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Abstract
In this paper, we present a novel family of multivariate mixed Poisson-Generalized 
Inverse Gaussian INAR(1), MMPGIG-INAR(1), regression models for modelling 
time series of overdispersed count response variables in a versatile manner. The sta-
tistical properties associated with the proposed family of models are discussed and 
we derive the joint distribution of innovations across all the sequences. Finally, for 
illustrative purposes different members of the MMPGIG-INAR(1) class are fitted 
to Local Government Property Insurance Fund data from the state of Wisconsin via 
maximum likelihood estimation.

Keywords Count data time series · Multivariate INAR(1) regression models · 
Multivariate mixed Poisson-Generalized Inverse Gaussian · Correlated time series · 
Maximum likelihood estimation

1 Introduction

In recent years, there has been a growing interest in modelling integer-valued time 
series of univariate and multivariate count data in a plethora of different scien-
tific fields such as sociology, econometrics, manufacturing, engineering, agricul-
ture, biology, biometrics, genetics, medicine, sports, marketing, and insurance. In 
particular, regarding the univariate case (Al-Osh and Alzaid 1987) and McKenzie 
(1985) were the first to consider an INAR(1) model based on the so-called binomial 
thinning operator. Subsequently, many articles focused on extending this setup by 
applying different thinning operators or by varying the distribution of innovations. 
For more details, the interested reader can refer to Weiß (2018), Davis et al. (2016), 
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Scotto et  al. (2015), Weiß (2008) among many more. The INAR(1) model with 
Poisson marginal distribution (Poisson INAR(1)) has been the most popular choice 
due to the simplicity of its log-likelihood function that implies that the formality of 
parameter estimation via maximum likelihood (ML) estimation is straightforward. 
Also, Freeland and McCabe (2004) considered an extension of the model by allow-
ing for regression specifications on the mean of the Poisson innovation as well as 
parameter of binomial thinning operator. On the other hand, the literature which 
focuses on the multivariate case is less developed. In particular, Latour (1997) intro-
duced a multivariate GINAR(p) model with a generalized thinning operator. Karlis 
and Pedeli (2013) and Pedeli and Karlis (2011, 2013a, b) focused on the diagonal 
case under which the thinning operators do not introduce cross correlation among 
different counts. In this case, the dependence structure introduced by innovations. 
Additionally, Ristić et al. (2012), Popović (2016), Popović et al. (2016) and Nastić 
et  al. (2016) constructed multivariate INAR distributions with cross correlations 
among counts and random coefficients thinning. Finally, Karlis and Pedeli (2013) 
extended the setup of the previous articles by allowing for negative cross correlation 
via a copula-based approach for modelling the innovations.

In this paper, we extend the model proposed by Pedeli and Karlis (2011) by intro-
ducing the multivariate mixed Poisson-Generalized Inverse Gaussian INAR(1), MMP-
GIG-INAR(1), regression model for multivariate count time series data. The MMP-
GIG-INAR(1) is a general three parameter distribution family of INAR(1) models 
driven by mixed Poisson regression innovations where the mixing densities are cho-
sen from the Generalized Inverse Gaussian class of distributions. Thus, the proposed 
modelling framework can provide the appropriate level of flexibility for modelling 
positive correlations of different magnitudes among time series of different types of 
overdispersed count response variables. In particular, depending on the values taken 
by the shape parameter, the MMPGIG-INAR(1) family includes many members, such 
as the mixed Poisson-Inverse Gaussian (PIG), as special cases and several others as 
limiting cases, such as the Negative Binomial, or Poisson-Gamma, the Poisson-Inverse 
Gamma (PIGA), the Poisson-Inverse Exponential, the Poisson-Inverse Chi Squared 
and the Poisson-Scaled Inverse Chi Squared distributions. Therefore, it can accommo-
date different levels of overdispersion depending on the chosen parametric form of the 
mixing density. Furthermore, the MMPGIG-INAR(1) family of models is constructed 
by assuming that the probability mass function (pmf) of the MMPGIG innovations 
is parameterized in terms of the mean parameter which results in a more orthogonal 
parameterization that facilitates maximum likelihood (ML) estimation when regression 
specifications are allowed for the mean parameters of the MMPGIG-INAR(1) regres-
sion model. For expository purposes, we derive the joint probability mass functions 
and the derivatives of several special cases of the MMPGIG-INAR(1) family which are 
used as innovations. These models are fitted to time series of claim count data from the 
Local Government Property Insurance Fund (LGPIF) data in the state of Wisconsin. 
At this point it is worth noting that modelling the correlation between different types 
of claims from the same and/or different types of coverage it is very important from 
a practical business standpoint. Many articles have been devoted to this topic, see for 
example, Bermúdez and Karlis (2011), Bermúdez and Karlis (2012), Shi and Valdez 
(2014a, b), Abdallah et al. (2016), Bermúdez and Karlis (2017), Pechon et al. (2018), 
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Pechon et  al. (2019), Bolancé and Vernic (2019), Denuit et  al. (2019), Fung et  al. 
(2019), Bolancé et  al. (2020), Pechon et  al. (2021), Jeong and Dey (2021), Gómez-
Déniz and Calderín-Ojeda (2021), Tzougas and di Cerchiara (2021a, b). However, with 
the exception of very few articles, such as Bermúdez et al. (2018) and Bermúdez and 
Karlis (2021), the construction of bivariate INAR(1) models which can capture the 
serial correlation between the observations of the same policyholder over time and the 
correlation between different claim types remains a largely uncharted territory. This is 
an additional contribution of this study.

