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Abstract

Expanding credit access in developing contexts could help some households

while harming others. Microcredit studies show different effects at different

quantiles of household profit, including some negative effects; yet these find-

ings also differ across studies. I develop new Bayesian hierarchical models

to aggregate the evidence on these distributional effects for mixture-type out-

comes such as household profit. Applying them to microcredit, I find a precise

zero effect from the 5th to 75th quantiles, and uncertain yet large effects on

the upper tails, particularly for households with business experience. These

quantile estimates are more reliable than averages because the data is fat-

tailed.
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1 Introduction

Financial market expansions in the developing world have the potential to create

winners and losers. Increasing access to credit in particular may have heteroge-

neous effects, both because borrowers differ in their investment opportunities and

because of general equilibrium dynamics (Banerjee 2013, Kaboski and Townsend

2011). Proponents of financial interventions such as microcredit claim that the pos-

itive impact on high-productivity borrowers justifies continued market expansion;

detractors claim that the resulting market "saturation" leads to exploitative lending

practices which systematically harm the most vulnerable borrowers (Ahmad 2003,

Roodman 2012). Although recent studies have estimated sets of quantile treatment

effects to address this concern, existing meta-analyses of microcredit ignored these

sets of quantile effects due to a lack of methodology to aggregate them (Meager 2019,

Vivalt 2016, Banerjee et al 2015a). In this paper I develop new models to aggregate

evidence on distributional treatment effects, and apply them to randomized trials

of expanding access to microcredit.

Microcredit institutions reached 140 million low-income clients with a global loan

portfolio worth 124 billion dollars in 2019, and the figure is growing yearly (Micro-

finance Barometer, 2020). At this scale, negative impacts for even a small subset

of borrowers would be concerning, and several governments have curtailed micro-

finance operations ostensibly for this reason (Microfinance Focus 2011, Banerjee

2013, Breza and Kinnan 2018). Even if microcredit benefits all households, an un-

equal distribution of gains may affect social and political institutions (Acemoglu and

Robinson 2008, Acemoglu et al 2015). Several randomized trials find evidence of

negative effects at lower quantiles of household business profits, but others find zero

or positive impact there and on higher quantiles of the distribution (Augsburg et al.

2015, Attanasio et al. 2015, Banerjee et al. 2015b, Crepon et al. 2015, Angelucci et

al. 2015, Tarozzi et al. 2015, Karlan and Zinman 2011). Forming a broad consensus

on the distributional impact of microcredit is difficult given the lack of power to

estimate these effects (Leon and Heo 2009) and the possibility of substantial differ-

ences in effects across studies, often referred to as concerns about generalizability or

"external validity". Yet despite these concerns, academics and policymakers need to

understand the typical impact of microcredit, especially given this the potential for

harm (Schicks 2013).

The main contribution of this paper is a method to aggregate the distributional

impact of microcredit that addresses concerns about generalizability even in the

presence of certain data features which – though widespread in economics – sub-
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stantially complicate the use of existing econometric approaches. I work within

the Bayesian hierarchical modelling framework because it specifies the potential for

treatment effect heterogeneity as a parameter of interest in its own right, and uses

that parameter to adjust the uncertainty about the typical impact across settings

and likely impact in new settings (Rubin 1981, Gelman et al 2004, Gelman and Par-

doe 2006). This approach is well-established in statistics and is increasingly used for

evidence aggregation in economics (Chib and Greenberg 1995, Dehejia 2003, Hsiang,

Burke and Miguel 2013, Vivalt 2016, Bandiera et al 2017, Meager 2019). Partial

pooling models such as Empirical Bayes have also been used to borrow power across

regions or sub-units when studying large geographic areas, or to combine multiple

estimates within a study (Hull 2018, Chetty and Hendren 2018, Chetty, Friedman

and Rockoff 2014). Yet within the hierarchical framework there are no established

tools to aggregate distributional effects.1

In applying the Bayesian hierarchical framework to the distributional effects of

microcredit, I confront several challenges that require a substantially new, tailored

modelling approach. The first issue is that for the microcredit data, even the esti-

mation of quantiles themselves is not straightforward because the business outcomes

– profit, revenues and expenditures – have large spikes at zero which invalidate the

quantile estimator’s classical asymptotics (Mosteller, 1946). The sampling variance

of the quantiles is no longer Gaussian, and more troublingly, is often estimated to be

zero in the sample due to the large number of ties. Obtaining zero standard errors

causes practical problems for evidence aggregation because the general treatment

effect is typically estimated using a weighted average of the effects from each study,

where the inverse standard error enters the weight. Yet even if one does not face

this problem, there is a second challenge: aggregating using potentially quite dif-

ferent weights at different quantiles can introduce quantile crossing – the situation

in which the point estimate of, say, the 50th quantile lies above the point estimate

of the 60th quantile – in the aggregate quantile effects. Thus, the inherent mono-

tonicity constraint on the quantile function can be violated during the aggregation

exercise even if it holds in the individual studies.

My approach addresses both of these problems by directly modelling the distri-

butions of household outcomes using a flexible set of parametric mixture models.

1Even outside of the hierarchical framework, the economics literature on external validity and
generalizability has focused on inference across different types of average effects, such as extrapo-
lating the LATE to the ATE within similar settings, or adjustments based on correlations between
observable and unobservable covariates (Heckman, Tobias, and Vytlacil 2001, Angrist 2004, An-
grist and Fernandez-Val 2010, Bertanha and Imbens 2014, Allcott 2015, Dehejia, Pop-Eleches and
Samii 2015, Gechter 2015, Athey and Imbens 2016, Andrews and Oster 2018).
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I specify treatment effects on the parameters of the tailored density function and

partially pool information on these effects across studies by placing a hierarchical

structure on these treatment effects. Building these models relies on contextual

economic knowledge of the variables at hand. For example, when we sample house-

holds in rural villages in India or Mexico and ask about their business profit, we

ought to expect a spike at zero because not all households own businesses and nor

do they necessarily operate their businesses in every period, often being engaged in

seasonal agricultural labour for months at a time. In this context, household busi-

ness variables are produced by an extensive-margin decision (to operate a business

or not) followed by an intensive margin decision (how much to spend or invest once

in operation) – the spikes at zero are part of the data-generating process that can

and should be modelled explicitly.

To capture these data features, I develop a set of mixture probability density

function (PDF) models, each of which has a point mass or "spike" of households at

zero and a continuous tail distribution or "slab" on the rest of the real line. I specify

potential treatment effects on the probabilities that households find themselves in the

tails versus the spike, and effects on features of the tails such as means and variances.

Economic theory and prior data suggests that profits, expenditures, revenues and

even consumer durables spending outcomes tend to have fatter tails than Normal

distributions, so I consider models with either lognormal, Pareto, or a mixture of

these two distributions for the continuous portions of these variables (Piketty 2015,

Gabaix 2008, Roy 1950). I analytically compute and report the quantile treatment

effects implied by the underlying parameters of the tailored PDFs by employing the

method of Castellaci (2012); the posterior uncertainty on these transformed effects

is automatically provided within the Bayesian framework.

Applying these models to seven randomized trials of expanding access to mi-

crocredit, I find a precise zero effect on household outcomes from the 5th to 75th

percentiles. Above the 75th percentile, there is substantial probability of a large

positive impact on most outcomes, but there is greater uncertainty around this

effect due to heterogeneity within and across studies. There are no generalizable

negative quantile treatment effects. These patterns hold regardless of whether one

uses lognormal or Pareto tails, although the lognormal fits this data best. Moreover,

my analysis shows that the tails of profit, revenues and business expenditures are so

heavy that estimated average treatment effects and use of Gaussian asymptotics for

averages are unreliable (Koenker and Basset 1978, Mosteller 1946). The majority

of the right tail impact of microcredit and the heterogeneity across studies occurs
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within the group of households who had previous business experience.2 The result-

ing potential increase economic inequality even within the group of households who

previously operated businesses implies that the social welfare effects of microcredit

are likely to be complex.

