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This paper introduces a novel methodology to perform topological regularization in multi-
variate probabilistic modeling by using sparse, complex, networks which represent the sys-
tem’s dependency structure and are called information filtering networks (IFN). This
methodology can be directly applied to covariance selection problem providing an instru-
ment for sparse probabilistic modeling with both linear and non-linear multivariate prob-
ability distributions such as the elliptical and generalized hyperbolic families. It can also be
directly implemented for topological regularization of multicollinear regression. In this
paper, I describe in detail an application to sparse modeling with multivariate Student-t.
A specific expectation–maximization likelihood maximization procedure over a sparse
chordal network representation is proposed for this sparse Student-t case. Examples with
real data from stock prices log-returns and from artificially generated data demonstrate
applicability, performances, robustness and potentials of this methodology.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Several real systems, such as the human brain or financial markets, are complex systems comprising a large number of
interrelated variables. Data-driven, probabilistic modeling of these systems requires the estimate of the multivariate prob-
ability which, in general, depends on a large number of parameters. In order to reduce model complexity and increase mod-
el’s generalization ability one would aim to sparsify the model by keeping only the set of most relevant and most reliable
parameters. In some contexts, this simplification of the model through sparsification is a form of regularization. Regulariza-
tion is an important tool in machine learning which is used to reduce the tendency of models to overfit the dataset on which
they are trained and then underperform on new data. The common approach to regularization consists in adding a penal-
ization term to the objective function in order to control for the complexity of the model with the aim of reducing overfitting.
The idea was originally introduced by [1] and since then it has permeated the field of inverse problems and machine learn-
ing. The original Tikhonov approach (also known as ridge regression) was introduced in the context of multicollinear regres-
sion and consisted in penalizing the sum-of-square loss function by adding the sum of square of the regression coefficients
(the L2-norm) giving in this way preference to models with smaller coefficients. Other forms of penalization have been
implemented and a particularly successful one uses of the L1-norm, instead of the L2-norm, and it was named ‘lasso’ by
[2]. One of the consequences of the L1-norm penalization is that, while some coefficient are shrank but rest finite, other
s; LASSO,
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are authomatically set to zero producing therefore sparse models. Penalization by the number of parameters is the L0 norm
which counts directly the number of non-zero coefficients and penalizes denser models. An advantage of the L0-norm penal-
ization is that the non-zero coefficients are not shrank in value allowing, in some cases, better optimizations. However, this
has been proven to be a NP-hard problem being non-differentiable and having a combinatorically large number of possible
configurations to be explored. There are different kinds of regularizations beyond the penalization based. Indeed, the regu-
larization proposed in this paper does not use a penalization term but rather on a topological constraint. There are several
regularization approaches that use geometry and topology and their combination (homology) to simplify models. For
instance [3] proposed to account for the topological complexity of decision boundaries and penalize in favor of simpler mod-
els. Similarly, [4] analyzed the importance of topological elements devising a penalty function to retain the meaningful parts
while discarding spurious topological structures. In the same line of approach, [5] penalizes complexity of neural networks
decision boundaries by using persistent homology. (see, [6] for a broader perspective on this domain.).

In this paper, I propose a novel topological regularization approach over a sparse network representation. This approach
applies directly to multivariate probabilistic modeling with the vast families of elliptical and generalized hyperbolic distri-
butions. For these probability families, the dependency is encoded in a positively defined matrix J who’s inverse (sometimes
called scale matrix) is the covariance matrix, when the latter is defined. The present, proposed, regularization procedure
forces to zero all elements of J that do not belong to the edge set of a specific, chordal, network representation. Maximum
likelihood optimization over the network representation ensures that the sparse J is a proper scale matrix (positively
defined). This topological regularization approach is in general applicable to the covariance selection problem and it can
be therefore used for any modeling with a multivariate probability distribution with the covariance matrix in the parame-
ter’s set.

This approach can be formulated as a likelihood optimization under a topological constraint. In other words, the chordal
network representation is a Bayesian prior for the inference model and the posterior probability is optimized given that prior
structure. The network itself is learned maximizing likelihood with a Bayesian updating. In this paper, I will show that this
problem can be solved for both multivariate normal and multivariate Student-t modeling. The multivariate normal case (see
Section 2.4) is rather straightforward and it was already implicitly used in [7]. Conversely, the sparse model optimization for
the Student-t case is less trivial. To the best of my knowledge, the proof of topologically-constrained likelihood optimization
for Student-t models is an original result that I report in this paper for the first time (see Section 2.5).

The sparse chordal network representation that I use for the topological regularization is a chordal information filtering
network with a structure that, while maximizing model’s likelihood, yields to a meaningful network associated with the sys-
tem’s dependency structure. There is a vast, and long standing, literature addressing the problem of extracting such sparse
network representations of the dependency structure [8–11]. These methodologies are often referred to as ‘correlation net-
works’ [11] or ‘information filtering networks’ (IFN) [9]. They distinguish slightly, with the correlation networks being nor-
mally obtained by retaining only the largest correlations, while IFN networks being constructed imposing topological
constraints (such as being a tree or a planar graph) and optimizing some global properties (such as the likelihood). These
network representations have been applied to a vast range of systems from finance [12–17], to psychology [18,19] and biol-
ogy [20,21]. These network representations are quite powerful because they provide an intuitive description of the system
yielding therefore to greater understanding of the system and a better interpretability of its models. However, until recent,
these network representations have been mainly used as descriptive tools with limited quantitative analytics mainly asso-
ciated to the relative position of the elements in the network, retrieving centrality measures or clustering properties. In [22]
it was introduced a class of IFN, named Triangulated Maximally Filtered Graph (TMFG), that is chordal and therefore partic-
ularly suited for probabilistic inference modeling with sparse dependency structure. It was indeed shown in [7] that TMFG
networks can be used, as Markov random fields, within a local–global procedure (LoGo) for probabilistic modeling, this was
the first time a network from the IFN family was used to sparsify a multivariate probability model. In the multivariate normal
case, the model inverse covariance is sparse with non-zero elements coinciding with the edges of the IFN structure. Sparse
multivariate normal models produced with this procedure were proven to be extremely effective with larger likelihood per-
formances than the graphical lasso (Glasso) [23] and with considerably lower computational burden. However, the Markov
random field approach results, in general, in a complex expression for the multivariate probability which only for the mul-
tivariate normal distribution yields to a simpler multivariate normal model with sparse inverse covariance. In this paper, I
discuss that for the vast families of elliptical and generalized hyperbolic multivariate probability distributions the sparse
inverse covariance constructed over the IFN representation can be used as a form of topological regularization. This sparse
inverse covariance, computed over the IFN structure, provides several advantages: (i) the model has greater interpretability,
because the sparse structure is a meaningful representation of relevant interactions between the variables; (ii) the estima-
tion of the model-parameters (i.e. the non-zero inverse covariance elements) is more accurate because only local inversions
over significant correlations must be performed; (iii) the computational complexity is largely reduced because only a sub-set
of parameters must be computed.