The rest of the paper proceeds as follows. Section 2 presents the derivation of the 
MMPGIG-INAR(1) model. Statistical properties of the MMPGIG innovations are dis-
cussed in Sect. 3. In Sect. 4, we present a description of the alternative special cases 
of the MMPGIG-INAR(1) family. Section  5 discusses the parameter estimation for 
these models based on the maximum likelihood method and integer-valued prediction. 
Section 6 contains our empirical analysis for the LGPIF data set. Finally, concluding 
remarks are given in Sect. 7.

2  Generalized setting

Let � and � be non-negative integer-valued random vectors in ℝm . Let � be a diago-
nal matrix in ℝm×m with elements pi ∈ (0, 1) . The multivariate Poisson-Generalized 
Inverse Gaussian INAR(1) is defined as

where the thinning operator ◦ is the widely used binomial thinning operator such 
that pi◦Xi,t =

∑Xi,t

k=1
Uk where Uk are independent identically distributed Bernoulli 

random variables with success probability pi , i.e. P(Uk = 1) = pi . Hence pi◦Xi,t is 
binomially distributed with size Xi,t and success probability pi . Then the distribution 
function fpi(x,Xi,t) can be easily written down as

Note that given Xi,t,Xj,t i ≠ j , pi◦Xi,t and pj◦Xj,t, are independent of each other. To 
adapt the heteroscedasticity arising from the data, {Ri,t}i=1,…,m are mixed Poisson 
random variables Po(�t�i,t) with the random effect �t . The rate �i,t is characterized by 
its observed covariate zi,t ∈ ℝ

ai×1 for some positive integer ai and they are connected 
through a log link function such that log(�i,t) = zT

i,t
�i where �i ∈ ℝ

ai×1 . Furthermore, 
{Ri,t}i=1,…,m share the same random effect �t with mixing distribution G(�) , which 
means the dependent structure among Xi,t can be controlled by the choice of distri-
bution and its corresponding size of parameters. The joint distribution of �t is

(2.1)�t = �◦�t−1 + �t =

⎡⎢⎢⎢⎣

p1 0 … 0 0

0 p2 … 0 0

⋮ ⋱ ⋮

0 0 … pm

⎤⎥⎥⎥⎦
◦

⎡⎢⎢⎢⎣

X1,t−1

X2,t−1

⋮

Xm,t−1

⎤⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣

R1,t

R2,t

⋮

Rm,t

⎤⎥⎥⎥⎦

(2.2)fpi (x,Xi,t) =

(
Xi,t

x

)
px
i
(1 − pi)

Xi,t−x
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We let �t be a continuous random variable from the Generalized Inverse Gaussian 
distribution with density function g(�)

where −∞ ≤ 𝜈 ≤ ∞,𝜓 > 0,𝜒 > 0 and K�(�) is the modified Bessel function of the 
third kind of order � and argument � such that

The Generalized Inverse Gaussian distribution is a widely used family. For example, 
it includes the Inverse Gaussian as special case and the Gamma and Inverse Gamma 
as limiting cases. To avoid identification problems for mixed Poisson regression ran-
dom variable �t , the mean of �t is restricted to one, i.e. �[�t] = 1 , and all the param-
eters �,� ,� will be either fixed or a function of another parameter � . With these two 
constraints, there is only one parameter that is free to vary. (e.g. for Inverse Gauss-
ian distribution, � = −

1

2
 and � = � = � ). The joint distribution of �t becomes an 

MPGIG distribution

where � = � + 2
∑m

i=1
�i,t . In Sect. 5, we will discuss in detail the distribution func-

tion f�(�, t) for some special cases. Finally, it should be noted that several articles 
discuss multivariate versions of MPGIG distribution and/or the MPIG distribu-
tion which is a special case for � = −0.5 , see, for instance, Barndorff-Nielsen et al. 
(1992), Ghitany et al. (2012) Amalia et al. (2017), Mardalena et al. (2020), Tzougas 
and di Cerchiara (2021b) and Mardalena et al. (2021). However, this is the first time 
that the MMPGIG-INAR(1) distribution family of INAR(1) models driven by mixed 
Poisson regression innovations are considered for modelling time series of count 
response variables.

(2.3)

f�(�, t) = P(R1,t = k1,… ,Rm,t = km)

= �
�
P(R1,t = k1,… ,Rm,t = km��t)

�

=

m�
j=1

�
kj

j,t

kj! ∫
∞

0

e−�
∑m

i=1
�i,t�

∑m

i=1
kidG(�)

(2.4)g(�) =
(�∕�)

�

2

2K�(
√
��)

��−1 exp
�
−
1

2

�
�� +

�

�

��
,

K�(�) = ∫
∞

0

z�−1 exp

{
−
1

2
�

(
z +

1

z

)}
dz

(2.5)

f�(�, t) =
(�∕�)

�

2

2K�(
√
��)

m�
j=1

�
kj

j,t

kj! ∫
∞

0

e−�
∑m

i=1
�i,t�

∑m

i=1
ki��−1 exp

�
−
1

2

�
�� +

�

�

��
d�

=
(�∕�)

�

2

(�∕�)
�+

∑
i ki

2

K�+
∑

i ki
(
√
��)

K�(
√
��)

m�
j=1

�
kj

j,t

kj!
,
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3  Properties of innovations �
t

Proposition 3.1 (The moments of �t ) The mean, variance of Ri,t and covariance 
between Ri,t,Rj,t, i ≠ j are given by

where �2
�
 is the variance for the random effect �t and i, j = 1,… ,m.

