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Abstract

We assess the US Clean Air Act standards for fine particulate matter (PM2.5). Using high-
resolution data, we find that the 2005 regulation reduced PM2.5 levels by 0.4µg/m3 over five years,
with larger effects in more polluted areas. Standard difference-in-differences overstates these
effects by a factor of three because time trends differ by baseline pollution, a bias we overcome
with three alternative approaches. We show that the regulation contributed to narrowing Urban-
Rural and Black-White PM2.5 exposure disparities, but less than difference-in-differences suggest.
Pollution damages capitalized into house prices, on the other hand, appear larger than previously
thought when leveraging regulatory variation.
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The 1970 Clean Air Act (CAA) and subsequent amendments are the cornerstone of air qual-
ity regulation in the United States (US). The CAA operates through National Ambient Air Quality
Standards (NAAQS) set by the US Environmental Protection Agency (EPA), with measures typi-
cally targeted at regions found to be in nonattainment of a given NAAQS.1 The latest air pollutant
to be regulated through NAAQS is PM2.5, fine particulate matter of diameter smaller than 2.5 mi-
crometers, with regulation coming into effect in 2005. PM2.5 is one of the air pollutants most clearly
associated with a wide range of adverse health outcomes (Landrigan et al. 2018), productivity losses
(Graff Zivin & Neidell 2012) and other non-health outcomes (Aguilar-Gomez et al. 2022), and the
key driver of the EPA’s Air Quality Index. Given the large costs associated with pollution exposure,
a central question is how effective policies are at lowering pollution levels.

We estimate the effect of the PM2.5 NAAQS nonattainment designations in 2005 on PM2.5 con-
centrations, and assess implications for racial and spatial pollution exposure disparities and house
prices in the US. We use high-resolution data from three leading reanalysis projects (Meng et al.
2019a, Di et al. 2019, van Donkelaar et al. 2021a) that estimate PM2.5 concentrations by combining
ground monitors, satellite data and chemical transport models for the entire contiguous US. We
combine those with US Census data and the EPA-registered PM2.5 values (RV) that the agency con-
structs based on ground level pollution monitor readings and uses to assign nonattainment status.2

We contribute to a recent literature that uses these PM2.5 rules as a setting to study pollution dam-
ages or environmental justice (Bishop et al. 2023, Jha et al. 2019, Sanders et al. 2020, Currie et al.
2023), as well as the broader literature on NAAQS nonattainment effects with three insights.

Our first insight is that standard difference-in-differences (DiD) estimation, despite being popu-
lar, significantly overstates nonattainment effects. This is because EPA-registered PM2.5 values, and
therefore also nonattainment designations, correlate with secular time trends in air quality. Areas
that start out with higher levels of pollution also experienced larger pollution reductions over time
even in the absence of nonattainment status. Formal placebo tests using only attainment areas con-
firm that DiD estimations pick up an effect, casting doubt on the parallel trends assumption required
for DiD. This pattern holds when we exclude attainment counties that border nonattainment areas,
or when we exclude areas that were previously treated as nonattainment with the earlier PM10 stan-

1NAAQS are generally implemented at the state level through State Implementation Plans (SIP). States identify nonat-
tainment areas that fail to meet NAAQS for criteria air pollutants, based on methodology set by the EPA. Nonattainment
status triggers heightened scrutiny both within state level SIPs and under federal regulation. Since 1970 the spectrum
of regulatory instruments has broadened substantially to include national emissions standards for cars and light trucks,
various technology mandates and performance standards, offset requirements, fuel standards, as well as market-based
instruments.

2To facilitate replication and wider use in future studies we rely exclusively on publicly available data at the most
granular level (Census blocks) to estimate the effectiveness of the policy in reducing pollution exposure, and note that
this is equivalent to using restricted-use microdata and assigning pollution to individuals at the block level.
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dard.3 We find such correlated time trends in all three reanalysis-derived pollution data sources as
well as in the EPA’s monitor data, for both absolute and relative changes in PM2.5 concentrations,
and whether or not we control for flexible state-specific time trends.

We propose three alternative strategies that address the systematic relationship between baseline
pollution and pollution changes over time. All three produce similar estimates which are substan-
tially smaller than the standard DiD estimates. The first approach augments DiD by controlling for
trends correlated with baseline PM2.5 directly. We thus call it DiD with baseline (DiDwb). The sec-
ond approach exploits the fact that we observe Census block level pollution which we aggregate to
Census tracts. Nonattainment is usually assigned at the coarser level of counties and commuting
zones. This enables us to employ a matched difference-in-differences (MDiD) strategy comparing
tracts from nonattainment and attainment areas that have similar baseline pollution levels. The third
approach relies on the discontinuous assignment rule for nonattainment areas, exploiting our col-
lected EPA-registered PM2.5 values in a regression discontinuity (RD) design. While placebo tests
fail for standard DiD, the placebo tests pass when using these other strategies. Our preferred specifi-
cation, MDiD, shows a 0.4µg/m3 reduction in PM2.5 between 2001-03 and 2006-08 due to nonattain-
ment status, a third of the standard DiD estimate. This is equivalent to a 3% reduction from 2001-03
averages. Bootstrap simulations show that our alternatives are significantly different from DiD but
statistically indistinguishable from each other.

Our second insight is that this implies a lower contribution of NAAQS nonattainment areas to
narrowing structural pollution exposure disparities. We first confirm the Black-White pollution gap
documented in Jbaily et al. (2022) and Currie et al. (2023), and that these gaps narrowed, in part
due to NAAQS nonattainment areas (Currie et al. 2023). We find, however, that the NAAQS’ contri-
bution is less than half the size when we use our preferred specification (MDiD) compared to stan-
dard DiD. This implies that the Clean Air Act may have contributed less to environmental justice
than previously thought, at least with respect to PM2.5 pollution. We next document Urban-Rural
disparities that are even larger than the racial gap in pollution exposure. Again, we show that the
Urban-Rural gap has narrowed, but that the contribution of the 2005 NAAQS is significantly smaller
than standard DiD may suggest.4

Our third insight is that pollution damages might be even larger than previously thought. We

3We show that the pre-trend disappears when assigning areas that have previously also been treated with the earlier
PM10 standard into the control group as in Currie et al. (2023), which, however, requires an implicit assumption of no
treatment effects for these units. We test this assumption and show, on the contrary, that areas that have previously been
designated into PM10 nonattainment experienced larger marginal PM2.5 reductions from additional PM2.5 nonattainment
designation.

4We also show that patterns are similar in versions where we allow for heterogeneous NAAQS nonattainment effects
by baseline share of Black or urban population across Census tracts.
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quantify the damages from PM2.5 exposure as capitalized in Census tract level house prices from
the Federal Housing Finance Agency (FHFA), using nonattainment designations as instrumental
variable. We find that PM2.5 reductions following nonattainment designation were associated with
a 6% house price increase on average. The implied elasticity with respect to PM2.5 of around -1.4
is around twice that found for PM10 (Bento et al. 2015) and up to four times the elasticity for Total
Suspended Particles (TSP or PM100) (Chay & Greenstone 2005). Importantly, the simple DiD-IV
suggests pollution damages that are substantially smaller than those of our other three alternative
approaches, more in line with previous estimates for PM10, which may, however, contain bias. This
implies that while simple DiD overestimates the effect of nonattainment on PM2.5, it underestimates the
effect of PM2.5 on house prices when nonattainment status is used as an instrument for PM2.5. The
magnitude of our adjustment is important: the house price elasticity changes by a larger increment
(from -0.8 to -1.4) after adjusting for these time trends than it changes after accounting for potential
endogeneity with instruments relative to a simple OLS regression (from -0.5 to -0.8).

Overall, our results show the importance of accounting for parallel trends violations that over-
state air quality improvements from nonattainment designations in standard DiD frameworks. We
find similar differences for all three pollution data sources and when looking at the longer term ef-
fects until 2011-13. We find evidence of effect heterogeneity, with larger improvements in the most
polluted parts of nonattainment areas in line with findings for previous NAAQS (Auffhammer et al.
2009, Bento et al. 2015, Gibson 2019). We also show that areas that have previously been treated
with PM10 nonattainment designation experienced larger marginal effects from PM2.5 nonattain-
ment. Finally, we show some evidence that the bias we identify is likely to extend to other NAAQS
settings, and discuss exceptions in the previous literature that address possible confounding trends
(e.g. Greenstone 2004, Chay & Greenstone 2005).

We contribute to the literature on environmental policy analysis generally and the Clean Air Act
in particular. Existing literature on nonattainment designations under previous NAAQS include
estimated reductions in Ozone (Henderson 1996), sulfur dioxide (SO2) (Greenstone 2004), TSP
(Chay & Greenstone 2005), and PM10 concentrations (Auffhammer et al. 2009).5 We show that
the NAAQS for PM2.5 implemented in 2005 were effective, albeit less so than DiD estimation may
suggest, an insight that likely extends to other NAAQS. We illustrate the role of the regulation in
narrowing pollution exposure disparities, a finding that is relevant for the literature on structural

5Nonattainment designation has also been linked to changes in industrial activity (Henderson 1996, Greenstone 2002),
within-product improvements in emission intensity (Shapiro & Walker 2018), and employment (Kahn & Mansur 2013,
Walker 2013). Deschenes et al. (2017) study a non-NAAQS but related CAA policy focusing on nitric oxide (NOx).
Economists have been assessing the benefits and costs of the CAA from its inception, initially using prospective regu-
latory analyses, but increasingly using retrospective analyses with quasi-experimental methods, as documented in recent
surveys by Aldy et al. (2022) and Currie & Walker (2019).
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pollution gaps and environmental justice (Currie et al. 2023, Jbaily et al. 2022, Banzhaf et al. 2019,
Colmer et al. 2020, Drupp et al. 2021). Finally, we contribute to a growing literature that relies on
nonattainment designations as an instrument to quantify pollution damages (Chay & Greenstone
2005, Grainger 2012, Bento et al. 2015). While we explore the effects on house prices, it appears likely
that our adjustments to the first stage to account for correlated time trends are also relevant for other
second stage outcomes, such as health (Isen et al. 2017, Sanders & Stoecker 2015, Sanders et al. 2020,
Colmer & Voorheis 2021, Bishop et al. 2023).

The rest of the paper begins with a description of the regulatory context and the data we use in
Section I. We set up the empirical strategy in Section II along with descriptive statistics that highlight
the nuances in identification requirements and their plausibility. Section III shows results from es-
timating the effects of the CAA 2005 NAAQS rules on PM2.5 concentrations. Section IV turns to our
two applications, analysing the contribution of nonattainment designations in narrowing structural
pollution exposure disparities, and using nonattainment as as instrument for PM2.5 to estimate the
pollution impact on house prices. Section V discusses the relevancy of our insights for other NAAQS
and Section VI concludes.

I. Data and Regulatory Context

A. The 2005 National Ambient Air Quality Standards for PM2.5

Under the CAA, the EPA primarily regulates air quality through successive NAAQS aimed at spe-
cific pollutants. In April 2005, the 1997 NAAQS for PM2.5, particulate matter smaller than 2.5µm in
diameter, came into effect.6 The EPA introduced regulation for PM2.5 through two new standards: A
threshold of 15 µg/m3 for the three-year average of annual mean ambient PM2.5 concentrations, and
a threshold of 65 µg/m3 for the three-year average of the 98th percentile of daily (24h) PM2.5 concen-
trations. Areas that failed to meet at least one of these thresholds were designated as nonattainment
areas. As Figure 1 shows, whenever an area satisfied the annual requirement, it also satisfied the
daily requirement, so we focus on the binding annual requirement for the rest of the analysis.7 The
EPA has several powers to induce air quality improvements in nonattainment areas, for example

6Several litigation procedures from 1999 delayed the implementation of the new regulations escalating up to the
Supreme Court (EPA v. American Trucking Assoc., 531 US 457, 2001), see EPA (2005a, 2016). Previous NAAQS reg-
ulated coarser particulate matter PM10 and TSP, equivalent to PM100.

7A 2006 revision of the daily requirement from 65 µg/m3 to 35 µg/m3 came into effect in December 2009, and des-
ignated a few additional counties as nonattainment. Our main analysis focuses on changes until December 2008 before
these additional nonattainment designations. A 2012 revision of the annual requirement from 15 µg/m3 to 12 µg/m3

came into effect in April 2015.
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(a) Annual threshold (15 µg/m3) (b) Daily threshold (65 µg/m3)

Figure 1: Nonattainment status and EPA-registered PM2.5 values
Notes: Both panels plot the EPA-registered PM2.5 values of counties and nonattainment status of the NAAQS rules coming into effect in
2005. Panel (a) shows the EPA-registered PM2.5 values for the three-year average of the annual threshold of 15 µg/m3 from 2001-2003.
Panel (b) shows the EPA-registered PM2.5 values for the three-year average of the 98th percentile daily threshold of 65 µg/m3 from
2001-2003. The county markers are jittered for visualization. The plots show that the annual threshold in Panel (a) is binding, in the
sense that there is no county that meets this requirement, but does not meet the daily requirment in Panel (b). On the other hand, many
counties meet the daily threshold in Panel (b) but are still assigned into nonattainment because they don’t meet the annual threshold in
Panel (a). County level RV reflect the RV of the nonattainment area (i.e. are assigned the highest RV within a nonattainment area).

by reviewing or enforcing air quality improvement plans8, or by withholding federal funding and
denying permits for infrastructure projects or polluting plants. Reclassification from nonattainment
to attainment status is usually initiated by requests from states (Sullivan & Krupnick 2018). There
was no reclassification to attainment until 2011, and no reclassification into nonattainment based on
the 1997 standards (only with new standards, see Footnote 7).

The PM2.5 measurements for assigning nonattainment status are based on an incomplete network
of ground monitors that the EPA deployed from 1999 to January 2001 (EPA 2005a). While these
monitors were usually placed in more populous counties, they only covered around 20% of counties,
possibly missing counties that would otherwise be regulated (Sullivan & Krupnick 2018, Fowlie
et al. 2019).9 The EPA took the three year averages of monitor readings from 2001-2003 to calculate
the EPA-registered PM2.5 values for each area to compare against the regulatory threshold. Since
the 1997 NAAQS designations only took effect in April 2005, states were allowed to provide the
EPA with updated 2002-2004 measurements, which led to a few counties being reclassified from

8State implementation plans typically include measures such as permits, technological standards such as emission
capture, fuel efficiency improvements or retrofits, and surveillance and enforcement rules.

9Therefore EPA technical documents often refer to attainment areas as unclassifiable/attainment. Our simple
difference-in-differences estimates using satellite-based pollution measures are virtually identical for the whole sample
of all counties or the smaller sample of counties with RVs (and monitors).
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nonattainment to attainment before 2005. We collect the latest RVs that incorporate these updates.10

Most nonattainment areas coincide with county groupings that make up Metropolitan Statis-
tical Areas (MSA) or commuting zones (CZ), but are refined by the EPA on a case-by-case basis
using nine decision factors to define air regions.11 Therefore, the boundaries of nonattainment areas
usually extend beyond single counties, motivated by the fact that air pollution can spill over into
neighbouring counties. This means that if a county contains a monitor with a RV in excess of one of
the PM2.5 NAAQS thresholds, the entire air region (usually an MSA) is in nonattainment, including
other counties in the area that may have low pollution readings or no monitor at all. In this case, the
entire group of counties within a nonattainment area is assigned the RV of the county with the high-
est RV.12 In total, the EPA assigned 208 counties into nonattainment in 2005, all violating the annual
threshold (and a subset also violating the daily threshold). Figure 2a maps the 208 nonattainment
counties based on the EPA air regions.

We use data from the EPA Green Book and Federal Register to identify the nonattainment coun-
ties (EPA 2005a,b, 2021). We obtain the RVs for the annual and daily standards for all counties that
are used by the EPA to determine attainment status (EPA 2018b,a), and importantly, also including
those counties that had a RV but were not assigned into nonattainment. Counties without monitors
that are not part of any nonattainment area have no RV. Since every nonattainment area has the RV
of the county with the highest RV within its area, we assign those RVs to each nonattainment area
using data and detailed discussions from EPA (2004b, 2005c, 2021), and update them with the sup-
plementary amendments contained in EPA (2005b,c). We next match areas to more recent, granular
measures of particulate matter concentrations.

B. Pollution Data

We use annual estimates of ground level PM2.5 concentrations from three sources. All three are
based on satellite data combined with chemical transport models and calibrated to fit ground level
monitor readings. Our main results use pollution data from Meng et al. (2019b), but we show in the
Appendix that all our results are similar when using two alternative data sets from Di et al. (2021)
or van Donkelaar et al. (2021b).13

10In the technical EPA documentation, these EPA-registered PM2.5 values are referred to as ‘Design Values’.
11The nine factors that define the appropriate boundaries of areas are emissions, air quality, population density, com-

muting patterns, expected growth, meteorology, geography, jurisdictional boundaries, and control of emission sources.
See EPA (2004a) for a detailed explanation.

12The EPA only groups counties together with the highest RV in nonattainment areas, not attainment areas. In some
counties, there are multiple monitors allowing for spatial averaging, and some exceptionally large counties might only be
partially included in an area.

13The data by Meng et al. (2019b) extend the furthest back in time. For the van Donkelaar et al. (2021b) data, we use
the latest recommended version (V5.GL.03).
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All three data sets provide PM2.5 concentrations at a spatial resolution of 0.01°× 0.01°(approximately
1km × 1km cells in the US, depending on latitude). The universal spatial coverage and high reso-
lution of these products allow us to assign pollution levels to all Census blocks in the contiguous
US on an annual basis starting from 2000 based on each of the three data sets, and from 1989 for
the data based on Meng et al. (2019b).14 This allows us to calculate PM2.5 concentrations also for
those counties that do not have RVs. Since these data use predicted values there is uncertainty in
some of the estimates, especially for those areas that are further away from ground-based monitors.
We test robustness to uncertainty in Section III.C. by leveraging information on uncertainty in the
underlying predictions and by replicating our analysis using only pollution monitor data from EPA
(2022a).

C. Census Data and Mapping PM2.5 Concentrations

We use population counts from the 2000, 2010 and 2020 US Census and area boundaries from the
2010 US Census (Manson et al. 2022). The boundaries allow us to map geocoded PM2.5 data into the
around 11 million Census blocks (sub-divisions of tracts). Since blocks are very small and often do
not contain PM2.5 grid points at the 1km resolution, each block is assigned the PM2.5 concentration
of the grid point closest to the block centroid.15 We use block level population data as weights
to aggregate pollution up to Census tracts (of which there are around 70,000). We also use the
population data to weight tract level regressions by population and to calculate PM2.5 exposure
differences between population groups when we turn to the analysis of exposure disparities.

The resulting data provides detailed measures of average PM2.5 exposure in each tract and each
year. The map in Figure 2a shows tract level PM2.5 concentrations averaged between 2001-2003 across
the contiguous US. We use this detailed data structure to exploit variation not comprehensively cap-
tured by monitoring data, specifically to investigate heterogeneity within counties, visible in Figure
2b, and to measure changes in air quality even in those tracts that are not close to a ground level
pollution monitor.

D. House Price Data

We demonstrate the implications of our estimates for the implied damages from PM2.5 exposure
capitalized in house prices. Our measure of changes in house prices relies on data provided by the

14Meng et al. (2019b) add monitor readings of PM10 concentrations to help model PM2.5 concentrations before 1999.
15Note that assigning pollution to Census blocks (and their population counts) is equivalent to using restricted individ-

ual level data and assigning pollution to individuals based on their Census block, as e.g. in Currie et al. (2023) (see also
Appendix A.13A.). We complement the Census data with information on commuting zones and tract-level characteristics
from Chetty & Friedman (2019).
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(a) Contiguous United States

(b) Indianapolis – Evansville – Louisville – Cincinnati nonattainment counties

Figure 2: Baseline PM2.5 (2001-2003) and nonattainment counties
Notes: The figures show average baseline PM2.5 (2001-2003) at the tract level using data from Meng et al. (2019b), and nonattainment
counties. Panel (a) shows the entire contiguous US, and Panel (b) zooms into the area around Indianapolis (North), Evansville (South-
West), Louisville (South) and Cincinatti (North-East).
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Federal Housing Finance Agency (FHFA 2021), specifically, the annual house price index (HPI) at
the tract level (further described in Bogin et al. 2019).

E. Period Choice

The process of nonattainment designation occurred in multiple stages—with initial state level sug-
gestions for nonattainment designation in February 2004, and final EPA designations in April 2005.
There may already have been anticipatory effects of nonattainment designation before 2005 (as
shown in Bishop et al. 2023, who consider 2004 as the start of the post-treatment period). To avoid
any bias from anticipatory effects in 2004, we define our pre-treatment period as the three-year av-
erage between 2001-2003.16 Taking three-year averages helps to lower the risk of mis-attributing
short-term fluctuations in air quality or measurement error to the CAA rules. To allow for time-
varying effects, we report results for two post-treatment periods, respectively five years (2006-08
average) and ten years (2011-13 average) after the pre-treatment period. Appendix Table A.1 pro-
vides summary statistics for the final analysis sample.17

II. Empirical Strategy: The Effect of CAA Nonattainment Designation

Our goal is to estimate the treatment effect of nonattainment designation in 2005 on PM2.5 concen-
trations. To conceptualize our approach, consider the following expression for the level of PM2.5 in
census tract i during period t:

PMi,t = βNAi,t + δi + λt + ξi,t (1)

where NAi,t denotes nonattainment status of tract i in period t and β is our treatment effect
of interest. Tract level fixed effects δi capture factors that affect PM2.5 and possibly nonattainment
status, but do not vary meaningfully over the relevant time horizon—historical pollution, population
density, road infrastructure, topology and the like. Period fixed effects λt capture aggregate trends
that affect all tracts, such as changes in technologies or federal regulation and policies. Finally, the
error term ξi,t captures tract-period specific fluctuations. For now, we assume that the treatment
effect is constant across tracts, an assumption we will relax later.18

16Note that we provide some descriptive statistics using Meng et al. (2019b) data going back to 1989, but since data
before 1999 is less accurate due to the lack of PM2.5 ground monitors, we exclude these earlier periods for our empirical
analysis.

17While our data extends forward to 2016 (in the case of Meng et al. 2019b, Di et al. 2021) and 2020 (in the case of van
Donkelaar et al. 2021b) respectively, we avoid measuring effects too long after nonattainment designation in 2005 to avoid
using areas that change treatment status. Some nonattainment areas came into attainment, particularly in 2013 and 2014.
Furthermore, updates to the threshold rules came into effect in December 2009 and April 2015 placing additional areas
into nonattainment.