This work adds to the existing literature on two main original contributions. First, I apply for the first time information
filtering networks to sparsify, multivariate probabilistic modeling with elliptical distributions, demonstrating that the spa-
trsification procedure is a form of topological regularization. Second, I originally extend the expectation maximization pro-
cedure to the parameter optimization for sparse Student-t. Furthermore, with extensive testing with real and simulated data,
in this paper, I show that topological regularization with information filtering networks is a very effective tool providing
models with better likelihoods, larger sparsity and better interpretability than state-of-the-art tools such as Glasso.
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The paper is organize as follows. Section 2 presents the overall methodology including original proofs. Specifically, in
subSection 2.1 I explain how an ensemble of data is generated by sub-sampling the real data and by synthetic generation.
In subSection 2.2, I describe the construction of information filtering networks. The topological regularization approach is
presented in subSection 2.3 where proof of parameter’s optimization for the sparse topologically constrained model are pro-
vided. Examples of the application of this methodology to real and synthetic data are provided in Section 3. Conclusions and
perspectives are provided in Section 4. Proof of theorems and methodological details are given in the appendixes.

2. Methodology

The overall methodology flowchart is depicted in Fig. 1. It consists in four main parts: a data pre-processing sub-sampling
unit (used only for the real data); the information filtering network unit; the optimization unit and; the likelihood compu-
tation unit. Let me hereafter describe each of these parts separately.

2.1. Data ensemble generation

As input I use real log-return financial data (x̂iðsÞ ¼ logPriceiðsÞ � log Priceiðs� 1Þ) or synthetic data generated either with
multivariate normal or multivariate Student-t. Real-data are sub-sampled from a dataset of daily prices from 623 stocks con-
tinuously traded on the US equity market between 01/02/1999 and 20/03/2020 for a total of 5515 trading days. For each
stock ‘i’ (¼ 1; . . . ; p). I performed sub-sampling both in time and on assets. Specifically, on the time-dimension, I randomly
sample 2� q days without repetition assigning q observations for the training set and q observations for the test set. In
the experiments, I used q ¼ 150 and q ¼ 600. On the asset dimension, I piked randomly p ¼ 100 different return series
among the 623 stocks. I repeated the operation 100 times generating therefore, for each q, an ensemble of 100 multivariate
datasets with different sampled times and different compositions of assets.

Synthetic data were generated from multivariate normal distributions and multivariate Student-t distributions using the
sample covariance and means from the real data as parameters to generate artificial datasets with properties consistent with
the real data. The Student-t was generated with m ¼ 2:2 degrees of freedom. Analogously with the real data, I generated 100
random datasets of p ¼ 100 multivariate variables. I used q ¼ 600 observations for the training set and also q ¼ 600 obser-
vations for the test set. No pre-processing was used in this case.

2.2. Information filtering network learning

The structure of chordal IFN can be learned by using a clique expansion procedure where a clique forest is constructed
starting from a seed structure and including vertices into the forest one by one accordingly with a given gain function
(see [24,25] for further, deeper, insights on this approach). This is procedure is described in Algorithm1. The resulting net-
work is named MFCF (Maximally Filtered Clique Forests [18]). Such a clique forest network is made of a set of cliques C that
are the ‘vertices’ in the clique-forest structure, the ‘edges’ of the clique-forest structure are instead a set S of separators that
are cliques themselves with the property that by removing one of them the connected component becomes separated into
two or more components. Clique forests are chordal graphs.

Algorithm1: The MFCF clique forest construction.
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Fig. 1. Schematic representation of the overall framework of the process presented in this paper. It consists in four main parts: a data pre-processing unit,
where sub sampled time-series are generated from the real financial data; the information filtering network unit, where the sparse network representation
is generated; the optimization unit, where optimal parameters are estimated and; the likelihood computation unit, where likelihoods are computed. Both
processes for multivariate normal and multivariate Student-t are represented. For artificial data, the data pre-processing unit is not used.
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The MFCF network complexity can be constrained by limiting the minimum and maximum clique sizes (Min_Cl and
Max_Cl parameters in Algorithm1). By increasing the clique sizes one increases the number of edges in the network making
it denser. The full network is retrieved when the minimum clique size equals the total number of vertices. Separators can be
constrained to be unique between two cliques (multiplicity one) or to be utilizable more than once by more than two cliques
(multiplicity larger than one, see Max_Mult parameter in Algorithm1). The simplest clique is the 2-clique that has two ele-
ments and it is an edge. MFCF networks with two cliques only are segments if separators have multiplicity one, or they are
maximum spanning threes when separators have arbitrary multiplicity. The TMFG, first introduced in [22], is a MFCF
obtained when cliques have all size 4 (tetrahedra) and the separators can be used only once. The networks that I use in this
paper have minimum clique size equal to 2 and a maximum clique sizes ranging between 2 to the total number of vertices,
and the multiplicity is fixed to 1.