Proposition 3.2 (Marginal property) The joint distribution function f�(�, t) is closed 
to marginalization, i.e. the marginal distribution for Ri,t is given by f�(ki, t) such that

which is a univariate mixed Poisson regression random variable. In general, this 
result is valid for any m′-variate mixed Poisson regression random variable with 
m′ < m

Proof We will show the result for univariate case. The m′-variate case can be derived 
similarly by reducing the number of following sum to m − m�

  ◻

The marginalization property can enable, for example insurers, to easily price 
those policyholders who only engage in some but not all lines of business. The 
last property is about the identifiability of �t , which will ensure the uniqueness of 
the model.

(3.1)

�[Ri,t] = �[�[Ri,t|�t]] = �i,t

Var(Ri,t) = Var(�[Ri,t|�t]) + �[Var(Ri,t|�t)]
= �2

�
�2
i,t
+ �i,t

Cov(Ri,t,Rj,t) = Cov(�[Ri,t|�t],�[Rj,t|�t]) + �[Cov(Ri,t,Rj,t|�t)]
= �i,t�j,t�

2
�

(3.2)

f�(ki, t) = ∫
∞

0

�
ki
i,t

ki!
�ki e−�i,t�dG(�)

=
(�∕�)

�

2

((� + �i,t)∕�)
�+ki

2

K�+ki
(
√
(� + �i,t)�)

K�(
√
��)

�
ki
i,t

ki!

f�(ki, t) =
�
k1=0

⋯
�
ki−1=0

�
ki+1=0

⋯
�
km=0

f�(�, t)

= �
∞

0

�
j≠i

⎛⎜⎜⎝

∞�
kj=0

e−��j,t (��j,t)
kj

kj!

⎞⎟⎟⎠
e−��i,t (��i,t)

ki

ki!
dG(�)

= �
∞

0

�
ki
i,t

ki!
�ki e−�i,t�dG(�)
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Proposition 3.3 (Identifiability of joint distribution �t ) Assume that the 
covariate space �t = (z1,t,… , zm,t) is of full rank. Denote the parameter set 
�R = {�i,�|i = 1,… ,m} and �̃�R = {𝛽i, �̃�|i = 1,… ,m} , the joint distribution 
f�(�, t) is identifiable such that

if and only if 𝛩R = �̃�R.

Proof With the assumption that the covariate � is of full rank and the log-link 
function is monotonic such that log(�i,t) = zT

i,t
�i , it is obvious that the identifica-

tion problem for the mixed Poisson regression random variable �t reduces to iden-
tification for mixed Poisson random variable (without regression), which means 
the set of parameter can be re-parametrized as �∗

R
= {�i,t,�|i = 1,… ,m} and 

�̃�∗
R
= {�̃�i,t, �̃�|i = 1,… ,m}.

Then the ’if’ statement is obvious since the same set of parameters will definitely 
lead to the same joint distribution function. For the ’only if’ statement, to match 
two distribution functions, all the moments (mean,variance, covariance) must recon-
cile. From the moment properties above, matching the �[Ri,t] will lead to 𝜆i,t = �̃�i,t . 
Likewise, given that the first moment is matched, only 𝜙 = �̃� will lead to the same 
Var(Ri,t) . Matching these moments already leads to 𝛩∗

R
= �̃�∗

R
 , then the covariance 

Cov(Ri,t,Rj,t) must match with each other.   ◻

4  Model specification

The distributional properties of �t , in particular the correlation structure and ’tailed-
ness’ of the distribution, are mainly determined by the innovation �t , more specifi-
cally, the mixing density g(�) . On the other hand, the explicit form of the derivatives 
of f�(�, t) can significantly accelerate the computational speed when performing 
estimation. Hence, the distribution function f�(�, t) as well as its derivatives are 
derived for two limiting cases (Gamma, Inverse Gamma) and some other special 
cases (GIG with unit mean and different values of � ). Throughout this session, we 
define S�

t
=
∑m

i=1
�i,t and Sk =

∑m

i=1
ki.

4.1  Mixing by Gamma distribution

If �t is univariate, the resulting distribution is known as the negative binomial distri-
bution and this result can be easily extended to the multivariate case which is called 
the multivariate negative binomial distribution (see e.g. Marshall and Olkin 1990; 
Boucher et al. 2008; Cheon et al. 2009). The gamma density is obtained by letting 

f𝜙(�, t) = f�̃�(�, t)
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� = �,� = 2� and � = 0 in generalized Inverse Gaussian density in Sect. 2.4. The 
resulting mixing density has the following form:

with unit mean and variance 1
�
 . Then the expectation 2.3 can be evaluated explicitly

Proposition 4.1 The derivatives of the distribution function f�(�, t) with respect to 
�R = {�, �i | i = 1,… ,m} when �t ∼ Gamma(�,�) are given by

where the sum 
∑Sk

n=1

1

n+�−1
= 0 when Sk = 0.