The models presented in this paper have broad applicability in economics be-

yond the microcredit literature. As a complement to the traditional approach in

economics of writing review articles to summarize literatures, formal exercises to

synthesize evidence improve power and prevent undue focus on the most extreme

effects (Rubin 1981). Yet in economics, as in social science more broadly, contextual

heterogeneity across study settings often makes it difficult to combine the evidence

because the generalizability of the evidence is unknown (Allcott 2015, Bisbee et

al 2016, Pritchett and Sandefur 2015). The hierarchical approach is broadly ap-

propriate as it incorporates uncertainty about the heterogeneity in effects across

studies, and provides some indication of the extent to which extrapolation across

settings is appropriate. Moreover, there are many policy settings in which quantiles

are implicated in policy directly, often because welfare or tax policies are explicitly

concerned with distributional effects. My models are especially relevant when the

data contains discrete point masses due to extensive margin decisions, and studies

for which the outcome data is likely to be fat-tailed.

2 Data and Context

To aggregate the evidence on the quantile treatment effects of microcredit, I use data

from seven studies which meet the following inclusion criteria: the main intervention

must be an expansion of access to microcredit either at the community or individual

level, the assignment of access must be randomized, and the study must be published

before February 2015 (the period of my literature search). The selected studies are:

Angelucci et al. 2015, Attanasio et al. 2015, Augsburg et al. 2015, Banerjee et al.

2015b, Crepon et al. 2015, Karlan and Zinman 2011, and Tarozzi et al. 2015, six of

which were published in a special issue of the American Economics Journal: Applied

Economics.3 I restrict the sample to randomized controlled trials (RCTs) because

2In Appendix D I pursue a bounding exercise to show that the precise and generalizable impact
at zero is unlikely to be due to low take-up of loans.

3I focus on expanding access to microcredit because this is the intervention closest to the policy
of subsidizing microfinance institutions (MFIs) or promoting interventions under the general um-
brella of "microcredit". Other RCTs of microfinance tend to randomly vary certain characteristics
of the loans themselves, which allows researchers to understand the impact of these features of the
loans but complicates the inference on the general impact of the standard microcredit model (Field
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they typically have high internal validity for estimating causal effects, and they all

consider a reasonably uniform and simple "expansion" treatment in this case.4

I analyse six outcomes linked to the claim that offering households more credit

on more favourable terms should stimulate entrepreneurship (Morduch 1999, Yunus

2006, Roodman 2012). Because microfinance insitutions (MFIs) offer lower interest

rates relative to informal moneylenders, poor entrepreneurs may be able to start new

businesses or grow their existing businesses, increasing their business expenditures,

revenues and ultimately profits (Yunus 2006). Households could then increase their

consumption in the medium and long run. Yet even households without business in-

vestment opportunities may use microloans to shift spending away from "temptation

goods" (pleasurable yet harmful expenditures) and towards durable goods (Rood-

man 2012, Banerjee 2013). This could happen if microcredit increases a house-

hold’s expectation of escaping poverty in the future, or solves a self-control problem

(Banerjee and Mullainathan 2010, Banerjee 2013). In all cases I analyze the effect

of expanding access itself, called the Intention to Treat Effect in the original stud-

ies (Banerjee et al 2015b). I do not pursue an instrumental variables strategy as

network links and potential general equilibrium effects within villages means the

Stable Unit Treatment Value Assumption (SUTVA) is likely to be violated at the

household level (Banerjee 2013, Kinnan and Townsend 2012, Breza 2012).5

Despite the restrictive inclusion criteria, the selected studies still differ substan-

tially in their implementations and local contexts. They cover seven different coun-

tries, they have different partner NGOs, offering similar but not identical loan con-

tract structures with different interest rates and loan sizes, and they differ in terms

of their randomization units - five randomized at the community level and two at the

individual level - with various encouragement and sampling designs (see Appendix

C for details). Given this heterogeneity across studies, heterogeneity in the resulting

effects seems likely. However, the 95% confidence intervals of the quantile effects do

et al 2013). Karlan and Zinman 2009 expands access to consumer credit, but microcredit is often
considered categorically different to consumer credit; see Banerjee 2013 for a deeper discussion of
this.

4While the set of studies here may not be a representative sample of all possible microcredit
interventions, there is little reason to suspect publication bias in this literature. The papers
here published a variety of results most of which were null. This leads to less risk of classical
publication bias in which only "significant" results appear in the literature. However, it is still
possible that these studies are not representative of the world. To address this issue requires
substantially more structure and has thus far been ignored in the meta-analysis literature. This
may be because such an exercise requires the development of aggregation techniques that can
account for differential types of studies in a more complex way than a simple meta-regression,
which fails to share information across the study types.

5To investigate the role of take-up in this context, I pursue a bounds analysis explained further
in Appendix D.

6



overlap across most of the studies, suggesting meaningful similarities across settings.

In this context, where the generalizability of the evidence across settings is unclear

ex-ante, the Bayesian hierarchical framework is an appropriately cautious way to

proceed with evidence aggregation.

The open data policies of the American Economics Journal: Applied Economics

and Science allow me access to the microdata from all of these experiments, such that

I can standardize which quantiles I compute across studies and can construct each

underlying variable in a uniform manner across studies. The variables were measured

in different currencies, in different years, and over different time periods (this matters

because these are all flow variables). I standardize all measurements to be USD

PPP in 2009 dollars over a two-week period. Business variables require further

standardization: to capture the potential for microcredit to allow individuals to open

new businesses or to switch to operating any existing seasonal businesses throughout

the year, households with no business or missing business data have profits imputed

as zero. This was the decision made by the original authors of many of the seven

studies, because the business creation channel is closely tied to the central claims

of Yunus (2006), and dropping the missing values can lead to underestimating the

business creation effects of microcredit if there are any. I employ this strategy

throughout to business expenditures and revenues as well.6 I also construct all

profit variables in my analysis using reported revenues and expenditures data to

minimize recall bias or rounding biases. Other than standardizing the construction

of variables as much as possible, I have conformed to the decisions made by the

original authors. 78

Household and study-level covariates may play some role in determining hetero-

geneity in the quantile treatment effects, but there are limitations to pursuing a

covariates analysis in this literature. Only three of the microcredit RCTs collected

comprehensive individual-level baseline surveys. One pre-treatment variable was

recorded at endline in all studies due to its theoretical importance: a binary in-

6While it would be ideal to examine effects on other variables such as income and assets, the
measurement and definition of those variables differed across the studies to such an extent that it is
unclear how to aggregate them. This issue was noted in Meager (2019) and in my pre-registration:
https://osf.io/tdvc8/ .

7I have used the entire sample available in the online data sets except in Ethiopia: this study
contained a cross-randomized family planning treatment. I use only the pure control and the pure
microcredit samples, which is the conservative choice given that we do not know how microcredit
interacts with family planning (the study estimates a very imprecise interaction).

8I do not winsorize any of the variables because most of the original studies did not winsorize
themselves. However Augsburg et al (2015) found that winsorizing outliers sometimes made results
statistically significant when they were not significant in the full sample. If the extreme values do
not change the point estimate but increase the uncertainty, winsorising them may underestimate
the true uncertainty.
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dicator that a household had previous experience operating a business (Banerjee

et al 2015b). Although covariates at the study level may also predict variation in

effects across context, there at least seven such covariates and only seven studies, so

conventional regression analysis will be overfitted and misleading. It is still useful

to aggregate the evidence without conditioning on covariates, as this permits an

understanding how much unconditional heterogeneity there is; if there is little or no

variation across settings, further analysis is a less pressing concern for future work.

The main analysis that follows is therefore accounting for all sources of hetero-

geneity including differences in MFI policies, study design, measurement protocols,

and contextual factors in the local economies. I do not attempt to separate out

these different kinds of heterogeneity both because it is substantially challenging

with 7 data points and because it is unclear if they can or should be separated. MFI

policies, study design and even measurement protocols may all be endogenously de-

termined by the MFI and researchers in response to the different contextual factors.

