(F,H)) whenever m2(F) ≥ m2(H) ≥ 1, the so-called

1-statement. In contrast, much less is known about the 0-statement, that is, the statement that p(F,H) =
Ω(n−1∕m

2
(F,H)) whenever m2(F) ≥ m2(H) ≥ 1. One possible reason for that is that the 0-statement

seems to depend on the structural behavior of Ramsey graphs.

Previously, the 0-statement was only proved for two types of pairs of graphs. Kohayakawa and

Kreuter [5] established the 0-statement for all pairs of cycles while Marciniszyn et al. [9] addressed

all pairs of cliques.

In this article, we show that the 0-statement holds for any pair of cliques and cycles. This is the

first 0-statement result for different types of graphs.

Theorem 1.1. For all 𝓁, r ≥ 4 there exists c > 0 such that, if p = p(n) ≤ cn−1∕m
2
(Kr ,C𝓁), then

lim
n→∞

P

[
G(n, p)→ (Kr,C𝓁)

]
= 0.

Combining Theorem 1.1 with the results of [5, 9, 10], we establish the Kohayakawa–Kreuter

conjecture for any pair of cycles and cliques with at least 3 vertices. We remark that we do need the

assumption 𝓁, r ≥ 4 in our proof, so our result does not imply the earlier results involving K3.

The main tool behind the proof of Theorem 1.1 is a structural characterization of Ramsey graphs

for the pair (Kr,C𝓁) via a ‘container type’ argument (see Theorem 2.1), which is a rephrasing of an

important idea used in previous works. Roughly speaking, we find a family  of graphs with the

following properties: (a) || is small; (b) for every graph G with G → (Kr,C𝓁) there exists I ∈  such

that I ⊆ G; and (c) for each I ∈ , either I is small and dense or very structured. We provide the details

in Section 2.

The rest of the article is organized as follows. In Section 2, we prove Theorem 1.1; in Section 3, we

provide the main technical lemmas of this article; in Section 4, we prove some structural lemmas about

Ramsey graphs; in Section 5, we describe the algorithms used to prove our main technical theorem

(see Theorem 2.1); finally, in Section 6, we do a careful analysis of these algorithms. In the Appendix,

we provide some simple calculations involving m2-densities, for completeness.

LIEBENAU ET AL. 3

2 THE MAIN TECHNICAL RESULT

In this section, we present the main technical result of this article and deduce Theorem 1.1 from it. In

order to state this result, we need the following notation. For a graph G, define 𝜆(G) by

𝜆(G) = v(G) − e(G)
m2(Kr,C𝓁)

.

This parameter plays an important role in our analysis, as the expected number of copies of G in G(n, p)
is of order ce(G)n𝜆(G)

when p = cn−1∕m
2
(Kr ,C𝓁). For any positive real numbers M, 𝜀 and any positive

integer n, define

1(𝜀) = {G ∶ 𝜆(G) ≤ −𝜀} and 2(M, n) = {G ∶ 𝜆(G) ≤ M and e(G) ≥ log n}, (1)

where the logarithm is in base 2. Finally, for any natural numbers r,𝓁, and n, let

n(Kr,C𝓁) = {G ∶ V(G) = [n] and G → (Kr,C𝓁)} ,

where [n] ∶= {1, 2, … , n}. When r and 𝓁 are clear from context, we write n for n(Kr,C𝓁). In

addition, we set

(Kr,C𝓁) =
⋃
n∈N

n(Kr,C𝓁).

The connection between 𝜆, 1(𝜀), 2(M, n), andn is contextualized in the next theorem.

Theorem 2.1. For any integers r,𝓁 ≥ 4, there exist positive constants M = M(r,𝓁) and 𝜀 = 𝜀(r,𝓁)
such that the following holds. For every positive integer n, there exists a function f ∶ n(Kr,C𝓁) →
1(𝜀) ∪ 2(M, n) such that G contains a copy of f (G) as a subgraph, for all G ∈ n, and

|f (n)| ≤ (log n)M .

In the language of hypergraph containers [1, 14], Theorem 2.1 provides a relatively small collection

f (n) of fingerprints. Additionally to |f (n)| being small, each graph f (G) either has a very small

value of 𝜆 (negative, and bounded away from 0), or a fairly small (though possibly positive) value

of 𝜆 and is very large. To obtain such a collection and the function f in Theorem 2.1, we employ an

algorithm adapted from [7].

Theorem 1.1 is easily deduced from Theorem 2.1. The proof of Theorem 2.1 is given in the next

four sections.

Proof of Theorem 1.1. Given r,𝓁 ≥ 4, let M and 𝜀 be positive constants given by Theorem 2.1

and set c = 2
−2M

. For each n ∈ N, let p = p(n) ≤ cn−1∕m
2
(Kr ,C𝓁). Let f be the function given by

Theorem 2.1, let Γ ∼ G(n, p) and suppose that Γ ∈ n. Then, f (Γ) ⊆ Γ and f (Γ) ∈ 1(𝜀) ∪ 2(M, n).
Let 1 ∶= f (n) ∩ 1(𝜀) and 2 ∶= f (n) ∩ 2(M, n). Thus,

P (Γ → (Kr,C𝓁)) ≤ P (F ⊆ Γ for some F ∈ 1 ∪ 2) . (2)

Since 𝜆(F) ≤ −𝜀 for each F ∈ 1 and c ≤ 1, we have

P(F ⊆ Γ) ≤ nv(F)pe(F)
≤ ce(F)n𝜆(F)

≤ n−𝜀, (3)

4 LIEBENAU ET AL.

for every F ∈ 1. Similarly, we have

P(F ⊆ Γ) ≤ ce(F)n𝜆(F)
≤ n−M

, (4)

for every F ∈ 2, as 𝜆(F) ≤ M and e(F) ≥ log n for each F ∈ 2, and by our choice of c. Applying the

union bound to (2) and using (3) and (4), we obtain that

P (G(n, p)→ (Kr,C𝓁)) ≤ (log n)M ⋅ (n−𝜀 + n−M),

since |1 ∪ 2| ≤ (log n)M . As the expression on the right hand side tends to 0 as n →∞, this implies

the theorem. ▪

3 PROOF OF THEOREM 2.1

In this section, we state the main technical lemmas of this article, and deduce Theorem 2.1 from them.

We also introduce some notation that we use during the proof.

Let r,𝓁 be positive integers. We follow the approach by [5, 7] and bring our problem into the

hypergraph setting. Given a graph G = (V ,E), let r,𝓁(G) be the hypergraph on the edge set of G whose

hyperedges correspond to the copies of Kr and C𝓁 in G. We suppress G, r and 𝓁 from the notation

whenever they are clear from context. Define

1() = {E(F) ∶ F ≅ Kr,F ⊆ G} and 2() = {E(F) ∶ F ≅ C𝓁 ,F ⊆ G}. (5)

Analogously, if ⊆ r,𝓁(G), then we set 1() ∶= 1() ∩ E() and 2() ∶= 2() ∩ E().
The reason why we deal with r,𝓁(G) instead of G is as follows. In order to build our fingerprints

algorithmically, we would like to deal with a subgraph H of G which has the two following properties:

(1) every edge e ∈ E(H) is contained in an 𝓁-cycle; (2) for every copy C of C𝓁 in H end every e ∈ C,

there exists a copy K of Kr such that E(K) ∩E(C) = {e}. These properties would allow us to build the

fingerprint of G algorithmically by attaching either a copy of Kr or a copy of C𝓁 to the current graph

at each step. However, such a graph H might not exist. Even if H is minimal (with respect to subgraph

containment) for H → (Kr,C𝓁), we can only deduce that for every e ∈ E(H) there exist K ≅ Kr and

C ≅ C𝓁 in H such that E(K) ∩ E(C) = {e}. But this does not directly imply that property (2) holds.

We can overcome this problem by considering subhypergraphs of r,𝓁(G) which are ⋆-critical. This

property was first considered in [7].

Definition 3.1 (⋆-critical). Let 1 and 2 be two families of sets on a vertex set. We say that a

hypergraph = 1 ∪ 2 is ⋆-critical with respect to (1, 2) if the following two properties hold. For

each e ∈ V(), there exists a hyperedge F ∈ 2 such that e ∈ F; and for each F ∈ 2 and each e ∈ F,

there exists a hyperedge E ∈ 1 such that E∩F = {e}. When 1 and 2 are clear from context, we say

that the hypergraph is ⋆-critical.

Let Critr,𝓁(G) be the set of all ⋆-critical subhypergraphs of r,𝓁(G). The next lemma shows that

if G → (Kr,C𝓁), then there are subhypergraphs of r,𝓁(G) which are ⋆-critical. We prove it in

Section 4.

Lemma 3.2. Let r,𝓁 ≥ 4 be integers. If G → (Kr,C𝓁), then Critr,𝓁(G) ≠ ∅.