Algorithm1 requires a gain function that is used to decide the inclusion of a vertex into the clique forest in a recursive
way. The choice of a convenient gain function is strictly related to the problem under investigation. The gain function that
I use in this paper is the sum of the squares of the coefficients of the correlation matrix. This gain function is a good proxy for
likelihood in a range of problems. This is a very simple gain function that lead to networks with all cliques with maximum
size. Indeed, with this kind of additive gain the algorithm always gains by enlarging the clique, if allowed. I test both Pearson
and Kendall correlations. The latter describe dependency for a broader class of multivariate random variables than the Pear-
son’s correlations, they are non-linear and have been proven to be effective in practical applications [14].

The IFN structure is learned before the estimate of the model-parameters and it is passed to the optimization procedure
as a Bayesian prior. This approach is analogous to the LoGo methodology introduced in [7]. However, here we apply it to non-
normal models and this has important implications. Indeed, outside normal modeling the structure of the IFN graph does no
longer represent conditional independence and the sparse probability distribution function no longer factorizes over the IFN
clique and separator structure (see [26] and Eq. 12 in Appendix A for this factorization for the multivariate normal proba-
bility distribution function case).

2.3. Optimization with topological regularization

The optimization problem consists in finding the model parameters that maximize likelihood for a given IFN. In this
paper, I address this issue for probabilistic modeling with densities belonging to the elliptical family and I report results
for the multivariate normal and Student-t cases.

For the whole elliptical family the probability density function can be written as:
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f ðX ¼ xÞ ¼ kp
ffiffiffiffiffi
jJj

p
gðx;l; JÞ; ð1Þ
where l ¼ EðXÞ are the expected values of X and J is a positively defined matrix which coincides with the inverse covariance
matrix when it is defined [27].

The matrix J is the quantity I am sparsifying in this proposed topological regularization procedure. Specifically, only the
diagonal ðJÞi;i and elements ðJÞi;j corresponding to edges in the IFN are allowed to be different from zero. Therefore, the opti-
mization problem becomes computing the values of the non-zero elements of J which maximize the likelihood. Hereafter, I
report the solution for the multivariate normal and Student-t cases.

2.4. Sparse maximum likelihood solution for the multivariate normal

The log-likelihood for the multivariate normal distribution is.

Definition 1 (Normal log-likelihood). Given a set of observations x̂ðsÞ ¼ ðx̂1ðsÞ; . . . ; x̂pðsÞÞT with s ¼ 1 . . . q, the log-likelihood
of the multivariate normal is
‘ðl; JÞ ¼ q
2
log jJj � 1

2

Xq
s¼1

d2
x̂ðsÞ �

qp
2

logp: ð2Þ
where
Definition 2 (Mahalanobis distance). The term
d2
x̂ðsÞ ¼ ðx̂ðsÞ � lÞTJðx̂ðsÞ � lÞ; ð3Þ
is the square of the Mahalanobis distance [28].
Remark 1. The matrix J in Eqs. 2 and 3 must be positively defined and sparse with non-zero elements only allowed on the
diagonal and or in the off-diagonal positions coinciding with the edges of the associated IFN.

Now I must find the maximum likelihood solution of Eq. 2 under the topological constraint that off-diagonal non-zero
elements of J must coincide with the edges of the given IFN. The maximization process is almost identical to the full case
but with the topological constraint enforced.

Theorem 1 (ML solution for l for the sparse multivariate normal problem). If J is invertible, then the maximum likelihood solution
for l is the sample mean:
l� ¼ 1
q

Xq
s¼1

x̂ðsÞ ð4Þ
Proof. The proof is identical to the one for the full problem. The maximum of ‘ðl; JÞ in Eq. 2 with respect to l is obtained
from the root of
@

@l
‘ðl; JÞ ¼ 1

2
J
Xq
s¼1

x̂ðsÞ � q
2
Jl ¼ 0: ð5Þ
Which is indeed solved by l� if J is invertible. h

The proof that J is invertible is given in Lemma 1 in Appendix B.

Theorem 2 (ML solution for J for the sparse multivariate normal problem). Given a IFN structure made of clique and separators,
the maximum likelihood solution for the sparse J is:
J�i;j ¼
X
c2C

R̂�1
c

� �
i;j �

X
s2S

R̂�1
s

� �
i;j; ð6Þ
when i; j belong to a clique of the IFN. Otherwise J�i;j ¼ 0 for all other couples of i; j not belonging to cliques. Where R̂c and R̂s are the
Person’s sample estimators of the covariances of the variables in the cliques and separators.

The proof of this theorem is provided in Appendix B.
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Remark 2. The sparsification of J through Eq. 6 provides a way to overcome the curse of dimensionality in the estimation of
covariances from observations. Indeed, independently on the overall dimension of the system of variables X. When the
sparse inverse covariance J is estimated from data, it is then sufficient to have a number of observations, q, larger than
the size of the largest clique, which is independent from the dimension, p, of X. Therefore, through Eq. 6 one can obtain well
conditioned covariance matrices even when q � p. Eq. 6 transforms the global problem of estimating the whole matrix
inverse into a set of local problems at clique and separator levels.
2.5. Sparse maximum likelihood solution for the multivariate Student-t

Definition 3 (Student-t log-likelihood). Given a set of observations x̂ðsÞ ¼ ðx̂1ðsÞ; . . . ; x̂pðsÞÞT with s ¼ 1 . . . q, the log-likelihood
of the multivariate Student-t is
‘ðl; J; mÞ ¼ q log
C mþp

2

� �
ðm� 2Þp=2pp=2Cðm2Þ

 !
þ q
2
log jJj � mþ p

2

Xq
s¼1

log 1þ 1
m� 2

d2
x̂ðsÞ

� �
; ð7Þ
for m > 2.

where d2
x̂ðsÞ is the square Mahalanobis distance as defined in Definition 2; J is the inverse covariance and m is the degrees of

freedom that here we assume being always larger than 2. Indeed, for m 6 2 the covariance is not defined.
In the non-sparse (full) case, it is known that the likelihood of multivariate Student-t models can be maximized by means

of a procedure known as expectation–maximization (EM) introduced by [29] (see also [30], Chap.9).
I shall show hereafter that such a procedure can be applied also to the maximization the likelihood of the sparse Student-t

model for any given chordal IFN structure.