Indeed, a team of researchers and a single MFI applying the exact same decision

rules in which they optimally determine say interest rates or measurement proto-

cols conditional on contextual factors would generically make different decisions in

different contexts. Adjusting for the "measurement protocol" before applying the

Bayesian model could therefore create differences across settings where none exist

in the raw data. I therefore refrain from adjusting for any sources of heterogeneity

a priori in the analysis that follows.

3 Methodology

3.1 Bayesian Hierarchical Models

3.1.1 Hierarchical Models

Consider a body of evidence consisting of K studies indexed by k, each of which

provides some k-specific data Yk about a given policy intervention. The K data

sets taken together form one large data set, denoted Y = {Yk}K
k=1. Each study

setting has a site-specific parameter of interest θk ∈ Θk, which could be univariate

(e.g. the average treatment effect), or multivariate (e.g. the entire set of quantile

treatment effects). The full data in each site k consists of Nk households, summing

to N households in the total combined sample of all settings.

Suppose that the analyst wishes to learn about the expected value of these {θk}K
k=1
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parameters across different settings, and to learn about the uncertainty she should

have due to unobserved differences across settings. This implies a need for inference

on the average value of these parameters, sometimes called the "hypermean" and

denoted θ = E[θk] with the expectation taken across the study settings. Accounting

for uncertainty across settings permits inference not just to unobserved households

in the existing sites but to unobserved study sites themselves, and thus, such a

procedure could generate inference applicable beyond the current set of studies to

future policy settings if such extrapolation is warranted.

One can learn about θ using the evidence on {θk}K
k=1, but the optimal learning

procedure depends on the heterogeneity or dispersion of {θk}K
k=1 around θ, denoted

Σθ (Rubin 1981, Gelman et al. 2004). This Σθ describes the strength or weakness

of the relationship between any θk and the general parameter θ: if the dispersion

Σθ is small, then θk is close to θ and provides a strong signal of the value of θ.

By the same logic, when Σθ is small then θ is a strong predictor of θK+1 for some

future setting.9 Here Σθ parameterizes a notion of generalizability of the evidence

contained in Y to external settings, which captures the definition of external validity

in Allcott (2015) and Dehejia, Pop-Eleches and Samii (2015). If Σθ = 0, then θ is a

perfect predictor of θK+1; if not, there will be some extrapolation error which grows

large as the parameter Σθ grows large.

Joint estimation of θ and Σθ is the core challenge of aggregation across studies.

Hierarchical models approach this problem by defining a set of parameters at the

site level, {θk}K
k=1, a set of parameters at the population level, θ, and a relationship

between them (Efron and Morris 1975, Rubin 1981, Gelman et al. 2004). The "lower

level" of the model describes the dependence between the data and local parameters

in site k:

Yk ∼ f(·|θk) ∀ k. (3.1)

The "upper level" of the model describes the potential for statistical dependence

between local parameters and general parameters (also called "hyperparameters") via

some likelihood function ψ(·), which contains the hypervariance Σθ either implicitly

or explicitly depending on the specific model. While ψ(·|θ,Σθ), this second argument

is often implicit and thus notationally suppressed. This upper level "general" or

"parent" distribution is then denoted:

θk ∼ ψ(·|θ) ∀ k. (3.2)

9Technically the sites must be "exchangeable", this condition is discussed in the final paragraph
of this section.
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A hierarchical likelihood contains both levels:

L(Y|θ) =
K
∏

k=1

f(Yk|θk)ψ(θk|θ). (3.3)

This likelihood structure nests both the "no pooling" case in which no information

is shared across settings, and the "full pooling" aggregation case in which all infor-

mation is shared fully across settings as if they are indistinguishable. This nesting

is possible because the hyperparameters that govern the ψ(·) function, including

Σθ, are estimated rather than imposed. For example, the model may estimate that

θk ≈ θk′ ∀ k, k′, and hence that Σθ = 0, if that is supported by the data. This

result would recover the full-pooling model’s solution, up to a degrees of freedom

correction.10 Of course, the model could detect large dispersion in {θk}K
k=1; in that

case it recovers the no-pooling model’s solution. In fact, this model can recover a

solution anywhere on the spectrum between these two extremes if that intermediate

or "partial pooling" solution is most supported by the data. Inference on {θk}K
k=1,

θ and Σθ is influenced by the extent of this partial pooling, which is also called

"shrinkage" because the {θk}K
k=1 estimates are somewhat "shrunk" together when

information is shared across settings.

Hierarchical models require that {θk}K
k=1 be “exchangeable”, such that their joint

distribution is invariant to permutation of the indices (Diaconis, 1977). This means

the analyst must be ignorant of any definite ordering, dependence or sub-clustering

of the parameters a priori; this is the case for the microcredit effects as in most

applications to social science. Knowledge of contextual differences typically does

not inform us ex ante of how θk parameters differ (Rubin 1981).11 The extensive

theoretical literature on microcredit markets does not dictate a specific ordering of

effects in this case, which makes exchangeability a reasonable structure (Gelman

et al. 2004). Any future site for which θK+1 is used to predict the effect must be

exchangeable with the sites in the sample; this is a general requirement for any

out-of-sample prediction (see for example Allcott 2015).

10This discussion is in reference to models for estimating the average effects across the different
settings, with uncertainty intervals referring to extrapolation to an unobserved setting. The full
pooling model has another function: it can serve to estimate the average effect across all the
individuals in the existing settings, with uncertainty intervals referring to an extrapolation to an
unobserved individual within these given settings. This distinction is discussed further in the
results section.

11If an established and verified economic theory dictates that a particular covariate can only
be correlated in a certain way with the treatment effects, that can be translated into conditional

exchangeability by introducing this covariate into the model. It is also possible to build a more
complex structure that allows "partial exchangeability" if this is desired; see Albert and Chib (1997)
for a discussion of this approach.
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3.1.2 Bayesian Implementation

Bayesian inference offers several advantages for the analysis of hierarchical models,

particularly when aggregating across a relatively small number of studies, as is

typically the case in economics. With seven microcredit studies, estimation of the

variation in effects across settings is performed off only seven contexts. Given this

low-data environment, incorporating informative Bayesian priors can substantially

improve the performance of the hierarchical model by "regularizing" the likelihood

problem in the classical sense: introducing new information that constrains the fit

of the model, typically trading off bias for variance to reduce overall mean squared

error and out-of-sample prediction (Hastie, Tibshirani and Friedman 2009, section

10.2; Chung et al. 2013, 2015).

By specifying a prior on the unknowns at the highest level, P(θ), and combining

it with the likelihood via Bayes’ rule to generate the the joint posterior distribution

f(θ|Y). The specification of a proper prior distribution ensures that f(θ|Y) is a

proper probability distribution with desirable decision-theoretic properties such as

consistency and admissibility (Berger 2013, Van der Vaart 1998, Efron 1982).

