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Breaking time structure leads to overestimating model perfor-
mance, even if the model concerns only a single time period

1. Motivation

Backtesting is concerned with studying the performance of
a model on historical data. The data usually are subject to a
time series structure. Handling such data incorrectly can intro-
duce a strong bias in the evaluation of a model’s performance.
This is true even if the model of interest concerns only one
period and hence is a priori not exposed to the time series’
auto correlation.

Information leakage is introduced if the in- and out-of-
sample set split does not take into account the intrinsic time
series structure, for example, if the dataset is randomly split.
In this case, the in-sample set may contain some information
from the out-of-sample set that would not be available if the
data split was done in pseudo real-time, which puts the earlier
part of the data into the in-sample and the later part into the
out-of-sample set. A random data split can lead to an over-
estimated model performance on the out-of-sample set, as its
samples are not anymore independent from the in-sample set,
and even more so for complex models. This issue is often
obscured when studying complex models without a relevant
time structure (e.g. studying models concerned with only a
single time period).

We decided to write this short comment after noticing a
few published papers that split time series data randomly. An
extended version of this comment with more details and point-
ers to the relevant literature is available on SSRN (Wang and
Ruf 2022).†

We believe the wrong split into in-sample and out-
of-sample sets is usually done with the best intentions,
sometimes with statistical cross validation in mind and
sometimes by carelessly using standard software. It is

∗Corresponding author. Email: j.ruf@lse.ac.uk
† The code to reproduce the results in this paper can be found at
https://github.com/weiguanwang/Information_Leakage_in_Backtesting.git.

known that improper cross-validation potentially leads to
overfitted models (Opsomer et al. 2001, Bergmeir and
Benítez 2012). In several research works, blocked forms
of cross-validation are argued to perform favourably in
out-of-sample testing that preserves pseudo real-time (Bur-
man et al. 1994, Racine 2000, Hall et al. 2004, Bergmeir
et al. 2014, 2018). In this brief comment, we do not discuss
block cross-validation but rather illustrate the information
leakage of random data splits with real and simulated panel
data.

2. Experimental setup

2.1. Backtesting the hedging of options

To illustrate how information may leak into the out-of-sample
set we consider the following setup. The goal is to find the
best one-period hedging strategy δ from a large class of func-
tions by backtesting. This strategy is supposed to minimise
the squared hedging error

(
δS1 +

(
1 + r

1

252

)
(C0 − δS0) − C1

)2

. (1)

This corresponds to the squared end-of-day wealth of an insti-
tution that sold a call, bought δ shares of the underlying on
the previous trading day, and used the money market account
for the remainder. In our survey paper (Ruf and Wang 2020),
we point to the large research body on this statistical hedging
problem.

We shall compare two statistical models (function classes
for the hedging strategy δ). These two models are among the
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best performing models studied in Ruf and Wang (2021). The
first model assumes that the hedging strategy δ is a linear
function (LR, for ‘linear regression’) of option characteris-
tics, while the second one represents δ as an artificial neural
network (ANN):

δLR = fLR(δBS,VBS, VannaBS);

δANN = fANN(δBS,VBS, σimpl
√

τ).

Here, δBS, VBS, and VannaBS represent the Black–Scholes
(BS) greeks Delta, Vega, and Vanna, respectively, calculated
under the BS model with the option’s implied volatility, and
σimpl

√
τ represents the square root of total implied variance.

2.2. The data

The experiment below is repeated on simulated and real-
world data. The simulated data are generated from the BS
model (according to the CBOE rules). The real-world data are
end-of-day S&P 500 option data (SPX) obtained from Option-
Metrics (2010–2019). Each of these datasets constitutes panel
data, i.e. cross sections of time series. There exist, at any
point of time, several options that are different in strike and/or
maturity.

Let us next describe a specific data point. Each point
describes one out-of-the-money option over one period (1
day). The data point contains the option price at the begin-
ning and end of the period and the underlying’s price at the
end of the period. Moreover, the data point includes a flag
indicating whether the option is a call or a put, the risk-free
rate, the strike and time-to-maturity of the option, its implied
volatility, and its BS sensitivities.

We shall see that information leakage caused by the wrong
data split becomes even more significant if the data are addi-
tionally ‘tagged’. To explain what we mean, consider the
situation that on any trading day we have an additional obser-
vation, say the daily value of the VIX (Volatility Index). We
will argue that such additional features might lead to spurious
model performance under random data splits. For the sake of
this experiment, we want to ensure that this additional fea-
ture has nothing to do with the rest of the data. Hence, for
both the simulated and real datasets, we shall use an inde-
pendently (from all other data) sampled Ornstein–Uhlenbeck
process as the additional feature. We call this feature ‘fake
VIX’ to remind ourselves that it has nothing to do with any
real-world observations.