Theorem 3 (ML solution for l for the sparse multivariate Student-t problem). If J is invertible, then the maximum likelihood
solution for l is a weighted mean:
l� ¼ 1Xq
s¼1

w�
s

Xq
s¼1

w�
s x̂ðsÞ; ð8Þ
with weights
w�
s ¼

mþ p

mþ m
m�2d

�2
x̂ðsÞ

: ð9Þ
Proof is provided in Appendix C.

The d�2
x̂ðsÞ is the Mahalanobis distance computed using the ML solution J� (see Theorem 4). The w�

s are the asymptotic solu-
tions for t ! 1 of the recursive EM process.

The ML solution for the sparse J is also obtained with the EM approach.

Theorem 4 (ML solution for J for the sparse multivariate Student-t problem). The maximum likelihood solution for J is:
J�i;j ¼
X
c2C

R��1
c

� �
i;j �

X
s2S

R��1
s

� �
i;j; ð10Þ
when i; j are an edge of a clique. Otherwise J�i;j ¼ 0 for all other couples of i; j not belonging to cliques. Where R�
c and R�

s are the EM
estimators of the covariances of the variables in the cliques and separators, which are given by the weighted sample averages:
R�
i;j ¼

1
q

Xq
s¼1

w�
s ðx̂iðsÞ � l�

i Þ>ðx̂jðsÞ � l�
j Þ: ð11Þ
The proof of this theorem is provided in Appendix C.
The sparsity of J is not affecting the form of the EM solutions which have the same form also in the full case. However, in

the sparse case only the elements belonging to cliques must be computed which reduces computational complexity from
Oðp2Þ to OðpÞ.

The parameter m can also be computed through the EM procedure. However, I prefer to estimate it independently via a
power law fit of the left and right tails of the probability distribution of all the univariate marginals of X. Indeed, all marginal
Student-t distributions of X must behave as power laws on both left and right tails with tail-exponent m.
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3. Experiments

In order to test the novel topological regularization methodology introduced with this paper I computed the likelihood of
several models using three kind of data. I then compared the results obtained with IFN sparsification with results obtained
with -state-of-the-art- graphical lasso sparsification.

3.1. Model construction and parameter estimation

For each training dataset, I generated MFCF networks with maximum clique sizes in the range from 2 to 100. For each
maximum clique size, I generate two different networks by using the Pearson correlation estimate and the Kendall correla-
tion estimate. As MFCF gain function I chose the sum of the squares correlations, which is one of the simplest choices that
produces cliques all of sizes equal to the maximum clique size. The MFCF networks I generate have separators that are used
only once (multiplicity one). As degrees of freedom I empirically investigated the tails of the marginal distributions across
the whole dataset retrieving a tail exponent m ¼ 2:2 as a good average estimator for the degrees of freedom. I verified that
relative results are little sensitive to this parameter although the values the likelihood can change sensibly with m. The
covariances are retrieved by multiplying by the standard deviations the elements of the correlations matrices. Using these
MFCF networks I then compute the maximum likelihood inverse sparse covariance estimates for multivariate normal mod-
eling, as described in Eq. 6, and for the multivariate Student-t modeling, as described in Eq. 10.

I summary, I test six combinations of models: 1. multivariate normal with Pearson correlations (Nor.; Per.); 2. multivari-
ate normal with Kendall correlations (Nor.; Ken.); 3. multivariate Student-t with Pearson correlations (St-t.; Per.); 4. multi-
variate Student-t with Pearson correlations optimized with Expectation Maximization (St-t.; Per. EM), 5. multivariate
Student-t with Kendall correlations (St-t.; Ken.); 6. multivariate Student-t with Kendall correlations optimized with Expec-
tation Maximization (St-t.; Ken. EM).

3.2. Comparison with Glasso

In order to compare the results with a meaningful state-of-the-art sparse modeling approach, I computed L1-norm reg-
ularized sparse inverse covariance estimators by using a Quadratic Approximation for Sparse Inverse Covariance Estimation
(QUIC) by [31].1 Different levels of sparsity were achieved by varying the regularization penalty, k, with values between 10�6

and 10�3.

3.3. Results

I computed the mean log-likelihood ‘ for the range of MFCFs with different clique sizes and for both multivariate normal
and multivariate Student-t models computed by using either the Pearson’s and the Kendall’s covariance estimators and the
Expectation Maximization procedure (six models in total, see Section 2.5). The largest mean log-likelihoods across the MFCF
clique-sizes’ range and the value of the corresponding clique size are reported in Table 1 for all the models. The parameters
are estimated on the training set and the results are instead reported for the test set. One can observe that for real data the
sparse Student-t model constructed by using Kendall’s covariance and Expectation Maximization procedure gives the best
results for both q ¼ 150 and 600 with smaller clique size selected for the shorter dataset. The combination Student-t model,
Kendall’s covariance and Expectation Maximization procedure is also best for the multivariate Student-t synthetic datasets.
Conversely, for the multivariate Normal synthetic datasets the best results are achieved by the sparse Normal model con-
struct using Peterson’s covariance.