18Following the literature on NAAQS nonattainment designations, we make the stable unit treatment value assumption
(SUTVA) that rules out spillover effects from nonattainment into attainment counties (see Hollingsworth et al. (2022) or
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A. Likely Bias of Simple Difference-in-Differences (DiD)

Our baseline empirical strategy is a standard DiD approach which compares changes in PM2.5 from
the pre-treatment to the post-treatment period between treated and untreated units. We can express
this taking first differences of Equation (1).19 Simplifying and rearranging terms yields our baseline
regression equation using the change in PM2.5 for tract i between the pre-treatment and the post-
treatment periods as outcome:

∆PMi = α+ β∆NAi + ∆ξi (2)

where ∆NAi is an indicator variable that takes value one for all tracts that become subject to reg-
ulatory treatment from 2005 onward.20 The identifying assumption is that parallel trends between
treated and untreated tracts hold: absent regulation, nonattainment and attainment areas would
have experienced the same average change in PM2.5. In other words, β yields a consistent estimate
of the average treatment effect if cov(∆NAi,∆ξi) = 0.

While the parallel trends assumption cannot be directly tested, it is common practice to look at
pre-treatment trends to assess whether the assumption is plausible. Panel (a) of Figure 3 plots aver-
age PM2.5 concentrations over time for four groups binned according to their EPA-registered PM2.5

values, including two nonattainment groups (15 < RV ≤ 20 and RV > 20) and two groups in
attainment (10 < RV ≤ 15 and RV < 10). Nonattainment and attainment areas appear to fol-
low somewhat different trends both before and after 2005.21 Panel (b) shows these higher pollution
improvements in nonattainment areas before 2005 more explicitly in an event study version of Equa-
tion (1), plotting the annual difference in PM2.5 levels between nonattainment and attainment areas
relative to the difference in 2005. This suggests that the parallel trends assumption is violated, as
it shows significant differences in pre-trends that are similar to those after treatment. Appendix
Figures A.21 and A.22 confirm statistically significant pre-trend differences in the two alternative
pollution data sources based on Di et al. (2021) and van Donkelaar et al. (2021b).

We conduct several robustness tests for these statistically significant pre-trends. Appendix Fig-
ure A.1 shows the pre-trends exist when (i) using 2000 Census borders and population instead of

Walker (2013) for more discussion). We address this issue in a robustness check by excluding counties in attainment that
share a border with a nonattainment county in Appendix Table A.6.

19That is ∆PMi = PMi,post − PMi,pre = β(NAi,post − NAi,pre) + (δi − δi) + (λpost − λpre) + (ξi,post − ξi,pre). All our
specifications in changes could equivalently be modeled as panel regressions of levels with two-way fixed effects (TWFE)
and various interaction terms. We show that such an approach in a tract-year panel from 2000-2015 produces very similar
estimates in Appendix Table A.10, which shows a panel equivalent to Table 1.

20We weight all regressions by tract population. Because attainment is assigned to counties spanning multiple tracts,
we cluster standard errors at the county level, allowing for arbitrary correlation in the errors within counties.

21Note that areas with the highest EPA-registered PM2.5 values (RV > 20) experience an increase in PM2.5 concentrations
before policy implementation in 2005. One possibility are anticipatory effects in nonattainment areas (Clay et al. 2021).
Regardless of the underlying reason, our alternative strategies limit the risk of such confounding trends.
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(a) Evolution of PM2.5 by EPA RV grouping

(b) Event study (annual nonattainment-attainment differences in PM2.5)

Figure 3: Trends in PM2.5 and event study analysis
Notes: Panel (a) shows the change in PM2.5 averages at the tract level (population-weighted) over time. Each line represents a different
bin of EPA-registered PM2.5 values assigned to each attainment/nonattainment area, each of which usually comprises multiple counties
and tracts. Panel (b) shows coefficient estimates from a regression that includes a treatment dummy interacted with years, controlling for
year fixed effects. The dotted blue line shows point estimates and the dashed red lines show 95% confidence intervals based on standard
errors that are cluster-robust at the level of counties. Both Panels are based on data from Meng et al. (2019b).

11



the 2010 versions and repeating the analysis at the Census block level directly without aggregating
to tracts, (ii) using interpolated population weights from the 2000, 2010, and 2020 Census, allow-
ing for population changes at the Census block level, (iii) assigning entire commuting zones into
nonattainment beyond the EPA-defined air regions for commuting zones that contain at least one
nonattainment area, and when (iv) dropping all attainment counties that border a nonattainment
area to address potential spillover effects. We compare our event study to the event study in Cur-
rie et al. (2023) along with other differences in detail in Appendix A.13.22 Their event study does
not exhibit pre-trends as they assign the subset of nonattainment areas that have previously been
treated with 1990 PM10 nonattainment into the control group. Intuitively, this subset tends to have
higher pollution levels and pre-trends therefore evening out pre-trend differences between treated
and controls, but assigning these areas into the control group implicitly assumes no PM2.5 treat-
ment effect for these areas.23 We formally test treatment effect heterogeneity by previous 1990 PM10

nonattainment status in Section II.F. and III.E., and show evidence that these areas actually tend to
exhibit larger PM2.5 treatment effects.

The issue becomes even clearer when looking at Figure 4, which plots EPA-registered PM2.5 val-
ues on the horizontal and tract level negative ∆PM from 2001-03 to 2006-08, i.e. pollution improve-
ments, on the vertical axis. Nonattainment areas are those with a RV higher than the threshold
value 15.24 Crucially, we see a positive association between RV and −∆PM on both sides of that
cutoff, indicated by the solid linear regression lines. This suggests that nonattainment areas would
likely have experienced a larger reduction in PM2.5 concentrations also in the absence of nonattain-
ment designation, much like attainment tracts with higher RV have experienced larger reductions
than other attainment tracts with lower RV. Since nonattainment designation is a function of RV
(cov(∆NAi, RVi) > 0) and Figure 4 suggests that RV and ∆ξi are correlated (cov(−∆ξi, RVi) > 0),
it appears highly likely that the identifying assumption for DiD is not satisfied (cov(∆NAi,∆ξi) 6=

0).25 Both ∆PM and nonattainment status are correlated with pre-treatment pollution levels, con-
founding the standard DiD estimate.

Appendix Figures A.23 and A.24 show almost identical patterns using the two alternative pollu-
tion data sources from Di et al. (2021) and van Donkelaar et al. (2021b). In Appendix Figure A.4, we
use EPA monitor level data instead and show that the pattern is similar at the monitor level.26 Ap-

22We thank the authors of Currie et al. (2023), particularly Reed Walker, for a helpful discussion of this comparison.
23When dropping this subset of areas instead, the significant pre-trend reappears as shown in Figure A.19 – see also

Appendix Table A.7.
24The Census tracts at the right end of the Figure belong to Los Angeles area, the nonattainment area with the highest

RV.
25The simple DiD approach in (2) measures the average difference between tracts left and right of the RV = 15 cutoff.

That is the difference between the horizontal dashed lines.
26We calculate three year averages for each monitor averaging over various series that are, e.g., certified or not certified.
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Figure 4: Improvement in tract PM2.5 averages and EPA-registered PM2.5 values
Notes: The figure shows the improvement in PM2.5 averages at the tract level between two periods, 2001-2003 and 2006-2008. The size
of the markers reflect tract level populations. The PM2.5 improvements are plotted against the EPA-registered PM2.5 values of each
attainment/nonattainment area, each of which usually comprises multiple counties and tracts. The dashed line plots the average PM2.5
improvement for tracts in nonattainment and attainment areas separately, weighted by tract population, equivalent to the standard DiD
estimate. The solid lines plot the linear projection of tract level PM2.5 improvements on the RV of the nonattainment and attainment areas
separately, weighted by tract population. Based on data from Meng et al. (2019b).

pendix Figure A.2 shows a similar pattern when taking a 10 year difference from 2001-03 to 2011-13.
One reason for the different trends might be that areas that are in nonattainment of PM2.5 stan-

dards in 2005 are also more likely to have been in nonattainment of previous standards, such as those
for PM10, which would explain why they are cleaning up their air already before 2005. We show in
the Appendix that different trends persist, however, even when dropping all counties that were pre-
viously in nonattainment of the PM10 standard (Figure A.19 and Table A.7). Another reason for the
different absolute trends could be similar relative improvements, for example due to technological
change, that translate into bigger absolute improvements in more polluted areas.27 Appendix Fig-
ure A.3 shows this is not enough to explain differences in absolute terms, as more polluted areas
also experienced greater relative improvements in air quality over time, independent of attainment
status.28 Other reasons for the different trends could be linked to state level policies (and therefore

27Consider the example of road traffic. If all regions maintain the same volume of traffic, but newer cars generate 10%
less emissions per mile driven, we would expect 10% less traffic related pollution in all areas, which would be a larger
absolute improvement in high-traffic areas.

28Colmer et al. (2020) analyse a much longer time period from 1981 to 2016 and find that absolute improvements in PM2.5

13



different trends by state), or reasons related to population density (with urban, suburban, and ru-
ral areas experiencing different trends). In Appendix Tables A.8 and A.9, we provide robustness
checks including state level trends or trends by population density, which help explain some of the
difference in trends, but not all.

While we can remain agnostic about the particular combination of reasons for these correlated
time trends, we need to address the bias they introduce in a standard DiD setting, for which we
employ three different strategies. The first is to include baseline pollution controls (DiDwb). This
maintains the sample, but introduces a control variable. The other two approaches restrict the sam-
ple to observations for which parallel trends are more likely to hold. The second approach is a
matching DiD hybrid (MDiD) and the third is a regression discontinuity design (RD).

B. Difference-in-Differences Estimation With Baseline Controls (DiDwb)

Our first strategy is to explicitly control for the confounding factor suggested by the relationship in
Figure 4 using an augmented version of Equation (2). In particular, we assume that the error can be
decomposed into:

∆ξi = γPMi,pre + ∆εi

so that we can linearly control for baseline pollution (PMi,pre), assuming a residual error ∆εi:

∆PMi = α+ βNAi + γPMi,pre + ∆εi (3)

We refer to this DiD approach with baseline controls as DiDwb. Note that including PMi,pre as
control in our specification in differences is equivalent to controlling for PMi,pre separately by period
(λt) in the levels specification in Equation (1), where PMi,pre is absorbed by tract fixed effects.29 This
approach absorbs any improvements in air quality over time that are proportional to baseline PM2.5

levels (e.g. γ = −0.1 would indicate a 10% reduction for all tracts).
The identifying assumption becomes an augmented version of the parallel trends assumption.

Nonattainment and attainment areas would have experienced the same average change in PM2.5

over time absent regulation, conditional on a linear association between between baseline PM2.5 and
∆PM. Put differently, we require that cov(∆NAi,∆εi|PMi,pre) = 0. Figure A.7 shows insignificant
pre-trend differences with this augmentation. Notably, this assumes that residual pollution shocks
persist across periods. That is, we assume that εit follows an AR1 process such as εit = εit−1 + µit

pollution are much larger for the most polluted Census tracts, while they find less difference in relative improvements.
Our reported patterns are consistent with their observed reversion to the mean.

29That is PM2.5i,t = βNAit +γλtPMi,pre + δi +λt + εi,t in levels is ∆PMi = α+βNAi +γPMi,pre + ∆εi in differences.
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where µit is uncorrelated with PMit−1.30 This is satisfied if a shock in the pre-treatment period—
from, say, new industrial units or infrastructure projects—persists through the post-treatment pe-
riod (when a new shock can arrive). On the other hand, if a shock in the pre-treatment period is
only transitory—from, say, unusual weather conditions in a given year—∆εi would be correlated
with PMi,pre, introducing bias into equation (3). To mitigate such bias from transitory shocks, we
use three-year averages of PM2.5 in both the pre- and post-treatment periods such that transitory
shocks like weather are unlikely to be captured. We also demonstrate in Appendix Table A.3 that
results remain unchanged when using higher-order interactions with baseline PM2.5 allowing for
more flexible nonlinearities.

C. Matched Difference-in-Differences (MDiD)

Our second approach exploits the fact that our analysis is at the tract level while nonattainment
is assigned at the level of the county and/or commuting zone. This means that, even though the
RV distributions of nonattainment and attainment areas are disjoint (separated at RV=15), there is
overlap for tract level PM2.5, allowing us to match nonattainment tracts to attainment tracts with
similar baseline PM2.5. The map in Figure 2b illustrates this for the region around Indianapolis,
showing that there are tracts with low and high baseline PM2.5 in both nonattainment and attainment
areas. Figure 5 shows the overlap in the distributions of baseline PM2.5 (2001-2003), plotting−∆PM
against PMi,pre.31 The density plots in Figure 5 show that there are tracts in attainment areas with
average PM2.5 values above the EPA threshold of 15, likely because the EPA air pollution ground
monitor network has incomplete coverage (Sullivan & Krupnick 2018). There are also many tracts
in nonattainment areas with baseline PM2.5 values below the cutoff.

We use a one to one matching based on propensity scores with replacement to calculate weights
Wi for control tracts.32 In our main version, we estimate tract propensity scores for treatment based
on pre-treatment pollution PMi,pre alone, which we call M1DiD. In a second version, which we

30In our case the process is a random walk, but using earlier periods than the pre-treatment period could correspond
to different AR processes.

31Appendix Figures A.25 and A.26 show the same pattern for our two alternative sources of pollution data.
32Matching has been used in the literature to evaluate other CAA rules. Usually this is done at the county level instead

of the tract level as we do here. In an early example, Greenstone (2004) estimates the effect of the NAAQS for SO2 between
1975-1992. He uses propensity scores to match counties based on lagged pollution levels, income, population and attain-
ment status for other pollutants. This is similar in spirit to Chay & Greenstone (2005) who compare TSP nonattainment
counties of the 24 hour standard to a control group that is in attainment of the 24 hour standard, limited to cases where
both groups have similar annual TSP concentrations (and nonattainment is triggered by a daily threshold). We mirror
their approach more closely in Column 7 of Table A.2 where we only look at a subset of areas that are all in attainment
of the 24 hour RV threshold in 2005, but some are in nonattainment of the annual threshold (see Figure 1). The results
indicate that such an approach reduces some of the observed bias in DiD, but not all. Another early application is by List
et al. (2003) who estimate the effect of Ozone nonattainment status on manufacturing plant births between 1980-1990.
Sanders et al. (2020) match on baseline population and mortality to control for trends in mortality.
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Figure 5: Improvement in tract PM2.5 averages and baseline PM2.5 levels
Notes: The markers in the figure show the improvement in PM2.5 averages at the tract level between two periods, 2001-2003 and 2006-2008.
The PM2.5 improvements are plotted against the baseline PM2.5 levels of each tract, using two different colors for tracts in nonattainment
and attainment areas. The kernel density (right axis) shows the overlap between the baseline PM2.5 distributions of nonattainment and
attainment tracts, weighted by tract population. The figure is based on data from Meng et al. (2019b).

call M2DiD, we additionally match on pre-treatment tract population and population density (both
based on the 2000 Census). For both M1DiD and M2DiD, we impose a common support condition
by dropping all nonattainment tracts with a propensity score that is higher than the maximum in
the control group. For M1DiD this corresponds to dropping the rightmost tracts in Figure 5.33 Tracts
that act as matched control for multiple treated tracts get an accordingly higher weight. Unlike the
raw sample, the resulting matched sample is balanced between nonattainment and attainment tracts
as shown in Appendix Table A.4. We use these matching weights to weight our DiD regression34,
equivalent to:

∆PMi

√
Wi = α

√
Wi + β∆NAi

√
Wi + ∆ξi

√
Wi (4)

Our identifying assumption now becomes that nonattainment and their propensity-matched at-

33This effectively limits treated units to those with a baseline PM2.5 level of up 18.3. Note that this still includes a subset
of tracts in counties with the highest RVs (Los Angeles area) on the right in Figure 4.

34Since we weight all regressions by tract population, we take the product of matching weights and population weights
for our MDiD approaches.
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tainment areas would have experienced the same average change in PM2.5 over time absent the reg-
ulation, i.e. cov(∆NAi

√
Wi,∆ξi

√
Wi) = 0. Intuitively, this assumption addresses the issue visible

in Figures 4 and 5 as it places lower weight on control tracts further to the left that have low base-
line pollution and are thus less likely to be matched. The correlation coefficient between ∆NAi and
PMi,pre is 0.64, but only -0.08 between ∆NAi

√
Wi and PMi,pre

√
Wi. We show that the event study

graph in Appendix Figure A.8 no longer shows significant differences in pre-trends when using the
matched sample.

One concern with this approach may be that bias from SUTVA violations due to spillovers could
be exacerbated relative to standard DiD, if matched control units tend to be geographically closer to
treated units absorbing more spillovers. To address this issue, we exclude all counties in attainment
that share a border with a nonattainment county and show that the pattern of our baseline results
are robust in Appendix Figure A.6 and Appendix Table A.6.

D. Regression Discontinuity Design (RD)

Our third approach exploits the discontinuous assignment rule used for nonattainment designations
based on the EPA-registered PM2.5 threshold (RV = 15). We implement a regression discontinuity
(RD) design where we compare nonattainment tracts with a value just above the threshold to attain-
ment tracts just below the threshold.35 We determine the window of EPA-registered PM2.5 values
around 15 by using the optimal bandwidth selection procedure for local polynomial regression dis-
continuity estimation following Calonico et al. (2014) and Calonico et al. (2020).36

We estimate two versions of the model based on the restricted sample. One version simply es-
timates the DiD design around the regression discontinuity, which we call RD0 (since it allows for
a polynomial of degree 0). The other version allows for a linear relationship between our outcome
∆PMi and RV, even in the small window around the threshold, which we call RD1 (since it allows
for a polynomial of degree 1). To implement RD1, the RV (recentered around 15) enter as a control
variable37:

∆PMi = α+ β∆NAi + λRVi + ∆ξi (5)

The identifying assumption of the regression discontinuity approach is that the potential out-
comes in ∆PMi are continuous around the threshold. This assumption includes the usual require-

35In an early example, Chay & Greenstone (2005) exploit the discontinuous nature of the 1971 NAAQS for TSP. Specifi-
cally, they restrict their DiD sample to a narrow window around the TSP cutoff value, akin to our RD0 approach. See also
Sanders & Stoecker (2015).

36This is akin to using binary weights in equation (4), set to 1 for treated and untreated observations close to the cutoff.
37For the empirical implementation, we also interact the values with nonattainment status to allow for different slopes

on either side of the cutoff.
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ment that there are no discontinuous jumps in factors associated with ∆PM at RV = 15, and that
there is no manipulation around the threshold that may correlate with ∆PM. In Appendix Figure
A.11 we illustrate that there does not appear to be a discontinuous jump in tract population and
population densities around the treatment cutoff. In Appendix Figure A.12 we show density plots
for RV, which do not show evidence of manipulation around the treatment cutoff within the opti-
mally chosen bandwidths, and pass the formal sorting around the threshold test (Cattaneo et al.
2015, McCrary 2008). Figure A.9 shows insignificant pre-trends with our RD design.

We argue that the DiDwb, MDiD and RD approaches address the bias in the simple DiD that
stems from correlation of both outcome and treatment with baseline pollution as shown in Figure 4
that violates the parallel trends assumption underlying DiD. However, they differ with respect to the
estimand: While the DiD, DiDwb and MDiD approaches, correctly identified, estimate the average
treatment effect on the treated (ATT), the RD approach estimates the local average treatment effect
(LATE) of nonattainment designation around the RV = 15 annual threshold.

E. Heterogeneous Treatment Effects by Baseline Pollution Levels

We have so far assumed that the treatment effect β is homogeneous across all tracts. Heterogeneous
treatment effects βi are potentially important because even if we fail to detect average treatment
effects, the policy may be effective in a subset of tracts in nonattainment areas, possibly the most
polluted ones. Auffhammer et al. (2009), for example, find no statistically significant effect of nonat-
tainment designation under the 1990 CAA amendments for PM10 at the county level, but find sig-
nificant reductions in PM10 for individual monitors that are in nonattainment. Similarly, Bento et al.
(2015) and Gibson (2019) find larger improvements of air quality near binding pollution monitors
that are responsible for assignment into nonattainment of an area compared to less binding monitors
in the same areas.

To account for potential heterogeneity in treatment effects, we repeat the standard DiD and all
three of our approaches with an added interaction term between nonattainment status and baseline
levels of PM2.5 in 2001-2003. The standard DiD Equation (2) becomes:

∆PMi = α+ β1∆NAi + β2∆NAiPMi,pre + ∆ξi (6)

Treatment βi therefore varies along the dimension of pre-treatment pollution, or βi = β1 +

β2PMi,pre.38

38Note that PMi,pre is absorbed in the fixed effect in the equation in levels from which the above equation has been
derived. That is: PM2.5i,t = β1NAit + β2NAitPMi,pre + δi + λt + ξi,t, where the uninteracted effect PMi,pre is co-linear
with fixed effect δi.
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F. Heterogeneous Treatment Effects by Previous PM10 Nonattainment Status

Of the 208 nonattainment counties, 71 counties were in nonattainment of the 1990 NAAQS for PM10

in the years leading up to 2005. Since PM2.5 and PM10 are highly correlated, and indeed often emitted
by the same sources, on-going regulation of PM10 emissions may well alter the impact of additional
PM2.5 regulation. Appendix Figure A.14 repeats our Figure 4 but shows four groups based on both
PM2.5 nonattainment and PM10 nonattainment. We address previous nonattainment in two ways.
Our first approach is to show robustness of our results to dropping all areas in PM10 nonattain-
ment (Table A.7). Our second approach is to explicitly allow heterogeneous treatment effects of
PM2.5 nonattainment based on previous PM10 nonattainment. Specifically, we estimate a naive DiD
regression (as well as our other models) that allows for such heterogeneous effects:

∆PMi = α+ β1∆NA2005i(1−NA1990i) + β2∆NA2005iNA1990i + β3NA1990i + ∆ξi (7)

The coefficients β1 and β2 capture the PM2.5 nonattainment effects for areas without (β1) and
with previous (β2) PM10 nonattainment status respectively. Note that we control for differential
trends based on PM10 nonattainment status separately (captured by β3), so β1 and β2 represent the
marginal effect of PM2.5 nonattainment for the two groups respectively. In principle, β2 could be
smaller than β1, e.g. because switching from no treatment into treatment has the most impact, but
β2 could also be larger than β1, e.g. if being in nonattainment with both NAAQS has compounding
impact. This specification allows us to test the difference between β1 and β2. This also tests the
validity of a nonattainment ‘switcher’ approach which assigns PM2.5 nonattainment areas that are
also PM10 nonattainment areas into the control group (e.g. Currie et al. 2023), as it implicitly assumes
that β2 = 0.

III. Results: The Effect of CAA Nonattainment on PM2.5

We now compare estimated effects of 2005 nonattainment designations on subsequent changes in
PM2.5 concentrations using the four approaches outlined above. Our baseline period is the three-
year average over 2001-03. Our post-treatment periods are five (2006-08) and ten (2011-13) years
later.

A. Large Effects Suggested by Difference-in-Differences (DiD)

Standard DiD estimation suggests large and statistically significant reductions of PM2.5 concentra-
tions in nonattainment areas. This is shown in Column 1 of Table 1. The coefficient estimate (β̂) in
Panel (a) shows that nonattainment tracts experienced a 1.5 µg/m3 larger reduction in PM2.5 than at-
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Table 1: Nonattainment status and changes in PM2.5

ATT LATE
All Tracts with RV Optimal Bandw.

