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a b s t r a c t

The paper explores the frequency and size distributions of firm-size in a novel dataset
for the mid-Victorian era from a recent extraction of the England and Wales population
censuses of 1851, 1861, 1871, and 1881. The paper contrasts the hypothesis of the
Power Laws against the Lognormal model for the tails of the distributions using maxi-
mum likelihood estimation, log likelihood ratio, clipped sample coefficient of variation
UMPU-Wilks test, Kolmogorov–Smirnov statistic, among other state-of-the-art statistical
methods. Our results show that the Power Law hypothesis is accepted for the size
distribution for the years 1851 and 1861, while 1871 is marginally non-significant,
but for 1881 the test is inconclusive. The paper discusses the process that generates
these distributions citing recent literature that shows how after adding an i.i.d. noise to
the Gibrat’s multiplicative model one can recreate a Power Law behaviour. Overall, the
paper provides, describes and statistically tests for the very first time a unique historical
dataset confirming that the tails of the distributions at least for 1851 and 1861 follow
a Pareto model and that the Lognormal model is firmly rejected.
©2019 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Fujita et al. in their classic textbook observe that often ‘‘theory gives simple, sharp-edged predictions, whereas the real
world throws up complicated and messy outcomes’’ [1]. However, Fujita et al. also notice that numerous examples occur
where the situation is upside down: ‘‘data offer a stunningly neat picture, one that is hard to reproduce in any plausible
(or even implausible) theoretical model’’ [1]. This unsettled theorisation may explain that a search in Physica A gets 7543
results for ‘‘Power law’’, 551 for ‘‘Pareto distribution’’, 222 for ‘‘Zipf’s Law’’, 708 for ‘‘Lognormal’’ and 70 for ‘‘Gibrat’s
Law’’, the main fields discussed in this paper. In this literature on firm size, the key sources are the work of American
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linguist George Kingsley Zipf [2] and French engineer Robert Gibrat [3]. However, Power law, Pareto distribution, Zipf’s
law, and Gibrat’s law have been described in an astonishing number of occasions in the social sciences, economics, biology,
linguistics, history, geography, ecology, physics, and elsewhere.1

This paper focuses on firm size. This has been previously explored using different variables according to the frequency,
number or percentage of total employees, employment share, sales, income, assets or profits. The unique data examined
in this paper permits analysis of both the distributions of the frequency, and the size, measured by number of total
employees of firms in England and Wales between 1851 and 1881. The relevant literature on the distribution of firm size
covers almost all geographical contexts: e.g. [15] for the United Kingdom, [16] and [17] for the United States, [18] and [19]
for the G7 countries, [20] for Japan, [21] for Italy, [22] for Portugal, [23] and [24] for China, or [25] for Korea. A related
topic, farm size, which is also available in our dataset but is not analysed in this paper, is included in works by [26]
and [27] for England and Wales, [28] for South Africa, and [29] for England and the EU. An important contribution to
the discussion is the book [30] where complex stochastic processes are used to explain both Zipf’s and the Gibrat’s laws.
Advanced econometric techniques are implemented in this paper to test the tail behaviour of our unique sample. The
main intention of the paper is to provide evidence of the statistical behaviour of the firm size and frequency distributions
using a dataset for England and Wales in mid-Victorian times.

Currently there is a heated debate about the possibility to distinguish whether behaviour at the tail follows a Power
Law distribution or a pure Gibrat’s Law, i.e. a Lognormal distribution. Malevergne et al. [31] claim that their attempt
using the UMPU (uniformly most powerful unbiased)—following Del Castillo and Puig test [32]—‘‘is shown to provide a
clear diagnostic, allowing us to distinguish between the power-law and the Lognormal hypothesis, even when the data
set is quite small’’. Also, although Clauset et al. [5] argue that: ‘‘[i]t is extremely difficult to tell the difference between
log-normal and power-law behaviour . . . [and] it appears unlikely that any test would be able to tell them apart unless we
had an extremely large data set’’, notwithstanding they provide an extended methodology to deal with the testing of the
Power Law and Lognormal hypotheses. Bee et al. [33] and [34] also acknowledge that ‘‘the two different distributions are
mathematically different, but only in the limit’’ and the tail behaviour for their empirical analysis gave approximately the
same outcomes for their finite samples but at the same time they provide a Maximum Entropy (ME) test to tackle this
query. In this paper, we implement several advanced statistical methods proposed in recent literature using maximum
likelihood estimation to estimate the shape (α) and the cut-off (u) parameters, loglikelihood ratio to compare competing
models, Vuong methodology to find p-values for this comparison, clipped sample coefficient of variation UMPU-Wilks test
to contrast the Pareto to the Lognormal hypothesis on the tail, Kolmogorov–Smirnov procedure to measure the distance
of models and find also the u parameter and the Goodness-of-Fit, and non-parametric bootstrapping to obtain confidence
intervals as proposed by Malevergne et al. [31], Clauset et al. [5], Alstott et al. [35], and Gillespie [36]. The evidence we
provide corroborates the claim of Malevergne et al. [31] that ‘‘the test can be derived with extremely high accuracy (even
for very small samples)’’.