LIEBENAU ET AL. 5

Given a hypergraph  ⊆ r,𝓁(G), we define the underlying graph of , denoted by G(), to be

the subgraph of G whose edge set is
⋃

E∈E() E. The following lemma is central to our proof. We prove

it in Section 4.

Lemma 3.3. Let r,𝓁 ≥ 4 be integers. There exists 𝜀 = 𝜀(r,𝓁) > 0 such that the following holds for
any graph H. If  ∈ Critr,𝓁(H), then 𝜆 (G()) ≤ −𝜀.

In order to find the function f ∶ n(Kr,C𝓁) → 1(𝜀) ∪ 2(M, n) in Theorem 2.1, we define an

algorithm HYPERTREE in Section 5. For each G ∈ n(Kr,C𝓁), this algorithm takes some hypergraph

 ∈ Critr,𝓁(G) as input and creates a subhypergraph T ⊆  as output. The fingerprint f (G) will

be a graph isomorphic to G(T). For the detailed description of HYPERTREE, we refer the reader to

Section 5.

Let HYPERTREE() denote the execution of HYPERTREE on input . Its basic properties are

given by the next lemma.

Lemma 3.4. Let n, r,𝓁 ≥ 4 be integers and G be a graph on vertex set [n]. For any hypergraph
 ∈ Critr,𝓁(G), Hypertree() generates a sequence of hypergraphs 0 ⊆ · · · ⊆ T ⊆  for which
the following holds.

(a) 0 = {E}, for some E ∈ 1(); that is, the underlying graph of 0 is a copy of Kr in G;
(b) v(0) < v(1) < · · · < v(T);
(c) T is the smallest integer such that 𝜆(GT) ≤ −𝜀 or T ≥ log n, where GT = G(T) and 𝜀 is the

constant given by Lemma 3.3;
(d) Hypertree() returns T .

Our next lemma is one of the most important properties of the HYPERTREE algorithm. We shall use

it together with Lemma 3.4 to deduce that the underlying graph given by the output of HYPERTREE()
belongs to 1(𝜀) ∪ 2(M, n) whenever  is a hypergraph in Critr,𝓁(G), where M = M(r,𝓁) > 0. As

the underlying graph of the output hypergraph is a subgraph of G, this will establish the existence of

a function f ∶ n(Kr,C𝓁)→ 1(𝜀) ∪ 2(M, n) as required for Theorem 2.1.

Lemma 3.5. Let r,𝓁 ≥ 4 be integers, G a graph and  ∈ Critr,𝓁(G). Let (i)Ti=0
be the sequence

generated by Hypertree() and let Gi = G(i) for each i ∈ {0, … ,T}. Then we have

𝜆(Gi) ≤ 𝜆(Gi−1),

for each i ∈ {1, … ,T}.

We prove a stronger version of this lemma (Lemma 6.1) in Section 6. For each n, r,𝓁 ≥ 4, consider

the family of possible output graphs of HYPERTREE()

Outr,𝓁(n) =
⋃

G ∶ V(G)=[n]

{
G(T) ∶  ∈ Critr,𝓁(G)

}
,

where T = T() andT are the stopping time and the output given by HYPERTREE(), respectively.

The set Outr,𝓁(n) will, of course, be rather large and we cannot hope for |Outr,𝓁(n)| to be bounded by a

function that is poly-logarithmic in n. Instead, we restrict to our attention to isomorphism classes. For

a set S of graphs, denote by S∕≅ a set consisting of exactly one representative graph for every (graph)

isomorphism class of S. The next lemma bounds the size of Outr,𝓁(n)∕≅.

6 LIEBENAU ET AL.

Lemma 3.6. For all r,𝓁 ≥ 4, there exists C > 0 such that |Outr,𝓁(n)∕≅| ≤ (log n)C, for all n ∈ N.

We prove this lemma in Section 6. Now, we are ready to prove Theorem 2.1 assuming all the

lemmas stated in this section.

Proof of Theorem 2.1. Fix n, r,𝓁 ≥ 4. For each G ∈ n(Kr,C𝓁), let (G) be a ⋆-critical hyper-

graph in Critr,𝓁(G). By Lemma 3.2, such a hypergraph must exist. Let (i(G))Ti=0
be the sequence of

hypergraphs generated by HYPERTREE((G)). By Lemma 3.4, the last hypergraph of this sequence,

namely T (G), is the hypergraph output by HYPERTREE((G)).
Define

f ∶ n → Outr,𝓁(n)∕≅
G → [G(T (G))],

where by [G(T (G))] we denote the graph G′ ∈ Outr,𝓁(n)∕≅ isomorphic to G(T (G)). As T (G) ⊆
(G) by Lemma 3.4, and G((G)) ⊆ G by construction, we have that G contains a copy of f (G) as a

subgraph for each G ∈ n. Moreover, by Lemma 3.4(c), we have 𝜆(f (G)) ≤ −𝜀 or T ≥ log n. In the

first case, f (G) belongs to the set of graphs

1(𝜀) = {H ∶ 𝜆(H) ≤ −𝜀}.

In the second case, we claim that f (G) ∈ 2(C, n), where C = 𝜆(Kr). To see that, first note that the

sequence (v(i(G)))Ti=0 is strictly increasing by Lemma 3.4(b). For simplicity, let Gi = G(i(G)).
Since e(Gi) = v(i(G)) for every i ∈ {0, … ,T}, we have

e(f (G)) = v(T (G)) ≥ T ≥ log n. (6)

Moreover, by Lemma 3.5, we have 𝜆(Gi) ≤ 𝜆(Gi−1) for each i ∈ {0, … ,T}, where G0 ≅ Kr
by Lemma 3.4 (a). In particular,

𝜆(f (G)) = 𝜆(GT) ≤ 𝜆(G0) = 𝜆(Kr). (7)

Together, (6) and (7) imply that f (G) ∈ 2(C, n), where C = 𝜆(Kr). This proves our claim.

Now, it only remains to show that |f (n)| ≤ (log n)C0 , for some constant C0 > 0. But, this follows

directly from Lemma 3.6. We finish the proof by setting M = max{C0,C}. ▪

4 THE STRUCTURAL LEMMAS

In this section, we obtain some key structural information about Ramsey hypergraphs and prove

Lemmas 3.2 and 3.3.

Given two families of sets 1 and 2 on a vertex set and a hypergraph, define

1() = 1 ∩ E() and 2() = 2 ∩ E().

We refer to the hyperedges of 1() and 2() as, respectively, hyperedges of type 1 and 2. We

say that  is Ramsey for (1, 2), and we write  → (1, 2), if the following holds. For every

LIEBENAU ET AL. 7

2-colouring c ∶ V() → {1, 2}, there exists a hyperedge E ∈ i() such that c(E) = {i}, for some

i ∈ {1, 2}. Conversely, we write �(1, 2) if  → (1, 2) is not satisfied. Clearly, if  ⊆  and

 → (1, 2), then  → (1, 2). Therefore, we may concentrate on the minimal hypergraphs  that

satisfy  → (1, 2).
We call a hypergraph Ramsey minimal with respect to (1, 2) if → (1, 2), yet the removal

of any hypervertex or hyperedge from  destroys this property. Minimal Ramsey hypergraphs have

the ⋆-critical property, as the next lemma shows. Its proof follows the same steps as the proof of [7,

Claim 1]. A particular case of it can be also found in [5, Section 3].

Lemma 4.1. Let 1 and 2 be two disjoint families of sets on a vertex set. If a hypergraph  is
Ramsey minimal with respect to (1, 2), then the following holds. For each i ∈ {1, 2}, each hyperedge
E ∈ i, and each hypervertex e ∈ E, there exists a hyperedge F ∈ 3−i such that E ∩ F = {e}. In
particular, is ⋆-critical.

Proof. Fix any hyperedge E ∈ i(), for some i ∈ {1, 2}, and any hypervertex e ∈ E. Let  ⧵ E
be the hypergraph with vertex set V() and hyperedge set E() ⧵ {E}. Consider any coloring c ∶
V()→ {1, 2} for which there is no hyperedge of type j in ⧵ E colored j under c, for all j ∈ {1, 2}.
This coloring exists because  is Ramsey minimal. As  → (1, 2), all the hypervertices in E must

be colored i under c. Moreover, E is the only monochromatic hyperedge under c which has type j and

color j, for j = 1, 2. Now, let c′ ∶ V() → {1, 2} be the coloring such that c′(f) = c(f) ⇔ f ≠ e
(recall that e ∈ E). As  → (1, 2) and E is not monochromatic of color i under c′, there must exist

a hyperedge F ∈ 3−i() such that c′E(F) = 3 − i and E ∩ F = {e}, as required. ▪

Now we are ready to prove Lemma 3.2.

Proof of Lemma 3.2. If G → (Kr,C𝓁), then r,𝓁(G) → (1, 2), where 1 and 2 are defined in (5).