Proof The derivatives �f�(�,t)
��i

 can be figured out easily except �f�(�,t)
��

 which involves 
the gamma function. The derivative of the gamma function can be derived by utiliz-
ing the alternative Weierstrass’s definition such that

which is valid for all complex number z except non-positive integers and � is Euler–
Mascheroni constant. Then the derivative can be derived by differentiating its log 
transform logΓ(z + 1) , which leads to the series expansion of digamma function

Then the derivative �f�(�,t)
��

 can be derived steps by steps. First let us simplify the 
expression of f�(�, t) such that

(4.1)g(�) =
��

Γ(�)
��−1e−��

(4.2)

f�(�, t) =

m�
i=1

�
ki
i,t

ki!
�[e−(S

�
t
)��S

k

]

=
Γ(� + Sk)

Γ(�)
∏m

i=1
Γ(ki + 1)

��
∏m

i=1
�
ki
i,t

(� + S�t )
�+Sk

(4.3)

�f�(�, t)

��
= f�(�, t)

⎛
⎜⎜⎝

Sk�
n=1

1

n + � − 1
+ log

�
�

� + S�t

�
+

∑m

i=1
(�i,t − ki)

� + S�t

⎞⎟⎟⎠
�f�(�, t)

��i
= f�(�, t)

�
ki

�i,t
−

� + Sk

� + S�t

�
�i,tzi,t ,

Γ(z + 1) = e−�z
∏
n≥1

(
1 +

z

n

)−1

e
z

n ,

� (z + 1) =
Γ�(z + 1)

Γ(z + 1)
= −� +

∑
n≥1

(
1

n
−

1

n + z

)
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The derivative is then

  ◻

4.2  Mixing by Inverse Gamma

The Inverse gamma distribution, which is another limiting case of generalized Inverse 
Gaussian distribution, is discussed in Sect. 9.3 (Johnson et al. 1995). Inverse gamma 
random variable has a relatively thicker right tail and a low probability in taking 
the values closed to 0. In this case, the density function g(�) is obtained by letting 
� = 0,� = 2� and � = −� − 1 such that

with mean 1 and variance 1

�−1
 for 𝜙 > 1 . It is also called the reciprocal gamma distri-

bution such that � = 1∕x where x ∼ Gamma(� + 1,�) . The distribution function 
f�(�, t) becomes

where � = Sk − � − 1 and � = 2

√
�S�t  . The derivatives of f�(�, t) with respect to 

the parameter set �R = {�, �i | i = 1,… ,m} are given by

f�(�, t) = c1
N(�)

D(�)

c1 =

m∏
i=1

�
ki
i,t

Γ(ki + 1)
, N(�) = Γ(�+Sk)��, D(�) = Γ(�)

(
� + S�

t

)�+Sk

�f�(�, t)

��
= c1

N�(�)D(�) − N(�)D�(�)

D2(�)

= c1
N(�)

D(�)

(∑
n≥1

(
1

n + � − 1
−

1

n + � + Sk − 1

)

+1 + log� − log(� + S�
t
) −

� + Sk

� + S�t

)

(4.4)g(�) =
��+1

Γ(� + 1)
�−�−2e

−
�

� ,

(4.5)

f�(�, t) =

m�
i=1

�
ki
i,t

ki!
�

�
e−S

�
t
�t�S

k

t

�

=
2K�(�)

Γ(� + 1)
∏m

i=1
Γ(ki + 1)

�
�

2
+�+1 ∏m

i=1
�
ki
i,t

(S�t )
�

2

,
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In this case, numerical differentiation is applied to calculate � logK� (�)

��
 since the 

parameter � appears both in the order � and argument � of the modified Bessel func-
tion K�(�).

4.3  Mixing by Generalized Inverse Gaussian

Likewise, if �t is univariate, the distribution of �t is known as the Poisson General-
ized Inverse Gaussian distribution. To comply with constraints we made in Sect. 2, 
the mixing density function has following form

with unit mean and variance var(�t) =
1

c2
+

2(�+1)

c�
− 1 , where c = K�+1(�)

K� (�)
 , 𝜙 > 0 and 

� ∈ ℝ . Then the distribution function f�(�, t) becomes

where a = �c + 2S�
t
 , b =

�

c
 and p = Sk + � . Furthermore, we let � be constant and 

fixed in order to avoid potential identification problems which may appear when per-
forming estimation. In general, however, the derivative with respect to � is really 
hard to find since the constant c involves the Bessel function. On the other hand, it is 
worth noting that var(�t) is roughly unbounded when � ∈ [−2, 0] and the skewness 
and kurtosis are decreasing with respect to � , which can be easily verified by some 
statistical software on computer. So, we will discuss cases where � = −

1

2
,−

3

2
,−

3

4
 , 

two of which have ‘explicit’ distributions in the sense that the constant c can be 
evaluated in closed form.

4.3.1  Generalized Inverse Gaussian with � = −
1

2

In this case, the resulting distribution known as the Poisson Inverse Gaussian distri-
bution is investigated by many authors (see,e.g Sichel 1974, 1982; Atkinson and Yeh 
1982; Stein and Juritz 1988 among others). When � = −

1

2
 , c = 1 and the distribution 

function f becomes

(4.6)

�f�(�, t)

��
=

(
log

�

2
+

Sk + � + 1

2�
+

� logK�(�)

��
− � (� + 1)

)
f�(�, t)

�f�(�, t)

��i
=

(
ki

�i,t
f�(�, t) −

ki + 1

�i,t
f�(� + �i,�)

)
�i,tzi,t

(4.7)g(�) =
c�

2K�(�)
��−1 exp

{
−
�

2

(
c� +

1

c�

)}

(4.8)

f�(�, t, �) =

m�
i=1

�
ki
i,t

ki!
�

�
e−�tS

�
t �S

k

t

�

=
Kp(

√
ab)

K�(�)
c�
�
b

a

� p

2

m�
i=1

�
ki
i,t

ki!
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For convenience, we reparametrize the above density by squaring the parameter � 
such that

where p = Sk −
1

2

 and � =
√
�2 + 2S� . The derivatives of f�(�, t) with respect to 

different parameters can be derived by making use of the derivative of K�(�) with 
respect to its argument such that

then it leads to the following derivatives

where �i = (0,… , 0, 1, 0,… , 0)T ∈ ℝ
m×1 is vector with i-th element being one and 0 

elsewhere.

