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Abstract
Correspondence analysis is a method for the visual dis-
play of information from two-way contingency tables.
We introduce a robust form of correspondence analysis
based on minimum covariance determinant estimation.
This leads to the systematic deletion of outlying rows
of the table and to plots of greatly increased informa-
tiveness. Our examples are trade flows of clothes and
consumer evaluations of the perceived properties of cars.
The robust method requires that a specified proportion
of the data be used in fitting. To accommodate this
requirement we provide an algorithm that uses a subset
of complete rows and one row partially, both sets of rows
being chosen robustly. We prove the convergence of this
algorithm.
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1 INTRODUCTION

Correspondence analysis is a method for displaying information from two-way tables of count
data. Typically, the rows are subjects (in our first example the 28 countries of the European Union)
and the columns are response categories (in that case the cost range of clothes). The main result
is a two-dimensional plot showing the structure of the data. The theory and practice of corre-
spondence analysis are presented in several books by Greenacre, most recently Greenacre (2017).
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Little attention seems to have been given to the effect of outliers on correspondence analysis nor
to the desirability and practice of robust estimation.

Chapter 12 of Greenacre (2017) discusses some aspects of outliers in data tables, including
the suggestion of ‘supplementary points’, which are included in the plotted summary of the data
analysis, but are excluded from parameter estimation. Bendixen (1996), in an expository analysis
of data on breakfast foods, discusses the effects of outliers and identifies one in his data. However,
neither author suggests a systematic procedure for determining which observations should have
zero weight. The problems in outlier detection procedures that start from an analysis of all the
data and then work backwards by the deletion of apparent outliers have been widely discussed,
for example in Atkinson and Riani (2000) Chaps. 3 and 4. One problem is that of ‘masking’ when
the presence of several outliers so affects the parameter estimates that the outliers are not evident.
A related problem is ‘swamping’ in which the outliers cause an uncontaminated observation to
appear outlying.

In this paper we adapt the minimum covariance determinant estimator (MCD), a
hard-trimming method for multivariate normal data (Rousseeuw & Van Driessen, 1999), to the
analysis of contingency tables using correspondence analysis. A complication is that MCD for
multivariate data specifies the proportion of observations to be included in data fitting; the high-
est breakdown point coming when this proportion is just over 50%. For the contingency table this
corresponds to some rows being completely included in the analysis with one row of the table
usually only partially included. To allow an arbitrary, but pre-specified, proportion of the total
observations to be given zero weight, we therefore work in terms of individual counts rather than
whole rows of the table. In our examples of data analysis we mainly use the most robust MCD, that
is with a breakdown point of 50%, in order to exhibit most strongly the effect on correspondence
analysis of outliers and their detection and deletion.

We start in Section 2 with a description of correspondence analysis. Section 3 introduces the
example we use to exemplify our robust procedure and provides the non-robust correspondence
analysis. We use plots of (squared) Mahalanobis distances to search for outlying rows. Use of an
empirical simultaneous confidence interval indicates seven outlying countries. Calculation of the
interval requires simulation of 10,000 contingency tables with the same marginal distributions as
the data. We discuss approximations to this confidence band.

Robust methods are introduced in Section 4. Section 4.1 describes the MCD for multivari-
ate data and Section 4.2 provides the extension to the analysis of contingency tables. The proof
of the convergence of the concentration step of the algorithm for robust fitting is in Section 4.3.
The robust analysis of the clothes data is given in Section 5.1. The MCD analysis of the data in
Section 5.1 reveals seven outlying countries, five of which are the same as those suggested by
the non-robust analysis in Section 3. However, the order and amount of outlyingness is different.
The correspondence analysis of the data with the seven outlying countries deleted is given and
discussed in Section 5.2. A brief analysis is given in Section 6 of data on seven perceived character-
istics of 38 makes of vehicle. The robust analysis leads to the deletion of, again, seven rows and to a
correspondence analysis plot that greatly clarifies the interpretation of the data. The paper proper
ends with a brief Section 7 in which alternative robust approaches to correspondence analysis are
considered.

An on-line supplement (Riani et al., 2022) contains further analyses of the two examples.
In the clothes data the countries are in approximately the same positions relative to the axes
in the robust and non-robust plots. We include a further, fictitious country, a distinct outlier, to
show the different effect that another form of outlier can have. The supplement also includes
enhanced correspondence analysis plots of the car data. The discussion focuses on the structure
of the characteristics of the cars, rather than, as in Section 6, on the makes of vehicle.
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2 BACKGROUND

2.1 Contingency tables

Our notation is based on that of Greenacre (2017), particularly Appendix A. The I × J contin-
gency table N contains count data. Element (i, j) = nij,≥ 0, i = 1, 2, … , I and j= 1, 2, … , J. The
row sums of N are ni. with column sums n

.j. The grand total n =
∑

i
∑

j nij = 1′IN1J , where 1I is a
column vector of ones of length I and 1J is of length J. It is customary to rescale N to give P, the
correspondence matrix of relative frequencies with element (i, j) = fij = nij∕n, so that 1′IP1J = 1.