The Bayesian approach also automatically delivers the correct marginal distri-

bution of the treatment effect in a hypothetical future site θK+1. This is often the

object of most interest for policymakers, but the distribution of this object must

account for the full joint posterior uncertainty on the hyperparameters rather than

conditioning on a particular point estimate.12The Bayesian approach delivers the

correct uncertainty interval conditional on the model in the form of posterior pre-

dictive inference (Gelman et al. 2004), which averages over the posterior uncertainty

on the unknowns (θ,Σθ). Formally, the posterior predictive distribution is:

f(θK+1|Y) =
∫

ψ(θK+1|θ)f(θ|Y)dθ (3.4)

The characterization of the full joint posterior distribution on all parameters

is not without costs: it can exacerbate the already-formidable tractability issues

inherent in hierarchical models. The relationships between θ, Σθ and {θk}K
k=1 are

highly nonlinear, leading to challenges optimizing and even characterizing the shape

of the likelihood function. Common maximum likelihood approaches estimate the

12The full joint posterior uncertainty accounts perfectly for the uncertainty about how well the
new location matches the old location, if the new site is exchangeable with the old sites, and the
model structures are correct. If these conditions do not hold, we have modeling uncertainty, which
is not accounted for in any meta-analytic methods at present (nor in any of the popular analytic
methods used in empirical economics).
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upper level first and then condition on the point estimates using the "empirical

Bayesian" approach from Efron and Morris (1975). This ignores the uncertainty

about the upper level parameters, θ and Σθ, when computing uncertainty intervals on

the lower level parameters, and thereby systematically underestimates uncertainty

(Rubin 1981).13 To surmount these tractability issues in the Bayesian setting I turn

to Markov-Chain Monte Carlo methods; in particular, I use Hamiltonian Monte

Carlo (HMC) methods which are well-suited to the peculiar geometry introduced

by hierarchical structure (Betancourt and Girolami, 2013).14

3.2 Tailored Mixture PDF Models for Distributional Effects

3.2.1 Challenges of Distributional Effect Aggregation

Applying the Bayesian hierarchical framework to distributional effects aggregation

poses additional challenges which demand new modelling approaches. If one were

interested in only a single quantile treatment effect, such as the median, one could

directly apply a Rubin-style model to the quantile as long as the data meets the

condition for the Mosteller (1946) theorem providing consistency and asymptotic

Normality of the sample quantile estimate. However, for the microcredit data, even

the estimation of quantiles themselves is not straightforward because many house-

holds outcomes are not continuously distributed (as required by the theorem), but

instead have point masses of households at zero. The sampling variance of the quan-

tiles is no longer Gaussian, and may even be estimated as zero in the finite sample

(as in Angelucci et al 2015). Even if researchers are willing to accept zero estimated

sampling error, this causes difficulties for a Rubin-style approach, which constructs

weighted averages of estimated effects in which the inverse standard error enters the

weight.15

Moreover, aggregating sets of quantiles requires facing the constraint that the

true quantiles must be monotonically increasing, because CDFs are monotonically

increasing by definition. Violating this constraint leads to the "quantile crossing"

13While MLE methods that do not condition on point estimates of unknowns are theoretically
available, they seem to be largely unused in practice.

14HMC uses discretized Hamiltonian dynamics to sample from the posterior, which can be com-
bined with the No-U-Turn sampling method (NUTS) to auto-tune the step sizes in the chain
(Hoffman and Gelman, 2014). This algorithm is automated in the software package Stan, a free
statistical library which calls C++ to fit Bayesian models from R or Python (Stan Development
Team, 2017).

15It might be possible to overcome this problem by investigating CDF effects rather than quan-
tiles, but applied researchers are directly interested in quantiles, and the transformation between
CDFs and quantiles is not straightforward in the partially discrete data case.
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problem, which can arise even in simple analyses (see for example Chernozhukov,

Fernandez-Val and Galichon 2010). Aggregation exacerbates this problem because

most methods both estimate the aggregate effect and revise the site-specific effect

estimates by incorporating information on the local variation or sampling uncer-

tainty, and this can be different at different quantiles across the different sites.

But differentially-weighted averages of monotonic functions need not themselves be

monotonic, so the aggregation procedure could introduce quantile crossing where

none was present in the original studies.16

3.2.2 Tailored Mixture PDF Approach

I address both of these problems by directly modelling the distributions of these out-

come variables using a flexible set of mixture probability density functions (PDFs).

These models specify treatment effects on the parameters of the tailored density

function and partially pool information on these effects across studies by placing a

hierarchical structure on these treatment effects. The conceptual approach is here

is quite general, and even the specific models below are likely to apply beyond the

microcredit application. In every case, however, building these parametric models

relies on contextual economic knowledge of the variables at hand, and researchers

must understand the data generating process well enough to know when it ought

to exhibit, say, discreteness, skewness or kurtosis. The incorporation of this specific

contextual knowledge is critical to the modelling process, as follows.

Consider the household business variables in the microcredit data, generated by

surveying a random sample of households. In most contexts, not all households will

choose to own businesses, nor will they necessarily operate businesses they do have

at all times, as they often do seasonal agricultural or manual labour for part of the

year (Macours and Vakis 2010, Gibson and McKenzie 2014, Fink, Jack and Masiye,

2014). So measured business variables should be mixture of a discrete mass at zero

and continuous tails, because these variables are the output of a partially discrete

decision process. First, a household has an extensive margin decision to make about

whether to start a business, and then they face a secondary extensive margin decision

16While it is possible to derive an aggregation model for sets of quantiles based on the Mosteller
approximation that respects the logical properties of the estimands via variable transformation
(see Appendix A), even this model would only be applicable to data for which the asymptotic
theorem applies. In some cases of discrete data, such as with count data, it is possible to "dither"
or "jitter" the discrete data to produce a new, continuous distribution for which the quantiles have
a one-to-one relationship with the discrete distribution (Machado and Santos Silva, 2005). This
does not work in the case of a partially discrete "spike and slab" distribution because the dithered
data points from the spike generally leapfrog some of the data in the slab, destroying the one-to-one
relationship between the quantiles.
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about whether to operate that business in a given season. Only those households

who decide to open and operate their businesses go on to make an intensive margin

decision, the result of which manifests some continuous expenditures, revenues and

profit. In fact, this pattern also arises in consumer durables spending and temptation

goods spending, to a lesser extent.

I therefore use a set of mixture models to model this partially-discrete data,

each of which has a point mass or "spike" of households at zero and a continuous

distribution or "slab" on the rest of the real line. Economic theory and prior research

further suggest that the continuous portions of business variables such as revenues

and profit will tend to follow power laws or other fat-tailed laws (Roy 1950, Stiglitz

1969, Gabaix 2008, Allen 2014, Piketty 2015, Bazzi 2016). Hence, the outcome PDF

can be modeled as a mixture of three distributions: a lower tail, a spike at zero,

and an upper tail. Modeling the two tails separately allows for skewness as well as

differential kurtosis or variance. As the binary treatment indicator variable Tnk may

affect the mass in the components and the shape of the tail components, I specify

treatment effects on all aspects of this mixture PDF. The model can then aggregate

the effect of the treatment on each of the parameters that govern the distribution,

as well as the implied quantile treatment effects. Because these particular mixture

models have components with disjoint supports, I can further analytically compute

and report the quantile treatment effects employing the method of Castellaci (2012).

Yet the risk in specifying any parametric structure based on contextual and prior

information is that our knowledge may be insufficient or incorrect in a manner that

leads to poor inference. It is advisable therefore to assess the sensitivity to the choice

of functional form, as well as to assess model fit and avoid reliance on models that

fail to approximate the data well. In the case of business variables the distribution of

the tails could reasonably be modeled by a Pareto distribution, as in Piketty 2015 or

Bazzi 2016. However, a lognormal distribution would allow for more mass near the

lower bound of the distribution per Roy 1950 and is analogous to log transforming

the positive values in the sample, a common practice in applied microeconomics (see

for example Banerjee et al 2015b). The lognormal model both fits the data better

in this case and is more tractable to use, as it always has all moments (see figure ??

and Appendix C for more details ).17

17While a nonparametric model such as an infinite mixture of Gaussians implemented via a
Dirichlet Process prior would be maximally flexible, the parameters of such models are not identi-
fied when the outcome data are univariate (Compiani and Kitamura 2016, Kasahara and Shimotsu
2014). Even for a bivariate outcome, on which one can put a lower bound on the number of compo-
nents, the component distributions themselves are not identifiable (Hall and Zhou 2003). Indeed,
the Dirichlet Process mixture model cannot even consistently identify the number of components
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3.2.3 Mixture Lognormal and Pareto Models for Microcredit Data

The above discussion leads to the following tailored hierarchical PDF model to

aggregate the quantile effects on household business profit. Denote the probability

mass in the jth mixture component for a household n with treatment status Tnk to be

Λj(Tnk) for j = 1, 2, 3. This dependence can be modelled using a multinomial logit

specification, denoting the intercept in site k for mixture component j as αjk and the

treatment effect as πjk. For the spike at zero, the Dirac delta function can be used as

a distribution, denoted δ(x) for a point mass at x. If using the lognormal distribution

for the tails, then each are governed by a location parameter and a scale parameter.