Let be an arbitrary Ramsey minimal subhypergraph of r,𝓁(G). Then is ⋆-critical, by Lemma 4.1,

and therefore  ∈ Critr,𝓁(G), as required. ▪

We now turn to the proof of Lemma 3.3. In order to prove it, we require some structural infor-

mation about underlying graphs of ⋆-critical hypergraphs. This structural information is obtained

in Lemma 4.3 and, before stating it, it is worth to point out the following observation.

Observation 4.2. Let r,𝓁 ≥ 3. For any graph H and any hypergraph  ∈ Critr,𝓁(H), we have

𝑑(v) ≥ r for all v ∈ V(G()).

In fact, if  is ⋆-critical, then for any e ∈ E(G()) there exists K ∈ 1() and C ∈ 2() such

that K ∩C = {e}. As K and C are copies of Kr and C𝓁 contained in G(), respectively, we can easily

infer that 𝑑(v) ≥ r for all v ∈ V(G()).
Now, we need to set some notation. For each graph G, define

A = A(G) = {v ∈ V(G) ∶ 𝑑(v) = r} and B = B(G) = {v ∈ V(G) ∶ 𝑑(v) > r}. (8)

By Observation 4.2, V(G) can be partitioned into V(G) = A ∪ B whenever G is the underlying graph

of a ⋆-critical hypergraph. Below, we use N(v) to denote the neighborhood of a vertex v in G and, for

each S ⊆ V(G), we write 𝑑S(v) = |N(v) ∩ S|. Our structural lemma is as follows.

Lemma 4.3. Let r ≥ 3 and 𝓁 ≥ 4 be integers, and H be a graph. For any hypergraph ∈ Critr,𝓁(H),
we have that

8 LIEBENAU ET AL.

(1) A is an independent set in G() and
(2) 𝑑B(v) ≥ r − 2, for all v ∈ V(G()).

Proof. First, let us prove item (1). Suppose for a contradiction that there are two adjacent vertices

u, v ∈ V(G()) such that 𝑑(u) = 𝑑(v) = r. As is ⋆-critical, there exists an r-clique R1 ∈ 1() and

an 𝓁-cycle C1 ∈ 2() such that E(R1) ∩ E(C1) = {uv}. Now, let uc be the neighbor of u in C1 ⧵ {v}
and vc be the neighbor of v in C1 ⧵ {u, v}. First, we observe that uc ∉ N(v) and vc ∉ N(u). Indeed, note

that N(v) = (V(R1) ⧵ {v}) ∪ {vc} and 𝓁 ≥ 4 implies that uc ≠ vc, hence uc ∉ N(v). Similarly, we have

vc ∉ N(u). This will be used in the rest of the proof below.

Now, fix any vertex w ∈ V(R1) ⧵ {u, v}. We have the following claim.

Claim 4.4. There exists an 𝓁-cycle C2 ∈ 2() such that either {ucu, uw} ⊆ E(C2) or {vu, uw} ⊆

E(C2).

Proof of the Claim. As  is ⋆-critical, there exists an r-clique R2 and an 𝓁-cycle C2 such that

E(R2) ∩ E(C2) = {uw}. If R2 = R1, then C2 must contain uc, as 𝑑(u) = r. This settles the first part of

the claim. If R2 ≠ R1, then R2 must contain uc, again because 𝑑(u) = r. As uc ∈ V(R2), we cannot

have v ∈ R2. Otherwise, we would have uc ∈ N(v), which is a contradiction. Together, these imply

that V(R2) = {uc} ∪ V(R1) ⧵ {v}. As v is the only vertex in V(R1) not contained in R2, it follows that

v ∈ C2. This settles the second part. ▪

Let C2 be the cycle given by the claim above. If {ucu, uw} ⊆ E(C2), then there exists an r-clique

R2 ∈ 1() such that E(R2) ∩ E(C2) = {ucu}. As V(R2) ⊆ N(u) ∪ {u} ⧵ {w}, R2 has no choice but

to contain v. In particular, this implies that v is a neighbor of uc, which gives us a contradiction. If

{vu, uw} ⊆ E(C2), then there exists an r-clique R2 ∈ 1() such that E(R2) ∩ E(C2) = {uv}. As

V(R2) ⊆ N(u) ∪ {u} ⧵ {w}, R2 has no choice but to contain uc. In particular, this implies again that v
is a neighbor of uc, which gives us a contradiction. This proves item (1).

To show item (2), we consider two cases: (i) either 𝑑B(v) = 𝑑(v), or (ii) 𝑑(v) > 𝑑B(v). In the first

case, Observation 4.2 gives us 𝑑B(v) = 𝑑(v) ≥ r. In the second case, there is a vertex u ∈ N(v)∩A and,

since is ⋆-critical, there is also an r-clique R in G() such that uv ∈ E(R). As A is an independent

set, we must have V(R) ⧵ {u} ⊆ B, which implies that v has least r − 2 neighbors in B. ▪

Let m(G) = e(G)∕v(G) be the edge density of G. Now, we are ready to prove Lemma 3.3.

Proof of Lemma 3.3. To simplify the notation, set G = G(). We show that there exists 𝛿 > 0 such

that m(G) > m2(Kr,C𝓁) + 𝛿. Note that this implies that m(G) − m2(Kr,C𝓁) ≥ 𝜀m2(Kr,C𝓁)v(G)−1
for

𝜀 = 𝛿∕m2(Kr,C𝓁), as |v(G)| ≥ 1. This can be seen to be equivalent to 𝜆(G) ≤ −𝜀, by definition of 𝜆.

In order to find 𝛿, we shall first bound e(G) from below. By Observation 4.2, the set V(G) can be

partitioned into V(G) = A∪B, where A = A(G) and B = B(G) were defined in (8). Thus, we can write

2e(G) =
∑
v∈A

𝑑(v) +
∑
v∈B

𝑑(v).

As 𝑑(v) = r for all v ∈ A, we have
∑

v∈A 𝑑(v) = r|A|. Now, to bound the sum S =
∑

v∈B 𝑑(v),
observe that this sum counts twice each edge inside the set B and counts once each edge across A and

B. By Lemma 4.3(1), we have e(A,B) = r|A|, as A is an independent set and 𝑑(v) = r for each v ∈ A.

By Lemma 4.3(2), 𝑑B(v) ≥ r − 2 for each v ∈ B. Together, these imply that

S ≥ r|A| + (r − 2)|B|.

LIEBENAU ET AL. 9

Furthermore,

S ≥ (r + 1)|B|,
as 𝑑(v) ≥ r + 1 for each v ∈ B. Therefore,

2e(G) ≥ r|A| +max {r|A| + (r − 2)|B|, (r + 1)|B|} .
As v(G) = |A| + |B|, we have

2m(G) ≥ max

{
2r|A| + (r − 2)|B|

|A| + |B| ,

r|A| + (r + 1)|B|
|A| + |B|

}

= r − 2 +max {(r + 2)x, 3 − x} ,

where x = |A|∕v(G). The last expression attains its minimum value when x = 3∕(r + 3), and hence

m(G) ≥ r + 1

2
− 3

2(r + 3)
.

A straightforward calculation shows that m2(Kr,C𝓁) =
(

r
2

)
(𝓁−1)

(r−1)(𝓁−1)−1
(see Fact 6.2). From this expression,

we can see that 𝓁 → m2(Kr,C𝓁) is decreasing. Thus, in order to conclude our proof, it suffices to show

that

r + 1

2
− 3

2(r + 3)
> m2(Kr,C4).

Using again the expression we have for m2(Kr,C𝓁), an easy calculation shows that the last inequality

holds for every r ≥ 4. This completes the proof of the lemma. ▪

5 THE ALGORITHMS

In this section, we formally describe the algorithm HYPERTREE and its subroutine FLOWER, and

prove Lemma 3.4. Let n, r,𝓁 ≥ 4 be fixed integers throughout this section.

First, let us recall some notation from Section 3. Given any graph G, Critr,𝓁(G) denotes the set of

all ⋆-critical subhypergraphs of r,𝓁(G), the hypergraph whose hyperedges correspond to the copies

of Kr and C𝓁 in G. We distinguish the hyperedges of r,𝓁(G) by two types:

1(r,𝓁(G)) = {E(F) ∶ F ≅ Kr,F ⊆ G} and 2(r,𝓁(G)) = {E(F) ∶ F ≅ C𝓁 ,F ⊆ G}.