4.3.2  Generalized Inverse Gaussian with � = −
3

2

In this case, the constant c = �

1+�
 and the variance var(�t) =

1

�
 which is exactly the 

same as the variance of Inverse Gaussian case but the random effect �t will in gen-
eral have larger skewness and kurtosis. The resulting distribution function is

where p = Sk −
3

2
 and � =

√
�2 + 2(� + 1)S�t  . The derivatives with respect to dif-

ferent parameters can be derived similar to that of Inverse Gaussian case

(4.9)f�(�, t) =

m∏
i=1

�
ki
i,t

ki!

√
2

�
�

1

2 e�Kp(

√
�(� + 2S�t ))

(
�

� + 2S�t

) p

2

(4.10)f�(�, t) =

m∏
i=1

�
ki
i,t

ki!

√
2

�
�e�

2

Kp(��)

(
�

�

)�

(4.11)
�K�(�)

�
=

�

�
K�(�) − K�+1(�),

(4.12)

�f�(�, t)

��
=

(
2� +

1 + 2�

�

)
f�(�, t) −

(
� +

�2

�

)
k1 + 1

�1,t
f�(� + �1,�),

�f�(�, t)

��i
=

(
ki

�i,t
f�(�, t) −

ki + 1

�i,t
f�(� + �i,�)

)
�i,tzi,t

(4.13)f�(�, t) =

m∏
i=1

�
ki
i,t

ki!

√
2

�
(� + 1)S

k−1e��−pKp(�).

(4.14)

�f�(�, t)

��
=

(
� + Sk

� + 1

)
f�(�, t) −

(
k1 + 1

�1,t

� + S�
t

� + 1

)
f�(� + �1, t)

�f�(�, t)

��i
=

(
ki

�i,t
f�(�, t) −

ki + 1

�i,t
f�(� + �i,�)

)
�i,tzi,t
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The remaining case where � = −
3

4
 cannot be simplified since the c = K1∕4(�)

K3∕4(�)
 cannot 

be written down in terms of basic functions. Hence numerical differentiation has to 
be applied when evaluating �f�(�,t)

��
 and �f�(�,t)

��i
 . Finally, Table 1 summarise the para-

metrization of all mixing densities and Table 2 shows the moments formula for each 
mixing density.

Although the formula for variances is slightly different due to its parametriza-
tion, they can be easily reparameterized and compared with each other. It turns out 
that the Inverse Gamma has the largest skewness and kurtosis while the Gamma 
density has the smallest, which means the ’tailedness’ of those density increases in a 
‘top-down’ order according to the Table. Hence, one can choose different density to 
accommodate different tail structure encountered in real data.

5  Model fitting and prediction

5.1  Maximum likelihood estimation for the MMPGIG‑INAR(1) model

In this section, we derive the log likelihood function and score function of the 
MMPGIG-INAR(1) model defined above for the general case. Let the whole param-
eter set be � = {pi, �i,�|i = 1,… ,m} and then the log likelihood function �(�) for 
this discrete Markov chain is just the product of their conditional probability func-
tion such that �(�) =

∏
t P�(�t��t−1) , where the conditional probability is the con-

volution of m+1 distribution functions such that

Table 1  Parametrization of mixing density based on GIG density 2.4

Mixing density � � � Range of parameter

Gamma 2� 0 � 𝜙 > 0

GIG with unit mean c� �

c
fixed constant in ℝ c =

K𝜈 (𝜙+1)

K𝜈 (𝜙)
,𝜙 > 0

Inverse Gamma 0 2� −� − 1 𝜙 > 1

Table 2  Moments for the 
random effect �t . Ex.Kurtosis = 
Kurtosis − 3

Mixing density g(�) Variance Skenwness Ex.Kurtosis

Gamma 1

�

2√
�

6

�

Inverse Gaussian 1

�2

3

�

15

�2

GIG � = −
3

2

1

�
�

3
2 +�

1
2

�2

3+12�+15�2

�3

Inverse Gamma 1

�−1
4
√
�−1

�−2

6(5�−1)

(�−2)(�−3)
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where the expectation is taken with respect to the random variable �t . The following 
proposition gives �(�) and its score functions.

Proposition 5.1 Suppose there is a multivariate random sequence (�1,�2,…�n) 
generated from the MMPGIG-INAR(1) model, the log likelihood function �(�) and 
score functions are given by

The derivatives inside the sum are given by

where the derivative 
�fpj

(�,Xj,t−1)

�pj
 has the same form for all j = 1, ...,m.

The derivatives �f�(�,t)
�1

 are already discussed in Sect. 4 for different cases. Hence, the 
maximum likelihood estimators can be obtained through numerical algorithms, for 
example Newton-raphson, Quasi-Newton and so on. However, optimization will be 
computational intensive as m increases. One can solve this issue by adopting the 

(5.1)

P(�t|�t−1) = �

[
2∏
i=1

P(pi◦Xi,t−1 + Ri,t = Xi,t−1|Xi,t−1, �t)

]

= �

[
m∏
i=1

si∑
k=0

fpi(k,Xi,t−1)fRi
(Xi,t − k, t)

]
, si = min{Xi,t−1,Xi,t}

=

s1∑
k1=0

⋯

sm∑
km=0

f�(�, t)

m∏
i=1

fpi(Xi,t − ki,Xi,t−1),

(5.2)

𝓁(�) =

n∑
t=1

logP(�t|�t−1)