The latter can only be positive valued so I employ the exponential transform to

ensure the support constraint is satisfied. I model the location parameter using

a linear regression format in which the value for the control group in site k is µk

and the value for the treatment group is µk + τk. The scale parameter is modeled

with the control group’s value being exp(σc
k) and the treatment group’s value being

exp(σc
k + σt

k).

The lower level of the likelihood f(Yk|θk) is specified according to this mixture

distribution. Let j = 1 denote the negative tail of the household profit distribution,

let j = 2 denote the spike at zero, and let j = 3 denote the positive tail. Then the

household’s business profit is distributed as follows:

ynk|Tnk ∼ Λ1k(Tnk)Lognormal(−ynk|µ1k + τ1kTnk, exp(σc
1k + σt

1kTnk))

+Λ2k(Tn)δ(0)

+Λ3k(Tn)Lognormal(ynk|µ3k + τ3kTnk, exp(σc
3k + σt

3kTnk) ∀ k

where Λjk(Tnk) =
exp(αjk + πjkTnk)

∑

j=1,2,3 exp(αjk + πjkTnk))

(3.5)

The upper level ψ(θk|θ) is:

(α1k, α2k, α3k, π1k, ...)
′ ≡ ζk ∼ N(ζ,Υ) ∀ k (3.6)

The Gaussian at the upper level aligns with Rubin (1981) and Meager (2019),

and can provide good estimates of the hypermean and hypervariance even if it

is misspecified (McCulloch and Neuhaus, 2011). For tractability and simplicity I

when it is itself the ground truth model (Miller and Harrison, 2013). The lack of identification
does not impede curve-fitting, yet creates challenges for shrinkage on treatment effects when one
conceives of these effects as operating on the underlying parameters, since they are not identified
in this case. As shrinkage is a nonlinear operation in the hypervariances, the hierarchy must be
applied directly to the object of interest (see Appendix B for a short proof).
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enforce diagonal Υ for the microcredit analysis. This prevents the model from using

correlations in the distribution of say {α1k}K
k=1 and {α2k}K

k=1, a restriction which has

practical value because the correlations are hard to estimate with seven sites and

this can introduce substantial additional variance into the estimation procedure.

This independence restriction can be thought of as a form of particularly strong

discrete or dogmatic regularization on these correlations. While strong continuous

regularization is generally preferable to discrete or dogmatic regularization, the latter

in this case is necessary to ensure tractability given the limitations of computational

power I face (and is aligned with econometric tradition, as frequentist models in

economics rarely exploit correlations in parameters). The remaining priors P(θ) as

follows:
ζ ∼ N(0, 10)

Υ ≡ diag(νΥ)ΩΥdiag(νΥ)′

νΥ ∼ halfCauchy(0, 5)

ΩΥ = I|ζ|

αmk ∼ N(0, 5).

(3.7)

The model above uses contextual information and balances concerns about flex-

ibility and tractability. It may be desirable to fit a fatter tail model such as the

Pareto, or a more flexible tail such as the double-Pareto-lognormal likelihood model

of Reed and Jorgensen (2004). I do both in the remainder of this paper; one needs

only substitute these densities for the Lognormal in the equations above and then

fit the resulting model. However, as I discuss in my results section, the Lognormal

fits best. Indeed, the more flexible joint tail model can face substantial convergence

issues: Reed and Jorgenson (2004) notes that if there is power law behavior only

in one tail, the EM algorithm is "unlikely to converge". Keeping this issue in mind,

I report results of a version of the above model using a Pareto-lognormal tail only

out of interest.18 19 To fully avoid convergence issues while benefitting from the

flexibility of two functional forms, I also fit a version of this model which manually

separates the tail data at 80th extremal percentile, treating the data before this

18In practice I found this to be because the simple lognormal case is nested by this model only
when certain parameters are infinity, which leads to wandering behavior: even a single Pareto-
lognormal tail may have convergence issues if the power law behavior is sufficiently similar to the
lognormal’s tail behavior. The convergence issues in this case can be somewhat mitigated by strong
priors, in particular by placing a strong prior on the α parameter from Reed and Jorgensen (2004)
to force it to take a moderately sized value and mitigate the "wandering" behavior noted in the
paper, and by replacing the half Cauchy on νΥ with a half Gaussian.

19I thank Dr Michael Betancourt in particular, as well as Dr Ben Goodrich
and Professor Aki Vehtari, for their advice and assistance with this problem. A
public record of our work can be found here https://discourse.mc-stan.org/t/

double-Pareto-lognormal-distribution-in-stan/10097/20 .

16



point as lognormal and the data beyond it as Pareto.20 See Appendix C, section

2.1, for the full models and technical details of these two alternative approaches as

well as several caveats on their use.

3.2.4 Recovering quantile effects from mixture distribution models

Quantile recovery is nontrivial in this setting because mixture distributions in gen-

eral do not have analytical quantile functions. However, because the mixture dis-

tribution in this particular model has components with disjoint supports, one can

apply the method of Castellacci (2012) to compute the quantiles analytically in this

case.

Castellacci’s method is based on the observation that mixture distribution with

disjoint components are decomposable functions, and that thus one can invert such

functions by piecing the component inverses together. Thus, while in general the

quantiles of mixtures would need to be estimated numerically, when the mixture

components have disjoint supports the CDF is decomposable and thus it is possible

to analytically derive the quantiles. In fact, in my case the supports are not just

disjoint but ordered, making the calculation relatively straightforward.

Thus Castellacci (2012) derives the key result (equation 2.3 of his Proposition 2.1)

for the CDF of the mixture distribution Fw(x) = w1G1(x)+w2G2(x)+ ...+wnGn(x)

when the component distributions Gi(x) have disjoint, ordered supports:

F−1
w (p) = G−1

1

(

p

w1

)

✶B1
+G−1

2

(

p− w1

w2

)

✶B2
+ ...+G−1

n

(

p−
∑n−1

i=1 wi

wn

)

✶Bn

where Bi :=





i−1
∑

j=0

wj,
i
∑

j=0

wj



 for i = 1, ....n− 1

Bn :=





n−1
∑

j=0

wj, 1





(3.8)

Proceeding with this general formula, I make only one adjustment to it: because

the negative tail of profits is always modeled using a "reverse" of a distribution with

positive support, if one wishes to compute the uth quantile of the lower tail one

needs the negative value of the (1 − u)th quantile of the positive version of the

distribution.

Given the lognormal profit model above I derive the following parametric quantile

function using the method above, noting that the only difference from the general

20I thank Ulrich Müller and Andriy Norets for this suggestion.
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Castellacci (2012) formula is the use of the reverse quantile for the first component

due to it being a reverse distribution:

Q(u) = −Lognormal−1

(

1 −
u

Λ1(Tn)
| µ1k + τ1kTnk, exp(σc

1k + σt
1kTnk)

)

∗ ✶{u < Λ1(Tn)}

+ 0 ∗ ✶{Λ1(Tn) < u < (Λ1(Tn) + Λ2(Tn))}

+ Lognormal−1

(

u− (1 − Λ3(Tn))

Λ3(Tn)
| µ3k + τ3kTnk, exp(σc

3k + σt
3kTnk)

)

∗ ✶{u > (1 − Λ3(Tn))}

(3.9)

Any disjoint mixture model’s quantiles can be computed analogously. The poste-

rior distribution of the entire set of quantiles and thus the implied quantile treatment

effects is easily computed from the posterior distribution of the unknown parameters

by applying the computation above to every MCMC draw from the joint posterior

distribution. This method ensures that the uncertainty on the quantiles implied by

the uncertainty on the parameters that govern the model is translated exactly.