Under the independence hypothesis the expected frequencies are estimated by the multipli-
cation of the row and column totals to give the matrix ̂N with n̂ij = ni.n.j∕n. The test statistic for
this hypothesis is

X2 =
I∑

i=1

J∑

j=1

(nij − ni.n.j∕n)2

ni.n.j∕n
=

I∑

i=1

J∑

j=1

(nij − n̂ij)2

n̂ij
. (1)

The asymptotic null distribution of (1) is 𝜒

2 with degrees of freedom (I − 1) × (J − 1). The
statistic tests whether the row profiles are the same and, given the symmetry of rows and
columns, whether the profile columns are similar to each other. The value of X2∕n is often
called the (total) inertia of the table. Exhibit 4.2 of Greenacre (2017) illustrates this nomencla-
ture in terms of decreasing similarity of row (and column) profiles giving increasing inertia.
It is helpful for our robust procedure to re-express X2∕n as a weighted sum of Mahalanobis
distances.

Let the vector r of length I contain the row masses so that r = P1J = (f1., f2., … , fI.)′. Then
r′1I = 1. Also r is the centroid of column profiles. From r we form the I × I matrix Dr = diag(r).
Similarly for the column masses c = P′1I = (f.1, f

.2, … , f
.J)′, which is also the centroid of row pro-

files. We now form the J × J matrix Dc = diag(c). For use in Section 2.2, we require the I × J matrix
R containing row profiles, with element (i, j) given by fij∕fi. = nij∕ni.. Then

R = D−1
r × P =

⎛
⎜
⎜
⎜
⎝

r̃′1
…
r̃′I

⎞
⎟
⎟
⎟
⎠

.

Let S be the I × J matrix containing the weighted standardized row profiles,

D1∕2
r (R − 1Ic′)D−1∕2

c .

These are the signed square roots of the elements of X2∕n. Then, for example (Greenacre, 2017,
A.4), given that R = D−1

r P and 1I = D−1
r r

S = D1∕2
r (R − 1Ic′)D−1∕2

c = D1∕2
r (D−1

r P − D−1
r rc′)D−1∕2

c = D−1∕2
r (P − rc′)D−1∕2

c . (2)

The sum of the squares of the elements of S can be found as

trace(SS′) = trace[D−1∕2
r (P − rc′)D−1∕2

c {D−1∕2
r (P − rc′)D−1∕2

c }′]
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=
I∑

i=1
fi.(r̃i − c)′D−1

c (r̃i − c) (3)

=
I∑

i=1
fi.d2

i (c). (4)

Thus the total is a weighted sum of squared distances of the profile points to their respective
centroids. Because Dc is diagonal these Mahalanobis distances d2

i (c) are the squared weighted
Euclidean distances of the i-the profile row from its centroid c, with weights defined by the fi..
This representation is instrumental in identifying the observations to be downweighted by the
robust procedure of Section 4.2.

2.2 Correspondence analysis

The I row profiles r̃1, … , r̃I define I points in the J − 1 dimensional column space. The weight
of r̃i is fi.. The matrix of centred row profiles is R − 1Ic′ and can be seen as the matrix of row pro-
files after removing the zero dimensional subspace (point c) which is closest to points in the J−1
dimensional space weighted by D−1

c (Greenacre (2017)). The purpose of correspondence analysis
is to perform the singular value decomposition (SVD) of matrix R − 1Ic′ in such a way that the
left and right singular vectors are orthonormalized with respect to Dr and D−1

c . Thus we require
the SVD of

UΓV ′ = R − 1Ic′

in such a way that U′DrU = IJ = V ′D−1
c V . Here Γ is the diagonal matrix containing the singular

values in non-increasing order. In order to achieve this purpose we perform the usual SVD of
matrix S in (2)

S = D−1∕2
r (P − rc′)D−1∕2

c = D1∕2
r (R − 1Ic′)D−1∕2

c = U∗ΓV∗′
.

Then

(R − 1Ic′) = D−1∕2
r U∗Γ(D1∕2

c V∗)′ = UΓV ′
, (5)

where U = D−1∕2
r U∗ and V = D1∕2

c V∗. The matrices U and V are orthonormalized with respect
to Dr and D−1

c . In the plot of correspondence analysis the row coordinates which are shown
(principal coordinates or row points) are the first two columns of the matrix

D−1∕2
r U∗Γ.

The first two columns of the matrix

D−1∕2
c V∗Γ

are likewise the coordinates of the column points (principal coordinates of column points). Alter-
native representations in the low-dimensional space are discussed for example in Greenacre
(2013).
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3 A MOTIVATING EXAMPLE: CLOTHES DATA

This section presents the data we shall use to introduce our robust principal component analysis
and to illustrate some properties of the method. The data are in the context of European Union
(EU) international trade, which is regulated in compliance with the World Trade Organization
(1994), and are available publicly in the COMEXT database1 of the European statistical office
(Eurostat).

Table 1 shows occurrences from the 28 members of the EU of the trade flow of clothes not
coming from the European Union, according to five price segments. The categories are identi-
fied using a methodology discussed in Cerasa and Cerioli (2017) which is based on the robust
regression of value against quantity. The resulting index depends not only on price, but also
adjusts for quantity; trade flows with quantity below a threshold are removed. The lowest price
segment is x1, with x5 the highest. The data considered cover a period of several years, ending
in 2017.