DiD DiDwb M1DiD M2DiD DiD RD0 RD1
(1) (2) (3) (4) (5) (6) (7)

Part A: Effect from 2001-03 to 2006-08
Panel (a): Homogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment -1.47 -0.49 -0.41 -0.40 -1.48 -0.36 -0.023
(0.34) (0.098) (0.16) (0.20) (0.35) (0.28) (0.40)

Observations 72043 72043 28291 28909 47962 7026 10459

Panel (b): Placebo Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.32 -0.12 -0.060 0.018 -0.49 -0.11 -0.26
(0.12) (0.11) (0.12) (0.12) (0.14) (0.21) (0.30)

Observations 49357 49357 20388 20127 25276 2143 5411

Panel (c): Heterogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment 4.82 3.85 1.83 3.39 4.81 3.79 3.73
(0.81) (0.83) (0.30) (0.66) (0.82) (0.76) (0.62)

NA(x)Baseline -0.42 -0.33 -0.16 -0.26 -0.42 -0.29 -0.26
(0.060) (0.062) (0.020) (0.048) (0.060) (0.047) (0.032)

Observations 72043 72043 28291 28909 47962 7026 10459
Implied ATE -1.47 -1.06 -0.55 -0.57 -1.48 -0.57 -0.21
10th pct -0.32 -0.16 -0.11 0.16 -0.32 0.23 0.52
90th pct -3.56 -2.70 -1.34 -1.89 -3.57 -2.02 -1.51

Part B: Effect from 2001-03 to 2011-13
Panel (d): Homogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment -2.35 -0.56 -0.44 -0.55 -2.44 -1.26 -1.11
(0.27) (0.096) (0.096) (0.11) (0.28) (0.35) (0.37)

Observations 72043 72043 28291 28909 47962 6137 25856

Panel (e): Placebo Treatment Effect: from 2001-03 to 2011-13

Nonattainment -0.95 0.015 0.19 0.15 -1.57 0.23 0.43
(0.13) (0.12) (0.14) (0.14) (0.15) (0.20) (0.31)

Observations 49357 49357 20388 20127 25276 1046 4626

Panel (f): Heterogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment 3.91 -0.24 4.78 4.57 3.83 4.45 3.38
(0.41) (0.42) (0.44) (0.50) (0.41) (0.79) (0.78)

NA(x)Baseline -0.42 -0.024 -0.37 -0.36 -0.42 -0.40 -0.31
(0.029) (0.032) (0.033) (0.036) (0.029) (0.053) (0.053)

Observations 72043 72043 28291 28909 47962 6137 25856
Implied ATE -2.35 -0.61 -0.78 -0.79 -2.44 -1.54 -1.21
10th pct -1.20 -0.54 0.24 0.19 -1.29 -0.44 -0.37
90th pct -4.43 -0.73 -2.63 -2.58 -4.52 -3.54 -2.74

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status on the change in PM2.5 levels between the
pre- and post-treatment periods. Each panel(x)column combination is from a separate regression as described in the text. (1) uses simple
DiD, (2) adds controls for baseline PM2.5 (2001-03), (3) runs DiD using a sample matched (1-to-1) on baseline PM2.5, (4) matches on
baseline PM2.5, tract population and population density (both 2000), (5) again uses simple DiD but with the limited sample of areas for
which an EPA-registered PM2.5 value exists, (6) and (7) use the limited sample based on optimal bandwidth selection in a regression
discontinuity framework. Standard errors in parentheses are clustered at the county level. All results based on Meng et al. (2019b).
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tainment tracts between 2001-2003 and 2006-2008 (equal to the gap between the red and blue dashed
lines in Figure 4). Column 5 restricts the sample to only those counties for which RVs are available.
Results are virtually the same for this smaller sample, indicating no sample selection issues. All re-
sults in Table 1 are also virtually identical if we use interpolated population weights from the 2000,
2010, and 2020 Census instead of the 2010 Census population weights.39

Given the issues regarding the parallel trends assumption underlying these estimates discussed
above, we conduct ‘placebo tests’ shown in Panel (b). Here, we limit our sample to only tracts in
attainment areas, i.e. those areas with RV ≤ 15, and assign a placebo treatment to all those areas
with a RV above the median for that group (RV ≥ 11.5). We then re-estimate the DiD model.
As shown in Panel (b) Columns 1 and 5, standard DiD suggests that the placebo treatment was
associated with significant improvements in air quality (-0.3 and -0.5 µg/m3), providing further
evidence that the DiD approach may be biased.40

B. Smaller but still Positive Effects with DiDwb, MDiD and RD

Results from our three alternative approaches are shown in the remaining columns of Table 1. Col-
umn 2 shows the estimates for DiDwb, which adds a control for baseline PM2.5 to the DiD regression.
The coefficient estimate for β̂ falls to -0.49 in Column 2, which implies that the correlation between
time trend and baseline levels accounts for much of the DiD estimate.41

Column 3 shows estimates from our matched difference-in-differences approach, using baseline
PM2.5 as the sole matching variable (M1DiD). Column 4 matches on baseline PM2.5, population and
population density (M2DiD). Both estimates are substantially smaller then the DiD estimates, with
a reduction of about 0.4 µg/m3 following nonattainment designation. This effect corresponds to a
3% decrease from average concentrations in the pre-treatment period.

Columns 6 and 7 show results for our regression discontinuity approaches RD0 and RD1.42 The
point estimate for RD0 is similar to our other strategies, and close to zero for RD1, but both estimates
are imprecise. Due to the smaller number of observations around the cutoff, we lack statistical power
resulting in larger standard errors. However, effect estimates in both RD0 and RD1 are highly statis-

39Results available from authors upon request.
40As in Panel (a), Column (1) includes unclassifiable areas (without RV) in attainment as per EPA rules, while Col-

umn (5) drops all areas without RV. Similar results can be seen in Appendix Table A.2, where we re-estimate the same
DiD model on subsets of areas that are successively closer to the treatment cutoff (RV = 15). Treatment effect estimates
fall as we narrow the window, indicating that there may be a time trend that is unrelated to treatment status but corre-
lated with EPA-registered PM2.5 values. If we only drop the nonattainment area with the highest RV (Los Angeles area),
corresponding to the observations in the right of Figure 4, we obtain a DiD estimate of -0.9 instead of the reported -1.5.

41Note that our DiDwb estimate is based on the exact same sample with the same weights as in DiD, while our other
alternative estimates make sample or weighting restrictions instead of adding controls.

42Graphical representations of these RD approaches are provided in Appendix Figure A.10. We provide results for
additional bandwidths in Appendix Table A.2.
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(a) Bootstrapped estimates (b) Difference of coefficients across bootstraps

Figure 6: Distribution of estimates from bootstraps
Notes: Both panels show distributions of cluster-bootstrapped estimates of our different models corresponding to Panel (a) in Table 1
using a triangle kernel smoother. We draw counties to allow for clustering with replacement based on two strata (attainment and nonat-
tainment), estimate the different models, and repeat the process 10,000 times. Panel (a) shows the distribution of estimates across the
bootstraps for each model. Panel (b) shows the distribution of the difference between DiD and our alternative models across bootstraps.
The area above zero represents the p-value of a test of equality of coefficients across models. Table A.5 shows these p-values for two-sided
tests (i.e. doubling the area in the tail to the right of zero). Based on data from Meng et al. (2019b).

tically significant when accounting for heterogeneity in Panel (c), or when considering longer term
impacts in Panel (d), in line with the dynamic effects shown in Appendix Figure A.9.

Overall, our preferred specification is M1DiD. It is almost identical to M2DiD, which implies
that adding additional matching variables provides little additional benefits to remove bias. M1DiD
includes a broader set of tracts and counties than either RD approaches resulting in higher statistical
power, but excludes outliers too far from the cutoff that are included in DiDwb, thus presenting a
reasonable compromise.

Two points stand out when comparing the four approaches. First, the effect sizes for our three
alternative approaches shown in Panel (a) are less than a third the size (around -0.4 to -0.5) of
the standard DiD estimates (-1.5) across the board. To statistically test for equality of coefficients
across these models in Panel (a) of Table 1 we use a cluster-bootstrap by drawing counties with
replacement by attainment and nonattainment strata. Figure 6a shows the resulting distribution
of estimates across 10,000 draws, showing clearly that the DiD estimates are centered at a much
lower mean with little overlap with our alternative approaches that are centered closer to zero and
overlapping with each other. Figure 6b shows the distribution of the differences between the DiD
estimate and those of each of our models. The corresponding p-values for all pairwise two-sided
tests for equality of coefficients are shown in Appendix Table A.5. All estimates from our alternative
models are significantly different from the DiD estimates at the 1% level except the RD1 model due
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to noisier estimates (see Figure 6a). Conversely, Table A.5 shows that we cannot reject equality
of coefficients in all pairwise tests between our alternative models, suggesting that they recover a
similar effect.

Second, note that the placebo tests in Panel (b) of Table 1 yield smaller and insignificant coeffi-
cients for our three alternative approaches. The pattern is similar when we use the other two sources
of pollution data, as we show in Appendix Tables A.23 and A.24.

C. Robustness

We next discuss robustness to several concerns for our analysis: (i) spillovers, (ii) preceding PM10

nonattainment designation, (iii) additional controls for trends, (iv) concurrent air pollution policies,
(v) uncertainty of pollution data, and (vi) alternative models for estimation.

First, we exclude all 300 counties in attainment that share a border with a county in nonattain-
ment, to reduce potential bias from spatial spillovers of air quality changes. Appendix Table A.6
shows that corresponding estimates are, if anything, slightly higher suggesting that there may be
some small spatial spillovers as pollutants can travel across space. However, and importantly, the
pattern of much lower estimates compared to DiD is similar to our main results. Second, the pat-
tern also holds when we focus on counties that switch into nonattainment by excluding all areas
that were in nonattainment of the NAAQS for PM10 in the years leading up to 2005 (71 of 208 PM2.5

nonattainment counties in 2001-04, see also Figure A.14), as we show in Appendix Table A.7. This
implies that the bias of standard DiD cannot be explained by correlations with previous CAA rules.
We further explore interaction with PM10 nonattainment by explicitly allowing for heterogeneous
treatment effects further below.

Third, the findings remain unchanged when we add further controls, which allow for state by
period specific time trends in PM2.5 and period by quartile-of-tract-population-density specific time
trends, as shown in Appendix Tables A.8 and A.9 respectively.

Fourth, apart from the nonattainment designations under the NAAQS for PM2.5, two separate air
quality policies came into effect during our study period: the NOx Budget Trading Program (NBP)
and it’s successor, the Clean Air Interstate Rule (CAIR). They target NOx, SO2, and Ozone emissions.
NOx and SO2 are precursors to PM2.5, so that overlap with these policies could partially drive our
results. To test this, we collect data on regulated facilities under these programs, with details dis-
cussed in Appendix A.8. Controlling for NBP and CAIR status does not affect our estimates either
for the DiD case or our alternative DiDwb. On the contrary, the estimated effect of those policies
depends dramatically on inclusion of PM2.5 nonattainment controls.

Fifth, our air pollution data comes from reanalysis models where some predictions may be more
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uncertain, e.g. due to larger distances to ground-based air pollution monitors. If the measurement
error is non-classical, such that higher PM2.5 regions or changes are systematically over- or underes-
timated, ignoring such uncertainty may introduce bias. We address this concern in three ways. First
we use the data from van Donkelaar et al. (2021b) that also quantifies the uncertainty for each data
point from the underlying reanalysis model and raw data. We drop the 30% of data points with the
highest uncertainty and re-estimate our models. Second, we only keep counties if they or any of their
neighboring county contain a ground-based monitor. Third, in our most restrictive version with the
least observations, we only use monitor data directly from EPA (2022a). We repeat the estimation of
the first part of Table 1 and show that our estimates of both naive DiD as well as of our alternative
models are robust in Appendix Tables A.12 and A.13.

Sixth, we provide results from Synthetic Difference-in-Differences (SDiD) estimation recently
proposed by Arkhangelsky et al. (2021). SDiD weights control units (and pre-treatment years) to
minimize the mean difference in time trends between treated and control groups. Appendix A.10
shows that SDiD produces very similar estimates (-0.41 µg/m3) as our three alternatives.

D. Heterogeneous Treatment Effects Vary with Baseline Pollution Levels

Our results so far have focused on the average treatment effect of nonattainment designation. We
now investigate the possibility of treatment heterogeneity. To do so, we repeat all of the above esti-
mations but add an interaction term between nonattainment status and baseline levels of PM2.5 in
2001-2003, following equation (6). The results are shown in Panel (c) of Table 1 and indicate that
there is indeed significant treatment heterogeneity. The negative interaction coefficient implies that
more polluted tracts experience larger improvements following nonattainment designation. In our
M1DiD specification, the improvement in PM2.5 concentrations is estimated to be 0.1 µg/m3 at the
10th percentile of baseline pollution levels, while it is 1.3 µg/m3 at the 90th percentile.43 The hetero-
geneous treatment effects are in line with previous findings by Auffhammer et al. (2009) and others
discussed above. One possible explanation may be regulatory attention on those areas triggering
nonattainment status and where population health is most at risk.

The implied (local) average treatment effects calculated from the two reported coefficients are
also shown in the table and, again, are significantly smaller than those produced by standard DiD.
Compared to Panel (a), the coefficients in Panel (c) on nonattainment and the interaction are also

43For estimating the interaction effects, we only use the units within the sample for each column, e.g. within the RD-
chosen window. Note that we use the same overall 10th and 90th percentiles of baseline pollution for calculating the
corresponding effects at these percentiles across columns for consistency, extrapolating for those models that use a smaller
window. While the 90th percentile within the RD0 window is lower than the overall (15.7 vs 20), there is substantial
variation in tract level pollution even within the county-based window.
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Figure 7: Heterogeneous PM2.5 nonattainment treatment effect by previous PM10 nonattainment
status
Notes: The figure shows the effect of the 2005 nonattainment designation on PM2.5 from 2001-03 to 2006-08 for four models. The two
estimates for each of the four models show effects of PM2.5 nonattainment for those areas that have no previous PM10 nonattainment
on the left, and for those areas that have previous PM10 nonattainment on the right. The estimates come from a single regression with
appropriate identifiers for the groups and a control for trends based on previous PM10 nonattainment designation alone, so the estimates
can be interpreted as the marginal effects of PM2.5 nonattainment designation for the two groups. The two estimates are significantly
different from each other at the 1% level for each model. Based on data from Meng et al. (2019b).

highly statistically significant for all our strategies, a property we will rely on when employing instru-
mental variable regressions below. This effect heterogeneity replicates with the other two sources of
pollution data, as we show in Appendix Tables A.23 and A.24.

E. Larger Treatment Effects with Previous PM10 Nonattainment Status

We next allow for heterogeneous treatment effects by previous PM10 nonattainment status as in
Equation (7). Figure 7 shows the effect of 2005 PM2.5 nonattainment by previous 1990 PM10 nonat-
tainment status. Note that we additionally control for flexible trends by previous PM10 nonattain-
ment status, so the effect shown is the marginal effect of PM2.5 nonattainment status. For both, the
naive DiD model, as well as our alternative models, the PM2.5 nonattainment effect is significantly
larger for those areas that have previously been in PM10 nonattainment, with differences significant
at the 1% level (Appendix Table A.14 shows results including the RD models omitted here because
they do not always include areas with both treatment groups).44

Importantly, these results show that not only areas that switched from previous PM10 attainment

44The average treatment effect across both groups in Table 1 is between the two heterogeneous effects shown in Figure 7.
Importantly, the effect heterogeneity here does not merely capture heterogeneity from baseline air quality discussed in the
previous section. The pattern between the two groups is the same if we additionally allow for heterogeneous treatment
effects by baseline air quality as in Equation (6), which additionally shows that within the two groups, the initially more
polluted tracts see larger air quality improvements.
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to PM2.5 nonattainment see an effect of PM2.5 nonattainment. On the contrary, areas in previous PM10

nonattainment see an even larger effect of PM2.5 nonattainment. This explains why assigning this
latter group into the control group as in Currie et al. (2023) flattens pre-trends and lowers estimated
effects of PM2.5 nonattainment, as areas with the largest treatment effect are added to the control
group. Nevertheless, as we show in Appendix A.13B., even when assigning these areas into the
control group, adjusting for confounding trends is essential, as DiD still significantly overestimates
nonattainment effects compared to DiDwb (Table A.18).45

F. Effects Over the Longer Time Horizon to 2011-13

In Part B of Table 1, we repeat the analysis of Part A but use the years 2011-13 as end point instead
of 2006-08. The idea is to test for impacts of nonattainment designation that may take some time
to take effect, or that are cumulative. Indeed, all estimates become larger, implying slightly bigger
effects of the policy over the ten year period than the five year period. The large difference between
DiD (-2.3 µg/m3) and our alternative approaches (-0.4 to -1.3 µg/m3) also persists over this longer
horizon.46

IV. Implications for Equity and Pollution Damages

We have shown that different estimation strategies yield substantially different estimates for the
effect of nonattainment designation on PM2.5 concentrations. Difference-in-differences (DiD) esti-
mates suggest the largest improvements, likely due to bias. Our three alternative methods—controlling
for baseline pollution (DiDwb), matched difference-in-differences (MDiD), and regression discon-
tinuity (RD)—show substantially smaller, though nonzero effects. In this section, we show how the
differences in effect sizes matter for two important applications: one focused on structural pollu-
tion exposure disparities and environmental justice, and the other focused on estimating pollution
damages as capitalized in house prices.

A. The Role of the CAA in Shrinking Racial and Urban-Rural Pollution Gaps

We first focus on disparities in PM2.5 exposure in the US and the contribution of the 2005 CAA
NAAQS in reducing these disparities. We begin with the mean pollution exposure gap between
Black and White Americans, which has been well documented (Jbaily et al. 2022, Currie et al. 2023).47

45These patterns also persist when we instead drop these areas as in Appendix Table A.7.
46The DiD estimate is equal to the gap between the red and blue dashed lines in Appendix Figure A.2. The pattern is

similar when using the other two pollution data sources, see Appendix Tables A.23 and A.24.
47We use our tract level PM2.5 concentrations (which are already population weighted by Census block populations)

and aggregate them up to the national level using tract level Black and White non-Hispanic population counts as weights.
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Currie et al. (2023) show that this Black-White PM2.5 gap fell by 0.6 µg/m3 between 2005 and 2015,
and that a substantial portion (61.2%) of that narrowing can be attributed to the effects of the 2005
nonattainment designations.

In Panel (a) of Table 2 we conduct a similar counterfactual accounting exercise. Our data shows
that the Black-White PM2.5 gap fell by 0.69 µg/m3 over the ten years from 2001-03 to 2011-13. To
measure the potential contribution of the CAA NAAQS, we use coefficient estimates from Table 1.
Our DiD estimates suggest that nonattainment designations alone contributed 49% to that narrow-
ing, or 64% when we allow for heterogeneous treatment effects following Panel (c) of Table 1. When
we allow for heterogeneous effects by racial composition of Census tracts — by including additional
interaction terms with the share of the tract population that was Black in 2000 as well as the inter-
action between this share and baseline pollution levels—the contribution slightly increases to 68%.
Importantly, our alternative estimation strategies all show a role for the CAA NAAQS in narrowing
the Black-White pollution gap, but the estimated contribution is considerably smaller, often around
half the size (between 9-26% for homogeneous treatment effects, 14-47% with heterogeneous effects,
and 18-49% with additional race interaction terms). A similar pattern is observed for the shorter five
year period ending in 2006-08.48

While we look at slightly different time periods and report main results using data from Meng
et al. (2019b) instead of Di et al. (2021), our estimated CAA contribution based on standard DiD
with heterogeneous effects (68%) until 2011-2013 is broadly in line with the findings in Currie et al.
(2023) of a contribution of 61.2% from 2005-2015. As shown in Appendix A.13A., when we follow the
approach of Currie et al. (2023) based on RIF/Quantile Regressions and their treatment assignment,
we recover an almost identical 61.1% contribution.49 However, as we show in Appendix A.13B., con-
trolling for confounding trends (i.e. DiDwb) in their approach also reduces the CAA contribution to
18.6% percent (Table A.19). The same pattern holds when we use their RIF/Quantile Regression ap-
proach but our treatment assignment, which shows a contribution of 22.5% based on DiDwb much
in line with our estimated 24% using the same data based on Di et al. (2021) in Table A.25.

We next explore spatial pollution gaps between urban and rural residents.50 In Panel (b) of
Table 2, we document a similar role of CAA rules in narrowing the Urban-Rural gap in PM2.5. Urban
centers, especially those with high population densities and large traffic volumes, are arguably those

In Appendix A.12 we show that our PM2.5 exposure levels are virtually identical to those in Jbaily et al. (2022), and show
the same in Appendix A.13A. for Currie et al. (2023).

48A contribution of more than 100% as is the case in all DiD estimates implies that the counterfactual gap would have
increased.

49In Appendix A.13B. we also show that other minor data differences to Currie et al. (2023) are negligible.
50We do so by calculating weighted average exposure levels using the number of urban and rural residents in each tract

as weights. These classifications are based on the 2000 Census definition which classifies blocks as urbanized areas (UAs)
and urban clusters (UCs) based on population density.
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Table 2: Pollution Disparities - Counterfactual Gap Analysis

Panel (a): Black-White Pollution Gap
PM2.5 exposure Black-White Gap Contribution of CAA (in %) [homogeneous effect]

Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.3 11.62 1.69
2006-2008 12.15 10.57 1.58 -0.11 193 64 53 52 47 3
2011-2013 9.64 8.63 1.00 -0.69 49 12 9 12 26 23

PM2.5 exposure Black-White Gap Contribution of CAA (in %) [heterogeneous effect]
Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.3 11.62 1.69
2006-2008 12.15 10.57 1.58 -0.11 287 213 108 135 140 86
2011-2013 9.64 8.63 1.00 -0.69 64 14 30 29 47 36

PM2.5 exposure Black-White Gap Contribution of CAA (in %) [+race interactions]
Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.3 11.62 1.69
2006-2008 12.15 10.57 1.58 -0.11 130 57 86 95 -23 -52
2011-2013 9.64 8.63 1.00 -0.69 68 18 45 41 49 47

Panel (b): Urban-Rural Pollution Gap
PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [homogeneous effect]

Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.59 10.21 2.38
2006-2008 11.26 9.62 1.64 -0.74 52 17 14 14 13 1
2011-2013 9.28 7.78 1.49 -0.89 70 17 13 16 37 33

PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [heterogeneous effect]
Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.59 10.21 2.38
2006-2008 11.26 9.62 1.64 -0.74 73 54 28 34 35 20
2011-2013 9.28 7.78 1.49 -0.89 87 19 39 38 63 49

PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [+urban interactions]
Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.59 10.21 2.38
2006-2008 11.26 9.62 1.64 -0.74 71 52 32 37 35 21
2011-2013 9.28 7.78 1.49 -0.89 88 20 39 40 63 52

Notes: Left columns show average PM2.5 exposure of Black, White, Urban and Rural populations, and difference between groups, as de-
rived from Census block level pollution concentrations and population counts. Right columns show the contribution of CAA nonattain-
ment designations in 2005 based on counterfactual calculations that factor out nonattainment treatment effects as estimated in Columns
1-4, 6, and 7 of Table 1. Population data is from the 2000, 2010 and 2020 waves of the US Census, linearly interpolated for years in between.
Pollution data is from Meng et al. (2019b).
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areas with the highest particulate matter concentrations and tend to have different socio-economic
characteristics than rural counterparts. We observe a large Urban-Rural PM2.5 gap, even larger than
the Black-White gap by around 40%. The Urban-Rural gap also narrowed substantially from 2001-
2003 to 2011-2013. Again, 2005 nonattainment designations account for some of this narrowing,
with DiD estimates suggesting the largest contribution (70-88%) while the other approaches yield
significantly smaller estimates (13-63%).