Fig. 2 reports results for the Student-t log-likelihood (Eq. 7) estimated using Kendall covariance and expectation maxi-
mization. The parameters are estimated on the training set and the results are instead reported for the test set. The log-
likelihood is computed for a range of sparsity values obtained by varying the maximum clique size from 2 to 100 (the second
being the complete graph). The x-axis, Jk k0, reports the number of edges in MFCF (i.e. the number of non-zero off-diagonal
elements in the sparse inverse covariance). The tick lines are averages over 100 re-samplings and the bands are the 10% and
90% quantiles. Note that, the re-sampling picks randomly both the time series and the returns. Therefore the observed con-
sistency and the relatively narrow quantile band are strong indications of statistical robustness of the results. Also note that
the last points on the right of the two plots are the full models (max clique = 100) with the complete (non-sparse) inverse
covariance matrix. As one can see, for small observation sets (q ¼ 150) the sparse models greatly over-perform the complete
models. Whereas, for larger observation sets (q ¼ 600) the difference is smaller.

In the figure, I also report for comparison results obtained by estimating sparse inverse covariance via L1-norm regular-
ization using Glasso with the QUIC package by [31]. One can see that for sparse modeling, up to Jk k0 � 10� p ¼ 1;000 the
MFCF approach is largely over-performing the QUIC-Glasso results. For denser networks (i.e. Jk k0 � 2;000) the MFCF and

QUIC approach deliver similar results. For instance, for q ¼ 600, the Glasso approach with k ¼ 2 � 10�5 retrieves 1,720 average
number of edges and an average ‘=q ¼ 253:9 with ½248:7;258:6� the 10% and 90% quantiles. By comparison, the MFCF for max
1 Matlab implementation available at: http://www.cs.utexas.edu/ sustik/QUIC/.
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Table 1
Summary of test set results for the mean log-likelihood per observation (‘=q) for the various combinations of models (rows) and data types (columns). For each
model and dataset type, the table reports only the best likelihood values obtained across the range of max-clique-sizes in the MFCF network. The ‘=q values are
on the left side of the columns while the corresponding max-clique-size are reported on the right side of the columns. Several modes are investigated: Normal
likelihood (Nor., see Eq. 2), Student-t likelihood (Nor., see Eq. 7), Pearson covariance estimator (Per.), Kendall covariance estimator (Ken.), expectation
maximization parameters estimation (EM, see Eqs. 8, 10).

Max average log-likelihood per observations ‘=q; and max clique size

Estimator Real q = 150 Real q = 600 St-t. q = 600 Nor. q = 600

Nor.; Per. 350.9; 5 362.6; 10 344.0; 5 371.3; 30
Nor.; Ken. 360.4; 20 363.8; 100 360.6; 100 369.4; 100
St-t.; Per. 376.7; 6 383.3; 11 447.0; 7 363.3; 30
St-t.; Per. EM 383.9; 8 389.6; 20 459.6; 50 366.8; 30
St-t.; Ken. 381.0; 15 385.6; 50 454.7; 100 364.8; 100
St-t.; Ken. EM 384.8; 8 389.8; 15 460.0; 30 366.8; 30

Fig. 2. Log-likelihood ‘ðl; J; mÞ=q (Eq. 7) for Student-t models with sparse inverse covariance matrix J constructed by using the MFCF approach with IFN
graphs with different levels of sparsity obtained by changing the maximum clique size from 2 to 100. The IFN have been constructed using the Kendall
estimate of the correlation matrix. The x-axis reports Jk k0 which is the number of edges in the IFN graph. Models have been optimized to maximize Student-
t likelihood by using the EM procedure described in Section 2.5. Parameters are estimated on two train sets of ‘real’ data (see text) with different lengths:
q ¼ 150 and q ¼ 600 respectively (blue and magenta). Reported results are the log-likelihoods computed on the test set. The lines are the means and the
bands around the lines are the 10% and 90% quantiles over 100 random re-sampling. The points are instead from Glasso models computed using QUIC
Quadratic Approximation for Sparse Inverse Covariance Estimation implemented by [31] using a range of regularization penalty between 10�6 to 10�3.

Fig. 3. Normal log-likelihood ‘ðl; J; mÞ=q (Eq. 2) for real financial data (see text) for a set of models with sparse inverse covariance matrix J constructed by
using the MFCF approach with IFN graphs with different levels of sparsity obtained by changing the maximum clique size from 2 to 100. The IFN have been
constructed using the Pearson estimate of the correlation matrix. The x-axis reports Jk k0 which is the number of edges in the IFN graph. Parameters are
estimated on two train sets with different lengths: q ¼ 150 and q ¼ 600 respectively (blue and magenta). Reported results are the log-likelihoods computed
on the test set. The lines are the means and the bands around the lines are the 10% and 90% quantiles over 100 random re-sampling. The points are instead
normal log-likelihood for Glasso models computed using QUIC using a range of regularization penalty between 10�6 to 10�3. The slashed blue line is the
Student-t likelihood for q ¼ 600 reported in Fig. 2 which is reported for comparison.
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clique equal to 20 has 1,710 edges and average likelihood ‘=q ¼ 254:0 with quantiles ½248:9;258:7�. Similar results are
retrieved for other levels of sparsity with the Glasso results slightly improving performances over the MFCF when the model
becomes denser.