2.3. Separation into in-sample and out-of-sample sets

For panel data as used here, different kinds of splits can
be employed, e.g. chronological or random, as shown in
figure 1. When performing a chronological split (‘pseudo real-
time’), first a critical date is determined. Samples from days
before this point constitute the in-sample set and the remain-
ing ones the out-of-sample set. Alternatively, the data could
be split at random into in-sample and out-of-sample sets. In
this approach, the in-sample and out-of-sample sets are also
disjoint. However, we shall argue that such an approach intro-
duces significant information leakage. Indeed, on each day

several options are traded. Hence samples from the same day
might show up in both the in-sample and out-of-sample sets
simultaneously.

2.4. Four experimental configurations

Each dataset will be pre-processed in four different ways
(‘configurations’) as follows. The first two configurations
involve a chronological split. The remaining two rely on a
random split.

(i) The ‘Baseline’ configuration corresponds to the stan-
dard setup. The dataset is separated chronologically
into an in-sample and an out-of-sample set.

(ii) The ‘VIX ’ configuration takes the ‘Baseline’ configu-
ration but adds the simulated ‘fake VIX’ variable as
an additional feature in the linear regression and the
ANN.

(iii) The ‘Permute’ configuration corresponds to the
random split into in-sample and out-of-sample sets.

(iv) The ‘Permute + VIX ’ configuration is as the ‘Permute’
configuration, but now with the ‘fake VIX’ variable as
an additional feature.

3. Presence of information leakage

We now present and interpret the out-of-sample performance
of the two models under the four configurations. For δ = δLR

and δ = δANN we compute the average of the values in (1)
across all out-of-sample data points. We focus on the reduc-
tion in out-of-sample mean-squared hedging error relative to
the hedging error when using the BS delta δBS. The two panels
in figure 2 summarise the results on the BS and the S&P 500
datasets, respectively.

For the simulation data, in the ‘Baseline’ configuration, nei-
ther of the statistical models has a better mean-squared hedg-
ing error than the BS delta. For the S&P 500 options, both
statistical models lead to a hedging performance improvement
of about 19% relative to using the BS delta. The following
points summarise the outcomes of the experiment for the three
other configurations.

Comment 1: Adding an additional noisy feature leads to
a worse out-of-sample performance when time structure is
preserved.

In the ‘VIX’ configuration, both the linear regression and
the ANN perform worse than in the ‘Baseline’ configuration,
with the change for the ANN more pronounced. Indeed, the
additional feature is simulated completely independently from
the rest of the data. Hence, it has no predictive power for the
hedging ratio at all.

Comment 2: A random data split leads to an improved per-
formance of the statistical models, and more so for the more
complex model.

This is also true when the data are generated by a time-
homogeneous BS model. Since the discrete-time steps are
small, we know, a priori, that BS hedging is close to optimal.
Nevertheless, instead of underperforming by about 0.2% for
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Figure 1. Illustration of the random (left) and chronological (right) data splits. Each day in this illustration has two one-period samples.

Figure 2. Illustration of information leakage when failing to take into account the time series structure of a simulated dataset.

the linear regression and 2% for the ANN, the linear regres-
sion and ANN reduce the BS Delta benchmark in the BS data
by about 3% after data permutation, with a larger relative
improvement for the ANN. For the S&P 500 dataset, permut-
ing samples allows the linear regression and ANN to reduce
the BS Delta benchmark by about 23%, instead of about 19%
in the ‘Baseline’ configuration.

Comment 3: Noisy features may increase information leak-
age if data are randomly split.

If including ‘fake VIX’ as an additional feature when per-
muting samples, both statistical models improve, but most
dramatically the ANN, which now outperforms the BS Delta
benchmark by about 7% in the BS simulated data and by about
29% in the S&P 500 data. What is going on? By construc-
tion, each day has several options (corresponding to different
strikes) but only one ‘fake VIX’ value. The random permu-
tation now allows samples from the same day to appear both
in the in-sample and out-of-sample sets. The presence of the
additional feature makes it possible for the ANN (and par-
tially also for the linear regression model) to understand from
which day a sample is. In other words, the ‘fake VIX’ tags the
different days and the models are able to pick up on it. This is
relevant since on any specific day the underlying’s price goes

up or down (or, in case of the S&P 500 data, there is a certain
shift in the implied volatility surface). This leaked information
improves the models’ hedging performance in backtesting but
of course would not be available in real time.

4. Conclusion

Even for a linear regression model with few parameters,
a faulty data split may lead to remarkably overconfident
estimates of the model’s performance. In addition, a more
complex model (such as an ANN) may be more prone to
information leakage. This might lead to the wrong conclu-
sion that such a model outperforms the simpler one in a direct
comparison.

Information leakage is further reinforced when data are
‘tagged’ by the presence of an additional feature that takes the
same value for different samples from the same date. Then
random permutations make this feature informative (despite
it having nothing to do with the data-generating mechanism).
This yields a further seemingly important improvement for
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a model’s performance, not achievable when applying the
model in real time.

5. Open Scholarship

This article has earned the Center for Open Science
badge for Open Data. The data are openly accessible at
https://doi.org/10.34691/FK2/ULMNHV.
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