Overall, our results show that the NAAQS for PM2.5 enacted in 2005 significantly contributed
towards reducing pollution exposure disparities. Our results also highlight the sensitivity of such
analyses to the underlying method of identifying treatment effects, demonstrating that the contri-
bution may have been substantially smaller than suggested by standard DiD estimates. While Table
2 includes changes in population distributions (interpolating linearly between 2000, 2010 and 2020
Census waves), we show in Appendix Table A.20 that the results hold when population is fixed at
2010 levels switching off any population sorting channels. Appendix Tables A.25 and A.26 show
that the patterns are similar when using the two alternative pollution data sources.

B. Instrumenting Pollution with CAA Nonattainment to Estimate Effects on House Prices

So far, we have focused on air pollution as outcome variable, and the role of the CAA rules in re-
ducing PM2.5 concentrations. We now turn to the damages of PM2.5 exposure as capitalized in res-
idential real estate values, using nonattainment designations as instrument for pollution. To do so,
we estimate the following simple model to describe the change in the log of house prices in tract i:

∆Yi = α+ θ∆PMi + ∆µi (8)

which is equivalent to estimating the relationship in levels with tract and period fixed effects.
We estimate this equation via OLS or IV, using nonattainment as instrument for ∆PMi using either
DiD or our three alternative approaches.

Following the literature that uses nonattainment instruments for pollution, this assumes that
nonattainment designations have no direct impact on our outcome, house prices, apart from their
impact through pollution reductions. This would be violated if there are, for example, substantial
employment effects from regulation (Walker 2013) that also impact house prices, or if nonattainment
and attainment areas experience different house price trends for other reasons.51 In Appendix A.16,
we show a version of the below analysis with additional commuting zone fixed effects in Equa-
tion (8) that should capture most of the labor market effects. This changes the interpretation of

51While the exclusion restriction cannot be tested conclusively, we see no significant differences in pre-trends in the
house price event study equivalent to Table 3 shown in Appendix Figure A.20.
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coefficients and estimates become smaller, but the relative pattern between different IV estimates
discussed below are robust.52

Two mechanisms could explain why we expect the results to differ between standard DiD and
our three alternative estimation strategies. First, variation in the estimates of nonattainment effects
in the ‘first stage’ (Table 1) will mechanically alter the estimated effect of pollution on house prices.
Second, there may be differences in house price trends that co-vary with baseline pollution. For
example, we could imagine that polluted urban centers experienced a different evolution of house
prices over time.53 Such biases in the reduced-form relationship between nonattainment designa-
tions and house price growth could work in both directions. Our three estimation strategies also
address this second bias. DiDwb directly controls for such trends in house prices, while MDiD and
RD both compare treated with control units that have similar baseline pollution levels and thus
similar associated trends. As we show in Appendix Table A.22, there are only small differences in
the reduced-form relationships across empirical strategies, suggesting that the bias mainly operates
through the first mechanism linked to the first stage. To increase instrument power, we include the
set of instruments that exploit the two types of treatment effect heterogeneity: the heterogeneity in
Panels (c) and (f) of Table 1 as well as the heterogeneity based on previous PM10 nonattainment
treatment status as in Figure 7.

Column 1 in Table 3 shows results when running OLS without instruments, and implies that
a one unit increase in PM2.5 is associated with a reduction in house prices by 4% (exp(−0.04) −

1). Instrumenting PM2.5 with nonattainment status corresponding to the simple DiD approach in
Column 2 shows an effect that is larger implying a semi-elasticity of around 6%. This is expected
as pollution may exhibit classical measurement error and is correlated with desirable factors such
as economic activity, introducing attenuation and upward bias. The remainder of Table 3 shows
corresponding estimates from our three approaches that address the time trend that is correlated
with baseline PM2.5. Column 3 shows estimates that include baseline PM2.5 as a control (DiDwb-
IV), Columns 4 and 5 are based on matched DiD (MDiD-IV), and in Columns 6 and 7 we use the
regression discontinuity strategy (RD-IV).

The IV estimates based on our three alternative approaches yield larger pollution damages,
around 50% to 150% larger than those based on the standard DiD-IV. Our preferred approach for

52A specification with commuting zone fixed effects uses only variation in PM2.5 induced by the interaction of nonat-
tainment designations and baseline PM2.5, while binary nonattainment designations are absorbed. If nonattainment des-
ignations affect house prices through employment or similar effects at the commuting zone level, those will no longer be
a source of bias. But doing so also changes the interpretation of our estimates. We no longer capture house price changes
due to different pollution trajectories between commuting zones, but only differential trajectories of tracts within a given
commuting zone.

53See also Sanders & Stoecker (2015), Sanders et al. (2020) who address differential trends in their health outcome
variables when estimating the impact of pollution.
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Table 3: Pollution Damages - Instrumental Variable Comparison

OLS DiD-IV DiDwb-IV M1DiD-IV M2DiD-IV RD0-IV RD1-IV
(1) (2) (3) (4) (5) (6) (7)

Panel (a): Effect of PM2.5 increases on house price index growth 2001-03 to 2006-08
∆PM2.5 -0.040 -0.064 -0.15 -0.12 -0.10 -0.16 -0.17

(0.017) (0.0080) (0.011) (0.029) (0.011) (0.11) (0.048)
Observations 54529 54529 54529 21152 21693 5087 7937
K-P F statistic 72.8 22.8 25.0 26.3 47.5 55.1
Elasticity -0.48 -0.77 -1.81 -1.44 -1.26 -1.98 -2.00

Panel (b): Effect of PM2.5 increases on house price index growth 2001-03 to 2011-13
∆PM2.5 -0.012 -0.016 -0.035 -0.033 -0.045 -0.032 -0.022

(0.0092) (0.012) (0.041) (0.019) (0.017) (0.040) (0.031)
Observations 54378 54378 54378 21062 21608 4496 19035
K-P F statistic 305.0 25.1 135.8 114.9 146.7 145.9
Elasticity -0.14 -0.19 -0.42 -0.39 -0.54 -0.39 -0.26

Notes: The dependent variable is the change in the logarithm of the house price index. ∆PM2.5 is the change in PM2.5 since 2001-03 in
µg/m3, instrumented by CAA nonattainment status for PM2.5, allowing for heterogeneous effects in the instrument by previous PM10
nonattainment status and by baseline PM2.5 levels in 2001-03. First-stage specifications in Columns 2-7 correspond to Columns 1-4, 6,
and 7 in Table 1. Standard errors in parentheses are clustered at the county level. Pollution data is from Meng et al. (2019b).

this setting is M1DiD-IV, shown in Column 4, which implies that a one unit increase in PM2.5 lowers
house prices by 11%. This effect is almost twice that in the standard DiD-IV. Our house price effects
are also larger than those found for previous NAAQS targeting coarser categories of particles. While
this could in part be due to the finest particles mattering more or that house prices have become more
sensitive to pollution over time, our results show that it could also be due to the downward bias in
the standard DiD-IV estimate, which is more in line with previous results.54 This implies that while
simple DiD may overestimate the effect of nonattainment on PM2.5, it may underestimate the effect of
PM2.5 on house prices when nonattainment status is used as an instrument for PM2.5. A similar pat-
tern holds when we extend the post-treatment period to 2011-13. Again, the DiDwb-IV, MDiD-IV
and RD-IV yield larger estimates of pollution damages as capitalized by house prices. The pattern
is similar when we use the other two sources of pollution data, as we show in Appendix Tables A.27
and A.28.

Finally, when we estimate the effect of nonattainment designation on house prices directly (re-
duced form), the results show that house prices in nonattainment areas gained an additional 6% on
average due to being designated into nonattainment.55

54The implied elasticity of -1.4 is larger than the elasticity of -0.6 in Bento et al. (2015) who study the effects of PM10 on
house prices, or the elasticity of around -0.2 to -0.35 reported for TSP (PM100) in Chay & Greenstone (2005). Note that the
elasticity for the endline 2011-13 is around -0.4, and thus more in line with previous estimates, but also 100% larger than
the elasticity based on simple DiD-IV. Graff Zivin & Singer (2023) explore differential capitalization rates by racial groups
using micro data, but find similar overall effects on house prices based on our proposed approaches.

55This policy effect is based on the average ‘reduced form’ effect estimated in Appendix Table A.22. Alternatively, we
can calculate an approximation by multiplying the -0.55 µg/m3 reduction in PM2.5 from Table 1 with the house price effect
of -11% per µg/m3 from Table 3, which yields an increase of around 7% (exp(−0.55 ∗ −.12) − 1).
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V. External Validity

Our focus so far has been on the PM2.5 rules and we demonstrated the importance of accounting for
trends in pollution that correlate with baseline pollution and assignment into treatment. We next
examine how likely it is that this insight extends to NAAQS beyond the 2005 PM2.5 rules.

The forerunner of the 2005 PM2.5 regulation was the 1990 PM10 regulation, widely studied in
the literature (e.g. Bento et al. 2015, Auffhammer et al. 2009). To gauge the issue of confounding
trends for this older regulation, we use the historic PM2.5 data from Meng et al. (2019b) going back
to the 1980s together with the 1990 PM10 nonattainment areas.56 First, Appendix Figure A.5 shows
that there is indeed a similar pattern where PM2.5 improvement is clearly associated with 1987-89
baseline PM2.5 concentrations even in the absence of 1990 PM10 nonattainment. Second, we estimate
the impact of PM10 nonattainment comparing 1987-89 and 1991-93 analogous to our main analysis
for the PM2.5 rules. Table 4 shows that naive DiD has a similar upward bias (Column 1), while
DiDwb, M1DiD and M2DiD have a lower estimated nonattainment impact of around half the size.57

This suggests that our insights are likely just as relevant for the earlier 1990 PM10 standards.
Apart from the closely related 1990 PM10 rules, the problem of correlated trends may apply more

broadly to NAAQS and related policies. Indeed, Greenstone (2004) mentions possible ‘mean rever-
sion’ going back to the SO2 rules in the 1970s and Clay et al. (2021) show that to-be-treated units
were on different trends for the original CAA in 1970. In our robustness Section III.C., we briefly
discuss the NBP and CAIR to rule them out as possible confounding concurrent air quality policies.
We can, however, also use the data on NBP and CAIR treatment to evaluate whether controlling for
trends based on baseline pollution alters the estimated effect of NBP and CAIR designation per se.
Appendix Table A.11 Panel (c) and (d) show that, in contrast to simple DiD, a DiDwb approach pro-
duces a much smaller effect of NBP or CAIR treatment on subsequent PM2.5 levels. Controlling for
baseline trends in Ozone has little effect on estimated effects on Ozone levels, however, suggesting
that confounding trends for PM2.5 may be particularly problematic (Panel e).58 Finally, we use the
comprehensive EPA data on all NAAQS nonattainment areas (EPA 2022b) to focus on those areas
which have consistently been in attainment, i.e. were never subject to any NAAQS nonattainment
regulation in history and also not subject to the NBP or CAIR. Even in this subset of ‘never treated’
areas, we document that there are differential trends in air quality improvements by baseline pol-
lution. Using our PM2.5 data from 1981 (Meng et al. 2019b), Figure 8 Panels (a), (b) and (c) show

56Note that we use PM2.5 concentrations instead of PM10 because of much better spatial coverage due to Meng et al.
(2019b). PM2.5 is highly correlated with PM10 as it is a subset of PM10.

57We use the years 1987-89 as baseline here. We do not use an RD framework here due to lack of access to EPA-registered
PM10 values for the 1990 regulation.

58Panels (d) and (e) also replicate the results from Deschenes et al. (2017), see Appendix A.8.
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Table 4: The effect of 1990 PM10 nonattainment designation on PM2.5 concentrations

DiD DiDwb M1DiD M2DiD
Homogeneous Treatment Effect: from 1987-89 to 1991-93

Nonattainment -0.75 -0.37 -0.27 -0.46
(0.29) (0.056) (0.26) (0.31)

Observations 72043 72043 20174 22094

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status with the 1990 PM10 NAAQS (instead of
the 2005 PM2.5 NAAQS) on the change in PM2.5 levels between the pre- and post-treatment periods of 1987-89 and 1991-93 respectively.
Each column is from a separate regression, where (1) uses simple DiD, (2) adds controls for baseline PM2.5 (1987-89), (3) runs DiD
using a sample matched (1-to-1) on baseline PM2.5, (4) matches on baseline PM2.5, tract population and population density (both 2000).
Standard errors in parentheses are clustered at the county level. Pollution data is from Meng et al. (2019b).

that baseline PM2.5 on the horizontal axes predicts 10-year improvements (−∆PM2.5) on the vertical
axes, akin to Figure 5. Panel (d) plots coefficients from a regression of annual PM2.5 levels on 1981-83
baseline PM2.5, and shows a general trend correlated with baseline pollution in the ‘never treated’
group. This suggests that the issue of differential trends that we identity is relevant beyond our fo-
cus on the 2005 rules, as the ‘never treated’ group is likely to be a control group in most analyses of
CAA policies.59

The issue of correlated trends is often not accounted for in the literature. There are few excep-
tions that address possible confounding trends which, however, have no explicit discussion of bias
(Greenstone 2004, Chay & Greenstone 2005, Auffhammer et al. 2009, Bishop et al. 2023). Greenstone
(2004) controls for and matches on baseline levels for analyzing the 1970s SO2 regulation. Chay
& Greenstone (2005) use a variant of regression discontinuity with manual window selection to
study TSP rules in the 1970s-80s (see also Sanders & Stoecker (2015). Auffhammer et al. (2009)
include monitor-specific time trends in their analysis of the 1990 rules for PM10, and Bishop et al.
(2023) control for baseline PM2.5 when exploiting nonattainment designations to estimate PM2.5 ef-
fects on dementia prevalence in a cross-sectional analysis. However, it remains common to estimate
nonattainment effects without adjusting for confounding trends by baseline pollution, including in
the growing literature focusing on PM2.5 nonattainment or the previous PM10 or TSP nonattain-
ment designations (e.g. Grainger 2012, Isen et al. 2017, Sanders et al. 2020, Colmer & Voorheis 2021,
Colmer et al. 2022, Hollingsworth et al. 2022, Currie et al. 2023).

For practitioners, our findings show that it is important to take into account trends based on
baseline pollution. This implies adding controls (or matching on) baseline pollution levels when
using differenced outcomes, or allowing for interactions between baseline levels and year dum-
mies in a panel fixed effect settings. While it may depend on context, our findings also imply that

59Colmer et al. (2020) show a convergence of pollution concentrations, but for the entire US, not just the ‘never treated’
group.
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(a) 1981-83 Baseline vs. 1985-1995 Change (b) 1991-93 Baseline vs. 1995-2005 Change

(c) 2001-03 Baseline vs. 2005-2015 Change (d) Interaction of 1981-83 baseline with years

Figure 8: Long-running correlation between baseline pollution and pollution changes
Notes: Panels (a), (b) and (c) plot tract level mean PM2.5 concentrations in 1981-83, 1991-93 and 2001-03 respectively on the horizontal
axes, and 1985-1995, 1995-2005 and 2005-2015 improvements in PM2.5 concentrations on the vertical axes. Panel (d) shows interaction
coefficients estimated in a tract-year panel regression with PM2.5 concentrations as dependent variable. The plotted estimates are for tract
level baseline PM2.5 (1981-83 average) interacted with year dummies with 95% confidence bands based on standard errors clustered at
the county level. The figure is based on data from Meng et al. (2019b).

nonattainment areas that have previously been in nonattainment should either be kept in the treated
group (possibly with a heterogeneous treatment effect) or dropped, but not assigned into the control
group.

VI. Conclusion

Did the National Ambient Air Quality Standards for fine particulate matter pollution introduced in
2005 trigger air quality improvements? Our results show that areas in nonattainment of the stan-
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dards indeed experienced faster reductions in PM2.5 levels following regulation. This is in line with
the empirical literature evaluating earlier iterations of CAA rules (Currie & Walker 2019, Aldy et al.
2022).

We find, however, that difference-in-differences (DiD) estimation tends to overstate the achieved
pollution reductions. This bias is driven by a correlation between baseline levels and changes of pol-
lution, even in the absence of nonattainment designations. We propose three alternative approaches
that address this source of bias: DiD with added controls for baseline pollution trends (DiDwb),
matched DiD (MDiD), and regression discontinuity designs (RD). All three produce similar esti-
mates which are less than half the size of those produced by standard DiD. The strategies are easy to
implement and our results imply that it may be worth including them in assessments of CAA nonat-
tainment rules, or when using CAA nonattainment designations as instrument for air pollution.

We further show that the choice of estimation strategy can have important implications for the
role of the CAA with regards to pollution exposure disparities and environmental justice. We find
the 2005 CAA rules likely contributed to the narrowing of the Urban-Rural and Black-White gaps
in PM2.5 exposure, but less so than DiD estimates would suggest. Similarly, the choice of empirical
strategy matters when estimating pollution damages with nonattainment instruments. As we show
for the case of house prices, while standard DiD overstates the impact of the regulation on pollution,
it understates the impact of pollution when nonattainment is used as instrument. Similar differences
likely hold in other settings where nonattainment designations are used as instruments, including
estimates of health or productivity losses.

Our findings provide a cautionary tale when it comes to estimating the effects of nonattainment
designations which are a central element of Clean Air Act rules. We find that nonattainment designa-
tions in 2005 cannot be considered random and that nonattainment areas likely followed a different
time trend than attainment areas. Similar time trends are apparent going back to at least the 1980s,
suggesting possible confounding bias for analyses of previous NAAQS.
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A.1 Descriptive Statistics & Graphs

Table A.1: Descriptive Statistics

Panel (a): Baseline Period (2001-2003)
mean sd min max

PM25 (Meng et al.) 11.98 3.33 1.35 24.79
PM25 (Di et al.) 12.58 3.31 2.51 29.58
PM25 (Van Donkelaar et al.) 12.19 3.23 3.68 27.30
Observations 72043

Panel (b): Five Year Post Period (2006-2008)
mean sd min max

PM25 (Meng et al.) 10.91 2.57 1.75 18.57
PM25 (Di et al.) 11.12 2.36 2.19 21.18
PM25 (Van Donkelaar et al.) 10.99 2.50 3.67 22.45
Observations 72043

Panel (c): Ten Year Post Period (2011-2013)
mean sd min max

PM25 (Meng et al.) 8.99 1.96 1.22 16.96
PM25 (Di et al.) 9.20 1.80 1.91 18.63
PM25 (Van Donkelaar et al.) 8.99 1.74 3.52 18.19
Observations 72043

Notes: Tract level summary statistics, averaged over the respective 3-year periods, weighted by population weights accounting for pop-
ulation differences within tracts as well as across tracts. Pollution data is from Meng et al. (2019b), Di et al. (2021) and van Donkelaar
et al. (2021b).
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(a) 2000 block borders and block level analysis (b) Interpolated population weights 2000, 2010, 2020

(c) Nonattainment based on commuting zones (d) Dropping neighboring controls

Figure A.1: Robustness of differences in pre-trends in event study
Notes: The figure replicates the event study graph from Panel (b) of Figure 3. Panel (a) uses borders and population counts from the 2000
Census instead of the 2010 Census. In addition, the analysis is at the Census block level, rather than pre-aggregating to the Census tract
level using Census block weights as in our main analysis (the results are equivalent using either). Panel (b) uses population weights that
are interpolated between the 2000, 2010 and 2020 Census, using the IPUMS NHGIS crosswalk, instead of constant population weights
at the 2010 level. Panel (c) assigns all counties in a commuting zone into nonattainment, as long as a single county in that commuting
zone is in nonattainment, resulting in 428 nonattainment counties compared to the 208 actual nonattainment counties based on EPA air
regions. Panel (d) drops all attainment counties that border a nonattainment county allowing for possible spatial spillovers (dropping
300 counties). All results based on Meng et al. (2019b), but the same patterns hold for data from Di et al. (2021) or van Donkelaar et al.
(2021b). Standard errors are clustered at the county level except for Panel (c) where we cluster at the commuting zone level.
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Figure A.2: Ten year improvement in tract PM2.5 averages and EPA-registered PM2.5 values
Notes: The figure shows the improvement in PM2.5 averages at the tract level between two periods, 2001-2003 and 2011-2013. The size
of the markers reflect tract level populations. The PM2.5 improvements are plotted against the EPA-registered PM2.5 values of each
attainment/nonattainment area, each of which usually comprises multiple counties and tracts. The dashed line plots the average PM2.5
improvement for tracts in nonattainment and attainment areas separately, weighted by tract population. The solid lines plot the linear
projection of tract level PM2.5 improvements on the EPA-registered PM2.5 values of the nonattainment and attainment areas separately,
weighted by tract population. Based on data from Meng et al. (2019b).
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Figure A.3: Relative improvement in tract PM2.5 averages and EPA-registered PM2.5 values
Notes: The figure replicates Figure 4 but converts the vertical axis to percentage changes. It shows the improvement in PM2.5 averages at
the tract level between two periods, 2001-2003 and 2006-2008, expressed in percent of the 2001-2003 values. The size of the markers reflect
tract level populations. The PM2.5 improvements are plotted against the EPA-registered PM2.5 values of each attainment/nonattainment
area, each of which usually comprises multiple counties and tracts. The dashed line plots the average PM2.5 improvement for tracts in
nonattainment and attainment areas separately, weighted by tract population. The solid lines plot the linear projection of tract level PM2.5
improvements on the EPA-registered PM2.5 values of the nonattainment and attainment areas separately, weighted by tract population.
Based on data from Meng et al. (2019b).
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Figure A.4: Improvement in EPA monitor PM2.5 averages and EPA-registered PM2.5 values
Notes: The figure shows the improvement in PM2.5 averages at the EPA monitor level between two periods, 2001-2003 and 2006-2008,
taking the average PM2.5 for each monitor. The size of the markers reflect tract level populations in which the monitor is situated.
The PM2.5 improvements are plotted against the EPA-registered PM2.5 values of each attainment/nonattainment area, each of which
usually comprises multiple counties and tracts. The dashed line plots the average PM2.5 improvement for monitors in nonattainment and
attainment areas separately, weighted by tract population. The solid lines plot the linear projection of monitor level PM2.5 improvements
on the EPA-registered PM2.5 values of the nonattainment and attainment areas separately, weighted by tract population. Based on data
from EPA (2022a).
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Figure A.5: Improvement in tract PM2.5 averages and baseline PM2.5 levels for the 1987 PM10 rules
coming into effect in 1990
Notes: The markers in the figure show the improvement in PM2.5 averages at the tract level between two periods, 1987-1989 and 1991-1993.
The PM2.5 improvements are plotted against the baseline PM2.5 levels of each tract, using two different colors for tracts in nonattainment
and attainment areas, based on the 1987 PM10 NAAQS EPA designations. The kernel density (right axis) shows the overlap between
the baseline PM2.5 distributions of nonattainment and attainment tracts, weighted by tract population. The figure is based on data from
Meng et al. (2019b).
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Figure A.6: Improvement in tract PM2.5 averages and EPA-registered PM2.5 values excluding attain-
ment counties that share a border with a nonattainment county
Notes: The figure shows the improvement in PM2.5 averages at the tract level between two periods, 2001-2003 and 2006-2008. Tracts in
attainment counties that share a border with a nonattainment county are dropped. The size of the markers reflect tract level populations.
The PM2.5 improvements are plotted against the EPA-registered PM2.5 values of each attainment/nonattainment area, each of which
usually comprises multiple counties and tracts. The dashed line plots the average PM2.5 improvement for tracts in nonattainment and
attainment areas separately, weighted by tract population. The solid lines plot the linear projection of tract level PM2.5 improvements
on the EPA-registered PM2.5 values of the nonattainment and attainment areas separately, weighted by tract population. Based on data
from Meng et al. (2019b).