=

n∑
t=1

log

s1∑
k1=0

⋯

sm∑
km=0

f�(�, t)

m∏
i=1

fpi(Xi,t − ki,Xi,t−1)

�𝓁(�)

��
=

n∑
t=1

1

P(�t|�t−1)

�P(�t|�t−1)

��
, � ∈ �

(5.3)

�P(�t|�t−1)

�pj
=

s1∑
k1=0

⋯

sm∑
km=0

f�(�, t)
�fpj (Xij,t − k,Xj,t−1)

�pj

∏
i≠j

fpj (Xi,t − ki,Xi,t−1)

�P(�t|�t−1)

��1
=

s1∑
k1=0

⋯

sm∑
km=0

�f�(�, t)

�1

m∏
i=1

fpi (Xi,t − ki,Xi,t−1)

�1 ∈ {�1, �2,�}

�fpj (�,Xj,t)

�pj
= fpj (�,Xj,t)

� − pjXj,t

pj(1 − pj)
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composite likelihood method introduced in Pedeli and Karlis (2013a), where the high 
dimensional likelihood function was reduced to a sum of bivariate cases.

5.2  Integer‑valued prediction

Based on the estimates obtained by maximum likelihood and the random sequence 
(�1,… ,�n) , the h-steps ahead distribution of �n+h conditional on �n is given by

where �̂ is obtained from above estimation procedure. In the classical time series 
model, one would minimise MSE(h) = �[(�̂n+h − �n+h)

2|�n] to obtain the opti-
mal linear predictor such that �̂n+h = �[�n+h|�n] . However, this would inevitably 
introduce real value for �̂n+h , which is not coherent to the integer-valued nature 
of MMPGIG-INAR(1) model. To solve this, one can instead use the median �̃n+h 
of �n+h , the 50% quantile, as prediction value for the model, which is also dis-
cussed by Pavlopoulos and Karlis (2008) and Homburg et  al. (2019) . In the uni-
variate case, the median is obtained by minimising the mean absolute error 
MAE(h) = �[|X̃n+h − Xn+h||Xn] . The idea here can be extended to the multivariate 
case so that the median �̃n+h is called geometric median, which is calculated by 
minimising the expected Euclidean distance

On the other hand, the expectation can be evaluated numerically by simulating the 
random samples of �n+h.

6  Empirical analysis

The data used in this section come from the Local Government Property Insurance 
Fund (LGPIF) from the state of Wisconsin. This fund provides property insurance to 
different types of government units, which includes villages, cities, counties, towns 

(5.4)�n+h

D
= �̂

h
◦�n +

h∑
k=1

�̂
h−k

◦�n+k,

(5.5)MAE(h) = �[||�̃n+h − �n+h||2|Xn]

Table 3  Summary statistics of two types of claims over years

The correlations test is a one-sided test where the alternative hypothesis is “The sample correlation is 
greater than 0”

2006 2007 2008 2009 2010

Proportion of zeros X1,t 0.9685 0.9542 0.9552 0.9504 0.9590
Proportion of zeros X2,t 0.9342 0.9332 0.9399 0.9370 0.9323
Kurtosis of X1,t 85.75009 86.64794 41.84915 43.01832 126.68793
Kurtosis of X2,t 53.91835 61.77408 111.28108 184.13950 133.92283
P-value of correlation test 0.0000 0.0000 0.0000 0.0000 0.0000
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and schools. The LGPIF contains three major groups of property insurance cover-
age, namely building and contents (BC), inland marine (IM) and motor vehicles 
(PN, PO, CN, CO). For exploratory purposes, we focus on modelling jointly the 
claim frequency of IM, denoted as X1,t , and comprehensive new vehicles collision 
(CN), denoted as X2,t . The insurance data cover the period over 2006–2011 with 
1234 policyholder records in total. Only n1 = 1048 of them have complete data over 
the period 2006–2010 which will be used as the training data set. The last year 2011 
with n2 = 1025 policyholders out of 1048 in the data set will be the test data set. 
Denote the IM type and CN type claim frequency for a particular policyholder as 
X
(j)

1,t
,X

(j)

2,t
 respectively, where j is the identifier for each policyholder. Then the rela-

tionship between Xi,t and X(j)

i,t
 is simply Xi,t =

∑n1
j=1

X
(j)

i,t
 with i = 1, 2 while t would 

take the values from 1 to 5 corresponding to the year 2006 to 2010.
In what follows, basic statistical analysis is shown in Table  3 and Figs.  1 and 

2. The proportion of zeros for the two types of claims is higher than 90% during 
the period 2006–2010. Also, both types of claims exhibit overdispersion, since their 
variances exceeds their means during this period. Furthermore, the overdispersion 
for X2,t is even stronger than that of X1,t , which indicates the need to employ an over-
dispersed distribution for this data. Additionally, the correlation tests for X1,t and X2,t 
show a positive correlation between the two claim types. At this point it is worth 
noting that modelling positively correlated claims has been explored by many arti-
cles. See for example, Bermúdez and Karlis (2011), Bermúdez and Karlis (2012), 
Shi and Valdez (2014a, b), Abdallah et  al. (2016), Bermúdez and Karlis (2017), 
Bermúdez et al. (2018), Bermúdez et al. (2018), Pechon et al. (2018), Pechon et al. 
(2019), Bolancé and Vernic (2019), Denuit et al. (2019), Fung et al. (2019), Bolancé 
et al. (2020), Pechon et al. (2021), Jeong and Dey (2021), Gómez-Déniz and Cal-
derín-Ojeda (2021), Tzougas and di Cerchiara (2021a, b) and Bermúdez and Kar-
lis (2021). Finally, the proportion of zeros and kurtosis show that the marginal dis-
tributions of X1,t,X2,t are positively skewed and exhibit a fat-tailed structure which 

Fig. 1  summary statistics 
(mean, variance and correlation) 
for each type of claims across all 
the policyholders over years

mean X1 var X1 mean X2 var X2 cor X1,X2

2006
2007
2008
2009
2010
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0

0.
1

0.
2

0.
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0.
4

0.
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0.
6

0.
7
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indicates the appropriateness of adopting a positive skewed and fat-tailed distribu-
tion (GIG distribution).