For any  ⊆ r,𝓁(G), we denote 1() = E() ∩ 1(r,𝓁(G)) and 2() = E() ∩ 2(r,𝓁(G)). The

underlying graph of  is denoted by G().
We find it instructive to first provide an informal overview of HYPERTREE. This algorithm takes

a hypergraph  ∈ Critr,𝓁(G) as input, for some graph G on n vertices, builds a sequence (i)Ti=0
of

subhypergraphs of and outputsT . The algorithm seeks to find a subhypergraph  ⊆  for which

the following holds. The graph F = G(), which is a subgraph of G, satisfies (1) 𝜆(F) ≤ −𝜀 or (2)

𝜆(F) ≤ M and e(F) ≥ log n, for some positive constants 𝜀 = 𝜀(r,𝓁) and M = M(r,𝓁).

10 LIEBENAU ET AL.

Algorithm 1. HYPERTREE

Input: A hypergraph ∈ Critr,𝓁(G), for some graph G with V(G) = [n]
Output: A pair (T ,DT), where T ⊆  and DT ⊆ N

/* Initialize: */
1 i = 0, D0 = ∅, 0 = {E0} for some E0 ∈ 1()
2 while 𝜆(G(i)) > −𝜀 and i < log n do
3 if there exists E ∈ 1() such that |V(E) ∩ V(G(i))| ≥ 2 and E ⊈ V(i) then
4 set i+1 = i ∪ {E} and Di+1 = Di ∪ {i + 1}

end
else

5 let F be the output of FLOWER(i,)
6 set i+1 = i ∪F
7 if |V(G(i+1)) ⧵ V(G(i))| = (r − 1)(𝓁 − 1) − 1 then set Di+1 = Di
8 else set Di+1 = Di ∪ {i + 1}

end
9 i → i + 1

end
10 return (i,Di)

In the initialization step, the algorithm picks a hyperedge E0 ∈ 1() and sets 0 = {E0}. Then,

the algorithm enters a while loop. In iteration i of the loop, the algorithm attaches a hyperedge Ei ∈
1() to the current hypergraphi−1 to buildi. It is required that such a copy intersects G(i−1) in

at least two vertices, but is not a subgraph of G(i−1). If no such hyperedge exists, then the algorithm

runs a subroutine which we call FLOWER. This algorithm, when called within HYPERTREE, returns

(1) a hyperedge C ∈ 2() which intersectsi−1 in at least one hypervertex and it is not contained in

i−1; and (2) a collection of hyperedges in 1(), each intersecting C in exactly one hypervertex. The

output of FLOWER is attached to i−1 to build i. We defer the exact description of FLOWER until

after the description of HYPERTREE.

A hyperedge E always corresponds to a set of edges of some underlying graph, and so we denote

by V(E) the set of vertices of V(G) belonging to some edge in E, that is, V(E) = {v ∈ V(G) ∶
∃e ∈ E, v ∈ e}. For a hypergraph , V() denotes the set ∪E∈E(){e ∶ e ∈ E}, and hence we have

V() = E(G()). We switch between these two equivalent perspectives throughout the algorithm

and its analysis, whichever is more convenient at that point. Next is the formal description of the

HYPERTREE algorithm. Recall that 𝜀 = 𝜀(r,𝓁) is the small positive constant given by Lemma 3.3

(Algorithm 1).

The auxiliary set DT in the output of HYPERTREE will help us to count all the possible outputs

given by this algorithm. This set will also help us to ensure that G(T) belongs to 1 ∪ 2 (recall the

definition of these sets in (1)). From now on, we say that the ith step of HYPERTREE() is degenerate
if i ∈ DT , and non-degenerate otherwise.

Let us now turn to the subroutine FLOWER. The input of FLOWER is a tuple (i,), where is a

⋆-critical subhypergraph of r,𝓁(G), for some graph G, andi ⊆ . When called within HYPERTREE,

the output is a subhypergraph of  called a flower. For a hyperedge C of type 2 and hyperedges

P1, … ,Pt of type 1, we call the hypergraph F = {C,P1, … ,Pt} a flower if |C ∩ Ps| = 1 and

C∩Ps∩Pq = ∅ for all 1 ≤ s < q ≤ t. The hyperedges P1, … ,Pt are called petals. Observe that G(F)

LIEBENAU ET AL. 11

corresponds to a copy of C𝓁 and t copies of Kr that intersect C in exactly one edge (and possibly more

vertices). Moreover, if we denote the edges in C by e0, … , e𝓁−1, then the condition |V(G(i+1)) ⧵
V(G(i))| = (r − 1)(𝓁 − 1) − 1 in line 7 of HYPERTREE is equivalent to having t = 𝓁 − 1 and having

(up to a relabeling) V(C) ∩ V(G(i)) = e0, V(Ps) ∩ V(C) = es and V(Ps) ∩ (V(G(i+1)) ⧵ V(C)) = ∅
for 1 ≤ s < 𝓁.

In Section 6, we prove that the if condition in line 7 of HYPERTREE is satisfied for all but a constant

number of iterations of the while loop. That is, the size of DT is bounded by a constant. This will be one

main ingredient to show that the set of all possible outputs given by HYPERTREE, up to isomorphism,

is at most polylogarithmic in n when applied over
⋃

V(G)=[n] Critr,𝓁(G).
The second main ingredient towards this goal is to make sure that in a non-degenerate step i, there

is only one way, up to isomorphism, to attach the underlying graph of a flower F to the current

graph G(i), independent of the input hypergraph . To make this precise, we now introduce some

non-standard notation. For each i ∈ N and each graph H with V(H) ⊆ [n], let 𝒞 (i,H) be the set of all

hypergraphs  with the following properties: (1)  ∈ Critr,𝓁(G) for some graph G with V(G) = [n];
(2) H ≅ G(i), where i is the subhypergraph of  generated after i iterations of the while loop

of HYPERTREE(); and (3) HYPERTREE() enters FLOWER in iteration i + 1 of the while loop. If

 ∈ 𝒞 (i,H), then by (2) there exists a graph isomorphism 𝜎i ∶ V(H) → V(G(i)) between H and

G(i), and we fix one such 𝜎i for every  . Abusing of notation, we denote by 𝜎i(E) the set of edges

in G(i) corresponding to the edges in E under the isomorphism 𝜎i . Now, define

H,i =
⋃

∈𝒞 (i,H)

{
E ⊆ E(H) ∶ 𝜎i(E) ∈ i

}
.

Observe that if 𝒞 (i,H) ≠ ∅, then H = G(H,i). Finally, we call an edge e of a graph H suitable (with
respect to H) if e ∉ C for all C ∈ 2(H,i). Let S = S(H) be the set of suitable edges of H. Our next

lemma says that if 𝒞 (i,H) ≠ ∅, then S(H) ≠ ∅.

Lemma 5.1. Let G be a graph on vertex set [n] and let  ∈ Critr,𝓁(G). Suppose that the algorithm
Flower(i,) is called in iteration i + 1 of the while loop of Hypertree(). Then S(G(i)) is
non-empty.

We prove the lemma after the description of FLOWER. Lemma 5.1 allows us to make the following

definition.

Definition 5.2 (Canonical edge). For every graph H with V(H) ⊆ [n] and S(H) ≠ ∅, fix an edge

e0 = e0(H) ∈ S(H) such that if H and H′
are isomorphic then there is a graph isomorphism 𝜑 ∶

V(H)→ V(H′) that maps e0(H) to e0(H′). Call e0(H) the canonical edge of H.

We remark that the canonical edge is undefined when S(H) is empty. However, we only need the

canonical edge of H when H ≅ G(i) and FLOWER is called on input (i,) in HYPERTREE. In this

case, Lemma 5.1 guarantees the existence of the canonical edge. We stress that, in the light of bounding

the size of Outr,𝓁(n)∕≅, it is important that “the same” edge is fixed for any two isomorphic graphs.

Now we are ready to state the formal description of FLOWER (Algorithm 2).

We remark here that the condition C ⊈ V(i) in line 2 is not an additional restriction. That is, if

e0 ∈ S(G(i)), then C ⊈ V(i) for all C ∈ 2() containing e0. Indeed, if we had C ⊆ V(i) for

some C ∈ 2() containing e0, then this would imply that C ∈ 2(Gi,i), where Gi = G(i) for

simplicity. Thus, e0 would not be suitable, a contradiction.

12 LIEBENAU ET AL.

Algorithm 2. FLOWER

Input: A tuple (i,), where is a hypergraph in Critr,𝓁(G), for some graph G, andi ⊆ 

Output: A flowerF = {C} ∪ {Pe ∶ e ∈ C ⧵ V(i)}, where C ∈ 2(), Pe ∈ 1() for all

e ∈ C ⧵ V(i)
/* Find a seed: */

1 Let e0 ∈ S(G(i)) be the canonical edge of G(i)
2 Let C ∈ 2() be a hyperedge containing e0 such that C ⊈ V(i)

for every e ∈ C ⧵ V(i) do
3 let Pe ∈ 1() be such that C ∩ Pe = {e}

end
return {C} ∪ {Pe ∶ e ∈ C ⧵ V(i)}

Proof of Lemma 5.1. Let Gi ∶= G(i) and let  i ∶= Gi,i. Recall that we have Gi = G( i) as

remarked after the definition of i.We first claim that i cannot be⋆-critical. Otherwise, 𝜆(Gi) ≤ −𝜀,

by Lemma 3.3, and this would imply that HYPERTREE() has not entered the while loop in iteration

i + 1. In particular, FLOWER would not be called in iteration i + 1 of HYPERTREE().
Now, we show that for every C ∈ 2( i) and every e ∈ C, there exists K ∈ 1( i) such that

K ∩ C = {e}. Indeed, let C ∈ 2(i), and let  ∈ 𝒞 (i,Gi) be such that 𝜎i(C) ∈ 2(), where i
is the subhypergraph of  generated after i iterations of the while loop of HYPERTREE() and where

𝜎i ∶ V(Gi) → V(G(i)) is a graph isomorphism. Note that such  must exist by definition of  i.