A-7



A.2 Difference in differences with different bandwidths or subsamples

Table A.2: Difference-in-differences estimates using different bandwidths or sub-samples using
Chay & Greenstone (2005) approach.

All Tracts with RV: Binding w/ RV: Daily RV:
tracts with RV 10-20 13-17 OBW 13-17 28-63
(1) (2) (3) (4) (5) (6) (7)

Panel (a): Change from 2001-03 to 2006-08

Nonattainment -1.47 -1.48 -0.83 -0.64 -0.36 -0.62 -0.72
(0.34) (0.35) (0.093) (0.18) (0.28) (0.22) (0.094)

Observations 72043 47962 37366 12738 7026 10388 35820

Panel (b): Change from 2001-03 to 2011-13

Nonattainment -2.35 -2.44 -1.85 -1.48 -1.26 -1.45 -1.78
(0.27) (0.28) (0.12) (0.22) (0.35) (0.29) (0.11)

Observations 72043 47962 37366 12738 6137 10388 35820

Notes: The table shows coefficient estimates from a simple difference-in-differences estimation following equation 2. Panel (a) uses
average PM2.5 across years 2006-2008 as post-treatment outcome. Panel (b) uses average PM2.5 across years 2011-2013 as post-treatment
outcome. Both use 2001-2003 as pre-treatment period. Column 1 uses full sample of tracts, Column 2 only those tracts for which EPA-
registered PM2.5 values are available, Column 3 only those tracts in a narrow window of these values around treatment cutoff (10 <
RV < 20), Column 4 an even narrower window (13 < RV < 17), and Column 5 an optimal bandwidth as discussed in the section on
regression discontinuity. Column 6 is the same as Column 4 but additionally restricts the treated counties to only contain those counties
that have the highest EPA pollution readings within each nonattainment area and are therefore the binding counties that assign an area
into nonattainment. Column 7 follows a strategy similar to Chay & Greenstone (2005), restricting the sample to areas in attainment of
the daily standard and in the overlapping range of daily RV (28-63) shown in Figure 1b. Data from Meng et al. (2019b). Standard errors
clustered at the county level in parentheses.
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A.3 Difference in differences with baseline controls

Figure A.7: Event study analysis with controls for baseline pollution
Notes: The Figure replicates the event study graph from Panel (b) of Figure 3 but controls for an interaction between time dummies and
baseline pollution equivalent to Column 2 Table 1. All results based on Meng et al. (2019b).
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Table A.3: Difference-in-differences estimates using different polynomials of baseline PM2.5.

Linear Quadratic Cubic Quartic
(1) (2) (3) (4)

Change from 2001-03 to 2006-08

Nonattainment -0.49 -0.41 -0.52 -0.51
(0.098) (0.070) (0.072) (0.071)

Observations 72043 72043 72043 72043

Panel (b): Change from 2001-03 to 2011-13

Nonattainment -0.56 -0.55 -0.52 -0.53
(0.096) (0.094) (0.096) (0.094)

Observations 72043 72043 72043 72043

Notes: The table shows coefficient estimates from specifications with control for baseline PM2.5 (DiDwb). Column 1 uses linear control
and is identical to Column 2 of Table 1. Columns 2, 3 and 4 successively add quadratic, cubic and quartic terms. Data from Meng et al.
(2019b). Standard errors clustered at the county level in parentheses.
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A.4 Matching

Table A.4: Matched samples - balance tests

All Tracts All Tracts with RV
unmatched matched unmatched matched

(1) (2) (3) (4)
M1: Matching on baseline PM2.5

Baseline PM2.5 0.95 -0.064 1.12 -0.063
(0.20) (0.27) (0.25) (0.31)

Population 182.7 229.0 195.0 267.9
(88.4) (111.8) (102.7) (137.5)

Pop. Density 7148.4 6582.5 5992.9 5684.0
(2605.3) (2645.6) (2617.7) (2654.7)

Observations 28291 28291 26647 26647

M2: Matching on baseline PM2.5, population, density
Baseline PM2.5 1.25 0.054 1.15 -0.17

(0.24) (0.38) (0.26) (0.35)
Population 142.4 113.5 86.4 127.6

(81.2) (117.7) (119.0) (132.0)
Pop. Density 5530.8 -1821.7 4791.2 3854.1

(2242.0) (5803.9) (2396.8) (2463.8)
Observations 28909 28909 26637 26637

Notes: The table shows comparisons of average pre-treatment differences before and after our matching procedure. Shown are
population-weighted average differences between nonattainment tracts and attainment tracts for baseline PM2.5 (2001-03), baseline pop-
ulation (2000), and baseline population density (2000), without using matching weights (unmatched) and with using matching weights
(matched). Matching approach M1 is the same as used in Columns 3 and 7 of Table 1, M2 is the same as in Columns 4 and 8. Standard
errors in parentheses are cluster-robust at the level of counties. All results based on Meng et al. (2019b).
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(a) M1: Matching on baseline PM2.5

(b) M2: Matching on baseline PM2.5, population, density

Figure A.8: Matched samples - event study analysis
Notes: The figure replicates the event study graph from Panel (b) of Figure 3 with the matched sample and weights underlying the
matched difference-in-differences estimation shown in Columns 3 and 4 of Table 1. All results based on Meng et al. (2019b).
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A.5 Regression discontinuity

Figure A.9: Regression discontinuity analysis (RD0) - event study analysis
Notes: The figure replicates the event study graph from Panel (b) of Figure 3 with the restricted sample underlying the regression
discontinuity estimation shown in Column 6 Table 1. All results based on Meng et al. (2019b).
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(a) RD0: No slopes (2001-03 vs. 2006-08) (b) RD1: Linear slopes (2001-03 vs. 2006-08)

(c) RD0: No slopes (2001-03 vs. 2011-13) (d) RD1: Linear slopes (2001-03 vs. 2011-13)

Figure A.10: Regression discontinuity – change in PM2.5
Notes: The figures show visual representations of the regression discontinuity approaches without slopes (RD0) and with linear trends
(RD1). Lines are model predictions, shaded areas represent 95% confidence intervals. Horizontal axis shows EPA-registered PM2.5
values, re-centered so that 0 is the cutoff (RV=15), and narrowed to the optimal bandwidth. Vertical axis shows the change in PM2.5
from 2001-03 to 2006-08 in Panels (a) and (b) or from 2001-03 to 2011-13 in Panels (c) and (d). The jump between the fitted lines at the
cutoff is equal to the coefficient estimate in Columns 9 and 10 of Table 1. The figure is based on data from Meng et al. (2019b).
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(a) RD0: No slopes (log population) (b) RD1: Linear slopes (log population)

(c) RD0: No slopes (log population density) (d) RD1: Linear slopes (log population density)

Figure A.11: Continuity of predetermined population and population density
Notes: The figures show tests for continuity of predetermined covariates applied to the regression discontinuity approaches without
slopes (RD0) and with linear trends (RD1). Panels (a) and (b) use 2000 population (log) and Panels (b) and (c) use 2000 population
density (log). Lines are model predictions, shaded areas represent 95% confidence intervals. The horizontal axis shows EPA-registered
PM2.5 values, re-centered so that 0 is the cutoff (RV=15), and narrowed to the optimal bandwidth. Bandwidth selection in this figure is
based on data from Meng et al. (2019b).
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(a) RD0 optimal bandwidth

(b) RD1 optimal bandwidth

Figure A.12: Regression discontinuity – manipulation around threshold
Notes: The figures show tests for manipulation around threshold for regression discontinuity approaches without slopes (RD0) and
with linear trends (RD1). The horizontal axis shows EPA-registered PM2.5 values at the level of commuting zones, re-centered so that 0
is the cutoff (RV=15), and narrowed to twice the optimal bandwidth. Vertical axis shows density of RV values, in absolute (histogram)
and polynomial approximation within the optimal bandwidth (dashed lines) following Calonico et al. (2014) and Calonico et al. (2020).
A large discontinuous and significant jump between the fitted lines at the cutoff would indicate manipulation around the threshold. The
figure is based on data from Meng et al. (2019b).

A-16



A.6 Testing for differences in coefficients across models

Table A.5: Testing for equality of coefficients across models

DiD DiDwb M1DiD M2DiD RD0
DiDwb 0
M1 0 0.410
M2 0 0.424 0.463
RD0 0.005 0.686 0.867 0.968
RD1 0.127 0.790 0.919 0.967 0.937

Notes: The table shows p-values from two-sided tests of pairwise equality of coefficients corresponding to Panel (a) in Table 1. To calculate
p-values, we cluster-bootstrap estimates for our different estimators. We draw counties (allowing for clustering) with replacement based
on two strata (attainment and nonattainment), estimate the different models, and repeat the process 10,000 times and calculate the
difference in coefficients for each bootstrap. The p-values correspond to the share of runs where the difference has the opposite sign as
the difference in Table 1, multiplied by two to allow for two-sided testing.

A.7 Nonattainment status and changes in PM2.5 – Robustness
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Table A.6: Nonattainment status and changes in PM2.5: Dropping attainment counties with neighboring
county in nonattainment

ATT LATE
All Tracts with RV Optimal Bandw.

DiD DiDwb M1DiD M2DiD DiD RD0 RD1
(1) (2) (3) (4) (5) (6) (7)

Part A: Effect from 2001-03 to 2006-08
Panel (a): Homogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment -1.57 -0.50 -0.72 -0.67 -1.61 -0.64 -0.77
(0.34) (0.15) (0.080) (0.100) (0.35) (0.29) (0.40)

Observations 64516 64516 26130 26664 43523 5441 10194

Panel (b): Placebo Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.22 -0.10 -0.028 0.037 -0.39 -0.037 -0.25
(0.12) (0.12) (0.12) (0.13) (0.14) (0.21) (0.34)

Observations 41830 41830 15411 15145 20837 2341 6123

Panel (c): Heterogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment 4.72 4.13 1.08 1.93 4.68 3.51 2.80
(0.81) (0.83) (0.23) (0.33) (0.82) (0.76) (0.61)

NA(x)Baseline -0.42 -0.36 -0.13 -0.18 -0.42 -0.29 -0.25
(0.060) (0.061) (0.016) (0.025) (0.060) (0.047) (0.030)

Observations 64516 64516 26130 26664 43523 5441 10194
Implied ATE -1.57 -1.29 -0.85 -0.83 -1.61 -0.85 -0.98
10th pct -0.41 -0.30 -0.50 -0.32 -0.46 -0.052 -0.28
90th pct -3.66 -3.10 -1.50 -1.75 -3.70 -2.30 -2.23

Part B: Effect from 2001-03 to 2011-13
Panel (d): Homogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment -2.52 -0.64 -0.43 -0.50 -2.60 -1.51 -1.78
(0.27) (0.11) (0.13) (0.14) (0.28) (0.44) (0.61)

Observations 64516 64516 26130 26664 43523 4562 13442

Panel (e): Placebo Treatment Effect: from 2001-03 to 2011-13

Nonattainment -0.98 -0.050 0.17 0.15 -1.53 0.15 0.26
(0.15) (0.14) (0.16) (0.16) (0.16) (0.19) (0.28)

Observations 41830 41830 15411 15145 20837 1204 3375

Panel (f): Heterogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment 3.74 -0.13 5.06 4.71 3.66 4.20 3.18
(0.41) (0.43) (0.51) (0.44) (0.41) (0.83) (1.01)

NA(x)Baseline -0.42 -0.039 -0.39 -0.37 -0.42 -0.40 -0.34
(0.029) (0.032) (0.038) (0.032) (0.029) (0.053) (0.053)

Observations 64516 64516 26130 26664 43523 4562 13442
Implied ATE -2.52 -0.72 -0.82 -0.82 -2.60 -1.80 -1.95
10th pct -1.37 -0.61 0.26 0.20 -1.45 -0.70 -1.01
90th pct -4.61 -0.92 -2.77 -2.66 -4.69 -3.79 -3.66

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status on the change in PM2.5 levels between the pre-
and post-treatment periods. All estimations exclude counties that were in attainment but had a neighboring county in nonattainment.
Each panel(x)column combination is from a separate regression as described in the text. (1) uses simple DiD, (2) adds controls for
baseline PM2.5 (2001-03), (3) runs DiD using a sample matched (1-to-1) on baseline PM2.5, (4) matches on baseline PM2.5, tract population
and population density (both 2000), (5) again uses simple DiD but with the limited sample of areas for which an EPA-registered PM2.5
value exists, (6) and (7) use the limited sample based on optimal bandwidth selection in a regression discontinuity framework. Standard
errors in parentheses are clustered at the county level. All results based on Meng et al. (2019b).
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Table A.7: Nonattainment status and changes in PM2.5: Dropping PM10 nonattainment counties

ATT LATE
All Tracts with RV Optimal Bandw.

DiD DiDwb M1DiD M2DiD DiD RD0 RD1
(1) (2) (3) (4) (5) (6) (7)

Part A: Effect from 2001-03 to 2006-08
Panel (a): Homogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.91 -0.59 -0.39 -0.27 -0.90 -0.64 0.048
(0.059) (0.083) (0.12) (0.16) (0.092) (0.22) (0.39)

Observations 60978 60978 22889 22763 37507 9920 9559

Panel (b): Placebo Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.33 -0.13 -0.056 0.026 -0.51 -0.053 -0.22
(0.13) (0.12) (0.13) (0.13) (0.16) (0.18) (0.31)

Observations 45114 45114 18904 18662 21643 3229 4447

Panel (c): Heterogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment 0.65 -0.33 1.16 1.29 0.65 3.39 3.94
(0.28) (0.32) (0.30) (0.31) (0.29) (0.59) (0.62)

NA(x)Baseline -0.11 -0.019 -0.11 -0.11 -0.11 -0.28 -0.27
(0.020) (0.026) (0.020) (0.020) (0.020) (0.036) (0.032)

Observations 60978 60978 22889 22763 37507 9920 9559
Implied ATE -1.01 -0.61 -0.49 -0.36 -1.00 -0.78 -0.14
10th pct -0.70 -0.56 -0.18 -0.061 -0.70 -0.010 0.61
90th pct -1.56 -0.71 -1.04 -0.91 -1.55 -2.16 -1.50

Part B: Effect from 2001-03 to 2011-13
Panel (d): Homogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment -2.02 -0.70 -0.55 -0.57 -2.07 -0.79 -1.03
(0.078) (0.085) (0.088) (0.094) (0.11) (0.27) (0.39)

Observations 60978 60978 22889 22763 37507 3712 12664

Panel (e): Placebo Treatment Effect: from 2001-03 to 2011-13

Nonattainment -0.93 0.039 0.22 0.15 -1.59 0.090 0.67
(0.14) (0.13) (0.14) (0.15) (0.16) (0.16) (0.34)

Observations 45114 45114 18904 18662 21643 2133 3932

Panel (f): Heterogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment 3.20 -0.98 4.68 4.66 3.16 5.58 4.58
(0.33) (0.35) (0.33) (0.33) (0.34) (0.80) (0.71)

NA(x)Baseline -0.37 0.020 -0.37 -0.37 -0.37 -0.43 -0.39
(0.024) (0.028) (0.024) (0.024) (0.024) (0.058) (0.042)

Observations 60978 60978 22889 22763 37507 3712 12664
Implied ATE -2.36 -0.68 -0.88 -0.90 -2.40 -0.95 -1.29
10th pct -1.34 -0.73 0.14 0.12 -1.38 0.25 -0.21
90th pct -4.21 -0.58 -2.74 -2.75 -4.25 -3.12 -3.24

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status on the change in PM2.5 levels between the
pre- and post-treatment periods. All estimations exclude areas that were in nonattainment of the PM10 NAAQS between 2001-04. Each
panel(x)column combination is from a separate regression as described in the text. (1) uses simple DiD, (2) adds controls for baseline
PM2.5 (2001-03), (3) runs DiD using a sample matched (1-to-1) on baseline PM2.5, (4) matches on baseline PM2.5, tract population and
population density (both 2000), (5) again uses simple DiD but with the limited sample of areas for which an EPA-registered PM2.5 values
exists, (6) and (7) use the limited sample based on optimal bandwidth selection in a regression discontinuity framework. Standard errors
in parentheses are clustered at the county level. All results based on Meng et al. (2019b).
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Table A.8: Nonattainment status and changes in PM2.5: with flexible state time trends

ATT LATE
All Tracts with RV Optimal Bandw.

DiD DiDwb M1DiD M2DiD DiD RD0 RD1
(1) (2) (3) (4) (5) (6) (7)

Part A: Effect from 2001-03 to 2006-08
Panel (a): Homogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment -1.11 -0.22 -0.13 -0.31 -1.36 -0.073 0.074
(0.26) (0.065) (0.080) (0.14) (0.37) (0.048) (0.16)

Observations 72043 72043 28290 28908 47962 7026 10459

Panel (b): Placebo Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.20 0.0054 -0.018 0.020 -0.47 0.038 0.076
(0.098) (0.087) (0.073) (0.083) (0.14) (0.15) (0.20)

Observations 49357 49357 20388 20127 25276 2143 5411

Panel (c): Heterogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment 4.76 3.01 2.67 3.45 4.65 2.08 2.57
(0.59) (0.57) (0.22) (0.40) (0.54) (0.18) (0.19)

NA(x)Baseline -0.39 -0.24 -0.20 -0.26 -0.39 -0.16 -0.18
(0.043) (0.042) (0.016) (0.031) (0.041) (0.014) (0.0091)

Observations 72043 72043 28290 28908 47962 7026 10459
Implied ATE -1.09 -0.61 -0.29 -0.40 -1.16 -0.26 -0.21
10th pct -0.016 0.053 0.25 0.31 -0.089 0.17 0.30
90th pct -3.04 -1.82 -1.28 -1.68 -3.09 -1.04 -1.13

Part B: Effect from 2001-03 to 2011-13
Panel (d): Homogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment -1.56 -0.26 -0.097 -0.27 -1.76 0.18 -0.31
(0.27) (0.058) (0.087) (0.15) (0.40) (0.069) (0.15)

Observations 72043 72043 28290 28908 47962 6137 25856

Panel (e): Placebo Treatment Effect: from 2001-03 to 2011-13

Nonattainment -0.43 0.017 0.0046 0.040 -0.78 -0.058 0.43
(0.065) (0.050) (0.055) (0.065) (0.12) (0.052) (0.23)

Observations 49357 49357 20388 20127 25276 1046 4626

Panel (f): Heterogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment 5.57 1.83 5.12 5.42 5.68 5.51 4.47
(0.45) (0.41) (0.23) (0.38) (0.41) (0.39) (0.31)

NA(x)Baseline -0.47 -0.16 -0.37 -0.39 -0.48 -0.39 -0.34
(0.034) (0.031) (0.016) (0.030) (0.031) (0.030) (0.020)

Observations 72043 72043 28290 28908 47962 6137 25856
Implied ATE -1.54 -0.51 -0.40 -0.41 -1.51 -0.28 -0.58
10th pct -0.23 -0.084 0.61 0.67 -0.19 0.78 0.35
90th pct -3.90 -1.29 -2.24 -2.34 -3.90 -2.21 -2.27

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status on the change in PM2.5 levels between the pre-
and post-treatment periods. All estimations include state fixed effects. Each panel(x)column combination is from a separate regression
as described in the text. (1) uses simple DiD, (2) adds controls for baseline PM2.5 (2001-03), (3) runs DiD using a sample matched
(1-to-1) on baseline PM2.5, (4) matches on baseline PM2.5, tract population and population density (both 2000), (5) again uses simple
DiD but with the limited sample of areas for which an EPA-registered PM2.5 value exists, (6) and (7) use the limited sample based on
optimal bandwidth selection in a regression discontinuity framework. Standard errors in parentheses are clustered at the county level.
All results based on Meng et al. (2019b).
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Table A.9: Nonattainment status and changes in PM2.5: with flexible state time trends and quartile of
density time trends

ATT LATE
All Tracts with RV Optimal Bandw.