The main interest in the analysis is in the row profiles: does the proportion of flows in
each price segment vary in any meaningful way between countries? We start by looking at
the breakdown of X2 afforded by the Mahalanobis distances d2

i (c) which are plotted in the
upper panel of Figure 1. For ease of interpretation we have included an empirical simultane-
ous confidence band. This was generated under the independence hypothesis of frequencies
that depend only on row and column totals, by simulating 10,000 tables using the algorithm
of Boyett (1979) as modified by Patefield (1981) to produce tables with the same row and
column totals as the data. A Bonferroni approximation was used to find the 99% simultane-
ous confidence band for the rows of the table. This required the 100(1−0.99∕28) = 99.964
percentage point of the empirical distribution for each country. To be conservative we took
the 9997th ordered value out of 10,000. The jagged nature of the envelope is caused by
the varying row masses—in particular the largest spike is for unit 25, LU, for which fi. is
only 0.0025.

The lower panel plots the distance weighted by the row masses fi., with the appropriately
weighted envelope. The seven largest distances correspond to SK, GB, RO, IE, BG, LV and ES,
(Table 2) all lying well outside the envelope. AT, which appears as relatively extreme in the
unweighted plot appears much less extreme in the weighted plot. Again it is a country with low
mass; fi. = 0.0137.

We now consider approximations to the distribution of the Mahalanobis distances. Since the
statistic X2 has an asymptotic 𝜒

2 distribution on (I − 1)(J − 1) degrees of freedom, it is natu-
ral to consider 𝜒

2
J−1 as a first approximation. Simulations based on the marginal properties of

Table 1 show that this distribution is slightly too long tailed, even at the 99% level. In order
that the row X2 values have the correct sum of expectations, we next used simulation to explore
gamma distributions with parameter {(J − 1)× (I − 1)∕I, 2}, tending to 𝜒

2
J−1 as I becomes large.

This approximation gave increased agreement at the 99% level. However, at the 99.99% level the
approximation was still too long tailed. Since this is the range of levels that we need for simul-
taneous intervals, we continue the process and found, by further simulation that, for our table
Γ{(J − 1)× (I − 2)∕I, 2} gave a good approximation at this extreme level, although it was slightly
short tailed at lower levels like 95%. These effects increase for small I and decrease for larger I. Of
course, there are also the usual cautions about there being an adequate number of observations

1The COMEXT data on the EU external trade can be downloaded from http://epp.eurostat.ec.europa.eu/newxtweb/ or,
in comprehensive csv files, from https://ec.europa.eu/eurostat/data/bulkdownload.

http://epp.eurostat.ec.europa.eu/newxtweb/
https://ec.europa.eu/eurostat/data/bulkdownload
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T A B L E 1 Clothes data. Contingency table between the 28 member states of the European Union (data
collected well before Brexit) and five price segments. These are occurrences of country trade flows for a wide
set of clothes: x1 denotes the lowest price segment and x5 the highest price segment and c′ is the row vector of
column masses. In all there are 4373 counts

Price segment
Country x1 x2 x3 x4 x5

Row mass
r

GB 134 76 43 50 49 0.0805

SK 173 62 20 23 16 0.0672

BG 67 76 48 36 23 0.0572

IE 11 21 31 36 52 0.0345

BE 25 32 57 60 58 0.0531

ES 32 42 40 67 67 0.0567

PL 20 35 31 41 41 0.0384

FI 10 16 23 23 24 0.0220

GR 54 28 29 30 23 0.0375

HU 12 19 14 15 20 0.0183

SI 9 10 14 20 23 0.0174

NL 52 43 38 47 54 0.0535

IT 21 36 33 30 36 0.0357

RO 85 74 55 31 22 0.0611

AT 3 8 12 12 25 0.0137

FR 28 33 40 31 45 0.0405

HR 9 17 23 19 34 0.0233

SE 18 36 44 35 40 0.0396

CZ 12 24 22 25 37 0.0274

DK 16 32 35 39 38 0.0366

DE 28 39 36 41 54 0.0453

LT 3 15 22 25 24 0.0204

PT 30 40 28 20 26 0.0329

EE 8 10 12 13 17 0.0137

LU 2 1 2 3 3 0.0025

MT 29 10 16 8 9 0.0165

LV 47 51 29 19 12 0.0361

CY 7 19 20 26 9 0.0185

c′ 0.2161 0.2070 0.1868 0.1887 0.2015 1
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F I G U R E 1 Clothes data. Squared Mahalanobis distances of row profiles from c with simulation envelopes.
Upper panel: unweighted distances; lower panel: distances weighted by row masses fi. In both panels the
numbers on the x axis correspond to the rows of Table 1.

in each cell, for example Agresti (2013). However, 10,000 simulations of our table took about
40 seconds, so such distributional approximations may only be necessary for much larger
tables.