Let e ∈ C be arbitrary and let e′ be the corresponding copy of e in G(i). Since  is ⋆-critical, there

must exist K′ ∈ 1() such that K′ ∩ 𝜎i(C) = {e′}. However, as HYPERTREE() has entered the

else-statement in iteration i + 1 (cf. the definition of 𝒞 (i,Gi)), the condition of the if statement in

line 3 is false. This implies that K′
⊆ V(i), and hence the preimage K of K′

under 𝜎i is contained in

1( i). In particular, we have K ∩ C = {e}.
It follows that the only reason for which  i is not ⋆-critical is because there exists an edge e ∈

V(i) = E(Gi) for which there is no hyperedge in 2( i) containing e. Or, equivalently, S(Gi) ≠ ∅. ▪

The following is now immediate.

Corollary 5.3. Under the same assumptions as in Lemma 5.1, the algorithm Flower(i,) runs
without errors and finishes in finite time. Moreover, the edge e0 in line 1 is uniquely determined by the
isomorphism class of G(i).

Proof. The existence of the edge e0 in line 1 follows immediately from S(G(i)) ≠ ∅ proved in

the previous lemma. Its uniqueness follows by fixing the canonical edge for every isomorphism type

globally. As  is ⋆-critical, the existence of the cycle C as in line 2 and the petals Pe as in line 3 is

straightforward. ▪

We next pin down important properties of the flower returned by FLOWER(i,) that we need

repeatedly in the analysis of the algorithm.

Lemma 5.4. Under the same assumptions as in Lemma 5.1, Flower (i,) outputs a flower F =
{C} ∪ {Pe ∶ e ∈ C ⧵ V(i)} which satisfies the following properties:

(F1) C ∈ 2() but C ⊈ V(i),

LIEBENAU ET AL. 13

(F2) Pe ∈ 1() and C ∩ Pe = {e} for every e ∈ C ⧵ V(i), and
(F3) |V(Pe) ∩ V(G(i))| ≤ 1 ≤ |C ∩ E(G(i))| for all e ∈ C ⧵ V(i).

Proof. The properties (F1) and (F2) are immediate from the algorithm description and Corol-

lary 5.3. As FLOWER was called in iteration i + 1 of the while loop of HYPERTREE(), line 3 of

HYPERTREE was not executed. This means that for each petal Pe we have |V(Pe) ∩ V(G(i))| ≤ 1,

which proves the first inequality in (F3). The second inequality follows from the existence of e0 in

line 1, as e0 ∈ C ∩ E(G(i)). ▪

With Corollary 5.3 and Lemma 5.4 at our hands, we now deduce Lemma 3.4.

Proof of Lemma 3.4. In its initialization, the algorithm HYPERTREE() sets D0 = ∅ and0 = {E0},
for some E0 ∈ 1(). This already establishes Part (a). Now, for each iteration i + 1 of the while

loop, where i = 0, 1, … , HYPERTREE() executes one of the following actions. Either it setsi+1 =
i∪{E} for some E ∈ 1() (Case 1, cf. line 4), or it setsi+1 = i∪F, whereF is the output of the

algorithm FLOWER(i,) (Case 2, cf. line 6). We remark that one of them must be executed because

i ∉ Critr,𝓁(G), as 𝜆(G(i)) > −𝜀 (see Lemma 3.3). In either case, i ⊆ i+1 ⊆  (cf. Lemma 5.4

for the second case). Similarly, it is easy to see from lines 4, 7, and 8 that Di ⊆ Di+1 ⊆ N.

Let T be the number of iterations of the while loop in line 2 of HYPERTREE(). By the while

loop condition and the increase of i by one in every iteration (see line 9), HYPERTREE() must stop

in at most log n iterations. Moreover, the while loop guarantees that T is the smallest integer such

that 𝜆(GT) ≤ −𝜀 or T ≥ log n, where GT = G(T) and 𝜀 is the constant given by Lemma 3.3. This

establishes Part (c). Since HYPERTREE() should return (T ,DT) (see line 10), we also establish

Part (𝑑).
Now, it remains to show Part (b). Let i = 0, 1, … , and assume HYPERTREE() enters the while

loop in iteration i+1. In Case 1, the hyperedge E satisfies E ⊈ V(i) (cf. line 3). In Case 2, Lemma 5.4

implies that the output F = {C,P1, … ,Pt} given by FLOWER(i,) satisfies C ⊈ V(i). In both

cases, v(i) < v(i+1). ▪

6 THE ALGORITHM ANALYSIS

In this section, we prove Lemmas 3.5 and 3.6, and hence complete the proof of Theorem 2.1. Let

Gi denote the graph G(i), where i is the hypergraph generated in the ith step of HYPERTREE.

Lemma 3.5 is easily deduced from our next lemma, which states that 𝜆(G(i)) either decreases by an

additive constant in a degenerate step or it remains the same in a non-degenerate step. This lemma is

proved at the end of this section.

Lemma 6.1. For all integers r,𝓁 ≥ 4, there exists 𝛿 = 𝛿(r,𝓁) > 0 such that the following holds. For
any graph G and any hypergraph ∈ Critr,𝓁(G), the sequence (i,Di)Ti=0

generated by Hypertree()
satisfies

(1) 𝜆(Gi) = 𝜆(Gi−1) for all i ∉ DT, and
(2) 𝜆(Gi) ≤ 𝜆(Gi−1) − 𝛿 for all i ∈ DT,

where Gi = G(i) for each i ∈ {1, … ,T}.

For all 1 ≤ i ≤ T , the graph Gi is obtained from Gi−1 by adding either an r-clique or the underlying

graph of a flower {C,P1, … ,Pt} to it, depending whether HYPERTREE executes the if-clause in lines

14 LIEBENAU ET AL.

3–4 or the else-clause in lines 5–8. In the latter case, we will analyze the change in 𝜆 by adding first

C, and then one petal (copy of Kr) at a time. Thus, it makes sense to pin down the effect of adding a

copy of Kr to an arbitrary graph F first.

For two graphs F1 and F2, we denote by F1 ∩ F2 the subgraph with vertex set V(F1) ∩ V(F2)
and edge set E(F1) ∩ E(F2). The graph F1 ∪ F2 is defined analogously. For any graph F, recall that

𝜆(F) = v(F) − e(F)∕m2(Kr,C𝓁). Then, we can write

𝜆(F1 ∪ F2) − 𝜆(F1) = v(F1 ∪ F2) − v(F1) −
e(F1 ∪ F2) − e(F1)

m2(Kr,C𝓁)

= v(F2) − v(F1 ∩ F2) −
e(F2) − e(F1 ∩ F2)

m2(Kr,C𝓁)
. (9)

Now, define

𝛽r,𝓁(J) = r − v(J) −

(
r
2

)
− e(J)

m2(Kr,C𝓁)
. (10)

By (9), we have

𝜆(F1 ∪ F2) − 𝜆(F1) = 𝛽r,𝓁(J), (11)

in the case when F2 ≅ Kr and J = F1 ∩ F2. Before stating the lemma which encompasses how 𝛽r,𝓁(J)
behaves for various subgraphs J ⊆ Kr, we pin down the following fact which provides closed formulas

for m2(C𝓁), m2(Kr), and m2(Kr,C𝓁). These follow from standard calculations which we provide in the

Appendix for completeness.

Fact 6.2. Let r,𝓁 ≥ 4 be integers. Then,

m2(C𝓁) =
𝓁 − 1

𝓁 − 2
, m2(Kr) =

r + 1

2
, and m2(Kr,C𝓁) =

(
r
2

)
r − 2 + (𝓁 − 2)∕(𝓁 − 1)

.

In particular, r∕2 < m2(Kr,C𝓁) < m2(Kr).

In our next lemma, we obtain upper bounds for 𝛽r,𝓁(J) for every subgraph J ⊊ Kr with at least two

vertices.