We are interested in which of either a Power Law or Lognormal better describes the distributions of our data, but to
aid interpretation it is important to clarify why firm size follows these distributions? Traditionally for examination of the
whole distribution focus was given to the simple distinction of whether a firm’s decision-making is multiplicative and not
additive. When a decision is made on the next period of workforce hiring, it is based on ‘‘I need ten more or twenty fewer
workers’’, or it is based on ‘‘I need an increase of 10%, or I need a 20% decrease’’. The former was considered to generate a
normal distribution, while the latter was believed to generate a Lognormal distribution. As a result, many authors explain
the outcomes of the Lognormal simply as a proportional process that acts recursively over time. For example, Gan et al. [37]
using Monte Carlo experiments showed that no explanatory economic theory is required. Batty [38] argues that this result
from complex systems is self-organising and Corominas-Murtra and Sole [39] establish that Zipf is a common statistical
feature when a system goes from order to disorder or vice versa. Arshad et al. [40] give a wider comparison of these
simple explanations based on economic shocks, human capital accumulation, or central place theory. At the same time,
Gabaix [41] and [42] presents an explanation for the growth model of cities. Nevertheless, more recently Saichev et al. [30]
and [43] have shown that simply adding a well-behaved noise to the well-known equation embodying Gibrat’s law can
result in switching the Lognormal behaviour to a Power Law for large values in the tail. That is, there is no need to add
a theory just to explain the generation of the Lognormal distribution, as commonly argued, but also for the Power Law.

2. Methodology, data, frequency and size distributions

The data for this paper are derived from the original manuscripts of the England and Wales population census. The
censuses have been transcribed and encoded into a database recently made available at the UKDA [44]: The Integrated
Census Microdata (I-CeM). From this source as well as additional census data to infill gaps in I-CeM, employers and
the size of their workforce have been extracted and made available as the ‘British Business Census of Entrepreneurs’

1 Mitzenmacher [4] gives nineteen examples in computer science and apologises for ‘‘leaving out countless further examples’’. Clauset et al. [5]
give twenty-four examples comprising words in Moby Dick [6], protein interaction in Saccharomyces cerevisiae [7], metabolites in Escherichia Coli [8],
intensity of wars [9], terrorist attacks [10], the size distribution of web files transmitted over the Internet [11], species per genus of mammals [12],
customers affected in electrical blackouts [6], bestselling books sold [13], acres of wildfires [6], solar flares [6], and number of citations listed in the
Science Citation Index [14].



860 P. Montebruno, R.J. Bennett, C. van Lieshout et al. / Physica A 523 (2019) 858–875

Fig. 1. Frequency versus size 1851–1881. Double decimal logarithm scale (own data replication of Redner’s (1998) Fig. 1). (Upper left quadrant 1851,
upper right quadrant 1861, lower left quadrant 1871, lower right quadrant 1881.)

database.2 This provides the starting point here. The 1851–81 population censuses questions included data on workforce
size. Unfortunately, the question was discontinued after 1881 so our analysis is limited to four-censuses: 1851–81. The
data are particularly valuable since they are exhaustive, especially for the largest firms: noted as essential by Fujiwara
et al. [46] to discriminate between firm size distributions. However, whilst the data for 1851, 1861 and 1881 are almost
fully complete, 1871 has transcriber deficiencies that mean that total business numbers are not reliably available (about
20% of data are missing). Hence, whilst 1871 analysis is included here for completeness, and it generally confirm the same
distribution patterns, we do not always attempt to fully interpret this year.