We work with the terminology of robustness and outlier detection. It is important to be clear
what an outlier means in this context. In regression and the analysis of multivariate normal data,
an outlier is an observation which is suspected of being ‘wrong’, perhaps coming from a different
population or corrupted by a numerical error or by a systematic measurement error. Here the aim
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T A B L E 2 Clothes data. Seven outlying countries, ordered from the most outlying, according to four
analyses: MHD—squared Mahalanobis distances, CA—correspondence analysis; distances measured by
projection onto principal axis

Analysis Ordered countries

Traditional MHD (Figure 1) SK GB RO IE BG LV ES

Traditional CA (Figure 2) SK MT GB RO LV BG GR

Robust MHD (Figure 3) SK GB RO BG LV GR MT

Robust CA (Figure 4) SK GB MT LV RO BG GR

is to find the structure of the rows. In this case an outlier is a row which does not agree with the
multiplicative model assuming independence fitted to the data. In the case of Figure 1 this model
has been fitted to all I rows, so that each of the potentially outlying rows listed above has had an
effect on the estimation of the multiplicative model.

The two panels of Figure 1 respectively indicate results from 11 and 9 countries lying above the
95% Bonferroni bound. There is a strong indication of the presence of outlying observations. How-
ever, in the presence of multiple outliers some good observations may appear outlying and some
outlying observations may not be evident. These configurations can be discovered by the dele-
tion of observations in a structured way using robust methods. Analyses of numerous outlier-free
data sets for other market segments indicate, perhaps surprisingly, the unstructured indepen-
dence of country profiles. It is therefore meaningful to search for outlying behaviour from this
null hypothesis of independence.

We now turn to the correspondence analysis of these data. This should provide information
not only on the relationship between the row profiles, but also their relationship to the five ordered
price categories. The plot of the correspondence analysis is in Figure 2, with the countries repre-
sented by circles. This is not of the standard structure seen in such plots as Exhibits 9.2 and 10.2
of Greenacre (2017) in which the two axes intersect near the centre of a point cloud of the projec-
tions of row profiles. Here, on the other hand, the intersection of the axes leaves a cloud of points
to its right, with a straggle of points to the left of the intersection. In order, the most remote on the
first axis, which accounts for 83.3% of the total variability, are SK, MT, GB, RO, LV, BG and GR.
Five of these are indicated as outlying by the plots of Mahalanobis distances in Figure 1. In addi-
tion, the order is changed and AT now appears as a member of the central group. The comparison
is clarified in Table 2 (Section 5.1).

Also included in Figure 2 are confidence regions for the positions of the column points, derived
using a general bootstrapping method suggested by Greenacre (2017, p. 226), which gives ellip-
tical confidence intervals. The website https://www.rdocumentation.org/packages/FactoMineR/
versions/2.4/topics/ellipseCA provides algorithms for three methods of constructing the ellipses,
which vary in the way the bootstrap samples are generated. In Figure 2 we have plotted the 99.9%
region for all xj, taking the original contingency table as a reference. In the method we used
10,000 new data tables drawn from a multinomial distribution with theoretical frequencies equal
to nij∕n. These new data tables are projected as supplementary rows or supplementary columns
in the reference table. Confidence ellipses are then drawn using the centroid and the covariance
matrix of the 10,000 projected points. In this example the alternative methods based on generating
tables bootstrapping row by row or column by column gave virtually indistinguishable ellipses.
The figure shows that the main feature of these regions is that all price levels would be considered
as significant, since none of the regions includes the origin of the axes.

https://www.rdocumentation.org/packages/FactoMineR/versions/2.4/topics/ellipseCA
https://www.rdocumentation.org/packages/FactoMineR/versions/2.4/topics/ellipseCA
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F I G U R E 2 Clothes data. Correspondence analysis plot of the data in Table 1 with the points displayed in
principal coordinates. The rows are represented by circles and the columns by triangles. Confidence level of the
column ellipses is 99.9%.

These two analyses indicate the presence of several outliers among the data from the 28
countries. It is, however, not clear, in the low-dimensional representation, which countries are
outlying, nor what effect the outliers are having on the positions of the seemingly non-outlying
rows and on the inertia explained.

4 ROBUST CORRESPONDENCE ANALYSIS

We first discuss the MCD estimator for the parameters 𝜇 and Σ of multivariate normal data and
then describe the extensions that are needed to apply the MCD to the analysis of contingency
tables, leading to the detection of outlying rows, which may be clustered, or ordered, by the
column variable.

4.1 The MCD estimator

The squared Mahalanobis distance of a v-dimensional multivariate normal random variable yi is

d2
i (𝜇,Σ) = {yi − 𝜇}′Σ−1{yi − 𝜇}, i = 1, … ,n. (6)

The contours of constant squared Mahalanobis distances form ellipsoids in v-dimensional space.
This simple geometric interpretation suggests the MCD estimator of 𝜇 and Σ (Rousseeuw & Van
Driessen, 1999), found by hard trimming, which yields a subset of h observations, intended to
be outlier free, that provides parameter estimates for the analysis of the data. The number of
untrimmed observations h,⌊(n + v + 1)∕2⌋≤ h ≤ n is decided before the data are analysed. If
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the minimum value of h is chosen, the procedure has a breakdown point of 50%, although the
efficiency is very low (Hubert & Debruyne, 2010).