4 Results

4.1 Main Results

The expected effects of access to microcredit on the quantiles of each of the six

outcomes produced by fitting the tailored hierarchical mixture model with lognormal

tails are shown in figure ??. I focus on profit and consumption as the key outcomes of

interest, recalling that while profit is recorded in all studies, consumption is recorded

in only five. The full details of the site-specific results for household consumption

and profits are shown in tables ?? and ?? respectively. The pattern across all

variables is similar: there is a reasonably precise zero impact from the 5th quantile

to the 75th quantile, after which point there is a large and highly uncertain effect

in a "desirable" direction (business variables and consumption increase, temptation

spending decreases). The posterior probability that the quantile treatment effects

are equal across the quantiles is extremely small; in the case of profit, for example,

the formal posterior probability that the quantile effects are within 50 US cents

(PPP) of each other is less than 1%. There is no evidence of harm on average at

any quantile, contrary to the fears that microcredit systematically causes harm to

communities which receive it.

To understand why this pattern emerges, it is useful to consult the detailed results

in tables ?? and ?? respectively. As well as the country-specific results from the
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partial pooling Bayesian model, I also show the results of running a "no pooling"

analysis country by country, and of performing a full pooling analysis (as in Banerjee

et al 2015c). In the case of consumption, the no pooling and full pooling models can

be computed simply using the canonical Koenker and Basset 1978 estimator, while

the partial pooling results are generated by the tailored parametric model; they are

nevertheless remarkably similar and tell a coherent story of zero effects along most

of the distribution with noisy positive effects on the right tail. For profit, all results

are generated via the lognormal model, but in this case full pooling makes quite

a difference – it reports a much larger and more significant effect than the partial

pooling models. This is driven largely by Mexico and the Philippines with their

large samples; as they nevertheless provide quite imprecise estimates, the partial

pooling model puts less weight on them than the full pooling model.

To some extent, one should expect the results of the full pooling model to differ

from the partial pooling model because in general they are concerned with different

estimands. The partial pooling model estimates the average effects across the differ-

ent settings, with uncertainty intervals referring to extrapolation to an unobserved

setting. The full pooling model estimates the average effect across all the individuals

in the existing settings, with uncertainty intervals referring to an extrapolation to

an unobserved individual within these given settings. These estimands will differ

except in the case that the full pooling model is literally correct.21

Conceptually, to gain a general understanding of what a particular intervention

will do across settings rather than across individuals within settings, the relevant

exercise is not to quantify the average effect but to predict the differences in the

distributions in a new setting and report the associated uncertainty. To answer

this question, I now turn to the posterior predicted quantile results, which provide

inference on the effects in the next comparable study location. The results are

shown in figure ??. The predicted effect for the majority of the distribution remains

a precise zero, but above the 75th percentile there is even greater uncertainty about

the exact impact microcredit will be likely to have on the right tail of the next

distribution to which it is applied. The estimates in the upper tails are so imprecise

that the estimates look as if they are zero when they are graphed at this scale, even

though they are generally quite large (as tables tables ?? and ?? show). Essentially,

the models decline to make any generalizable prediction for these effects across

settings.

21If there is no heterogeneity across settings, or "external validity problem", the full pooling
model also estimates the average effect across settings and the correct uncertainty, because an
unseen individual in an unseen setting is no different from an unseen individual in a setting we do
see.
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This analysis further reveals that the business variables in this sample exhibit

extreme kurtosis; the tails of these distributions are very heavy. The positive tail

of profit, which is less heavy than that of revenues and expenditures, has a log

scale parameter of 1.25, indicating an excess kurtosis of approximately 811 in the

lognormal model (see calculations in Appendix C). Figure ?? shows that the model’s

predicted tails are actually somewhat thinner than the real data, so if anything this is

an underestimate of the true kurtosis. As shown in figure ?? this is further supported

by the results of the more flexible models, incorporating either the Pareto-lognormal

likelihood in the tails or a composite tail model in which the lognormal is fit below the

80th percentile and the Pareto beyond this point, which show even more uncertainty

in the tails. Consumption, by comparison, has a log scale parameter of 0.65, and

thus an excess kurtosis of 14 in the model. For reference, the standard Laplace

distribution has an excess kurtosis of 3, yet even in that case the sample median

is more efficient than the sample mean as an estimator of the location parameter

(Koenker and Bassett 1978).22 This suggests that the average treatment effects

estimated via OLS regression in the original studies and thus the analysis in Meager

(2019) may be unreliable for these variables, both because they invoke Gaussian

asymptotics which do not hold, and because in this case the sample mean is not a

reliable indicator of the underlying distribution’s location parameter (Koenker and

Basset 1978, Koenker and Hallock 2001).

4.2 The role of business experience

Previous studies including Banerjee et al (2015b) suggested that a household’s pre-

vious business experience may explain some of the evident variation in treatment

effects. Meager (2019) investigated the role of this covariate across all the studies,

and found that there were notable differences in impacts between this group and

the other households without business experience, although there was still no strong

evidence of a generalizably positive average impact for any group. However, as the

main results above indicate that these means are composed of precise zeroes and

noisy positive results in the tails, a quantile analysis may be able to shed further

light on this question.

To assess the role of previous business experience in determining the distribu-

tional treatment effects, I split the entire sample by a binary indicator of prior

22The Pareto models fit to the business data find scale parameters close to zero, indicating that
the kurtosis is undefined or infinite. It seems likely that the tails of these business variables are
heavy enough to impede the functioning of the central limit theorem and even the law of large
numbers (see Appendix C).
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business ownership, denoted PB = 1 if the household does have such experience

and 0 otherwise, and separately analyze the two subsamples. Fitting the Bayesian

hierarchical quantile aggregation models to each group shows that the impact of

microcredit differs somewhat across the two types of households, but to a lesser

extent than was suggested in Meager (2019) and Banerjee et al (2015b). Figures ??

and ?? show the general distributional impact of microcredit on the six household

outcomes of interest for each of the household types.

There does seem to be a general pattern of larger impacts in the tails of the

group which does have previous business experience, as well as greater uncertainty

surrounding these estimates. The posterior probability that the impact for the two

groups is the same at each quantile is reasonably high for the middle quantiles, but

fall below 2% at the 95th percentile even at high tolerances, as shown in table ??.

The probability that the two groups’ quantile effects are within 5 USD PPP of each

other are only 10% at the 95th quantile. However, as there is substantial overlap in

the posterior inference for the two groups and particularly in the posterior predictive

effects, these results do not necessarily provide a rationale for targeting those with

prior business experience in future settings.

5 Discussion

The aggregated distributional effects show no evidence that access to microcredit

causes any negative shifts in the distribution of household outcomes. While mod-

erately negative impacts are within the 95% posterior interval of the effects on the

upper tails of most of the distributions, the point estimate and vast majority of the

posterior mass is positive in those cases. The only variable with larger uncertainty

at the lower tail is profit, but the point estimate is zero and the uncertainty is sym-

metric around that point. This provides evidence against the notion articulated by

some critics that microcredit causes substantially worse outcomes for some group of

households than they would have experienced in its absence (Schicks 2013). While

a lack of negative quantile effects does not imply that no household experiences

any harm from microcredit, it does imply that any households who do experience

harm are approximately canceled out by other types of households who experience

benefits, such that these two types of households are swapping ranks in the outcome

distribution rather than contributing to any change in the shape of that distribution.

Each population in each of the studies taken as a whole however does not experience

any systematic worsening of its economic outcomes.
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The precise zero effect from the 5th to 75th percentile of most of the household

outcomes appears to be a true zero and not a mechanical artifact of the spike

at zero nor an economic consequence of the low takeup. Consumption does not

exhibit a spike of households who record an outcome equal to zero yet microcredit

still has a precisely estimated zero effect for most of the distribution. Even for

profit, revenues and consumption the spike only accounts for at most 50% of the

outcome distribution, yet the zero effect applies to 75% of the distribution. Similarly,

regarding concerns about takeup: Bosnia and the Philippines had over 90% takeup

and yet still exhibited zero effects from the 5th to 75th percentile in consumption and

profit (see tables ?? and ?? respectively). Concerns that the small scale of profits

in Mongolia, or lack of negative profits in Bosnia, may be affecting the results are

addressed in Appendix C by re-running the models without these sites, which largely

confirms the main results. The bounding exercise in Appendix D aggregates all the

data on the question of takeup and shows that even the effects on the outcome

distribution for those who take up microloans are likely to be zero along most of the

distribution.