Lemma 6.3. Let r,𝓁 ≥ 4 be integers. Let J ⊊ Kr such that v(J) ≥ 2. Then,

(a) 𝛽r,𝓁(J) < 0,
(b) 𝛽r,𝓁(K2) = 1∕m2(Kr,C𝓁) − (𝓁 − 2)∕(𝓁 − 1) > −1,
(c) 𝛽r,𝓁(J) ≤ 𝛽r,𝓁(K2) if 𝑑(v) = 1 for some v ∈ V(J). The equality holds if and only if J ≅ K2.

Proof. First, let us prove part (a). When J ⊊ Kr has r vertices, we can easily see from (10) that

𝛽r,𝓁(J) < 0. Thus, let us assume that 2 ≤ v(J) < r. Observe that 𝛽r,𝓁(J) < 0 if the following inequalities

are satisfied:

m2(Kr,C𝓁) < m2(Kr) ≤

(
r
2

)
− e(J)

r − v(J)
. (12)

LIEBENAU ET AL. 15

The first inequality follows from Fact 6.2. For the second, simply note that

(
r
2

)
− e(J)

r − v(J)
≥

(
r
2

)
−
(

v(J)
2

)
r − v(J)

≥
r + j − 1

2
≥

r + 1

2
.

As m2(Kr) = (r + 1)∕2 (see Fact 6.2), this establishes part (a).
To show part (c), first note that 𝑑(v) = 1 for some v ∈ V(J) if and only if K2 ⊆ J ⊆ Kr−1 ⋅ K2,

where Kr−1 ⋅ K2 denotes the graph obtained from Kr−1 by adding a pendant edge. When J ≅ K2, the

equality in (c) holds trivially. Thus, let us assume that v(J) ≥ 3 and J ⊆ Kr−1 ⋅ K2. In this case, the

inequality 𝛽r,𝓁(J) < 𝛽r,𝓁(K2) is equivalent to

e(J) − 1

v(J) − 2
< m2(Kr,C𝓁). (13)

But, for any J ⊆ Kr−1 ⋅ K2 such that v(J) ≥ 3, we have

e(J) − 1

v(J) − 2
≤ m2(Kr−1 ⋅ K2) = max

{
m2(Kr−1),

e(Kr−1 ⋅ K2) − 1

v(Kr−1 ⋅ K2) − 2

}
= r

2
,

by definition of m2(⋅) and the identity m2(Kr−1) = r∕2 (see Fact 6.2). As m2(Kr,C𝓁) > r∕2 by Fact 6.2,

this finishes the proof of part (c).
For part (b), the identity 𝛽r,𝓁(K2) = 1∕m2(Kr,C𝓁) − (𝓁 − 2)∕(𝓁 − 1) follows readily from the

definition of 𝛽r,𝓁 in (10) and the identity for m2(Kr,C𝓁) in Fact 6.2. Finally, m2(Kr,C𝓁) > 0 and

(𝓁 − 2)∕(𝓁 − 1) < 1 imply that 𝛽r,𝓁(K2) > −1. ▪

Now we are ready to prove Lemma 6.1. As a consequence, we also prove Lemma 3.5.

Proof of Lemma 6.1. Suppose that HYPERTREE() executes the if-statement in lines 3–4 in the ith
iteration of its while loop. Then, i ∈ Di and hence i ∈ DT . Moreover, Gi = Gi−1 ∪ K for some K ≅ Kr
such that |V(Gi−1) ∩ V(K)| ≥ 2 and K ⊈ Gi−1. Observe that the graph J = Gi−1 ∩ K satisfies the

assumptions of Lemma 6.3 and hence, by (11), 𝜆(Gi) − 𝜆(Gi−1) = 𝛽r,𝓁(J) < 0.

Now, suppose that HYPERTREE() executes the else-statement in lines 5–8 in the ith iteration of

its while loop. LetF = {C} ∪ {Pe ∶ e ∈ C ⧵ E(Gi−1)} be the flower returned by FLOWER(i−1,).
Recall all the properties ofF given by Lemma 5.4. In order to bound the difference 𝜆(Gi) − 𝜆(Gi−1),
we first analyze the increment 𝜆(Gi−1 ∪ C) − 𝜆(Gi−1). Let J0 be the graph Gi−1 ∩ C. By (9), we have

𝜆(Gi−1 ∪ C) − 𝜆(Gi−1) = 𝓁 − v(J0) −
𝓁 − e(J0)

m2(Kr,C𝓁)

≤

(
𝓁 − 2

𝓁 − 1
− 1

m2(Kr,C𝓁)

)
⋅ |E(C) ⧵ E(Gi−1)|, (14)

where in the inequality we use that v(J0) ≥ e(J0) + 1 ≥ 2, as K2 ⊆ J0 ⊊ C𝓁 (see Lemma 5.4). Note

that equality holds in (14) if and only if J0 ≅ K2.

By Lemma 6.3(a), the contribution of each petal ofF to 𝜆 is negative. But, the contribution of C to

𝜆, which is bounded by (14), may be positive (and large). However, as we shall show, the contribution

of C to 𝜆 is smaller than or equal to the absolute value of the sum of all the contributions of each

petal ofF to 𝜆. In order to prove this, we recursively find a subsequence of petals (Pj)tj=1
inF such

that the intersection graph Pj ∩ (Gi−1 ∪ C ∪ P1 ∪ · · · ∪ Pj−1) has potentially many isolated vertices.

16 LIEBENAU ET AL.

These isolated vertices allow us to gain a sufficiently negative contribution to 𝜆 from each petal in the

sequence, and hence “beat” the contribution given by the cycle in (14). This sequence of petals does

not necessarily contain all the petals ofF, but this is not a problem. By Lemma 6.3(a), all the petals

inF give a negative contribution to 𝜆, and hence we may discard some petals from the analysis (and

adding them later will not increase the value of 𝜆).

We define this sequence of petals iteratively. Let us say that V(C) = {u0, … u𝓁−1} with uj−1uj ∈
E(C), for each j ∈ [𝓁] (assuming that u𝓁 = u0), and that the edge u0u𝓁−1 belongs to Gi−1. Now, define

A0 = E(C) ⧵ E(Gi−1) and construct a nested sequence of sets (As)s≥0 in the following recursive way.

For each s ∈ N, if As−1 is empty, then let As = ∅. If As−1 is non-empty, then let

ms = min{m ∶ umum+1 ∈ As−1},

and let Ps = Pums ums+1
be the petal in F which covers the edge ums ums+1. Then, set

As = As−1 ⧵ {umum+1 ∶ um+1 ∈ V(Ps)}.

Let t be the smallest integer such that At = ∅, and note that t ≤ |A0| = |E(C) ⧵ E(Gi−1)|.
For simplicity, denote G(0)

i−1
= Gi−1 ∪ C and, more generally, for each 1 ≤ s ≤ t, let

G(s)
i−1
= Gi−1 ∪ C ∪ P1 ∪ · · · ∪ Ps.

Now, observe that

𝜆(Gi) − 𝜆(Gi−1) ≤ 𝜆(G(0)
i−1
) − 𝜆(Gi−1) +

t∑
s=1

(
𝜆(G(s)

i−1
) − 𝜆(G(s−1)

i−1
)
)
. (15)

Indeed, Lemma 6.3(a) together with (11) imply that we can discard the petals in {Pe ∶ e ∈ E(C) ⧵
E(Gi−1)}which do not belong to the chosen sequence P1, … ,Pt. Moreover, equality holds if and only

if P1, … ,Pt are all the petals in the flowerF. To bound each increment in (15), we next analyze the

structure of the graph Js ∶= G(s−1)
i−1

∩ Ps. Define

Is = {um+1 ∈ V(Js) ⧵ {ums+1} ∶ umum+1 ∈ As−1}.

Claim 6.4. The degree of ums+1 in Js is 1 and Is is a set of isolated vertices in Js.

Proof. Let um be any vertex in Is∪{ums+1} and w be any vertex in Js. We affirm that um is adjacent to

w inside the graph Js if and only if {umw} = C∩Ps. Indeed, we cannot have umw ∈ E(Gi−1), otherwise

Ps would be an r-clique which intersects Gi−1 in at least 2 vertices, contradicting Lemma 5.4 (F3). If

w ≠ um+1, we also cannot have {umw} ∈ E(P1 ∪ · · · ∪ Ps−1), otherwise um−1um ∉ As−1, and hence

um ∉ Is ∪ {ums+1}.
As ums ums+1 is the only edge in Ps ∩ C, it follows that ums is the only neighbor of ums+1 in Js, and

that um is isolated in Js for any um ∈ Is. ▪

Let ̃Js be the subgraph of Js induced by the vertex set V(Js) ⧵ Is. By the previous claim, we have

E(̃Js) = E(Js), which implies that 𝛽r,𝓁(Js) = 𝛽r,𝓁(̃Js) − |Is| (see (10)). By (11), we obtain

𝜆(G(s)
i−1
) − 𝜆(G(s−1)

i−1
) = 𝛽r,𝓁(Js) = 𝛽r,𝓁(̃Js) − |Is| ≤ 𝛽r,𝓁(K2) − |Is| (16)

LIEBENAU ET AL. 17

for every 1 ≤ s ≤ t. In the last inequality we use Lemma 6.3(c), as 𝑑(ums+1) = 1 by Claim 6.4.