The n−h observations to be trimmed are found numerically. Let d2
(1),≤ … ,≤ d2

(n) be the
ordered values of the Mahalanobis distances d2

i (𝜇,Σ). Then the MCD estimator of 𝜇 and Σ
minimizes the trimmed sum

SMD(h) =
h∑

i=1
d2
(i). (7)

For robust correspondence analysis we adapt a slightly simplified version of the algorithm of
Rousseeuw and Van Driessen (1999). This starts by taking a large number (generally 2000)
of random subsets of v+ 1 observations. The parameters are estimated from each subset and
the Mahalanobis distances calculated for all n observations. These parameter estimates can be
improved by a ‘concentration’ step by ordering the Mahalanobis distances and using the subset
containing the smallest h distances to provide new parameter estimates. The procedure is repeated
a few times for each random subset. Although the parameter estimates from all subsets could be
concentrated to convergence, it is customary to bring to full convergence just the five smallest val-
ues of SMD(h) out of 2000. The subset h∗ that provides the smallest overall value of SMD(h) is used
for the robust analysis of the data. Details and proof of convergence of the concentration steps for
correspondence analysis are in Section 4.3.

4.2 MCD correspondence analysis

The subset h of observations in the algorithm described in Section 4.1 can have any integer value
between (n + v+ 1)∕2 and n − 1. In correspondence analysis the entries of the table are rows, the
ith of which contains ni. observations. In order to calculate the MCD in this situation we need
to formulate correspondence analysis when only an arbitrary number h of the n observations is
included. We start by rewriting (4) by replacing c by the notation cn. Then cn is the vector which
satisfies the following minimization

min
cn

I∑

i=1
fi.(r̃i − cn)′D−1

cn
(r̃i − cn) = mincn

I∑

i=1
fi.d2

i (cn). (8)

In robust estimation for normal data, the trimming of extreme observations leads to biased estima-
tion of variances and covariances. With such data it is desirable to apply a consistency correction
to the estimation of the covariance matrix in the Mahalanobis distance to correct for this bias;
(see Rousseeuw & Van Driessen, 1999, p. 218). The trimming, however, does not introduce bias
into the estimation of the mean. In (8) the covariance matrix is diagonal, but separate estimates
of the variances are not required. Because, for the Poisson distribution, the mean and variance
are equal, we use sample means in the computation of the robust Mahalanobis distances and so
do not need to apply a consistency factor.

Equation (8) can be rewritten in terms of all n observations as

min
cn

1
n

I∑

i=1

ni.∑

k=1
(r̃i,n − cn)′D−1

cn
(r̃i,n − cn). (9)
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The notation r̃′i,n, stresses that this is the ith row of the I × J matrix R of row profiles based on n
observations. Note that the summand is not a function of k.

When only h observations are of interest, the vector ch satisfies

min
ch

1
n

I∑

i=1

ni.∑

k=1
an{Oik(ch)}(r̃i,h − ch)′D−1

ch
(r̃i,h − ch) = minch

1
n

I∑

i=1

ni.∑

k=1
an{Oik(ch)}d2

i (ch). (10)

Here Oik(ch) is the rank order of d2
ik(ch) among all n distances based on ch

d2
1(ch), … , d2

1(ch)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n1.

, … , d2
I (ch), … , d2

I (ch)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

nI.

(11)

and an(s) = I(s ≤ h), s= 1, 2,… , n.
The computation of ch is generally based on a subset of l rows which are fully represented

with overall mass h𝓁∕n < h∕n and a partially represented row p with original mass fp. = hp∕n.
This is represented in the subset of size h with h − h𝓁 units. The original frequencies of row p of
the contingency table np1,np2, … , npJ, with row total np. are modified as follows

(h − h𝓁)
np1

np.
(h − h𝓁)

np2

np.
… (h − h𝓁)

npJ

np.
. (12)

Calculations for the main part of the MCD algorithm of Section 4.1 then depend on ordering
all the n distances based on ch

d2
1(ch), … , d2

1(ch)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n1.

, … , d2
I (ch), … , d2

I (ch)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

nI.

(13)

and obtaining the value of SMD(h).
The algorithm starts, as in Section 4.1, from a randomly selected basic subset, in this case of

J rows of the table, each of which is completely represented. Unlike traditional MCD analysis
here the sizes h0 of the elemental subsets may vary. An alternative, which we have not followed
here, is to use a basic subset of size J containing one observation per row. Let these J rows be
the subset J0, with h0 = J. Then, in the notation of (12), (h − h𝓁) = 1 for all selected rows j ∈ J0
and the cell frequencies are np1∕np., p ∈ J0. In either case, calculation of ch0 leads to ordering
the n Mahalanobis distances as in (13) with ch0 replacing ch. Note that here the basic subset is
of dimension J, rather than v+ 1, as we do not need an extra degree of freedom to estimate the
variance.

4.3 Concentration steps for contingency table analysis with MCD

We now prove the convergence of the concentration steps for the MCD analysis of contingency
tables.

Let H(k) be the current h subset at iteration k associated with a contingency table based on h
observations N(k)

h (with
∑I(k)

i=1
∑J

j=1n(k)ij = h). The vectors c(k)h and f(t.) are respectively the centroid
of row profiles and the associated row masses in this contingency table. These h observations are
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associated with a set of rows of the original contingency table and to another row of the original
contingency table which is partially represented. The objective function is

SMD(H(k)) =
∑

t∈H(k)

f(t.)d2
(t)(c

(k)
h ).