What are the economic consequences of potentially increasing the right tail of

consumption and business outcomes while leaving the rest of the distribution un-

changed? This pattern means that expanding access to microcredit is likely to cause

an ex-post increase in economic inequality across households, which may be impor-

tant if inequality leads to capture of local political institutions or other adverse social

consequences (Acemoglu and Robinson 2008). A rightward expansion of the upper

tail does not means that the richer households are getting richer, because quantile

effects cannot be localized to any particular households without invoking a rank

invariance assumption or some comparable structure (which is unrealistic for credit

market interventions). More detailed baseline data may have permitted an explo-

ration of this question, although such households may well look identical to others

along all the covariates we can measure (as suggested in Kaboski and Townsend

2011).

This pattern of probable expansion in the right tail, combined with the inability to

localize the effects to particular households in these data sets, highlights the potential

value of locating and studying these highly productive individuals. Studies such as

Hussam, Rigol and Roth 2017, which leverages local knowledge to lend to borrowers

with high marginal returns to capital, are valuable both because these individuals

seem to be the only households positively benefiting and because the benefits are

large. My analysis suggests that we cannot necessarily expect the results observed

in such papers to replicate elsewhere, and there may well be contexts in which these
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positive tail effects will not materialize. However, my analysis also demonstrates the

challenges of inference on these highly productive households because their returns

follow heavy-tailed distributions. Under such circumstances, studies that appear to

be well-powered may be underpowered to detect these effects, giving further reason

to emphasize aggregated results rather than individual studies.

The presence of heavy tails also has econometric implications: in these pop-

ulations, certain individual households account for large percentages of the total

business activity. It may be challenging to understand the economies of develop-

ing countries if we trim or winsorize the most productive households who make

up a large percentage of total economic activity. It might be more useful to study

mechanisms that can produce fat-tailed outcomes, such as multiplicative production

functions, experimentation or investments with a relatively high risk exposure and

long maturation horizons.23

6 Conclusion

The microcredit results demonstrate the value of using appropriate methodology

for the question of interest, rather than a "default" approach restricting oneself to

conditional means. The models developed in this paper could be used to study the

distributional effects of other financial interventions, trade and innovation policies,

educational subsidies, and local migration incentives, all of which have social welfare

implications (Borusyak and Jaravel 2018, Duflo, Dupas and Kremer 2017, Chetty,

Hendren, and Katz 2016, Bryan, Chowdhury and Mobarak 2014). There are many

settings in which quantiles are implicated in policy directly, often because taxation

and welfare policies are explicitly made with reference to quantiles of the income

distribution; in such settings, the conditional mean often contains little information

about the policy’s impacts. The models provided here are especially relevant when

the data contains discrete spikes of individuals who record certain outcome values

due to their extensive margin decisions. In these cases, aggregation of distributional

effects within the Bayesian hierarchical framework may be both more informative

and more reliable than individual analyses of average treatment effects alone.

23One might ask whether if microcredit interventions were studied over a 10 or 20 year horizon
the imprecise tail effects we observe after two years could either become precise or could lead
to benefits across the entire distribution, but this data set does not contain the answer to that
question.
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Table 1: Consumption: Comparison Of No Pooling, Partial Pooling and Full Pooling Results

Quantile: 5th 15th 25th 35th 45th 55th 65th 75th 85th 95th

No Pooling

Bosnia -5.2 -7.1 -4.7 -7.7 4.1 0.9 -16.3 -34.4 -64.5 104
(-11.1,0.8) (-16.9,2.7) (-17.5,8.1) (-22.8,7.3) (-13.1,21.4) (-20,21.7) (-46.2,13.6) (-74.9,6.1) (-131.1,2.2) (-77.4,285.5)

India 0.2 -1 -2.3 -1.2 -1.4 -2.6 2.2 4.6 8.2 40.1
(-5.9,6.3) (-6.3,4.3) (-8.3,3.8) (-7.4,4.9) (-8.3,5.6) (-10.1,4.8) (-6.3,10.7) (-6.3,15.6) (-7.5,24) (-4.5,84.7)

Mexico -9.3 -1.5 -2 -2 -0.5 4.1 5.5 11 13.2 16.6
(-13.7,-4.9) (-5.9,2.9) (-6.2,2.2) (-6.5,2.5) (-6,5) (-1.6,9.7) (0,11) (2.7,19.2) (1.8,24.7) (-6.7,39.9)

Mongolia 12.3 6.5 5.1 8 -8.2 0.8 -0.9 -2.5 -12.8 87.4
(-7,31.5) (-9.4,22.4) (-13.6,23.7) (-13.7,29.8) (-38.7,22.2) (-18.5,20.1) (-32.7,30.9) (-42.1,37.1) (-70.3,44.8) (-40.6,215.4)

Morocco 1.6 5.3 4.1 -1.1 -2.6 3.6 3.7 0.4 -6.4 -54
(-6.2,9.3) (-0.9,11.5) (-2.8,10.9) (-7.3,5.1) (-10.1,4.9) (-4.3,11.5) (-7.3,14.7) (-12.4,13.2) (-23.8,11) (-104,-4)

Partial Pooling

Bosnia -5.2 -3.7 -3.8 -3.9 -3.6 -2.8 -1.1 2.6 11.8 52.4
(-9.6,2.6) (-8.3,0.5) (-9,0.7) (-9.9,1) (-10.9,1.7) (-12.4,3.6) (-14.7,8.6) (-19.4,20.9) (-30.4,52.1) (-75.8,188.3)

India -2 -1.7 -1.2 -0.6 0.1 1.1 2.4 4.3 7.5 16
(-5.3,1.4) (-5.2,2) (-4.9,2.7) (-4.7,3.6) (-4.4,4.9) (-4.2,6.6) (-4,9) (-4,12.8) (-4.2,19.6) (-5.6,37.9)

Mexico -4.7 -4.2 -3.4 -2.2 -0.8 1.2 3.9 8 15.1 34.1
(-7.3,-2.1) (-7.1,-1.3) (-6.5,-0.3) (-5.8,1.2) (-4.7,3) (-3.5,5.6) (-1.7,9.3) (0.7,15) (4.8,25.1) (15.5,52.7)

Mongolia -3 -2.5 -1.7 -0.6 0.7 2.7 5.8 10.3 18 38.4
(-11.4,5.3) (-10.7,7.6) (-9.2,9.8) (-7.5,12.2) (-6,15.8) (-5.3,20.2) (-5.7,26.5) (-7.3,36.2) (-10.6,55) (-22.4,108)

Morocco 4.3 3.7 2.9 2 0.9 -0.4 -2.2 -4.6 -8.7 -18.8
(-0.5,9) (-1.2,8.5) (-2.1,7.8) (-3.1,7.1) (-4.6,6.4) (-6.7,5.6) (-9.6,5) (-14,4.4) (-21.7,4) (-41.5,3.3)

Average -1.3 -1.3 -1 -0.6 0 1 2.3 4.3 7.7 16.9
(-12.9,10.7) (-12.3,8.4) (-11.8,8.5) (-10.9,9.2) (-10.3,10.5) (-10.5,13.6) (-11.9,20.8) (-15.5,35.8) (-23.6,63.8) (-48.9,163.9)

Full Pooling

Average -3.9 0.2 -0.9 -1.8 -1.3 2.5 3.6 6.1 6.4 13.9
(-6.8,-0.9) (-2.4,2.9) (-3.7,1.9) (-5,1.4) (-4.8,2.2) (-1.4,6.3) (-0.8,7.9) (0.2,11.9) (-1.8,14.6) (-6.1,33.9)