Other results with different combination of models and with artificial data are reported in Appendix D. Specifically, I test
normal modeling on the real datasets (Fig. 3 and I test both normal and Student-t models on synthetic datasets produced
with multivariate normal and Student-t distributions (Figs. 4 and 5). Overall, I observe a very consistent picture across al
experiments and the various combinations of model constructions and data. It results that Student-t modeling is more
appropriate for the real financial data resulting in larger likelihoods. This is consistent with current literature. Not surpris-
ingly, it results that normal models works better on normal data and instead Student-t models have higher likelihoods on
Student-t data. The construction with Kendall’s estimate of the covariance is producing better results for the real data
and the Student-t synthetic data but not for the multivariate normal synthetic data where the Pearson’s estimate is better.
Fig. 4. Normal log-likelihood ‘ðl; J; mÞ=q (Eq. 2) for multivariate normal synthetic data (see text) for a set of models with sparse inverse covariance matrix J
constructed by using the MFCF approach with IFN graphs with different levels of sparsity obtained by changing the maximum clique size from 2 to 100. The
IFN have been constructed using both the Pearson and the Kendall estimates of the correlation matrix (magenta and blue lines respectively). The x-axis
reports Jk k0 which is the number of edges in the IFN graph. Parameters are estimated on train sets of lengths q ¼ 600. Reported results are the log-
likelihoods computed on the test set. The lines are the means and the bands around the lines are the 10% and 90% quantiles over 100 random re-sampling.
The points are instead normal log-likelihood for Glasso models computed using QUIC using a range of regularization penalty between 10�6 to 10�3. The
slashed blue line and the dotted magenta line are the Student-t models with Kendall and Pearson estimates respectively; they overlap but do not coincide.

Fig. 5. Student-t log-likelihood ‘ðl; J; mÞ=q (Eq. 7) for multivariate Student-t synthetic data (see text) for a set of models with sparse inverse covariance
matrix J constructed by using the MFCF approach with IFN graphs with different levels of sparsity obtained by changing the maximum clique size from 2 to
100. The IFN have been constructed using both the Pearson and the Kendall estimates of the correlation matrix (magenta and blue lines respectively). The x-
axis reports Jk k0 which is the number of edges in the IFN graph. Parameters are estimated on train sets of lengths q ¼ 600. Reported results are the log-
likelihoods computed on the test set. The lines are the means and the bands around the lines are the 10% and 90% quantiles over 100 random re-sampling.
The points are instead normal log-likelihood for Glasso models computed using QUIC using a range of regularization penalty between 10�6 to 10�3. The
slashed blue line and the dotted magenta line are the normal models with Kendall and Pearson estimates respectively.
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The expectation–maximization optimization procedure used for the Student-t models makes the difference between Ken-
dall’s and Pearson’s estimates small, but still quantifiable. Indeed, EM can ‘cure’ the parameters estimate and therefore it
is little sensitive to the starting matrix, however the IFM networks from Kendall’s or Pearson’s estimates are not identical
and this produces the difference. Consistently with what I reported for the real data with Student-t modeling (Fig. 2), Glasso
models underperform for all sparse networks and then achieve comparable performances to the IFM-LoGo models at higher
levels of network density (above Jk k0 � 2;000) which correspond to rather dense networks with about 40% of edges present.

4. Conclusions and perspectives

In this paper I have introduced a methodology for topological regularization with information filtering networks. I have
demonstrated the application of this method for multivariate normal and multivariate Student-t sparse modeling using
MFCF clique-forest networks. The regularization methodology consists in keeping different from zero only the parameters
of the multivariate distribution that correspond to edges in the IFN. By using clique forests IFNs, one guarantees positive def-
initeness and decomposition into local parts of the inverse covariance matrix (Eqs. 6 and 10). This is an important property
associated with this kind of IFNs and it applies to the vast class of models belonging to the elliptical family [27] which
includes the Student-t but also the normal, the Laplace and the multivariate stable distributions.

The present topological regularization with IFN is actually more general, applying also to non symmetric multivariate dis-
tributions such as the generalized hyperbolic family and broadly to any multivariate modeling which makes use of the
covariance matrix in the parameter set. This topological regularization methodology strongly improves model interpretabil-
ity because IFN structures are known to meaningfully represent relevant interrelations in complex data structures with a
vast literature reporting their successful descriptive power with applications to various domains from finance to biology.

I have shown that the expectation–maximization methodology commonly used to estimate the maximum likelihood
coefficients in Student-t models can be used also for this regularized sparse models with the advantage that, in this case,
computation must be done only for the coefficients corresponding to IFN edges reducing computation complexity from
Oðp2Þ to OðpÞ.

Experiments on real datasets from equity prices and multivariate synthetic datasets demonstrate that the proposed
methodology is directly applicable to a range of practically relevant problems. Results demonstrate that topologically regu-
larized models outperform full models and reveal that smaller observation sets are optimized by using sparser IFN models. A
comparison with L1-norm regularization by Glasso approach, shows that the proposed methodology largely outperforms
Glasso for sparse models and tend to perform similarly to Galsso for denser models. Furthermore, if must be noticed that
the proposed IFN-LoGo approach is computationally more efficient than Glasso and the sparse network has better
interpretability.

The present paper reports exclusively on topological regularization via IFN priors, however, the nature of this sparsifica-
tion allows to combine straightforwardly L1 and L2 regularizations within this methodology. Indeed, Theorems 2 and 4 pro-
vide a formula for the maximum likelihood solution of the sparse inverse covariance matrix as sum of local inverse matrices
associated with the clique and separator sets. On such local inversions, shrinkage and lasso regularization can be applied
directly. This has the further advantage that both the inversions and the regularizations are on local-small dimensional
matrices making the procedure computationally efficient and fully parallelizable.
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Appendix A. Decompositions for the multivariate normal case

Theorem 5 (Decomposition of the sparse multivariate normal distribution). Given a sparse J inverse covariance with a chordal
IFN structure where the off diagonal non-zero entries corresponds to a set of cliques C and separators S in a clique-forest, the
sparse multivariate normal probability density function, uðX ¼ xjl;RÞ, can be decomposed in terms of cliques and separators as
follows:
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uðX ¼ xjl;RÞ ¼

Y
c2C

uðXc ¼ xcjlc;RcÞY
s2S

uðXs ¼ xsjls;RsÞ
: ð12Þ
Proof. The proof is a straightforward consequence of the exponential form of the normal distribution and it is for instance
provided in [26]. h
Theorem 6 (Decomposition of conditionally independent multivariate normal variables). Given a set of multivariate normal vari-
ables corresponding to a set of cliques C which are conditionally independent from each other when conditioned to their separators
S in a clique-forest structure, then the multivariate normal probability density function can be decomposed in terms of cliques and
separators as follows:
uðX ¼ xjl;RÞ ¼

Y
c2C

uðXc ¼ xcjlc;RcÞY
s2S

uðXs ¼ xsjls;RsÞ
: ð12Þ
Proof. The proof is a direct consequence of the Bayes formula it is, for instance, provided in [26]. h

It is clear that the two formulas in Theorems 5 and 6 are identical (indeed they have been labeled with the same number,
12), however they are consequences of two different facts that happen to coincide for the multivariate normal probability
density function.