DiD DiDwb M1DiD M2DiD DiD RD0 RD1
(1) (2) (3) (4) (5) (6) (7)

Part A: Effect from 2001-03 to 2006-08
Panel (a): Homogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.97 -0.23 -0.14 -0.35 -1.27 -0.11 -0.042
(0.24) (0.062) (0.079) (0.14) (0.34) (0.047) (0.14)

Observations 71951 71951 28264 28882 47881 7021 10451

Panel (b): Placebo Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.12 0.00093 0.026 0.049 -0.44 0.057 0.076
(0.097) (0.088) (0.072) (0.083) (0.14) (0.15) (0.19)

Observations 49289 49289 20373 20127 25219 2141 5396

Panel (c): Heterogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment 4.74 2.81 2.36 3.41 4.66 1.49 1.63
(0.61) (0.51) (0.30) (0.51) (0.57) (0.32) (0.32)

NA(x)Baseline -0.39 -0.23 -0.18 -0.25 -0.39 -0.12 -0.12
(0.046) (0.038) (0.022) (0.039) (0.043) (0.023) (0.020)

Observations 71951 71951 28264 28882 47881 7021 10451
Implied ATE -1.06 -0.59 -0.27 -0.39 -1.15 -0.24 -0.20
10th pct 0.0036 0.032 0.21 0.30 -0.086 0.078 0.14
90th pct -2.99 -1.72 -1.15 -1.66 -3.09 -0.82 -0.80

Part B: Effect from 2001-03 to 2011-13
Panel (d): Homogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment -1.30 -0.27 -0.11 -0.34 -1.61 0.089 -0.34
(0.25) (0.056) (0.082) (0.15) (0.35) (0.074) (0.14)

Observations 71951 71951 28264 28882 47881 6133 25831

Panel (e): Placebo Treatment Effect: from 2001-03 to 2011-13

Nonattainment -0.29 -0.0060 0.093 0.098 -0.72 -0.15 0.45
(0.066) (0.050) (0.055) (0.065) (0.12) (0.084) (0.25)

Observations 49289 49289 20373 20127 25219 1044 4612

Panel (f): Heterogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment 5.38 1.61 4.52 5.04 5.39 4.01 3.37
(0.52) (0.36) (0.29) (0.49) (0.48) (0.68) (0.34)

NA(x)Baseline -0.45 -0.14 -0.33 -0.36 -0.46 -0.28 -0.26
(0.039) (0.027) (0.021) (0.037) (0.036) (0.049) (0.022)

Observations 71951 71951 28264 28882 47881 6133 25831
Implied ATE -1.41 -0.49 -0.37 -0.41 -1.48 -0.23 -0.54
10th pct -0.16 -0.10 0.53 0.59 -0.22 0.55 0.18
90th pct -3.67 -1.19 -1.99 -2.22 -3.77 -1.64 -1.84

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status on the change in PM2.5 levels between the
pre- and post-treatment periods. All estimations include state fixed effects and tract population density quartile fixed effects. Each
panel(x)column combination is from a separate regression as described in the text. (1) uses simple DiD, (2) adds controls for baseline
PM2.5 (2001-03), (3) runs DiD using a sample matched (1-to-1) on baseline PM2.5, (4) matches on baseline PM2.5, tract population and
population density (both 2000), (5) again uses simple DiD but with the limited sample of areas for which an EPA-registered PM2.5 value
exists, (6) and (7) use the limited sample based on optimal bandwidth selection in a regression discontinuity framework. Standard errors
in parentheses are clustered at the county level. All results based on Meng et al. (2019b).
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Table A.10: TWFE estimates in tract-year panel (2000-2015)

ATT LATE
All Tracts with RV Optimal Bandw.

DiD DiDwb M1DiD M2DiD DiD RD0 RD1
(1) (2) (3) (4) (5) (6) (7)

NA Effect -1.675 -0.544 -0.469 -0.855 -1.719 -0.794 -0.727
(0.254) (0.069) (0.073) (0.262) (0.260) (0.268) (0.208)

Observations 1152688 1152688 488400 516464 767392 98192 180448

Notes: The table shows results from a panel regression with two-way fixed effects (TWFE) with a homogeneous treatment effect from
nonattainment designations, equivalent to Panels (a) and (d) of Table 1. Data used is a tract-year panel from 2000 to 2015. Estimation
includes tract and year fixed effects. Standard errors clustered at the county level in parentheses. All results based on Meng et al. (2019b).
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A.8 NBP and CAIR as potential confounders

Since nonattainment designations under the NAAQS for PM2.5 are not the only air quality policies
during our sample period, we may worry about mis-attributing changes in air quality to PM2.5 nonat-
tainment designations if those other air quality policies are correlated with nonattainment designa-
tions. Specifically, during our sample period, the NOx Budget Trading Program (NBP) (discussed
in e.g. Deschenes et al. 2017, Curtis 2018) and its’ successor, the Clean Air Interstate Rule (CAIR)
were implemented. The NBP was a cap-and-trade program enacted by twenty eastern states plus
DC in 2003/2004 that targeted NOx emissions from power plants and other large stationary sources.
In 2009, the NBP was replaced by the CAIR which expanded geographic coverage and targeted SO2

and Ozone emissions in addition to NOx.
As NOx and SO2 are precursors to PM2.5, and these policies coincide with our study period, we

next verify that these are not partially driving our results. To do so, we collect data on all facilities
subject to regulation under the NBP and CAIR from the EPA’s Clean Air Markets Data Program
Facility Attributes Table (EPA 2023). We generate a binary variable indicating if a county contained
a facility that became subject to NBP (for the 5-year period ending in 2006-08) or CAIR (for the
10-year period ending in 2011-13), and include this indicator as a control variable in our DiD and
DiDwb regressions. Part A of Table A.11 shows the results for NBP and CAIR respectively in Panel
(a) and (b). Column 1 and 3 reproduce our baseline coefficients from Table 1. Columns 2 and 4 show
that controlling for these programs leaves our PM2.5 nonattainment coefficients from Column 1 and
3 largely unchanged, indicating that any potential bias from these other policies is likely minimal.60

Instead of testing robustness of our effects to NBP/CAIR controls, we next analyze in Part B
of Table A.11 whether the NBP/CAIR estimates suffer from similar bias when ignoring possibly
confounding trends in PM2.5. First, in Panel (c), we estimate the effect of NBP or CAIR using our
PM2.5 data. While the estimates in Columns 1 and 2 suggest substantial PM2.5 reduction effects, at
least for NBP, this effect disappears when controlling for baseline levels of pollution.61 Second, in
Panel (d), we use the data and code from Deschenes et al. (2017b) to first replicate their results in
Column 1 and 2 (corresponding to their Table 2b Row 9 Columns 4 and 5 – see table notes for details).
Once we control for trends based on baseline PM2.5, the estimated coefficients fall in corresponding
Columns 3 and 4, mirroring the pattern using our data in Panel (c). Deschenes et al. (2017) note
that their effects on PM2.5 are inconclusive. Once we control for trends, the results are even closer
to zero, in line with our main findings. Finally, in Panel (e) we again replicate the results from

60The results look almost identical when we control for NBP/CAIR participation at the state level to account for possible
spillovers. These results are available from the authors upon request.

61Note also that the NBP and CAIR effects from Panel (c) Columns 1 and 2 also disappear when we control for PM2.5
nonattainment in Panel (a) and (b) Column 2.
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Deschenes et al. (2017) in Columns 1 and 2 but focus on Ozone concentrations instead of PM2.5

(corresponding to their Table 2b Row 4 Columns 4 and 5). Interestingly, controlling for trends based
on baseline Ozone reduces estimated coefficients only by a small amount, largely confirming the
results in Deschenes et al. (2017). This suggest that confounding trends in PM2.5 may be particularly
severe.
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Table A.11: Controlling for potential confounding by contemporaneous policy changes and explor-
ing NBP/CAIR effects

(DiD) (DiD) (DiDwb) (DiDwb)
(1) (2) (3) (4)

Part A: Robustness controlling for NBP or CAIR
Panel (a): NBP enacted 2003/04 (period ending 2006-08)

Nonattainment -1.47 -1.55 -0.49 -0.56
(0.34) (0.48) (0.098) (0.095)

NBP 0.18 0.17
(0.36) (0.22)

Observations 72043 72043 72043 72043

Panel (b): CAIR enacted 2009 (period ending 2011-13)

Nonattainment -2.35 -2.39 -0.56 -0.60
(0.27) (0.29) (0.096) (0.097)

CAIR 0.22 0.18
(0.20) (0.078)

Observations 72043 72043 72043 72043

Part B: Focusing on NBP or CAIR without/with controlling for trends
Panel (c): NBP or CAIR
NBP -0.49 0.0034

(0.22) (0.21)
CAIR -0.20 0.11

(0.28) (0.085)
Observations 72043 72043 72043 72043

Panel (d): PM2.5 – replicating Deschenes et al. (2017)

NBP x Post x Summer -0.45 -1.03 0.19 -0.55
(0.32) (0.27) (0.31) (0.36)

Observations 4172 4172 4172 4172

Panel (e): Ozone 8-hour value (ppb) – replicating Deschenes et al. (2017)

NBP x Post x Summer -3.38 -3.37 -3.01 -3.06
(0.56) (0.54) (0.54) (0.56)

Observations 2352 2352 2352 2352

Notes: Part A tests robustness of our nonattainment estimates to controlling for NBP or CAIR status. Column 1 shows the baseline DiD
results identical to Column 1 in Table 1. Column 3 shows the baseline DiDwb results identical to Column 2 in Table 1. Columns 2 and 4
add indicators for counties containing at least one facility that was subject to regulation under NBP or CAIR as control variables in Panel
(a) and (b) respectively. Part B focuses on NBP and CAIR and tests robustness to controlling for trends based on baseline pollution
(DiDwb). Panel (c) uses our approach and PM2.5 data from Meng et al. (2019b), and shows results for DiD in Columns 1 and 2 for NBP
and CAIR, where the endlines are 2006-08 and 2011-13 respectively. Columns 3 and 4 add the controls (DiDwb) to Columns 1 and 2. In
Panel (d) and (e), we use the data and code from Deschenes et al. (2017b) to first replicate their results in Columns 1 and 2, focusing
on the NBP with data from 2001-2007. Panel (d) and (e) Columns 1 and 2 correspond to their Table 2b, Row 9 and Row 4, Columns
4 and 5 respectively. The analysis is for panel data at the county-by-year-by-season level and both columns include county-by-season,
summer-by-year, and county-by-year fixed effects as well as detailed weather controls. Column 1 is weighted by emission/pollution
monitors, and Column 2 by population. Columns 3 and 4 (DiDwb) add year dummies interacted with baseline pollution and seasons to
Columns 1 and 2 respectively. Panel (d) uses their PM2.5 data as outcome and control for baseline trend, and Panel (e) uses their Ozone
data as outcome and control for baseline trend. Standard errors in parentheses are clustered at the county level for Panels (a) to (c) and
clustered at the state by season level for Panel (d) and (e).
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A.9 Addressing uncertainty in pollution data

To address possible non-classical measurement error in the PM2.5 reanalysis data, we show three
robustness test.

The first tests relies on the uncertainty data in van Donkelaar et al. (2021b). For each grid-point,
this data not only contains the estimated PM2.5 concentration, but also information of the uncertainty
around this estimate due to local geo-physical characteristics or distance to monitors. We drop 30%
of Census tracts with the largest uncertainty average over our sample period and normalized by
its mean.62 To avoid mixing PM2.5 data sources, we rely on pollution data from van Donkelaar
et al. (2021b) exclusively for this first exercise, so the most comparable baseline table that retains all
observations is Appendix Table A.24, which corresponds to main Table 1 based on data from Meng
et al. (2019b). Part A of Table A.12 shows that our estimates are robust to dropping 30% of tracts
that have the most uncertain PM2.5 data estimates.

Second, since areas with ground-based air pollution monitors likely have less uncertainty in the
PM2.5 data, we drop all counties that neither contain a monitor themselves nor have a neighboring
county with a monitor, using data from Meng et al. (2019b). Part B of Table A.12 shows that our
results are robust to dropping these counties.

Third, in our most restrictive approach in Table A.13, we rely exclusively on data from ground-
based pollution monitors from EPA (2022a). This severely reduces our observations, but even in this
restrictive version, the patters of our main results and the bias of naive DiD are robust.

62That is we first take the average uncertainty and the average PM2.5 estimate for each Census tract across our sample
period (where we use tract data from population-weighted Census block estimates as in our main paper). We then
calculate a normalized measure of uncertainty by dividing the uncertainty from the previous step by the average from
the previous step for each tract. We then drop the 30% of tracts with the highest value of normalized uncertainty.
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Table A.12: Dropping areas with higher uncertainty in pollution measurements

ATT LATE
All Tracts with RV Optimal Bandw.

DiD DiDwb M1DiD M2DiD DiD RD0 RD1
(1) (2) (3) (4) (5) (6) (7)

Part A: Dropping 30% of tracts with highest uncertainty measures
Panel (a): Homogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment -1.46 -0.29 -0.40 -0.40 -1.47 -0.59 -0.76
(0.36) (0.12) (0.18) (0.21) (0.38) (0.36) (0.41)

Observations 50452 50452 25499 26061 33582 4499 6166

Panel (b): Placebo Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.24 -0.086 -0.053 0.022 -0.58 -0.21 -0.35
(0.12) (0.11) (0.12) (0.12) (0.18) (0.30) (0.47)

Observations 29672 29672 17636 17314 13547 1117 2233

Panel (c): Heterogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment 5.27 3.50 2.13 3.79 5.37 3.77 3.02
(0.83) (0.86) (0.41) (0.81) (0.83) (0.87) (0.94)

NA(x)Baseline -0.44 -0.29 -0.18 -0.29 -0.45 -0.30 -0.25
(0.059) (0.063) (0.028) (0.058) (0.059) (0.052) (0.052)

Observations 50452 50452 25499 26061 33582 4499 6166
Implied ATE -1.39 -0.92 -0.54 -0.56 -1.37 -0.81 -0.73
10th pct -0.17 -0.10 -0.047 0.24 -0.13 0.033 -0.042
90th pct -3.61 -2.39 -1.43 -2.01 -3.61 -2.33 -1.98

Part B: Only counties (incl. neighboring counties) with monitor
Panel (d): Homogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment -1.53 -0.28 -0.41 -0.32 -1.56 -0.34 -0.016
(0.37) (0.16) (0.20) (0.21) (0.37) (0.32) (0.42)

Observations 47821 47821 24267 24197 44008 6180 9928

Panel (e): Placebo Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.39 -0.096 0.0027 -0.048 -0.50 -0.14 -0.29
(0.15) (0.13) (0.15) (0.16) (0.15) (0.21) (0.29)

Observations 26991 26991 15636 15634 23178 2113 5121

Panel (f): Heterogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment 4.82 3.58 1.80 1.97 4.79 4.11 3.70
(0.80) (0.84) (0.32) (0.34) (0.81) (0.87) (0.68)

NA(x)Baseline -0.42 -0.30 -0.16 -0.16 -0.42 -0.31 -0.26
(0.059) (0.064) (0.020) (0.021) (0.059) (0.054) (0.035)

Observations 47821 47821 24267 24197 44008 6180 9928
Implied ATE -1.47 -0.97 -0.54 -0.46 -1.50 -0.54 -0.20
10th pct -0.32 -0.14 -0.11 -0.014 -0.34 0.32 0.51
90th pct -3.57 -2.49 -1.32 -1.27 -3.59 -2.08 -1.51

Notes: Part A is equivalent to Appendix Table A.24 based on pollution data from van Donkelaar et al. (2021b), after dropping 30%
of tracts that have the most uncertain PM2.5 predictions. Part B is equivalent to Table 1 based on data from Meng et al. (2019b), after
dropping all counties that do not contain a monitor and also do not have a neighboring county with a monitor. The table shows coefficient
estimates for the treatment effect of nonattainment status on the change in PM2.5 levels between the pre- and post-treatment periods. Each
panel(x)column combination is from a separate regression as described in the text. (1) uses simple DiD, (2) adds controls for baseline
PM2.5 (2001-03), (3) runs DiD using a sample matched (1-to-1) on baseline PM2.5, (4) matches on baseline PM2.5, tract population and
population density (both 2000), (5) again uses simple DiD but with the limited sample of areas for which an EPA-registered PM2.5 value
exists, (6) and (7) use the limited sample based on optimal bandwidth selection in a regression discontinuity framework. Standard errors
in parentheses are clustered at the county level.
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Table A.13: Nonattainment status and changes in PM2.5 using EPA monitor data

ATT LATE
All Tracts with RV Optimal Bandw.

DiD DiDwb M1DiD M2DiD DiD RD0 RD1
(1) (2) (3) (4) (5) (6) (7)

Panel (a): Homogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment -1.25 -0.012 -0.10 -0.12 -1.22 -0.15 -0.084
(0.24) (0.16) (0.24) (0.31) (0.24) (0.26) (0.48)

Observations 667 667 279 268 596 36 86

Panel (b): Placebo Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.53 -0.072 -0.37 -0.058 -0.56 -0.63 -0.53
(0.11) (0.16) (0.25) (0.25) (0.11) (0.57) (0.52)

Observations 431 431 239 244 360 23 113

Panel (c): Heterogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment 5.29 3.70 2.07 2.09 5.32 4.54 6.82
(1.22) (1.24) (0.61) (0.64) (1.22) (2.04) (2.12)

NA(x)Baseline -0.42 -0.27 -0.15 -0.15 -0.42 -0.31 -0.46
(0.084) (0.087) (0.039) (0.038) (0.084) (0.13) (0.14)

Observations 667 667 279 268 596 36 86
Implied ATE -1.25 -0.59 -0.25 -0.29 -1.22 -0.36 -0.43
10th pct -0.015 0.22 0.19 0.16 0.019 0.57 0.94
90th pct -2.90 -1.68 -0.84 -0.88 -2.86 -1.59 -2.25

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status on the change in PM2.5 levels between the
pre- and post-treatment periods. Each panel(x)column combination is from a separate regression as described in the text. (1) uses simple
DiD, (2) adds controls for baseline PM2.5 (2001-03), (3) runs DiD using a sample matched (1-to-1) on baseline PM2.5, (4) matches on
baseline PM2.5, tract population and population density (both 2000), (5) again uses simple DiD but with the limited sample of areas for
which an EPA-registered PM2.5 value exists, (6) and (7) use the limited sample based on optimal bandwidth selection in a regression
discontinuity framework. Standard errors in parentheses are clustered at the county level. All results based on monitor data from EPA
(2022a).
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A.10 Synthetic Control Estimates

Instead of our MDiD approach combining matching and DiD, an alternative approach can be based
on Synthetic Controls (SC). The traditional SC method is designed for a context with few treated
units and a small ‘donor pool’ of control units (Abadie et al. 2010). In our context, however, we
have many treated and control units, and therefore use MDiD as on of our primary alternatives.
Nevertheless, we extend the SC methods to our setting and provide two sets of results based on
synthetic counterfactuals for additional robustness analysis.

First, we use the recently proposed Synthetic Difference-in-Differences (SDiD) estimator to es-
timate average treatment effects (Arkhangelsky et al. 2021). In addition to unit weights chosen to
closely replicate the average treated unit before treatment as in MDiD, SDiD uses time weights in the
pre-treatment period to reduce variation in time trends among control units. SDiD is implemented
as a weighted DiD with unit fixed effects and has been shown to perform equally well or better than
traditional SC or DiD in common settings (Arkhangelsky et al. 2021). We show county level results
based on SDiD in Figure A.13a using annual PM2.5 concentrations based on Meng et al. (2019b) dur-
ing the 1990-2004 pre-treatment period as predictor variables.63 The blue line shows that the gap
between the average nonattainment county and the weighted control units is small until 2005, but
diverges in the expected direction after 2005. The estimated ATT for the full post-treatment period
(2005-2016) shows a 0.62 µg/m3 reduction in PM2.5 (black line). To compare the SDiD estimates to
our main analysis in Table 1 we focus on the same post-treatment time periods. The two red lines in
Figure A.13a show that the SDiD estimates are very similar to our main estimates, with an ATT of
0.41 until 2006-08 and an ATT of 0.76 until 2011-13, confirming robustness of our main results.

While traditional SC estimation is not suitable for estimating average treatment effects in our
setting, it offers another approach to heterogeneity analysis. We construct synthetic counterfactuals
for each of the 208 nonattainment counties based on 1990-2004 PM2.5 levels, each time limiting the
‘donor pool’ to attainment counties from the same Census division.64 We then compare the change
between 2001-03 and 2006-08 between each of the 208 nonattainment counties and its’ synthetic
counterfactual visualized by the red markers in Figure A.13b. This shows a population weighted
average effect of 0.62 (red dotted line), and shows heterogeneity that increases the treatment effect
with baseline pollution as captured by EPA-registered PM2.5 values, in line with our main results. For
a placebo exercise, we also run a SC analysis for each of the 339 attainment counties that have an EPA-
registered PM2.5 value below 15. The blue markers in Figure A.13b show the results. Reassuringly,

63Standard error calculations proposed by Arkhangelsky et al. (2021) are cluster-robust at the level of treated units, i.e.
counties in our setting. County PM2.5 levels are population-weighted averages across tracts.

64The nine Census Divisions are New England, Middle Atlantic, East North Central, West North Central, South Atlantic,
East South Central, West South Central, Mountain Division and Pacific Division.
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and in contrast to Figure 4, there is no visible association between PM2.5 improvements and EPA-
registered PM2.5 values for these placebo attainment counties, as these are evaluated against their
own synthetic counterfactuals.
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(a) Synthetic Difference-in-Differences Estimation

(b) Unit-wise Synthetic Control Estimation (2001-03 vs. 2006-08)

Figure A.13: Synthetic Control Estimates
Notes: These figures are based on county level synthetic control estimates for 3,109 counties, 208 of which are in nonattainment of the
PM2.5 NAAQS from 2005. Panel (a) implements Synthetic Difference-in-Differences estimation following Arkhangelsky et al. (2021).
The black line shows the estimated average treatment effect on the treated (ATT) for the full post-treatment period (2005-16). The red
lines show the ATT for the three-year average periods used in the main analysis (2006-08 and 2011-13). Dashed lines indicate 95%
confidence intervals based on standard errors that allow for correlation within county clusters. Panel (b) shows unit-wise Synthetic
Control estimates of the PM2.5 improvement between 2001-03 and 2006-08 for the 208 nonattainment counties evaluated against their
synthetic counterfactual in red, and 339 attainment counties that have an EPA-registered PM2.5 value (below 15), each relative to their
unit-wise synthetic counterfactual in blue. Bubble size indicates county population in 2010 and dashed lines are population-weighted
means. Based on data from Meng et al. (2019b).
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A.11 Heterogeneous PM2.5 nonattainment treatment effect by previous PM10

nonattainment status

Figure A.14: Improvement in tract PM2.5 averages and PM2.5/PM10 nonattainment status
Notes: The figure shows the improvement in PM2.5 averages at the tract level between two periods, 2001-2003 and 2006-2008. The size
of the markers reflect tract level populations. The PM2.5 improvements are plotted against the EPA-registered PM2.5 values of each at-
tainment/nonattainment area, each of which usually comprises multiple counties and tracts. The dashed line plots the average PM2.5
improvement for tracts in nonattainment and attainment areas separately, weighted by tract population, equivalent to the standard DiD
estimate. The solid lines plot the linear projection of tract level PM2.5 improvements on the EPA-registered PM2.5 values of the nonattain-
ment and attainment areas separately, weighted by tract population. In addition, the purple markers indicate nonattainment areas that
are also in nonattainment of the previous PM10 regulation, and the green markers indicate attainment areas that are in nonattainment of
the previous PM10 regulation. Based on data from Meng et al. (2019b).
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Table A.14: Heterogeneous treatment effects by previous PM10 status

ATT LATE
All Tracts with RV Optimal Bandw.