Let H(k+1) be the h subset which contains the smallest weighted distances with respect to c(k)h . By
construction:

∑

t∈H(k+1)

f(t.)d2
(t)(c

(k)
h ) ≤

∑

t∈H(k)

f(t.)d2
(t)(c

(k)
h ) = SMD(H(k)). (14)

Let the new associated contingency table be N(k+1)
h (with

∑I(k+1)
i=1

∑J
j=1n(k+1)

ij = h). Since the centroid
of the row profiles (vector of column masses) of the contingency table N(k+1), which we denote
with c(k+1)

h , minimizes (8) it follows that

SMD(H(k+1)) =
∑

t∈H(k+1)

f(t.)d2
(t)(c

(k+1)
h ) ≤

∑

t∈H(k+1)

f(t.)d2
(t)(c

(k)
h ). (15)

Combining (14) and (15), the new h subset H(k+1) has an objective function that is less than
or equal to that of H(k). Note that the only way to obtain equality is if no element inside vector ch
has changed, in which case the iteration stops.

5 MCD ANALYSIS OF THE CLOTHES DATA

We now report the results of the MCD analysis of the clothes data with maximal breakdown
point of 50%, that is h = 2189. We first establish the outliers and then describe the results of the
correspondence analysis with the outlying rows deleted.

5.1 Outlier detection

The upper panel of Figure 3 shows the plot of the robust Mahalanobis distances by country. This is
the robust version of the lower panel of Figure 1. Not only is the simultaneous envelope of course
the same in the two figures, but there are again seven outliers, listed in Table 2. AT is no longer
marginally outlying, but PT is very close to the envelope.

The MCD estimate with 50% breakdown is highly inefficient. If there are fewer than 50% out-
liers, a more efficient estimator may be found based on a larger subset than ⌊(n+ 5)∕2⌋. Following
a suggestion of Rousseeuw and Van Driessen (1999) for improving the MCD estimate, we use
the information from Figure 3 to calculate a reweighted estimate. The data are now reanalysed
without the eight rows (including PT) detected as outlying by the MCD reweighting. These con-
tain 2672 observations, so the fit is now with a subset of size 2672 rather than 2189 for MCD. The
resulting plot of Mahalanobis distances, together with the simulation envelope, is in the lower
panel of Figure 3. Despite the marked difference in subset sizes used for fitting, any difference
between the two plots is very hard to detect. However, there is a change in the outlying rows that
are detected because, after reweighting, Portugal falls just inside the envelope rather than outside.



RIANI et al. 13

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

PT

MT
GR

LV
BG

RO

GB

SK
99.9643%

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

MT
GR LV

BG

RO

GB

SK
99.9643%

F I G U R E 3 Clothes data. Top panel: MCD squared Mahalanobis distances of row profiles from ch with
envelopes. Bottom panel: reweighted MCD Mahalanobis distances. In both panels the distances are weighted by
the row masses.

5.2 Outlier-removed correspondence analysis

Outlier detection as in Section 5.1 leads to a reduced contingency table with I(h∗) rows. We
apply the correspondence analysis described in Section 2.2 to the reduced table with I(h∗) < I
rows, finding the SVD not of the matrix S in (2) of size I × J, but of the smaller I(h∗) × J matrix
S∗ from the reduced table of size

∑
i∈I(h∗)

∑J
j=1nij = n∗ < n. Once the correspondence analysis
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F I G U R E 4 Clothes data. Correspondence analysis plot from MCD analysis. Filled circles are the seven
deleted observations (‘supplementary points’). The ellipses (lower panel) give a 99.9% confidence interval for the
positions of x1, … , x5.

transformation has been calculated, we transform the outlying rows in the same way and include
them in the plot under the name ‘supplementary points’ (Greenacre, 2017, Chap. 12).

To continue our analysis of the data we give, in the upper panel of Figure 4, the plot from the
correspondence analysis of the data when the seven outlying rows are excluded from estimation
of the principal coordinates. They are, however, plotted in the figure, and so have become ‘sup-
plementary points’. The points of the remaining 21 observations now form a scatter around the
intersection of the axes: there are 16 countries forming a relatively tight cluster with five countries
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scattered slightly more remotely around them. There is then, at lower values of the first principal
axis, a seeming cluster of six countries. The most remote country on this axis is Slovakia. In both
this plot and Figure 2 the ordering along this axis seems to reflect an increasing proportion of pur-
chases of the cheapest clothes. The second lowest point on this axis is that for GB. The other five
outliers are for countries with much smaller economies; the other major economies of Europe at
that time (FR, IT, DE, PL and ES) all have values for the first axis close to zero; that is, they are
typical European countries.

The lower panel of Figure 4 repeats the upper panel, but the focus is now on the columns.
As in Figure 2 we give the confidence regions for the five column points. Removing the seven
outliers from estimation causes a sharp change in the assessment of the significance of columns
points. Now the regions for the three central price categories, x2 − x4, overlap with the origin.
After removal of the outliers the information on the effect of price comes only from the two most
extreme categories. While in the non-robust representation the confidence ellipses for x1 and x2
are very far from those of the other three points, in the robust representation there is considerable
overlap in the ellipses for each consecutive pair of price levels.

The first latent dimension can be interpreted as price level; when the outliers are removed,
the projection on this dimension of the seven outliers gives values that are much lower than
the projection of the column point x1. The second latent dimension now more sharply con-
trasts the extreme prices (x1 and x5) with the intermediate prices. In the robust correspondence
analysis plot, only the column points x1 and x5 show positive values for this latent compo-
nent. It is also interesting to note that, while in the original representation the countries RO,
LV and BG seem to be very close to x2, in the robust representation they are all well to
its left.