The description and some summary statistics for all the explanatory variables 
(covariates z1,t, z2,t ) that are relevant to X1,t,X2,t are shown in Table 4. Variables 1–5 
including ‘TypeVillage’ are categorical variables to indicate the entity types of a 
policyholder. Due to the strongly heavy-tailed structure appearing in variables 6 and 
9 which can drastically distort the model fitting, those variables are transformed by 
means of the ’rank’ function in R software and then standardized, which can miti-
gate the effect of outliers. Variables 6–8 are relevant to IM claim X1,t while variables 
9,10 provide information for CN claims X2,t . The covariate z1,t includes variables 
1–8 and z2,t contains variables 1–5 and variables 9, 10. These covariates act as the 
regression part for �i,t mentioned in Sect. 2, which may help explained part of the 
heterogeneity between X1,t and X2,t.

The MMPGIG-INAR(1) with m = 2 , is applied to model the joint behaviour 
of X(j)

1,t
,X

(j)

2,t
 across all the policyholders. Note that when Gamma mixing density 

is used in MPGIG INAR(1), the resulting model will be the ”BINAR(1) Process 
with BVNB Innovations” in Pedeli and Karlis (2011), which we will used as com-
parison benchmark for other choices of mixing density. The the likelihood func-
tion would simply become

where �j(�) is the likelihood function for policyholder j. Note that all the policy-
holders with the same type of claim Xi,. will share the same set of parameters pi, �i 

(6.1)�(�) =

n1∑
j=1

�j(�) =

n1∑
j=1

4∑
t=1

log Pr(X
(j)

1,t+1
,X

(j)

2,t+1
|X(j)

1,t
,X

(j)

2,t
),

Table 4  summary statistics for the explanatory variables

Variable index Variable name Type Description Proportion/Mean

1 TypeCity Categorical Indicator for city entity 0.1400
2 TypeCounty Categorical Indicator for county entity 0.0578
3 TypeMisc Categorical Indicator for miscellaneous entity 0.1104
4 TypeSchool Categorical Indicator for school entity 0.2817
5 TypeTown Categorical Indicator for town entity 0.1728
– TypeVillage Categorical Indicator for village entity (refer-

ence category)
0.2373

6 CoverageIM Continuous Coverage amount of 
IM(transformed)

0

7 InDeductIM Continuous Log deductible amount for inland 
marine

5.3400

8 NoClaimCreditIM Binary Indicator for no IM claims in 
prior year

0.4210

9 CoverageCN Countinuous Coverage amount of CN (trans-
formed)

0

10 NoClaimCreditCN Binary Indicator for no CN claims in 
prior year

0.0897
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and � will be same for both claim types. In addition, it is necessary to show the 
appropriateness of introducing correlation and time-series component (binomial 
thinning) in MPGIG INAR(1). Then we also fit the data to following models. 

1. The joint distribution of X(j)

1,t
 and X(j)

2,t
 are assumed to be bivariate mixed Poisson 

distribution (BMP) with probability mass function f�(�, t) which we already dis-
cussed in Sect. 4.

2. The joint distribution of X(j)

1,t
 and X(j)

2,t
 are characterized by two independent 

INAR(1) models (TINAR) 

 where Ri,t ∼ Pois(�i,t�i,t), i = 1, 2 and random effect �i,t is independent of i.
Similarly, the likelihood functions for these models will have the same form as Eq. (6.1) 
but different joint distribution Pr(X(j)

1,t+1
,X

(j)

2,t+1
|X(j)

1,t
,X

(j)

2,t
) . For comparison purposes, we 

fit the bivariate Poisson mixture regression model with the training data starting from 
2007 because BMP model does not need to consider lag responses.

All the estimations is implemented in R software by the ’optim’ function with 
method ’BFGS’ (quasi-Newton method). The gradient functions with respect to all the 
parameters are derived in Sects. 4 and 5 and they can be input as gradient argument in 
’optim’ function, which will significantly decrease the amount of computational time 
compared to numerical gradient function in default setting.

Model fitting results are shown in Tables  5 and 6. All the results show a great 
improvement by adopting a time series model compared to BMP results in Table 6. 
When focusing on the results of BINAR in Table 6, except the case where the mixing 
density is GIG � = −

3

2
 , there is an significant improvement by introducing the fat-tailed 

distribution as mixing density in �t compared to Gamma case. On the other hand, the 
improvement from the optimal TINAR to the optimal BINAR (cells are in bold face) is 
obvious, which is indicated by lower AIC and BIC of BINAR with GIG � = −

3

4
 com-

pared to TINAR with GIG � = −
3

4
 and Inverse Gaussian. It implies that there is signifi-

cant correlation between two claim sequences. Maximum likelihood estimates for three 
cases are given in Table 7 as well as their standard deviations. The standard derivations 
are estimated by inverting the numerical Hessian matrix. From Table 7 we see that the 
estimates for pi, �i are very close to each other while the estimated � is significantly 
different among three mixing densities, which is expected because � influences the tail 
and correlation structure of the bivariate sequence X1,t,X2,t . Furthermore, we see that 
the explanatory variables have a similar effect (positive and/or negative) and are almost 
identical for both response variables in the case of of all three models. Finally, the 
variables which are statistically significant at a 5 % threshold for X1,t are TypeCounty, 
TypeMisc, TypeVillage, NoClaimCreditIM, and those which are statistically significant 
at a 5 % threshold for X2,t are TypeCity, TypeCounty, TypeVillage, CoverageIM, and 
CoverageCN.