DiD DiDwb M1DiD M2DiD DiD RD0 RD1
(1) (2) (3) (4) (5) (6) (7)

Panel (a): Homogeneous Treatment Effect: from 2001-03 to 2006-08
PM2.5 NA
w/o prev. PM10 NA

-0.91 -0.26 -0.32 -0.19 -0.90 -0.35 -0.022
(0.059) (0.14) (0.16) (0.18) (0.092) (0.29) (0.40)

PM2.5 NA
w. prev. PM10 NA

-2.78 -1.30 -1.29 -1.63 -2.79 0 0.63
(0.72) (0.34) (0.19) (0.31) (0.72) (.) (0.65)

Observations 72043 72043 28291 28909 47962 7026 10459

Panel (b): Homogeneous Treatment Effect: from 2001-03 to 2011-13
PM2.5 NA
w/o prev. PM10 NA

-2.02 -0.63 -0.56 -0.60 -2.07 -1.20 -1.16
(0.078) (0.093) (0.091) (0.098) (0.11) (0.38) (0.36)

PM2.5 NA
w. prev. PM10 NA

-3.76 -0.57 -1.71 -2.11 -3.72 0 0.69
(0.71) (0.25) (0.26) (0.30) (0.71) (.) (2.17)

Observations 72043 72043 28291 28909 47962 6137 25856

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status on the change in PM2.5 levels between the
pre- and post-treatment periods. We allow heterogeneous treatment effects by previous PM10 nonattainment status, as in Equation (7).
All regressions control for trends based on PM10 nonattainment status, so the shown coefficients are the heterogeneous marginal effects
of PM2.5 nonattainment status, as in Figure 7. Each panel(x)column combination is from a separate regression as indicated: (1) uses
simple DiD, (2) adds controls for baseline PM2.5 (2001-03), (3) runs DiD using a sample matched (1-to-1) on baseline PM2.5, (4) matches
on baseline PM2.5, tract population and population density (both 2000), (5) again uses simple DiD but with the limited sample of areas
for which an EPA-registered PM2.5 value exists, (6) and (7) use the limited sample based on optimal bandwidth selection in a regression
discontinuity framework. Standard errors in parentheses are clustered at the county level. All results based on Meng et al. (2019b).

A-33



A.12 Replication of PM2.5 exposure levels in Jbaily et al. (2022)

Our main analysis uses the same PM2.5 data (Meng et al. 2019b) that is also used by Jbaily et al.
(2022) to document pollution exposure disparities across income and racial groups in the US. We
replicate the relevant average exposure levels from their paper in Figure A.15. Panel (a) shows the
population-weighted PM2.5 exposure across all residents and panel (b) shows averages by racial
groups. Reassuringly, both the levels and changes over time are virtually identical to those shown
in panels (a) and (b) of Extended Data Fig. 1 in Jbaily et al. (2022).

(a) All residents (b) By racial group

Figure A.15: Replication of PM2.5 levels in Jbaily et al. (2022)
Notes: The Figure replicates population-weighted PM2.5 exposure levels by population groups as shown in Extended Data Fig. 1 in Jbaily
et al. (2022). Results are based on Meng et al. (2019b) and tract level population counts.
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A.13 Comparison to recent analysis in Currie et al. (2023)

Part of our analysis of 2005 nonattainment effects, particularly the regulation’s impact on PM2.5 expo-
sure gaps between Black and White residents, is closely related to the recent contribution by Currie
et al. (2023) — henceforth CVW.65 In the below, we first show that we can replicate some of the main
findings of CVW despite using only our publicly available data.66 Thereafter, we highlight the main
differences between our and their approaches and discrepancies in data.

A. Replication of headline results in CVW (Currie et al. 2023)

To replicate the results of CVW, we rely on pollution data from Di et al. (2021) as in their anal-
ysis. While CVW use samples of individuals from the long form 2000 Census and the American
Community Survey (ACS) from 2001, we use the population counts that account for the universe
of individuals from Census records, and linearly interpolate between the 2000, 2010, and 2020 Cen-
sus records. As in CVW, we assign pollution to individuals based on Census blocks. We run the
entire replication analysis at the Census block level. Importantly, we also use their assignment into
treatment status for the purposes of replication, which we discuss in more detail in the next section.

Currie et al. (2023) begin by showing that Black Americans are exposed to substantially higher
levels of PM2.5 than White Americans, and that this gap has narrowed over time. We show in Table
A.15 that the average PM2.5 exposure levels and the Black-White gap closely, although not exactly,
replicate the numbers reported in Table 2 of CVW. The numbers in Column 1 and 3 are particu-
larly similar, as these are both based on the 2000 Census without including data from the American
Community Survey (ACS).67

Turning to the 2005 NAAQS nonattainment designations, CVW first show an event study of the
regulation on PM2.5 concentrations. Figure A.16 shows that we can replicate their event study almost
exactly. Note that there is no pre-trend in this Figure, which is due to CVW assigning a subset of
treated units into the control group as we discuss in more detail in the next section. We next replicate
their baseline average treatment effects in Table A.16. With year and county fixed effects, we estimate
an ATE of -1.2 µg/m3, almost identical to the estimate of -1.230 reported by CVW. Similarly, when
adding state-year fixed effects, our estimate falls to -0.76 (compared to -0.737 in CVW).

Finally, CVW ask how much of the reduction in the Black-White exposure gap between 2005 and
2015 can be accounted for by the 2005 nonattainment designations. To account for effect heterogene-

65We are grateful for the authors of CVW for helpful discussions, especially Reed Walker.
66Their individual level data is indispensable for their analysis of contributions of individual level income to exposure

gaps. We only focus on their main results here.
67CVW use the 2000 Census long form which is a subset of the 2000 Census.
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Table A.15: Replication of Table 2 in CVW

Actual 2000 Actual 2015 Counterfactual 2015
Exposure Exposure using 2000 locations

Panel (a): Original numbers reported in CVW
White 12.96 8.25 8.22
Black 14.52 8.79 8.89
B-W Difference 1.56 0.54 0.67
Chg. in B-W Diff 0.00 -1.02 -0.89

Panel (b): Replication using our data
White 12.90 8.12 8.17
Black 14.53 8.80 8.90
B-W Difference 1.63 0.68 0.73
Chg. in B-W Diff 0.00 -0.95 -0.90

Notes: Panel (a) restates Table 2 from Currie et al. (2023). Panel (b) replicates those numbers using our data. Columns 1 and 2 report
average PM2.5 exposure levels, using block level population weights that are linearly interpolated between 2010 and 2020. Column 3 uses
constant 2000 population weights instead. Pollution data is from Di et al. (2021).

ity, they estimate RIF-Quantile treatment effects in 19 pollution ‘vigintiles’, separately for Black and
White residents. We replicate the RIF-Quantile regressions in Figure A.17, which again closely re-
sembles Figure 8 in CVW. We replicate the counterfactual gap accounting based on these regression
results in Table A.17. Again, the results closely resemble those reported in Table 4 of CVW. Our over-
all actual change in the gap (0.47 vs. 0.59 µg/m3) and counterfactual change in the gap (0.18 vs 0.23
µg/m3) are similar but slightly smaller. Yet, using our publicly available Census based data recovers
virtually the same contribution of the CAA nonattainment areas to the reduction in the Black-White
pollution gap (61.1%) as the ACS-based individual level sample in CVW (61.2%).

Throughout this section, we used the same classification of treated and control units as in CVW.
The small differences in results are due to differences between our (interpolated) block level popu-
lation counts and the individual level survey sample used in CVW. We next discuss these differences
further.
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Figure A.16: Replication of Figure 6 in CVW
Notes: This figure replicates Figure 6 in Currie et al. (2023) using the block level data from our paper. The graph shows an event study
plotting the coefficients from nonattainment areas as defined by CVW interacted with year dummies. The regression model controls for
county fixed effects and year fixed effects. The regression is weighted by block level population counts, linearly interpolated between
2000, 2010 and 2020, and errors are clustered by commuting zone. Pollution data is from Di et al. (2021).

Table A.16: Replication of Table 3 in CVW

(1) (2)
Panel (a): Original numbers reported in CVW
PM2.5 NA -1.230 -0.727

(0.335) (0.080)
Observations 32,360,000 32,360,000

Panel (b): Our data

PM2.5 NA -1.20 -0.76
(0.40) (0.078)

Observations 108,583,670 108,583,670
County FE Yes Yes
Year FE Yes No
State-Year FE No Yes

Notes: The table replicates difference-in-differences estimates of the average treatment effect from nonattainment designations shown in
Table 3 in Currie et al. (2023) using our data at the block level with block population weights. Column 1 replicates original Column 1,
Column 2 replicates original Column 5. Pollution data is from Di et al. (2021).
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Figure A.17: Replication of Figure 8 in CVW
Notes: This figure replicates Figure 8 in Currie et al. (2023) using the block level data from our paper. It plots regression coefficients from
38 separate regressions, 19 for each race, where the dependent variable consists of the RIF-Quantile transformation of the respective PM2.5
vigintile (indicated by the x-axis). The regression model controls for county fixed effects and state-by-year fixed effects. Regressions are
weighted by block level population counts, linearly interpolated between 2000, 2010 and 2020, and errors are clustered by commuting
zone. Pollution data from Di et al. (2021).
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Table A.17: Replication of Table 4 in CVW

PM2.5 Actual Actual White Counterfactual Black Counterfactual
Quantile PM2.5 PM2.5 PM2.5 in 2015 PM2.5 in 2015

Bin in 2005 in 2015 Without CAA Without CAA
5 5.38 4.22 4.22 4.22
10 7.94 5.58 5.58 5.58
15 8.97 6.22 6.21 6.22
20 9.7 6.71 6.7 6.7
25 10.36 7.11 7.11 7.09
30 10.91 7.45 7.49 7.42
35 11.43 7.75 7.85 7.76
40 11.92 8.01 8.19 8.11
45 12.36 8.25 8.52 8.48
50 12.74 8.47 8.88 8.87
55 13.1 8.69 9.21 9.3
60 13.46 8.89 9.53 9.76
65 13.82 9.09 9.81 10.05
70 14.18 9.29 10.04 10.39
75 14.55 9.52 10.2 10.55
80 14.95 9.78 10.4 10.82
85 15.34 10.13 10.62 11.12
90 15.85 10.71 11.19 11.85
95 17.35 12.55 12.51 12.97

Main Counterfactual incl. 2005-2015 Mobility Responses

Original numbers reported in CVW Our data
2005 Actual B-W Gap 1.20 1.16
2015 Counterfactual B-W Gap 0.97 0.98
Counterfactual Chg in B-W Gap -0.23 -0.18
Actual Chg in B-W Gap -0.59 -0.47
% Attributable to CAA 61.2 61.1

Notes: The table replicates Table 4 from Currie et al. (2023) using our block level data. Population counts are linearly interpolated between
2000, 2010 and 2020 to approximate the approach in Currie et al. (2023), who follow individuals in their data as they move across locations.
Counterfactuals are calculated as the actual PM2.5 levels in 2015 minus the RIF-Quantile treatment effects of nonattainment (applied in
proportion to the population share living in nonattainment areas), separately for each vigintile and for each racial group. Pollution data
is from Di et al. (2021).
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B. Explaining differences compared to CVW (Currie et al. 2023)

There are several differences between our approach and that of CVW, yet there are only two differ-
ences that are important: treatment assignment and controlling for baseline trends. We first briefly
discuss minor data discrepancies that make no difference for the main findings before we turn to
the two important differences.

We have shown in the previous section that using our publicly available Census data recovers
virtually the same estimated nonattainment effects on pollution and contribution of the CAA nonat-
tainment areas to narrowing the Black-White exposure gap. This is reassuring and shows that any
differences due to using publicly available data vs. individual level American Community Survey
(ACS) samples are negligible, especially because pollution is assigned to individuals at the Census
block level in both approaches. Nevertheless, we briefly list some of the data differences and use the
event study to illustrate that they do not matter for this analysis.68 First, CVW use a sample based
on the Census long form as well as the 1% ACS sample. Our data is constructed from the full Census
population. If samples are random, we should recover the same estimates in expectation. Second,
CVW incorporate year-to-year mobility through the annual ACS samples while we use fixed 2010
location in our main analysis, or interpolated block populations by race using the 2000, 2010 and
2020 Census in the preceding section or for robustness in Figure A.1, for example. The event study
graph is virtually indistinguishable when using interpolated vs. constant 2010 population as shown
in Figure A.18a, compared to Figure A.21. Third, CVW use 2000 block boundaries while we use
2010 block boundaries. We also aggregate to the tract level using block population weights, which
should, however, be equivalent to running the regression at the block level for the purposes of the
event study. Figure A.18b shows that the event study is virtually unchanged if we use 2000 block
boundaries and run the analysis at the block level, compared to Figure A.21.

While the differences between our data and that used in CVW appear negligible, there are two
important differences. The first key difference is the assignment into treatment or control of those
areas that are in PM2.5 nonattainment, but have also been in PM10 nonattainment previously. In
CVW, all such areas are assigned into the control group, sometimes known as switcher approach.
As these areas do not switch into nonattainment from being in attainment of a previous NAAQS,
so are ‘merely’ in nonattainment of an additional NAAQS (PM2.5), one may expect that these areas
experience a lower treatment effect from the additional nonattainment assignment. A switcher ap-
proach that assigns these areas into the control group assumes a treatment effect of zero for these
areas. In Figure 7 we test this assumption and show, however, that the treatment effect for these areas

68Note that individual data would be required to assess the contribution of individual level factors to the exposure gap,
which, however explain little as shown in CVW.
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(a) Interpolated population weights 2000, 2010, 2020 (b) 2000 block borders and block level analysis

Figure A.18: Robustness of differences in pre-trends in event study
Notes: The figure replicates the event study graph from Panel (b) of Figure A.21. Panel (a) uses population weights that are interpolated
between the 2000, 2010 and 2020 Census, using the IPUMS NHGIS crosswalk, instead of constant population weights at the 2010 level.
Panel (b) uses borders and population counts from the 2000 Census instead of the 2010 Census. In addition, the analysis is at the Census
block level, rather than pre-aggregating to the Census tract level using Census block weights as in our main analysis (the results are
equivalent using either). Results are based on Di et al. (2021). Standard errors are clustered at the county level and 95% confidence
intervals are shown.

is – if anything – larger than for those areas that switched from PM10 attainment to PM2.5 nonattain-
ment. Using the treatment assignment of CVW, we can replicate their event study with insignificant
pre-trends as shown in Figure A.19a (see also Figure A.16 above). This is intuitive, as PM2.5 nonat-
tainment areas that were also in nonattainment for PM10 tend to be more polluted and, as we show
in our Figure 3a, also likely to exhibit the largest pre-trends, thus assigning them into the control
group eliminates the pre-trends on average. If we instead drop these areas entirely, the pre-trends
reappear (Figure A.19b). Note that a second, but minor difference in treatment assignment is that
CVW assign entire commuting zones (CZ) into nonattainment treatment as long as a county within
the CZ is in nonattainment, while we use EPA defined nonattainment areas based on air regions (i.e.
the nonattainment counties). Figures A.19c and A.19d show that using CZ instead of counties based
on EPA air regions have no discernible implications for the event study.

The second key difference is that we control for pollution trends based on baseline pollution as
discussed in detail in our main paper. We next rerun some of the main estimations in CVW but ad-
ditionally controlling for baseline pollution, similar to our DIDwb approach.69 First, the estimated
nonattainment effect is much smaller (even zero in one specification) as shown in Columns 3 and
4 of Table A.18 (Column 1 and 2 replicate the results in Table A.16 Panel b). This is in line with
our main findings that when ignoring such trends, a naive DiD approach overestimates the nonat-

69That is we control for baseline pollution in 2000 interacted with year dummies in all of their panel regressions.
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(a) Assigning double treated into control (county level) (b) Dropping double treated (county level)

(c) Assigning double treated into control (CZ level) (d) Dropping double treated (CZ level)

Figure A.19: Event study assigning previously treated units into the control group or dropping them
Notes: The figure replicates the event study graph from Panel (b) of Figure A.21 to facilitate comparison with the event study in Currie
et al. (2023). Panel (a) assigns all nonattainment counties that were also in nonattainment with the earlier 1990 PM10 status in 2001-
2004 into the control group (20 counties). Panel (b) instead drops these 20 counties. Panel (c) and (d) repeat these analysis of (a)
and (b) respectively, but at the commuting zone level. Commuting zones in nonattainment, where all counties were previously also
in nonattainment (i.e. did not switch into nonattainment), are assigned into the control group in Panel (c). These are 6 commuting
zones, including, e.g. Los Angeles. In Panel (d), these commuting zones are instead dropped. Panel (b) and (d) look similar when we
additionally drop counties from the control group that are in nonattainment with the PM10 standard, but in attainment with the PM2.5
standard (this drops 71 counties instead of 20 counties, and is the sample we use for Table A.7). Standard errors are clustered at the
commuting zone level in all four panels. Pollution data based on Di et al. (2021).
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tainment effects significantly. When we use our treatment assignment instead (Columns 4-8), and
control for baseline pollution, we recover effects similar as in our main analysis. These are naturally
all slightly larger than the corresponding effects based on the CVW treatment assignment, where
the most polluting areas with the largest effect are assigned into the control group as discussed in
the previous paragraph. Second, turning to the estimation of the contribution of CAA nonattain-
ment designations to narrowing the Black-White exposure gap, Table A.19 shows that controlling
for trends based on baseline pollution lowers the estimated contribution from 61.1% (Column 1)
to 18.6% (Column 2) using the same RIF analysis and CVW treatment assignment as in the previ-
ous replication section. When we use our treatment assignment instead, we find an overestimated
contribution of 115.1% (Column 3) versus 22.5% with controls for trends (Column 4), similar to the
pattern in our main paper. Our estimated effect in Column 4 aligns closely with our main findings in
Table A.25 (i.e. the version of Table 2 that uses Di et al. (2021) data).70 The main insight is that irre-
spective of using CVW or our treatment assignment, controlling for secular trends based on baseline
pollution significantly reduces the estimated CAA contribution to the narrowing Black-White expo-
sure gap, in this case by a factor of around 3-4. The large upward bias from ignoring such trends
dominates the downward bias from using an approach that assigns some treated units already in
nonattainment into the control group.

Table A.18: Extended replication of Table 3 in CVW

CVW treatment assignment Our treatment assignment
DiD DiDwb DiD DiDwb

(1) (2) (3) (4) (5) (6) (7) (8)
PM2.5 NA CVW -1.20 -0.76 -0.17 0.0064

(0.40) (0.078) (0.41) (0.12)
PM2.5 NA SS -2.12 -1.49 -0.66 -0.20

(0.54) (0.45) (0.16) (0.10)
Observations 108,583,670 108,583,670
County FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes No Yes No Yes No Yes No
State-Year FE No Yes No Yes No Yes No Yes

Notes: The table replicates difference-in-differences estimates of the average treatment effect from nonattainment designations shown
in Table 3 in Currie et al. (2023) using our data and a panel regression at the block-by-year level. Column 1 replicates original Column
1, Column 2 replicates original Column 5. Columns 3 and 4 control for baseline PM2.5 separately in each year. Columns 5-8 repeat the
analysis but use our treatment assignment instead of the CVW treatment assignment. Pollution data is from Di et al. (2021).

70For our main findings we allow for simple linear heterogeneity by baseline pollution and race, rather than the RIF
approach used here. In Table A.25 based on Di et al. (2021) and DiDwb, we find a contribution of 24% versus the 22.5%
estimated using RIF and a slightly different time window.
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Table A.19: Extended replication of Table 4b in CVW

Main Counterfactual incl. 2005-2015 Mobility Responses
CVW CVW-wb SS SS-wb
(1) (2) (3) (4)

2005 Actual B-W Gap 1.16 1.16 1.16 1.16
2015 Counterfactual B-W Gap .98 .78 1.23 .8
Counterfactual Chg in B-W Gap -.18 -.38 .07 -.36
Actual Chg in B-W Gap -.47 -.47 -.47 -.47
% Attributable to CAA 61.1 18.6 115.1 22.5

2005 NA Treatment Switcher Switcher All All
Baseline Control (DiDwb) No Yes No Yes

Notes: The table shows an extended replication of Table 4 from Currie et al. (2023) using our block level data. Column 1 shows the same
RIF-based replication as in Table A.17. Column 2 adds controls for baseline PM2.5 in each RIF-Quantile regression. Population counts are
linearly interpolated between 2000, 2010 and 2020 to approximate the approach in Currie et al. (2023), who follow individuals in their
data as they move across locations. Counterfactuals are calculated as the actual PM2.5 levels in 2015 minus the RIF-Quantile treatment
effects of nonattainment (applied in proportion to the population share living in nonattainment areas), separately for each vigintile and
for each racial group. Pollution data is from Di et al. (2021).
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A.14 Counterfactual pollution disparities with constant 2010 population

Table A.20: Pollution disparities - counterfactual gap analysis with constant 2010 population

Panel (a): Black-White Pollution Gap
PM2.5 exposure Black-White Gap Contribution of CAA (in %) [homogeneous effect]

Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.14 11.49 1.65
2006-2008 12.11 10.53 1.58 -0.07 282 93 78 76 68 4
2011-2013 9.65 8.64 1.01 -0.64 52 13 10 12 28 25

PM2.5 exposure Black-White Gap Contribution of CAA (in %) [heterogeneous effect]
Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.14 11.49 1.65
2006-2008 12.11 10.53 1.58 -0.07 413 307 155 193 201 122
2011-2013 9.65 8.64 1.01 -0.64 67 14 31 31 49 38

PM2.5 exposure Black-White Gap Contribution of CAA (in %) [+race interactions]
Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.14 11.49 1.65
2006-2008 12.11 10.53 1.58 -0.07 216 110 124 128 26 -24
2011-2013 9.65 8.64 1.01 -0.64 71 18 43 41 52 47

Panel (b): Urban-Rural Pollution Gap
PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [homogeneous effect]

Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.41 10.18 2.23
2006-2008 11.22 9.61 1.60 -0.63 61 20 17 17 15 1
2011-2013 9.28 7.78 1.49 -0.74 83 20 16 20 44 39

PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [heterogeneous effect]
Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.41 10.18 2.23
2006-2008 11.22 9.61 1.60 -0.63 85 63 32 39 40 23
2011-2013 9.28 7.78 1.49 -0.74 103 23 45 45 74 57

PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [+urban interactions]
Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.41 10.18 2.23
2006-2008 11.22 9.61 1.60 -0.63 82 60 37 42 40 24
2011-2013 9.28 7.78 1.49 -0.74 104 24 46 47 74 61

Notes: Left columns show average PM2.5 exposure of Black, White, Urban and Rural populations, and difference between groups, as de-
rived from Census block level pollution concentrations and population counts. Right columns show contribution of CAA nonattainment
designations in 2005 based on counterfactual calculations that factor out nonattainment treatment effects as estimated in Columns 1-4, 6,
and 7 of Table 1. Population data is from the 2010 Census, held fixed across all years. Pollution data is from Meng et al. (2019b).
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A.15 Event study for house price trends

Figure A.20: Event study of house price growth nonattainment vs. attainment areas
Notes: The figure shows an event study plotting the average difference in (log) house prices between PM2.5 nonattainment and attainment
areas, normalized to 0 in 2005, as predicted from a DiDwb specification that allows for heterogeneous treatment effects by previous PM10
nonattainment status and baseline PM2.5 levels in 2001-03 as in Table 3. Shown are the average treatment effects at the mean, and 95%
confidence intervals are based on standard errors clustered at the county level. Pollution data is from Meng et al. (2019b).
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A.16 Results for house price changes with commuting zone fixed effects