Notes: All units are USD PPP per two weeks. Estimates are shown with their 95% uncertainty intervals below them in brackets. In this
case the full pooling and no pooling models are frequentist, estimated using the quantreg package in R, per Koencker and Basset 1978 with
the nonparametric bootstrap providing the standard errors.
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Table 2: Profit: Comparison Of No Pooling, Partial Pooling and Full Pooling Results

Quantile: 5th 15th 25th 35th 45th 55th 65th 75th 85th 95th

No Pooling

Bosnia 0 0 0 0 0 0 0 122.7 117.1 148.9
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (57.5,164.1) (30.1,189.1) (-53.7,322.2)

Ethiopia -5.8 -1.8 -0.5 0 0.2 0.5 0.9 1.7 3.4 10.1
(-11.7,0.7) (-3.2,-0.4) (-1.1,0.1) (-0.7,0.7) (-0.5,1) (-0.4,1.5) (-0.3,2.4) (-0.3,3.9) (-0.5,7.4) (-2.6,21.5)

India 0 0 0 0 0 0 0 0 -6.7 7.9
(-5.2,1.7) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (-17.6,6.1) (-36.5,59.3)

Mexico 0 0 0 0 0 0 0 0 0 10.2
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (-4.3,26.3)

Mongolia -1.8 -0.8 0 0 0 0 0 0 0 -0.2
(-5.1,2) (-2.2,0.6) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (-1.3,0.6)

Morocco -30.3 1.5 2.2 0 0 3.8 7.8 14.5 28.6 78.5
(-70.4,12.2) (-6.4,8.7) (-1,4.5) (0,0) (0,2.7) (0.2,8.1) (1.9,14.7) (4,26.7) (4.7,54.8) (-20,183.5)

Philippines 0 -27.8 -13.6 -10.3 -6.3 0.2 10.8 30.6 72.8 222
(0,0) (-49.7,6.2) (-39.5,6.5) (-42.1,13.8) (-46.1,24.3) (-51.1,40.3) (-58.8,66.5) (-72.7,113.3) (-99.2,216.7) (-206.1,614.1)

Partial Pooling

Bosnia 0 0 0 0 0 0 0 89.5 79.5 129.2
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (15.3,144.7) (22.7,146.3) (15.3,249.8)

Ethiopia -3.7 -1.2 -0.4 0 0.2 0.4 0.8 1.5 2.9 8.4
(-9.3,1.5) (-2.6,0) (-0.9,0.1) (-0.7,0.7) (-0.5,0.9) (-0.4,1.3) (-0.3,2) (-0.2,3.3) (-0.2,6.3) (-1.5,18.6)

India 0 0 0 0 0 0 0 0 -0.1 25.3
(-3.9,1.3) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (-11.4,10.4) (-19,64.5)

Mexico 0 0 0 0 0 0 0 0 0 12.2
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (-1.8,25.7)

Mongolia -1 -0.6 0 0 0 0 0 0 0 0
(-3.6,1.7) (-1.8,0.6) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (-0.7,0.6)

Morocco -35.8 -0.6 1.2 0 0 3 5.9 11.3 23.6 74.6
(-69.4,-3.2) (-7,6.1) (-1.6,4.1) (0,0) (-0.3,2.6) (-0.7,6.9) (0.2,12.2) (1.7,22.6) (2.5,48) (-17.5,168.4)

Philippines 0 -4.9 -0.7 2.6 7.1 13.7 24.1 41.5 77 201
(0,0) (-33.6,18.7) (-19.1,14.6) (-18.2,20.1) (-17.8,28.4) (-18.1,40.9) (-18.5,61.5) (-20.9,98.1) (-31.4,180.5) (-80.2,491.6)

Average 0 0 0 0 0 0 0 2.8 6.9 20.8
(-49.6,4.4) (-9.2,0.2) (-2.9,0.5) (-1.2,3.1) (-1.1,7) (-2,12.5) (-3,20) (-4.5,31.5) (-4.6,57.2) (-5.5,165.1)

Full Pooling

Average 2.4 0 0 0 0 0 0 5.6 21 106
(-2.6,7.4) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (3.5,7.7) (15.8,26.3) (80.1,132.6)

Notes: All units are USD PPP per two weeks. Estimates are shown with their 95% uncertainty intervals below them in brackets. Formal joint posterior probabilities computed by
integrating over regions of the joint parameter space show that the probability that the average effects are equal across quantiles is 0.007 at a 0.5 USD PPP "tolerance" level, and
0.011 at a 1 USD PPP tolerance. All intervals are produced by the tailored parametric likelihood model, as due to the discreteness of the data there is no reliable way to compute
the standard errors of the classical frequentist quantile effect estimator (see Mosteller 1946 and Koencker and Basset 1978). Because these posteriors are fat tailed, the headline
estimate provided is the posterior median value.
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Table 3: Posterior probability that effects are equal for groups PB = 0 and 1

Quantile Tolerance = 0.5 USD PPP 1 USD PPP 3 USD PPP 5 USD PPP

0.050 0.219 0.275 0.426 0.507
0.150 0.608 0.634 0.697 0.734
0.250 0.688 0.718 0.793 0.830
0.350 0.588 0.633 0.761 0.826
0.450 0.425 0.482 0.654 0.756
0.550 0.276 0.341 0.534 0.660
0.650 0.165 0.220 0.401 0.536
0.750 0.082 0.121 0.268 0.399
0.850 0.035 0.060 0.157 0.251
0.950 0.011 0.020 0.062 0.101

Notes: Posterior probabilities are generated by integrating over areas of the full joint posterior
distribution, which automatically adjusts for dependencies in the uncertainty on these parame-
ters. Tolerances must be used in probability statements (or tests) on equality conditions to avoid
measure-theoretic paradoxes caused by testing a single point in Real space, which has measure zero
under a continuous prior (and indeed, under the Lesbesgue measure). In practice, this amounts to
testing whether the two values are in a small interval near one another with interval length equal
to the tolerance.
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Figure 1: Average quantile treatment effects across all settings for all variables. The
dark line is the posterior mean, the opaque color bands are the central 50% poste-
rior uncertainty interval, the translucent color bands are the central 95% posterior
uncertainty interval.
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Figure 2: Posterior Predictive quantile treatment effects for the next setting for all
variables.The dark line is the posterior mean, the opaque color bands are the central
50% posterior predictive uncertainty interval, the translucent color bands are the
central 95% posterior predictive uncertainty interval.
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Figure 3: Model fit analysis: posterior predictive quantiles in the control group from
the LogNormal and Pareto models compared to the real data. Further details and
caveats can be found in Appendix C.
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Figure 4: Average quantile treatment effects for the next setting for all variables,
graphed in square root terms due to the very large scale of the Pareto tail. The dark
line is the posterior median (the mean is unreliable as this posterior has fat tails), the
opaque color bands are the central 50% posterior predictive uncertainty interval, the
translucent color bands are the central 95% posterior predictive uncertainty interval.
The Pareto-Lognormal model has convergence issues as noted in Reed and Jorgensen
2004, here somewhat mitigated by strong priors, and should be interpreted with
caution. The Composite tail model, generated by manually cutting up the support
of each tail and fitting a Lognormal between zero and the 80th percentile and a
Pareto beyond it, is computed in a two-step procedure. Further details and caveats
can be found in Appendix C.
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Figure 5: General Quantile Treatment Effect Curves split by prior business owner-
ship (β1) for consumption-type variables. The dark line is the posterior mean, the
opaque color bands are the central 50% posterior uncertainty interval, the translu-
cent color bands are the central 95% posterior uncertainty interval.
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Figure 6: General Quantile Treatment Effect Curves (β1) for business variables
split by prior business ownership. The dark line is the median, the opaque bars are
the central 50% interval, the translucent bands are the central 95% interval. Display
is in cubed root of USD PPP due to the scale differences in the uncertainty at the
right tail versus the rest of the distribution.
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