Moreover, by Lemma 6.3(c), equality holds if and only if ̃Js ≅ K2. When ̃Js ≅ K2, note that we also

have |Is| = 0, as the only vertex um+1 ∈ V(Js) such that umum+1 ∈ As−1 is um+1 = ums+1.

Combining (14)–(16), we have

𝜆(Gi) − 𝜆(Gi−1) ≤
(
𝓁 − 2

𝓁 − 1
− 1

m2(Kr,C𝓁)

)
⋅ |E(C) ⧵ E(Gi−1)| + t𝛽r,𝓁(K2) −

t∑
s=1

|Is|. (17)

From the definitions of As and Is, it is easy to see that
∑

s(|Is| + 1) = |A0| = |E(C) ⧵ E(Gi−1)|. And,

by Lemma 6.3(b), we have 𝛽r,𝓁(K2) = m2(Kr,C𝓁)−1 − (𝓁 − 2)∕(𝓁 − 1). Then, (17) is equivalent to

𝜆(Gi) − 𝜆(Gi−1) ≤ (𝛽r,𝓁(K2) + 1) ⋅ (t − |A0|). (18)

By Lemma 6.3, 𝛽r,𝓁(K2) > −1 and, as we have t ≤ |A0|, it follows that

(𝛽r,𝓁(K2) + 1) ⋅ (t − |A0|) ≤ 0. (19)

Clearly, equality in (19) holds if and only if t = |A0|. We conclude that 𝜆(Gi)−𝜆(Gi−1) ≤ 0 in the case

when we add the flower {C} ∪ {Pe ∶ e ∈ C ⧵ E(Gi−1)}.
Observe that 𝜆(Gi) − 𝜆(Gi−1) = 0 if and only if we have equalities in (14)–(19). This means that

we must have C ∩ Gi−1 ≅ K2 (and hence |A0| = 𝓁 − 1), t = |A0| and

Ps ∩ (Gi−1 ∪ C ∪ P1 ∪ · · · ∪ Ps−1) ≅ K2,

for each 1 ≤ s ≤ t. As e ∈ E(Pe ∩C), we infer that none of the 𝓁 − 1 petals intersect outside the cycle

C and that the only petals sharing a vertex are consecutive petals, which share exactly one vertex. This

happens if and only if |V(Gi)⧵V(Gi−1)| = (r−1)(𝓁−1)−1, in which case i is not added to Di (cf. line 7

of HYPERTREE), and then i ∉ DT . This proves (1). The existence of 𝛿 = 𝛿(r,𝓁) for (2) readily follows

by noting that there are only C = C(r,𝓁) non-isomorphic configurations of such flowers and cliques

(and how they intersect with Gi−1). This finishes the proof of the lemma. ▪

It remains to prove Lemma 3.6, which bounds the number of non-isomorphic underlying graphs

that HYPERTREE may output. Recall that, for a set of graphs S, we denote by S∕≅ a set consisting of

exactly one representative graph for every (graph) isomorphism class of S. In principle, |Outr,𝓁(n)∕≅|
could be very large, but this is avoided by two means. First, the number of degenerate steps in

HYPERTREE is bounded by a constant. In this case, we bound the number of possible (non-isomorphic)

structures that can emerge in one iteration of the while loop of HYPERTREE quite crudely. Second, in a

non-degenerate step, we ensure that there is only one possible structure emerging from a given G(t),
up to isomorphism. Here, it is important that we fix the canonical edge of G(t) in a unique way for

the class of graphs isomorphic to G(t), compare Definition 5.2.

We first bound how many non-isomorphic graphs Gt = G(t) the algorithm HYPERTREE can

produce in step t, for all t = 1, … , ⌈log n⌉. To do so, we need to recall and define some notation. For

each n ∈ N, recall that Critr,𝓁(n) =
⋃

V(G)=[n] Critr,𝓁(G). For a hypergraph ∈ Critr,𝓁(n), let T() be

the stopping time of HYPERTREE(). For any t ≥ 0 and any  ∈ Critr,𝓁(n) such that T() ≥ t, let

t() be the hypergraph obtained in step t of HYPERTREE() and let Dt() be the accompanying

set of integers. Recall that t is a subgraph of r,𝓁(G) for some graph G with V(G) = [n], so that

18 LIEBENAU ET AL.

V(t) ⊆
(
[n]
2

)
and we can associate witht a graph G(t), called the underlying graph oft, which

is a subgraph of G. Finally, for each t, n ∈ N and each set D ⊆ {1, … , t}, define

(t,D, n) =
⋃

{G(t) ∶ t = t()} ,

where the union is over all  ∈ Critr,𝓁(n) such that Dt() = D and T() ≥ t. Our next lemma gives

an upper bound on the size of (t,D, n)∕≅.

Lemma 6.5. For all r,𝓁 ≥ 4 there exists C > 0 such that |(t,D, n)∕≅| ≤ (tr𝓁)C|D|, for all t, n ∈ N

and D ⊆ {1, … , t}.

Proof. To simplify notation, set g(t,D, n) ∶= |(t,D, n)∕≅|. First, note that (0, ∅, n) contains only

one graph G0, up to isomorphism, and hence g(0, ∅, n) = 1. Indeed, for every  ∈ Critr,𝓁(n), the

hypergraph0() consists of one hyperedge of type 1 (cf. Lemma 3.4(a)). That is, G0 is a copy of Kr.

Now, we claim that for each t ≥ 1 and each D ⊆ {1, … , t}, we have

g(t,D, n) ≤

{
g(t − 1,D, n) if t ∉ D;
g (t − 1,D ⧵ {t}, n) ⋅ (t𝓁r)4(𝓁r)2

if t ∈ D.

(20)

First, assume that t ∉ D. Let Gt−1 ∈ (t − 1,D, n). We will show that there is at most one graph

Gt ∈ (t,D, n), up to isomorphism, such that if is a subgraph with G(t−1()) ≅ Gt−1 and T() ≥ t
then we must have that G(t()) ≅ Gt. If t ≥ log n or 𝜆(Gt−1) ≤ −𝜀, then T() = t − 1 for

all  such that G(t−1()) ≅ Gt−1. In this case, the statement is trivially true. So we may assume

that t ≤ log n and 𝜆(Gt−1) > −𝜀. Let  be any hypergraph in Critr,𝓁(n) such that Dt() = D and

G(t−1) ≅ Gt−1, wheret−1 = t−1(). As t ∉ D and HYPERTREE() did not stop after iteration t,
we have t ∶= t() = t−1 ∪F, for some flowerF such that

|V(G(t)) ⧵ V(G(t−1))| = (r − 1)(𝓁 − 1) − 1, (21)

see line 7 of HYPERTREE. For (21) to hold, observe that G(F) must intersect G(t−1) in exactly

one edge, the canonical edge e0 of G(t−1), see line 1 of Flower (t−1,). Once we have this

edge, we can see that FLOWER generates only one type of flower G(F) such that (21) holds and

G(F) ∩ G(t−1) is equal to {e0}. Moreover, by construction, e0 only depends on the isomorphism

class of G(t−1), see Definition 5.2 and Corollary 5.3. Therefore, for any other hypergraph ̃ such

that G(t−1(̃)) ≅ G(t−1) ≅ Gt−1 and t ∉ Dt(̃), the flower ̃F given by the algorithm Flower
in iteration t of HYPERTREE(̃) satisfies G(̃F) ∩ G(t−1(̃)) = {e′0}, where e′

0
is the image of e0

under some graph isomorphism 𝜑 ∶ V(G(t−1)) → V(G(t−1(̃))). Thus, we conclude that the two

graphs G(t()) and G(t(̃)) produced after t iterations of the while loop by HYPERTREE() and

HYPERTREE(̃), respectively, are isomorphic. This implies that g(t,D, n) ≤ g(t−1,D, n)when t ∉ D,

which proves the first inequality in (20).