The robust analysis leads also to the revelation of further information in the data. For example,
Figure 5 is a scatterplot matrix of the row profiles with the outliers highlighted. On the diagonals
we give the box plots for the five values of x separated into normal and outlying rows. The structure
is abundantly clear. The first row shows the high values of x1 for all seven outlying countries,
whereas the values of x4 and x5 in the last two rows are almost all lower for the outliers than for
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F I G U R E 5 Clothes data. Scatter plot matrix of row profiles with outliers shown as circles (red in the online
pdf version).
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the normal countries. A panel such as that for x1 and x5 shows complete separation of the two
groups.

The ordered listing in Table 2 of the seven outliers found by the four analyses shows that the
most outlying country is SK, followed by GB. Columns 2 and 3 show that RO and MT also occur as
the second or third most outlying in some analyses. However, these rankings give no information
as to the magnitude, rather than ordering, of the distances between the central group and these
countries. What is most important about the robust analysis is the contrast of the robust CA plot
of Figure 4 with the traditional CA plot of Figure 2. The outliers are clearly displayed in the robust
plot, lying remote from the central cluster, which is now at the intersection of the two principal
axes.

In this example, the countries are in approximately the same positions relative to the axes in
the robust and non-robust plots. The main effects of the robust analysis are to tighten the cluster
of the main 21 observations and to emphasize the existence and structure of the outliers. In the
on-line supplement (Riani et al., 2022) we add an extra fictitious country, also outlying, to show
the distinct effect that another form of outlier can have.

6 2014 CAR DATA

As a second example of the application of robust correspondence analysis we again analyse
an example with rows that have a clear resonance, in this case, brands of cars. The data,
given in Table 3 are presented by Bora Bera at the web address https://boraberan.wordpress.
com/2016/09/22. They are taken from the 2014 Auto Brand Perception survey by Consumer
Reports (USA) where 1578 randomly selected adults were asked what they considered exem-
plary attributes for 39 different vehicle brands. Respondents picked all that they felt applied from
among a list that consisted of: Style, Performance, Quality, Safety, Innovation, Value and Fuel
Economy.

As in Section 5 we look at several CA plots, using plots of squared Mahalanobis distances from
robust and non-robust analyses to guide us in the choice of supplementary points. The focus in the
description of this analysis is in the evolving interpretability of CA plots as the analysis progresses.

We start with the non-robust CA plot in Figure 6. The most clear property is that of Safety,
on which Volvo scores highly and Subaru well. Otherwise, the cars and their properties are
concentrated in an uninformative group with, for example, Performance and Innovation virtu-
ally indistinguishable. Smart is the only other outlying make, which is certainly to be expected.
Finally, there is one quadrant, the second (NW) one, in which the row points are all close to the
origin.

We then performed a robust analysis using MCD with a breakdown point of 0.5. The index plot
of Mahalanobis distances had a less regular structure than the two panels of Figure 3, with only
eight makes falling below the simultaneous confidence interval. This suggests that there were
few standard vehicles on the properties of which consumers were agreed. This is distinct from
the first example where the citizens of many EU countries were shown to have similar profiles
for the purchases of clothes. Despite this lack of structure in the car data, there were many clear
outliers, the largest seven being, in order: Volvo, Toyota, Honda, Kia, Hyundai, Volkswagen and
Smart. The CA analysis with these seven vehicles deleted to become supplementary points is in
Figure 7. Now that Volvo and Toyota have been deleted, safety is a much less important axis and
the importance of other properties is clearer. In particular, Performance and Innovation are now
well separated.

https://boraberan.wordpress.com/2016/09/22
https://boraberan.wordpress.com/2016/09/22
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T A B L E 3 2014 car data. Number of adults out of 1578 stating that a particular make of vehicle had a
specific quality. In all there are 11,713 counts

Exemplary attributes Row total

Make
Fuel
economy Innovation Performance Quality Safety Style Value ni.

Acura 24 38 28 20 28 33 25 196

Audi 9 54 54 30 19 67 8 241

Bentley 0 16 18 25 9 27 17 112

BMW 14 83 94 55 38 93 35 412

Buick 25 48 39 58 52 52 43 317

Cadillac 14 73 50 76 40 83 36 372

Chevrolet 114 103 202 174 140 160 145 1038

Chrysler 38 65 96 54 54 103 72 482

Dodge 60 61 141 61 63 133 69 588

Ferrari 0 20 45 10 8 46 5 134

Fiat 19 21 17 20 15 7 16 115

Ford 167 180 169 179 161 157 188 1201

GMC trucks 40 40 64 57 80 50 58 389

Honda 163 68 73 118 104 50 135 711

Hyundai 97 25 31 27 35 42 82 339

Infiniti 5 39 31 15 10 17 16 133

Jaguar 0 3 18 19 3 47 12 102

Jeep 18 33 14 51 19 41 52 228

Kia 68 30 17 13 24 42 109 303

Lamborghini 5 19 37 8 6 23 24 122

Land Rover 0 43 0 5 0 47 2 97

Lexus 10 62 29 50 27 64 26 268

Lincoln 6 37 23 31 24 40 19 180

Maserati 0 6 9 0 0 41 25 81

Mazda 46 23 34 10 12 26 38 189

Mercedes-Benz 8 83 44 87 58 82 42 404

Mini 23 12 4 4 13 12 4 72

Mitsubishi 20 13 33 23 7 32 13 141

Nissan 80 68 51 53 52 55 70 429

Porsche 0 17 66 14 6 42 5 150

Ram trucks 9 22 21 10 18 1 16 97

Rolls-Royce 0 4 4 35 11 25 17 96

Scion 20 24 11 6 11 4 4 80

(Continues)
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T A B L E 3 (Continued)