Table A.21: Pollution damages - instrumental variable comparison (with CZ FE)

OLS DiD-IV DiDwb-IV M1DiD-IV M2DiD-IV RD0-IV RD1-IV
(1) (2) (3) (4) (5) (6) (7)

Panel (a): Effect of PM2.5 increases on house price index growth 2001-03 to 2006-08
∆PM2.5 -0.019 -0.025 -0.040 -0.037 -0.039 -0.053 -0.086

(0.0053) (0.0076) (0.013) (0.013) (0.0097) (0.024) (0.034)
Observations 54483 54483 54483 21080 21602 5086 7936
K-P F statistic 107.2 9.67 92.7 82.9 37.4 98.3
Elasticity -0.23 -0.30 -0.48 -0.44 -0.46 -0.64 -1.03

Panel (b): Effect of PM2.5 increases on house price index growth 2001-03 to 2011-13
∆PM2.5 -0.022 -0.039 -0.14 -0.029 -0.042 -0.0060 -0.050

(0.0099) (0.0090) (0.028) (0.014) (0.014) (0.010) (0.012)
Observations 54332 54332 54332 20990 21517 4495 19034
K-P F statistic 278.4 17.0 296.2 276.1 303.8 288.1
Elasticity -0.27 -0.47 -1.73 -0.35 -0.50 -0.071 -0.60

Notes: The dependent variable is the change in the logarithm of the house price index. ∆PM2.5 is the change in PM2.5 since 2001-03 in
µg/m3, instrumented by CAA nonattainment status for PM2.5, allowing for heterogeneous effects in the instrument by previous PM10
nonattainment status and by baseline PM2.5 levels in 2001-03. First-stage specifications in Columns 2-7 correspond to Columns 1-4, 6,
and 7 in Table 1, with commuting zone fixed effects added. Standard errors in parentheses are clustered at the county level. Pollution
data is from Meng et al. (2019b).
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A.17 Reduced form results for house price changes

Table A.22: Reduced form effect of NA on HPI - instrumental variable comparison

DiD-RF DiDwb-RF M1DiD-RF M2DiD-RF RD0-RF RD1-RF
(1) (2) (3) (4) (5) (6)

Panel (a): Effect of NA on house price index growth 2001-03 to 2006-08
NA Effect 0.057 0.142 0.057 0.045 0.087 0.008

(0.025) (0.030) (0.038) (0.044) (0.066) (0.120)
Observations 54529 54529 21152 21693 5087 7937

Panel (b): Effect of NA on house price index growth 2001-03 to 2011-13
NA Effect -0.018 0.017 -0.027 -0.023 0.062 0.118

(0.022) (0.024) (0.025) (0.026) (0.052) (0.057)
Observations 54378 54378 21062 21608 4496 19035

Notes: The table shows reduced form estimates from a simplified version of our instruments that only includes PM2.5 nonattainment
(NA) and the interaction with baseline PM2.5. Average treatment effects are calculated as linear combination of coefficient estimates for
the NA dummy and NA interacted with baseline PM2.5, evaluated at the mean. Standard errors in parentheses are clustered at the county
level. Pollution data is from Meng et al. (2019b).
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A.18 Replication of Tables 1-3 and Figures 3-5 in main paper with alternative PM2.5

data
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(a) Evolution of PM2.5 grouped by EPA RV grouping

(b) Event study (annual nonattainment-attainment differences in PM2.5)

Figure A.21: Trends in PM2.5 and event study analysis using Di et al. (2021)
Notes: Panel (a) shows the change in PM2.5 averages at the tract level (population-weighted) over time. Each line represents a different
bin of EPA-registered PM2.5 values assigned to each attainment/nonattainment area, each of which usually comprises multiple counties
and tracts. Panel (b) shows coefficient estimates from a regression that includes a treatment dummy interacted with years, controlling for
year fixed effects. The dotted blue line shows point estimates and the dashed red lines show 95% confidence intervals based on standard
errors that are cluster-robust at the level of counties. Both Panels are based on data from Di et al. (2021).

A-50



(a) Evolution of PM2.5 grouped by EPA RV grouping

(b) Event study (annual nonattainment-attainment differences in PM2.5)

Figure A.22: Trends in PM2.5 and event study analysis using van Donkelaar et al. (2021b)
Notes: Panel (a) shows the change in PM2.5 averages at the tract level (population-weighted) over time. Each line represents a different
bin of EPA-registered PM2.5 values assigned to each attainment/nonattainment area, each of which usually comprises multiple counties
and tracts. Panel (b) shows coefficient estimates from a regression that includes a treatment dummy interacted with years, controlling for
year fixed effects. The dotted blue line shows point estimates and the dashed red lines show 95% confidence intervals based on standard
errors that are cluster-robust at the level of counties. Both Panels are based on data from van Donkelaar et al. (2021b).
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Figure A.23: Improvement in tract PM2.5 averages and EPA-registered PM2.5 values using Di et al.
(2021)
Notes: The figure shows the improvement in PM2.5 averages at the tract level between two periods, 2001-2003 and 2006-2008. The size
of the markers reflect tract level populations. The PM2.5 improvements are plotted against the EPA-registered PM2.5 values of each
attainment/nonattainment area, each of which usually comprises multiple counties and tracts. The dashed line plots the average PM2.5
improvement for tracts in nonattainment and attainment areas separately, weighted by tract population. The solid lines plot the linear
projection of tract level PM2.5 improvements on the EPA-registered PM2.5 values of the nonattainment and attainment areas separately,
weighted by tract population. Based on data from Di et al. (2021).

A-52



Figure A.24: Improvement in tract PM2.5 averages and EPA-registered PM2.5 values using van Donke-
laar et al. (2021b)
Notes: The figure shows the improvement in PM2.5 averages at the tract level between two periods, 2001-2003 and 2006-2008. The size
of the markers reflect tract level populations. The PM2.5 improvements are plotted against the EPA-registered PM2.5 values of each
attainment/nonattainment area, each of which usually comprises multiple counties and tracts. The dashed line plots the average PM2.5
improvement for tracts in nonattainment and attainment areas separately, weighted by tract population. The solid lines plot the linear
projection of tract level PM2.5 improvements on the EPA-registered PM2.5 values of the nonattainment and attainment areas separately,
weighted by tract population. Based on data from van Donkelaar et al. (2021b).
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Figure A.25: Improvement in tract PM2.5 averages and baseline PM2.5 levels using Di et al. (2021)
Notes: The markers in the figure show the improvement in PM2.5 averages at the tract level between two periods, 2001-2003 and 2006-2008.
The PM2.5 improvements are plotted against the baseline PM2.5 levels of each tract, using two different colors for tracts in nonattainment
and attainment areas. The kernel density (right axis) shows the overlap between nonattainment and attainment tracts in terms of baseline
PM2.5, weighted by tract population. The figure is based on data from Di et al. (2021).
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Figure A.26: Improvement in tract PM2.5 averages and baseline PM2.5 levels using van Donkelaar
et al. (2021b)
Notes: The markers in the figure show the improvement in PM2.5 averages at the tract level between two periods, 2001-2003 and 2006-2008.
The PM2.5 improvements are plotted against the baseline PM2.5 levels of each tract, using two different colors for tracts in nonattainment
and attainment areas. The kernel density (right axis) shows the overlap between nonattainment and attainment tracts in terms of baseline
PM2.5, weighted by tract population. The figure is based on data from van Donkelaar et al. (2021b).
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Table A.23: Nonattainment status and changes in PM2.5 using Di et al. (2021)

ATT LATE
All Tracts with RV Optimal Bandw.

DiD DiDwb M1DiD M2DiD DiD RD0 RD1
(1) (2) (3) (4) (5) (6) (7)

Part A: Effect from 2001-03 to 2006-08
Panel (a): Homogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment -1.92 -0.49 -0.32 -0.74 -1.86 -0.84 -0.31
(0.38) (0.13) (0.12) (0.40) (0.39) (0.58) (0.52)

Observations 72043 72043 27827 29932 47962 5234 12738

Panel (b): Placebo Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.46 -0.0090 -0.014 0.15 -0.56 -0.12 0.077
(0.20) (0.20) (0.20) (0.20) (0.21) (0.23) (0.63)

Observations 49357 49357 20460 20068 25276 3280 4626

Panel (c): Heterogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment 6.27 4.11 2.42 7.41 6.33 4.03 4.76
(0.83) (0.85) (0.75) (0.87) (0.83) (1.20) (1.06)

NA(x)Baseline -0.52 -0.33 -0.19 -0.52 -0.52 -0.32 -0.34
(0.059) (0.062) (0.052) (0.061) (0.059) (0.068) (0.061)

Observations 72043 72043 27827 29932 47962 5234 12738
Implied ATE -1.92 -1.05 -0.50 -0.75 -1.86 -1.04 -0.65
10th pct -0.61 -0.22 -0.027 0.56 -0.55 -0.23 0.22
90th pct -4.19 -2.48 -1.30 -3.01 -4.13 -2.45 -2.15

Part B: Effect from 2001-03 to 2011-13
Panel (d): Homogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment -2.85 -0.50 -0.23 -0.93 -2.94 -0.52 -0.73
(0.39) (0.11) (0.11) (0.42) (0.41) (0.22) (0.37)

Observations 72043 72043 27827 29932 47962 3743 10459

Panel (e): Placebo Treatment Effect: from 2001-03 to 2011-13

Nonattainment -0.91 0.26 0.33 0.45 -1.50 0.32 1.14
(0.18) (0.15) (0.18) (0.19) (0.21) (0.37) (0.63)

Observations 49357 49357 20460 20068 25276 2143 4807

Panel (f): Heterogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment 6.32 0.98 4.17 8.20 6.24 6.12 4.87
(0.83) (0.84) (0.70) (0.87) (0.83) (1.63) (1.06)

NA(x)Baseline -0.59 -0.11 -0.30 -0.58 -0.59 -0.44 -0.37
(0.058) (0.060) (0.049) (0.060) (0.058) (0.11) (0.067)

Observations 72043 72043 27827 29932 47962 3743 10459
Implied ATE -2.85 -0.69 -0.52 -0.94 -2.94 -0.77 -0.87
10th pct -1.38 -0.42 0.23 0.53 -1.46 0.34 0.052
90th pct -5.39 -1.15 -1.82 -3.48 -5.48 -2.68 -2.46

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status on the change in PM2.5 levels between the
pre- and post-treatment periods. Each panel(x)column combination is from a separate regression as described in the text. (1) uses simple
DiD, (2) adds controls for baseline PM2.5 (2001-03), (3) runs DiD using a sample matched (1-to-1) on baseline PM2.5, (4) matches on
baseline PM2.5, tract population and population density (both 2000), (5) again uses simple DiD but with the limited sample of areas for
which an EPA-registered PM2.5 value exists, (6) and (7) use the limited sample based on optimal bandwidth selection in a regression
discontinuity framework. Standard errors in parentheses are clustered at the county level. All results based on Di et al. (2021).
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Table A.24: Nonattainment status and changes in PM2.5 using van Donkelaar et al. (2021b)

ATT LATE
All Tracts with RV Optimal Bandw.

DiD DiDwb M1DiD M2DiD DiD RD0 RD1
(1) (2) (3) (4) (5) (6) (7)

Part A: Effect from 2001-03 to 2006-08
Panel (a): Homogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment -1.22 -0.13 -0.20 -0.63 -1.21 -0.26 0.043
(0.33) (0.092) (0.16) (0.36) (0.34) (0.26) (0.35)

Observations 72043 72043 28311 29808 47962 7026 15683

Panel (b): Placebo Treatment Effect: from 2001-03 to 2006-08

Nonattainment -0.38 -0.15 -0.15 -0.071 -0.52 -0.071 0.029
(0.12) (0.13) (0.13) (0.14) (0.17) (0.44) (0.50)

Observations 49357 49357 20285 20056 25276 1046 4626

Panel (c): Heterogeneous Treatment Effect: from 2001-03 to 2006-08

Nonattainment 4.76 3.47 2.52 5.34 4.78 2.04 2.89
(0.58) (0.59) (0.61) (0.61) (0.59) (1.33) (0.70)

NA(x)Baseline -0.39 -0.28 -0.19 -0.39 -0.39 -0.16 -0.20
(0.044) (0.045) (0.045) (0.044) (0.044) (0.093) (0.042)

Observations 72043 72043 28311 29808 47962 7026 15683
Implied ATE -1.22 -0.70 -0.38 -0.64 -1.21 -0.39 -0.17
10th pct -0.12 0.063 0.15 0.46 -0.11 0.054 0.39
90th pct -3.18 -2.07 -1.33 -2.60 -3.16 -1.19 -1.17

Part B: Effect from 2001-03 to 2011-13
Panel (d): Homogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment -2.34 -0.15 -0.072 -0.92 -2.42 -0.29 -0.54
(0.39) (0.090) (0.14) (0.45) (0.40) (0.100) (0.35)

Observations 72043 72043 28311 29808 47962 3743 12997

Panel (e): Placebo Treatment Effect: from 2001-03 to 2011-13

Nonattainment -0.98 0.048 0.095 0.15 -1.58 0.97 1.09
(0.16) (0.14) (0.18) (0.19) (0.18) (0.43) (0.58)

Observations 49357 49357 20285 20056 25276 676 3280

Panel (f): Heterogeneous Treatment Effect: from 2001-03 to 2011-13

Nonattainment 5.75 0.60 4.95 7.15 5.67 1.10 3.10
(0.50) (0.51) (0.69) (0.56) (0.51) (0.53) (0.60)

NA(x)Baseline -0.53 -0.058 -0.35 -0.53 -0.53 -0.098 -0.26
(0.037) (0.039) (0.051) (0.038) (0.037) (0.037) (0.035)

Observations 72043 72043 28311 29808 47962 3743 12997
Implied ATE -2.34 -0.27 -0.41 -0.93 -2.42 -0.39 -0.87
10th pct -0.86 -0.11 0.57 0.56 -0.93 -0.11 -0.14
90th pct -4.99 -0.56 -2.17 -3.57 -5.06 -0.87 -2.17

Notes: The table shows coefficient estimates for the treatment effect of nonattainment status on the change in PM2.5 levels between the
pre- and post-treatment periods. Each panel(x)column combination is from a separate regression as described in the text. (1) uses simple
DiD, (2) adds controls for baseline PM2.5 (2001-03), (3) runs DiD using a sample matched (1-to-1) on baseline PM2.5, (4) matches on
baseline PM2.5, tract population and population density (both 2000), (5) again uses simple DiD but with the limited sample of areas for
which an EPA-registered PM2.5 value exists, (6) and (7) use the limited sample based on optimal bandwidth selection in a regression
discontinuity framework. Standard errors in parentheses are clustered at the county level. All results based on van Donkelaar et al.
(2021b).
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Table A.25: Pollution disparities - counterfactual gap analysis using Di et al. (2021)

Panel (a): Black-White Pollution Gap
PM2.5 exposure Black-White Gap Contribution of CAA (in %) [homogeneous effect]

Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.48 12.32 1.16
2006-2008 11.91 10.91 1.00 -0.16 172 44 28 66 75 28
2011-2013 9.63 9 0.63 -0.53 77 14 6 25 14 20

PM2.5 exposure Black-White Gap Contribution of CAA (in %) [heterogeneous effect]
Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.48 12.32 1.16
2006-2008 11.91 10.91 1.00 -0.16 171 93 44 65 92 57
2011-2013 9.63 9 0.63 -0.53 77 18 14 25 20 23

PM2.5 exposure Black-White Gap Contribution of CAA (in %) [+race interactions]
Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.48 12.32 1.16
2006-2008 11.91 10.91 1.00 -0.16 140 62 54 35 -55 -46
2011-2013 9.63 9 0.63 -0.53 83 24 31 31 -6 -2

Panel (b): Urban-Rural Pollution Gap
PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [homogeneous effect]

Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.94 11.51 1.43
2006-2008 11.27 10.54 0.73 -0.70 72 18 12 28 31 12
2011-2013 9.33 8.64 0.69 -0.74 101 18 8 33 19 26

PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [heterogeneous effect]
Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.94 11.51 1.43
2006-2008 11.27 10.54 0.73 -0.70 85 47 23 41 47 33
2011-2013 9.33 8.64 0.69 -0.74 115 27 25 47 37 39

PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [+urban interactions]
Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.94 11.51 1.43
2006-2008 11.27 10.54 0.73 -0.70 91 53 30 47 49 33
2011-2013 9.33 8.64 0.69 -0.74 119 31 30 51 38 42

Notes: Left columns show average PM2.5 exposure of Black, White, Urban and Rural populations, and difference between groups, as de-
rived from Census block level pollution concentrations and population counts. Right columns show contribution of CAA nonattainment
designations in 2005 based on counterfactual calculations that factor out nonattainment treatment effects as estimated in Columns 1-4,
6, and 7 of Table 1. Population data is from the 2000, 2010 and 2020 waves of the US Census, linearly interpolated for years in between.
Pollution data is from Di et al. (2021).
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Table A.26: Pollution disparities - counterfactual gap analysis using van Donkelaar et al. (2021b)

Panel (a): Black-White Pollution Gap
PM2.5 exposure Black-White Gap Contribution of CAA (in %) [homogeneous effect]

Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.03 11.88 1.15
2006-2008 11.8 10.73 1.07 -0.08 228 25 37 118 48 -8
2011-2013 9.38 8.74 0.64 -0.51 66 4 2 26 8 15

PM2.5 exposure Black-White Gap Contribution of CAA (in %) [heterogeneous effect]
Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.03 11.88 1.15
2006-2008 11.8 10.73 1.07 -0.08 218 124 67 110 69 27
2011-2013 9.38 8.74 0.64 -0.51 64 8 10 24 11 24

PM2.5 exposure Black-White Gap Contribution of CAA (in %) [+race interactions]
Period Black White (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 13.03 11.88 1.15
2006-2008 11.8 10.73 1.07 -0.08 174 80 51 64 191 21
2011-2013 9.38 8.74 0.64 -0.51 68 12 14 28 5 39

Panel (b): Urban-Rural Pollution Gap
PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [homogeneous effect]

Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.53 11.15 1.38
2006-2008 11.19 10.23 0.96 -0.42 77 8 12 40 16 -3
2011-2013 9.17 8.26 0.91 -0.47 132 9 4 52 16 30

PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [heterogeneous effect]
Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.53 11.15 1.38
2006-2008 11.19 10.23 0.96 -0.42 92 55 31 55 31 18
2011-2013 9.17 8.26 0.91 -0.47 151 18 35 71 25 58

PM2.5 exposure Urban-Rural Gap Contribution of CAA (in %) [+urban interactions]
Period Urban Rural (levels) (change) DiD DIDwb M1DiD M2DiD RD0 RD1
2001-2003 12.53 11.15 1.38
2006-2008 11.19 10.23 0.96 -0.42 95 58 36 59 33 24
2011-2013 9.17 8.26 0.91 -0.47 148 15 33 68 27 56

Notes: Left columns show average PM2.5 exposure of Black, White, Urban and Rural populations, and difference between groups, as de-
rived from Census block level pollution concentrations and population counts. Right columns show contribution of CAA nonattainment
designations in 2005 based on counterfactual calculations that factor out nonattainment treatment effects as estimated in Columns 1-4,
6, and 7 of Table 1. Population data is from the 2000, 2010 and 2020 waves of the US Census, linearly interpolated for years in between.
Pollution data is from van Donkelaar et al. (2021b).
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Table A.27: Pollution damages - instrumental variable comparison using Di et al. (2021)

OLS DiD-IV DiDwb-IV M1DiD-IV M2DiD-IV R0-IV R1-IV
(1) (2) (3) (4) (5) (6) (7)

Panel (a): Effect of PM2.5 increases on house price index growth 2001-03 to 2006-08
∆PM2.5 -0.028 -0.048 -0.21 -0.048 -0.081 -0.083 0.25

(0.014) (0.0099) (0.024) (0.042) (0.0075) (0.093) (0.060)
Observations 54529 54529 54529 20959 22631 3882 9729
K-P F statistic 90.1 17.6 11.9 48.6 8.51 47.5
Elasticity -0.35 -0.60 -2.62 -0.60 -1.03 -1.04 3.21

Panel (b): Effect of PM2.5 increases on house price index growth 2001-03 to 2011-13
∆PM2.5 -0.0037 -0.010 -0.15 0.033 -0.034 -0.025 0.055

(0.0087) (0.011) (0.023) (0.037) (0.012) (0.11) (0.013)
Observations 54378 54378 54378 20867 22557 2965 7911
K-P F statistic 189.9 17.3 17.5 71.7 40.8 258.2
Elasticity -0.046 -0.13 -1.89 0.42 -0.43 -0.31 0.69

Notes: The dependent variable is the change in the logarithm of the house price index. ∆PM2.5 is the change in PM2.5 since 2001-03 in
µg/m3, instrumented by CAA nonattainment status for PM2.5, allowing for heterogeneous effects in the instrument by previous PM10
nonattainment status and by baseline PM2.5 levels in 2001-03. First-stage specifications in Columns 2-7 correspond to Columns 1-4, 6,
and 7 in Table A.23. Standard errors in parentheses are clustered at the county level. Pollution data is from Di et al. (2021).

Table A.28: Pollution damages - instrumental variable comparison using van Donkelaar et al. (2021b)

OLS DiD-IV DiDwb-IV M1DiD-IV M2DiD-IV R0-IV R1-IV
(1) (2) (3) (4) (5) (6) (7)

Panel (a): Effect of PM2.5 increases on house price index growth 2001-03 to 2006-08
∆PM2.5 -0.039 -0.067 -0.19 -0.032 -0.089 0.13 0.090

(0.019) (0.012) (0.039) (0.056) (0.0086) (0.044) (0.089)
Observations 54529 54529 54529 21287 22442 5087 11963
K-P F statistic 96.4 23.9 264.9 152.8 41.7 42.9
Elasticity -0.47 -0.81 -2.31 -0.39 -1.09 1.55 1.09

Panel (b): Effect of PM2.5 increases on house price index growth 2001-03 to 2011-13
∆PM2.5 -0.0062 -0.012 -0.18 0.033 -0.032 -0.10 0.054

(0.010) (0.012) (0.054) (0.031) (0.013) (0.099) (0.014)
Observations 54378 54378 54378 21199 22363 2965 9902
K-P F statistic 408.9 18.1 55.0 202.3 908.5 1038.9
Elasticity -0.075 -0.14 -2.24 0.40 -0.39 -1.26 0.66

Notes: The dependent variable is the change in the logarithm of the house price index. ∆PM2.5 is the change in PM2.5 since 2001-03 in
µg/m3, instrumented by CAA nonattainment status for PM2.5, allowing for heterogeneous effects in the instrument by previous PM10
nonattainment status and by baseline PM2.5 levels in 2001-03. First-stage specifications in Columns 2-7 correspond to Columns 1-4, 6,
and 7 in Table A.24. Standard errors in parentheses are clustered at the county level. Pollution data is from van Donkelaar et al. (2021b).
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