The Fig.  2 below presents prediction for both types of claims at t = 2011 with 
n2 = 1025 policyholders based on geometric median Eq.  (5.5). It seems that the 

X
(j)

1,t
= p1◦X

(j)

1,t−1
+ R1,t

X
(j)

2,t
= p2◦X

(j)

2,t−1
+ R2,t,
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prediction for number of policyholders who make no claims are reasonably good while 
the prediction for X1,t are generally underestimated at tail and the prediction for X2,t 
are overestimated at the tail. On the other hand, Table  8 shows the prediction sum 
of squared error (PSSE) and frequency of some basic combination of observations, 
namely (0, 0), (1, 0), (0, 1), (1, 1) for the best fitted models within three classes, bivari-
ate mixed Poisson regression, Two independent INAR(1) and bivariate INAR(1). It is 
again clear that the introduction of autoregressive part makes sense as it greatly reduce 
the prediction error. Although the best TINAR model has the closet frequency of (0, 0), 
the best BINAR model has the lowest overall prediction error.

Table 7  Maximum likelihood estimation for MMPGIG-INAR(1) of insurance’s claim frequency data 
when m = 2

For each entry, the upper one is the estimate and the estimated standard deviations are indicated in square 
brackets

Estimate Mixing density

Gamma Inverse Gaussian GIG � = −
3

4

X1,t X2,t X1,t X2,t X1,t X2,t

pi 0.1238 0.2904 0.1200 0.2768 0.1194 0.2750
(0.0373) (0.0378) (0.0376) (0.0388) (0.0376) (0.0388)

� 0.9495 0.8885 0.7944
(0.1662) (0.0931) (0.0136)

Intercept − 3.7980 − 5.9744 − 3.8228 − 5.9967 − 3.8287 − 6.0029
(0.5158) (0.4428) (0.5206) (0.4503) (0.5213) (0.4489)

TypeCity − 0.2242 0.6673 − 0.2316 0.6510 − 0.2337 0.6480
(0.2555) (0.2823) (0.2577) (0..2861) (0.2586) (0.2866)

TypeCounty 0.5682 1.3290 0.5784 1.3019 0.5814 1.2953
(0.2811) (0.2643) (0.2836) (0.2674) (0.2794) (0.2673)

TypeMisc − 2.0110 − 0.1141 − 2.0213 − 0.1313 − 2.0226 − 0.1342
(1.0210) (0.6567) (1.0223) ( 0.6592) (1.0244) (0.6577)

TypeSchool − 0.0387 0.1559 − 0.0638 0.1323 − 0.0692 0.1279
(0.3587) (0.2811) (0.3570) (0.2837) (0.3534) (0.2841)

TypeTown − 0.3565 − 0.8941 − 0.3661 − 0.9155 − 0.3680 − 0.9195
(0.3037) (0.4794) (0.3048) (0.4816) (0.3054) (0.4820)

CoverageIM 1.4543 1.4309 1.4259
(0.2126) (0.2115) (0.2080)

InDeductIM 0.0170 0.0243 0.0259
(0.0788) (0.0795) (0.0792)

NoClaimCreaditIM − 0.4569 − 0.4501 − 0.4482
(0.1570) (0.1579) (0.1579)

CoverageCN 2.4227 2.4596 2.4675
( 0.2210) (0.2260) (0.2249)

NoClaimCreaditCN − 0.3047 − 0.3231 − 0.3261
(0.1811) (0.1814) (0.1801)
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7  Concluding remarks

In this paper we proposed the MMPGIG-INAR(1) regression model for modelling 
multiple time series of different types of count response variables. The proposed model, 
which is an extension of BINAR(1) regression model that was introduced by Pedeli and 
Karlis (2011), can accommodate positive correlation and multivariate overdispersion in 
a flexible manner. In particular, the Generalized Inverse Gaussian class includes many 
distributions as its special and limiting cases that can be used for modelling the innova-
tions �t . Thus, the proposed modelling framework can efficiently capture the stylized 
characteristics of alternative complex data sets. Furthermore, due to the simple form of 
its density function, statistical inference for the MMPGIG-INAR(1) model is straight-
forward via the ML method, whereas other models that have been proposed in the liter-
ature, such as copula-based models, may result in numerical instability during the ML 
estimation procedure. For demonstration purposes different members of the proposed 
famly of models were fitted to LGPIF data from the state of Wisconsin. Finally, it is 
worth mentioning that a possible line of further research could be to also consider cross 
correlation, meaning that the non-diagonal elements of � can take positive values.
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Fig. 2  Observed (dark) and Predicted (grey) frequency of the test data set based on estimated BINAR 
with GIG � = −
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Table 8  Summary of prediction on test data

Model PSSE Frequency

X1 X2 X1 + X2 (0,0) (1,0) (0,1) (1,1)

BMP Inverse gamma 264 221 485 970 0 24 0
TINAR GIG � = −0.75 & 

Inverse gamma
212 164 376 964 4 33 0

BINAR GIG � = −0.75 212 156 368 966 3 32 0
Observed 940 20 26 6
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