Remark 3. The conditional independence is an exclusive property of the sparse multivariate normal and it is not applicable
to the Student-t case.
As a consequence of Eq. 12 one has that the non-zero elements of the sparse covariance matrix J can be expressed as a
simple sum of local inverse covariances.

Corollary 1 (Decomposition of the inverse covariance matrix). The elemets of the inverse covariance are given by:
Ji;j ¼
X
c2C

R�1
c

� �
i;j �

X
s2S

R�1
s

� �
i;j; ð13Þ
Proof. This is a direct consequence of Eq. 12 and the proof is provided in [26]. h

There are other two useful consequences of the decomposition in Eq. 12.

Corollary 2 (Decomposition of the determinant).
jJj ¼

Y
c2C

jJcjY
s2S

jJsj
: ð14Þ
Proof. This is a direct consequence of Eq. 12 and the proof is provided in [26]. h
Corollary 3 (Decomposition of the Mahalanobis distance).
d2 ¼
X
c2C

d2
c �

X
s2S

d2
s ð15Þ
with d2
c ¼ ðx� lcÞTJcðx� lcÞ and d2

s ¼ ðx� lsÞTJsðx� lsÞ.
Proof. This is a direct consequence of Eq. 12 and the proof is provided in [26]. h
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Appendix B. Theorems and proofs for normal ML

Lemma 1 (Positive definitness). If all Rc with c 2 C and Rs with s 2 S are positively defined, the sparse inverse covariance J
constructed from Eq. 6 is positively defined.
Proof. From Eq. 14, if all jJcj > 0 with c 2 C and jJsj > 0 with s 2 S, then jJj > 0. h
Proof. (Proof of Theorem 2).
I have to prove that the sparse inverse covariance matrix constructed using Eq. 6 is the maximum likelihood solution for

the sparse multivariate normal case for a give IFN sparsity structure.
I develop this proof into two steps.

1. First, I show that, if i; j is an edge of a clique of the IFN structure, then the solution for the covariance coefficient must be
the Person’s sample covariance estimator between variable i and variable j. This part proceed in the same way as for the
full problem. In particular, the maximum of ‘ðl; JÞ with respect to J is obtained from the root of
@

@Ji;j
‘ðl; JÞ ¼ q

2
ðJ�1Þi;j �

1
2

Xq
s¼1

ðx̂iðsÞ � liÞðx̂jðsÞ � ljÞ
�����
J¼J�

¼ 0; ð16Þ

for ði; jÞ 2 c. This therefore implies that the elements i; j in the maximum likelihood covariance must coincide with the
Person’s sample covariance estimator, ðR̂Þi;j, when the couple i; j is an edge of a clique.

2. Second, I demonstrate that the sparsity structure of J over a chordal graph imposes that the inverse covariance must be in
the form
Ji;j ¼
X
c2C

R�1
c

� �
i;j �

X
s2S

R�1
s

� �
i;j; ð17Þ

where Rc and Rs are respectively the covariances of the distributions of the subsets of variables in the cliques and sepa-
rators. This is a direct consequence of the decomposition property for the multivariate normal distribution (see Eq. 12).

As a consequence, the ML sparse inverse covariance solution must have the form of Eq. 17 with elements given by the
sample covariances, and this is indeed Eq. 6. h

Appendix C. ML solution for the Student-t distribution

Let me start from the definition of the multivariate Student-t probability density function.

Definition 4 (Multivariate Student-t distribution). Given of a set of random variables X 2 Rp�1 the multivariate Student-t
probability density function has the following canonical general expression [32]:
tðX ¼ xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
jXjðmpÞp

s
C mþp

2

� �
Cðm2Þ

1þ ðx� lÞTX�1ðx� lÞ
m

 !�mþp
2

ð18Þ
where l 2 Rp�1 is the vector of location parameters; X 2 Rp�p is a positively defined matrix called shape matrix; and m > 0 is
a scalar called degrees of freedom.

The covariance matrix is defined when m > 2 and it is given by
R ¼ m
m� 2

X:
Assuming, m > 2, consistently with the previous notation for the normal case, I re-write the expression for the Student-t
distribution in terms of the inverse covariance matrix J.
tðX ¼ xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jJj
ððm� 2ÞpÞp

s
C mþp

2

� �
Cðm2Þ

1þ ðx� lÞTJðx� lÞ
m� 2

 !�mþp
2

ð19Þ
The EM construction makes use of the fact that the multivariate Student-t can be written as a normal mixture
representation:
tðX ¼ xÞ ¼
Z þ1

0
hðzj m

2
;
m
2
Þuðxjl; m

m� 2
JzÞdz ð20Þ
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where
u xjl; m
m� 2

Jz
� 	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zpmpjJj
ð2pðm� 2ÞÞp

s
exp � z

2
m

m� 2
ðx� lÞ>Jðx� lÞ

h i
; ð21Þ
is the multivariate normal density function with l 2 Rp�1 the location parameters and z is scalar multiplying the inverse
covariance matrix. Instead hðzj m2 ; m2Þ is the probability density function of a gamma distribution
hðzja; bÞ ¼ ba

CðaÞ z
a�1e�bz : ð22Þ
with both scale a and rate b parameters equal to m
2.