Exemplary attributes Row total

Make
Fuel
economy Innovation Performance Quality Safety Style Value ni.

Smart 38 9 3 7 0 5 10 72

Subaru 19 14 32 33 75 20 40 233

Tesla 23 35 10 12 9 15 12 116

Toyota 238 116 95 134 113 74 150 920

Volkswagen 90 30 25 37 27 22 46 277

Volvo 9 15 16 31 180 14 11 276

Total (n
.j) 1519 1652 1748 1652 1551 1894 1697 11, 713
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F I G U R E 6 2014 car data. Non-robust correspondence analysis plot.

To explore the presence of the large number of indicated outliers in our analysis of the 2014
car data, we repeated the MCD analysis with a breakdown point of 0.25. The results from the
unweighted and re-weighted analyses were similar to those for 0.5 breakdown, but did suggest
that Land Rover might also be treated as a supplementary point. The resulting correspondence
analysis plot is in Figure 8. This final plot contains easily understood information on consumers’
perceptions of cars. This is particularly the case in the left-hand half of the plot, where the vari-
ables are Quality, Style and Performance. There are several surprising conclusions, such as the
orthogonality of Performance and Fuel Economy and the presence of Innovation virtually on
the intersection of the axes, suggesting the absence of consistent perceptions about innovation.
In the transparent structure of this plot there is a wide range of values for the row points in all
quadrants.
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F I G U R E 7 2014 car data. Correspondence analysis plot from MCD analysis, breakdown point = 0.5. Filled
circles are the seven deleted observations (‘supplementary points’).
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F I G U R E 8 2014 car data. Correspondence analysis plot from MCD analysis, breakdown point = 0.25.
Filled circles are the eight deleted observations (‘supplementary points’), that is with Land Rover also treated as a
supplementary point.
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7 DISCUSSION

We have applied robust methods using hard trimming to the analysis of two-way contin-
gency tables, leading to highly informative robust displays of correspondence analyses with
deleted rows. Choi and Huh (1999) described a method for correspondence analysis that uses
M-estimation to downweight the effect of outlying rows. Because the rows are only down-
weighted, Choi and Huh cannot use deleted rows as supplementary points, a device that we have
found highly informative in exhibiting the structure of the data. In particular, the analysis of the
car data showed the clarity that can be found through the deletion of rows guided by the outliers
detected by hard trimming.

In this paper we have exhibited the use of the MCD for hard trimming. In both examples we
started with a breakdown point of 50%. Because such severe trimming can lead to unnecessarily
inefficient estimation of parameters, we used a downweighting procedure to increase the size of
the fitted subset of observations. We also, in the analysis of the car data, repeated the analysis
with a breakdown point of 25% for the MCD. An extension of our work would be to move from
these two values of h (four with reweighting) to monitoring how the properties of the fitted model
and Mahalanobis distances change as the breakdown point decreases from 50% to zero, that is
the non-robust fit. Cerioli et al. (2018) illustrate the procedure for multivariate normal data both
for the MCD and for the Forward Search (Atkinson et al., 2010) which proceeds by automatically
increasing the value of h. The resulting informative plots and test statistics lead to data-dependent
estimation of the breakdown point that can then be used to give the most efficient parameter
estimates for the specific data set. The algorithm of Section 4.2 allows monitoring through the
fitting of subsets of increasing size, including a partial row. However, in the final analysis rows
are either fully present or deleted.

Finally, we stress that we have here only treated ‘simple’ correspondence analysis, that is the
analysis of two-way contingency tables. The extension to ‘multiple’ correspondence analysis, that
is to the analysis of higher-way tables, is in chapter 13 of Greenacre (2017). The robust method
used here extends straightforwardly to this form of correspondence analysis.
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CODE
All the calculations in this paper have used the Flexible Statistics and Data Analysis (FSDA)
MATLAB toolbox, which is freely downloadable from the file exchange of Mathworks at the web
address https://www.mathworks.com/matlabcentral/fileexchange/72999-fsda or from github at
the web address https://uniprjrc.github.io/FSDA/. More specifically, the routine to compute the
MCD in correspondence analysis is called mcdCorAna. The associated HTML documentation can
be found after installing the toolbox or directly from the web address http://rosa.unipr.it/FSDA/

https://www.mathworks.com/matlabcentral/fileexchange/72999-fsda
https://uniprjrc.github.io/FSDA/
http://rosa.unipr.it/FSDA/mcdCorAna.html
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mcdCorAna.html. The CA routine which plots the confidence ellipses is called CorAnaplot and
accepts as input the structure created by routine CorAna.
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