Now, suppose that t ∈ D. To show the second inequality in (20), note that in step t of

HYPERTREE() one of the following holds: (1) t = t−1 ∪ {E}, for some E ∈ 1(); or (2)

t = t−1 ∪F, for some flower F ⊆ . Let H = G(E) or H = G(F) be the underlying graph of

the hyperedges that were added in step t. In order to count how many choices we have for the graph

G(t−1) ∪H it suffices to count how many subgraphs in G(t−1) have at most v(H) vertices and how

many subgraphs H has. As v(H) ≤ 𝓁r and v (G(t−1)) ≤ t𝓁r, there are at most (t𝓁r)𝓁r ⋅2(𝓁r)2
subgraphs

in G(t−1)with at most 𝓁r vertices. Moreover, we can easily see that there are at most (𝓁r)𝓁r ⋅2(𝓁r)2
sub-

graphs in H. From these bounds it follows that there are at most (t𝓁r)𝓁r
2
(𝓁r)2 ⋅ (𝓁r)𝓁r

2
(𝓁r)2
≤ (t𝓁r)4(𝓁r)2

LIEBENAU ET AL. 19

choices for the graph G(t−1) ∪H. That is, the graph G(t)may be obtained from G(t−1) in at most

(t𝓁r)4(𝓁r)2
ways, and hence g(t,D, n) ≤ g(t − 1,D, n) ⋅ (t𝓁r)4(𝓁r)2

.

As g(0, ∅, n) = 1, it follows that g(t,D, n) ≤ (t𝓁r)4(𝓁r)2|D|
by iterating the inequalities in (20). ▪

Now, we are ready to prove Lemma 3.6:

Proof of Lemma 3.6. We first claim that there exists a constant C1 = C1(r,𝓁) > 0 such

that |DT ()| ≤ C1 for all  ∈ Critr,𝓁(n). Recall that T = T() denotes the stopping time

of HYPERTREE(). Fix any hypergraph  in Critr,𝓁(n) and let Gi = G(i) for i = 0, … ,T .

By Lemma 6.1, we have 𝜆(Gi) ≤ 𝜆(Gi−1) − 𝛿 if i ∈ DT (), and 𝜆(Gi) = 𝜆(Gi−1) if i ∉ DT (), where

𝛿 = 𝛿(r,𝓁) > 0. As 𝜆(G0) = 𝜆(Kr) (by Lemma 3.4(a)) and 𝜆(GT()−1) > −𝜀 (by Lemma 3.4(c)), it

follows that |DT ()| ≤ 1 + (𝜆(Kr) + 𝜀)∕𝛿. As 𝜀 only depends on r and 𝓁, this proves our claim.

By Lemma 3.4(c), the stopping time T is bounded from above by log n. Since |DT | ≤ C1, the size

of Outr,𝓁(n)∕≅ is bounded by the size of

⋃
t≤log n

⋃
D⊆[t]∶
|D|≤C1

|(t,D, n)∕≅|,

where (t,D, n) was defined just above Lemma 6.5. Using the bound on |(t,D, n)∕≅| given

by Lemma 6.5, we conclude that

|Outr,𝓁(n)∕≅| ≤
⌈log n⌉∑

t=1

∑
D⊆[t]∶
|D|≤C1

(t𝓁r)C|D|
≤ (log n)C0

,

for some C0 = C0(r,𝓁) > 0. ▪

ACKNOWLEDGMENTS
This work was started at the thematic program GRAPHS@IMPA (January–March 2018), in Rio de

Janeiro. We thank IMPA and the organisers for the hospitality and for providing a pleasant research

environment. We thank Rob Morris for helpful discussions, and the anonymous referees for their care-

ful reading and many helpful suggestions. Open Access funding enabled and organized by Projekt

DEAL.

FUNDING INFORMATION
A. Liebenau was supported by an ARC DECRA Fellowship Grant DE170100789. L. Mattos

was supported by CAPES and by the Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation) under Germany’s Excellence Strategy – The Berlin Mathematics Research Center

MATH+ (EXC-2046/1, project ID: 390685689). W. Mendonça was supported by CAPES project

88882.332408/2010-01

REFERENCES

1. J. Balogh, R. Morris, and W. Samotij, Independent sets in hypergraphs, J. Am. Math. Soc. 28 (2015), 669–709.

2. P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without K4, Graphs Comb. 2 (1986), 135–144.

20 LIEBENAU ET AL.

3. E. Friedgut and M. Krivelevich, Sharp thresholds for certain Ramsey properties of random graphs, Random Struct.

Algorithms 17 (2000), 1–19.

4. L. Gugelmann, R. Nenadov, Y. Person, N. Škorić, A. Steger, and H. Thomas, Symmetric and asymmetric Ramsey
properties in random hypergraphs, Forum Math. Sigma 5 (2017), e28.

5. Y. Kohayakawa and B. Kreuter, Threshold functions for asymmetric Ramsey properties involving cycles, Random

Struct. Algorithms 11 (1997), 245–276.

6. Y. Kohayakawa, M. Schacht, and R. Spöhel, Upper bounds on probability thresholds for asymmetric Ramsey
properties, Random Struct. Algorithms 44 (2014), 1–28.

7. B. Kreuter, Threshold functions for asymmetric Ramsey properties with respect to vertex colorings, Random Struct.

Algorithms 9 (1996), 335–348.

8. T. Łuczak, A. Ruciński, and B. Voigt, Ramsey properties of random graphs, J. Comb. Theory Ser. B 56 (1992),

55–68.

9. M. Marciniszyn, J. Skokan, R. Spöhel, and A. Steger, Asymmetric Ramsey properties of random graphs involving
cliques, Random Struct. Algorithms 34 (2009), 419–453.

10. F. Mousset, R. Nenadov, and W. Samotij, Towards the Kohayakawa–Kreuter conjecture on asymmetric Ramsey
properties, Comb. Probab. Comput. (2020), 1–13.

11. F. Ramsey, On a problem of formal logic, Proc. Lond. Math. Soc. 30 (1930), 264–286.

12. V. Rödl and A. Ruciński, Lower bounds on probability thresholds for Ramsey properties, Combinatorics, Paul

Erdős is eighty, Vol 1, Bolyai Society Mathematical Studies, János Bolyai Mathematical Society, Budapest, 1993,

pp. 317–346.

13. V. Rödl and A. Ruciński, Threshold functions for Ramsey properties, J. Am. Math. Soc. 8 (1995), 917–942.

14. D. Saxton and A. Thomason, Hypergraph containers, Invent. Math. 201 (2015), 925–992.

How to cite this article: A. Liebenau, L. Mattos, W. Mendonça, and J. Skokan, Asymmetric
Ramsey properties of random graphs involving cliques and cycles, Random Struct.

Algorithms. (2022), 1–21. https://doi.org/10.1002/rsa.21106

APPENDIX A: PROOF OF FACT 6.2

Note that every subgraph J ⊊ C𝓁 is a forest, and so we have e(J) ≤ v(J) − 1. Thus, for every J ⊊ C𝓁

with v(J) ≥ 3 this implies that (e(J) − 1)∕(v(J) − 2) ≤ 1. On the other hand,

e(C𝓁) − 1

v(C𝓁) − 2
= 𝓁 − 1

𝓁 − 2
> 1,

which implies m2(C𝓁) = (𝓁 − 1)∕(𝓁 − 2). Now, let us analyze subgraphs of Kr. For each J ⊆ Kr, we

have e(J) ≤
(

v(J)
2

)
. Thus,

e(J) − 1

v(J) − 2
≤

(
v(J)

2

)
− 1

v(J) − 2
= v(J) + 1

2
,

for each J ⊆ Kr such that v(J) ≥ 3. It follows that m2(Kr) = (r + 1)∕2. Next, for each 𝓁 ≥ 3, consider

the function f𝓁 ∶ N → Q defined by

f𝓁(t) =

(
t
2

)
t − 2 + m2(C𝓁)−1

.

https://doi.org/10.1002/rsa.21106
https://doi.org/10.1002/rsa.21106
https://doi.org/10.1002/rsa.21106
https://doi.org/10.1002/rsa.21106
https://doi.org/10.1002/rsa.21106

LIEBENAU ET AL. 21

It is not hard to check that (f𝓁(t))t≥3 is monotone increasing (for every given 𝓁). Since m2(C𝓁) =
(𝓁 − 1)(𝓁 − 2), we have

m2(Kr,C𝓁) = f𝓁(r) =

(
r
2

)
r − 2 + (𝓁 − 2)∕(𝓁 − 1)

. (A1)

It follows readily from this identity that m2(Kr,C𝓁) is strictly decreasing in 𝓁, and thus,

m2(Kr,C𝓁) ≤ m2(Kr,C3) =
r(r − 1)
2r − 3

<

r + 1

2
= m2(Kr), (A2)

for every r ≥ 4. Finally, the identity in (A1) implies that

m2(Kr,C𝓁) =

(
r
2

)
(𝓁 − 1)

(r − 1)(𝓁 − 1) − 1
= r

2
⋅

1

1 − 1

(r−1)(𝓁−1)

>

r
2
.

	{Asymmetric Ramsey properties of random graphs involving cliques and cycles}
	1 INTRODUCTION
	2 THE MAIN TECHNICAL RESULT
	3 PROOF OF THEOREM 2.1
	4 THE STRUCTURAL LEMMAS
	5 THE ALGORITHMS
	6 THE ALGORITHM ANALYSIS

	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	REFERENCES