Let me then recap the expectation maximization (EM) approach step by step, explicitly taking into account the sparsity of
J in our case. The EM approach proceeds into two main steps. The E-step, where and expectation function is defined; then an
M-step, where it is maximized recursively.

Let me call
f ðx; zjl; J; mÞ ¼ hðzj m
2
;
m
2
Þuðxjl; m

m� 2
JzÞ: ð23Þ
	 E step.
I define the following expectation:
Qðl; Jjlt; JtÞ ¼
Xq
s¼1

Z 1

0
f ðzjx̂ðsÞ;lt ; Jt ; mÞ log f ðx̂ðsÞ; zjl; J; mÞdz: ð24Þ

	 M step. I now search for the maxima of the expectation by differentiating with respect the parameters and equalling to
zero.

@

@l
Qðl; Jjlt; JtÞ ¼ m

m� 2

Xq
s¼1

Z 1

0
zf ðzjx̂ðsÞ;lt ; Jt ; mÞðx̂s � lÞ>Jdz

�����
l¼ltþ1

¼ 0

which, if J is positively defined, results in the solution

ltþ1 ¼

Xq
s¼1

wt
sx̂ðsÞ

Xq
s¼1

wt
s

; ð25Þ

with

wt
s ¼

Z 1

0
zf ðzjx̂ðsÞ;lt ; Jt ; mÞdz ð26Þ

which can be computed explicitly. Indeed, substituting Eq. 21 and 22 one has

wt
s /

Z 1

0
zgðzj mþ p

2
;
mþ m

m�2d
2
x̂ðsÞ

2
dz:

that is the expected value for a gamma distribution with a ¼ mþp
2 and b ¼ mþ m

m�2d
2
x̂ðsÞ

2 which is

wt
s ¼

mþ p

mþ m
m�2d

2
x̂ðsÞ

: ð27Þ

where the quantity

d2
x̂ðsÞ ¼ ðx̂ðsÞ � ltÞTJtðx̂ðsÞ � ltÞ; ð28Þ

depends on the stage t of the EM process and therefore wt
s must be computed recursively. Convergence is guaranteed

(Theorem 2 in [28]) although it can be slow.
In this paper the inverse covariance matrix J is sparse however the structure of this matrix has no relevance for the
derivation of Eq. 25.
For the derivation of Jtþ1 we also proceed following the same steps as for the unconstrained full case, with the only atten-
tion that the partial derivatives must be only applied over the non-zero elements with both i; j belonging to a clique:
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@

@Ji;j
Qðl; Jjlt ; JtÞ ð29Þ

¼ 1
2

Xq
s¼1

Z 1

0
f ðzjx̂ðsÞ;lt ; Jt; mÞ �ðJ�1Þi;j þ z

m
m� 2

ðx̂iðsÞ � lt
i Þðx̂jðsÞ � lt

j Þ
� 	

dz

�����
J¼Jtþ1

¼ 0

resulting in the solution

ððJtþ1Þ�1Þi;j ¼
m

m� 2

� 	1
q

Xq
s¼1

wt
sðx̂iðsÞ � lt

i Þ
>ðx̂jðsÞ � lt

j Þ: ð30Þ

In principle, I could perform the EM approach to estimate m and, again, sparsity plays no role. However, in this paper I
prefer to estimate m from the tails of the distribution instead of using the EM approach. Then the computation is reiterated
until convergence to a stable set of coefficients.

Let me now proceed with the proofs of Theorems 3 and 4 which are straightforward consequences of the previous
derivation.

Proof of Theorem 3 In order to prove Theorem 3, I must demonstrate that Eqs. 8 and 9 are indeed the maximum like-
lihood solutions. However this is already derived in Eqs. 26 and 28, providing that the recursion procedure is convergent,
but this ie guaranteed by Theorem 2 in [29]. �.

Proof of Theorem 4 Again, in order to prove Theorem 4, I must demonstrate that Eqs. 10 and 11 are the maximum like-
lihood solutions. However this is already derived in Eqs. 32 and 28, providing that the recursion procedure is convergent, but
this ie guaranteed by Theorem 2 in [29]. �.

Appendix D. Further comparison between models

Let me here report some extra results useful for comparison between the models.
I first investigate the real data using the normal modeling instead of the Student-t. In Fig. 3 I report the log-likelihoods for

real data obtained from normal models (Eq. 2) with IFN constructed using the Pearson estimate of the correlation matrix. The
result for the Student-t is reported in this figure with the slashed line for comparison. We observe an overall behavior very
similar to what reported for the Student-t approach (see Fig. 2), however the values of the log-likelihoods are significantly
lower. This indicates that real data from financial log-returns are better modeled with Student-t multivariate probability dis-
tributions. This is not a surprise since the literature abundantly reports the inadequacy of normal modeling for financial
returns, yet this result is very clean and has a referential value.

I then repeated the experiments on synthetic data generated from multivariate normal and Student-t distributions.
Results for normally distributed data are reported in Fig. 4. Unsurprisingly, I observe that normal modeling with Pearson esti-
mate of the covariance gives largest likelihoods on normal data. I also observe that the Student-t model with expectation
maximization give good results similar to the normal models with Kendal estimate of the covariance. For the Student-t
model with expectation maximization optimization I obtain very small differences when the Pearson’s or Kendall’s estimates
are used. Indeed the slashed and dotted lines appear overlapping, they are however not coinciding and the Pearson’s esti-
mate give marginally better results.

Results for Student-t distributed data are reported in Fig. 5. Here, coherently, I observe that Student-t models largely out-
perform normal models. I also observe that contrary to the normal data case, here the Kendal’s estimates of the covariances is
advantageous.

In all the cases I have investigated, Glasso is outperformed by IFN-LoGo sparse models up to a certain level of sparsity and
then they become equivalent.
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