There are two possible distributions that can be built from the employers’ answers in the censuses. One is the frequency
distribution of firm size, the number of firms for a given workforce size. For instance, in 1851 there were 181,900 firms
and 390 different sizes. Their distribution starting from the left (largest) has 159 (40.77%) of frequency one—159 sizes
appear just once—52 (13.33%) of frequency two—52 sizes appear twice—and 23 (5.9%) of frequency three—23 sizes appear
thrice—and so on, ending to the right with one (0.26%) of frequency 38,111 (i.e. for size of two employees), and one (0.26%)
of frequency 47,231 (for size of one employee). This is similar to the number of journal citations used in the data by Redner
(1998), as well as many other examples. The second distribution is the firm size distribution, the workforce size for a given
firm. For instance, in 1851, there are 1,185,602 employees and 181,900 firms and its distribution starting from the left has
47,231 (25.97%) with one employee, 38,111 (20.95%) with two employees, and so on, ending to the right with one with
4287 employees and one with 6000 employees. As a starting point, it is possible to plot both together. Fig. 1, which is a
replication of Figure 1 of Redner [14] for our firm data, using a log–log scale to represent the relation between frequency
and size. These plots represent frequency as a function of size. However, the function is not one-to-one because for some
low frequencies there are many sizes with the same given frequency, as can be seen from the large cluster of data points
at low frequencies and relatively large sizes. This is amplified in our data because of bunching: contrary to Redner’s data,
employers often reported their workforces in round numbers of tens, hundreds and thousands. This explains the higher
variance and spread in frequency at large firm sizes. Note also that we use the actual firm size for each firm: they are
not pre-grouped into size classes. This overcomes one of the criticisms of many analyses of firm size: what Bee et al. [33]

2 The dataset for this paper with the firm-size distributions for mid-Victorian era from the 1851–1881 England and Wales censuses can be found
in [45].
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Fig. 2. Frequency distribution for Frequency < 40 for the censuses 1851, 1861, 1871, 1881.

Table 1
The ten most frequent firm sizes in England and Wales for each census year.
Source: Censuses 1851–81.

Note: F1/Fi denotes the ratio of each frequency relative to the frequency of the most frequent firm size. Grey cells, in 1851, show that the function
converting rank to size (and its inverse) is not necessarily monotonic.

term ‘‘the widespread practice of binning the data’’ (grouping into size categories). This loses information and results in
any statistical inferences being less reliable, especially for the tails which Fujiwara [46] observe are critical: where bins
are large and number of observations is small over a wide size range.

Tables 1 and 2 show the most frequent and the largest firm sizes for 1851–1881. First notice that, in grey, the function
converting rank to size (and its inverse) is not necessarily monotonic. Also, in 1851 the ratio of each frequency relative to
the frequency of the most frequent firm size ranges from one to fifteen, but in the rest of the years it ranges approximately
one to eight. If we plot the frequency and the size distribution for values of less than forty for each distribution, in Fig. 2,
more than 40% of the distribution is made up by firms with one specific workforce category, with a large drop of frequency
for size classes with two specific size classes and over. Also, in Fig. 3, over 20% of the firms have size one, but the drop
for smaller sizes is smooth and not as sharp as for frequencies. However, for both distributions what matters most for
the mathematics of the curve is the upper tail of the distribution where high figures appear. Fig. 4 shows the whole
distribution of firm size frequency. For the upper tail there are only 159 of firms including the four largest firms (2010,
2180, 4287, and 6000 employees). Hence, the distribution does not have a typical scale or size but spans from frequency
one to frequency almost 50,000 as described by Newman [6]: ‘‘not all things we measure are peaked around a typical
value. Some vary over an enormous dynamic range, sometimes many orders of magnitude’’. In the US population, Newman
calculates that the ratio of largest and smallest population is at least 150,000. This compares with our almost 50,000
between the most frequent and least frequent firm size for the approximately 500 different frequency categories of firms.
For the size distribution, this compares with approximately 8000 as the size range spans from one to 8000 employees if
we expand the analysis to all the distributions.

Table 3 compares in detail the summary statistics of the two distributions in each of the four censuses. While the
frequency distribution has only around 500 datapoints, the size one has about 180,000. As a result, in the frequency
distribution the arithmetic mean is of a different order of magnitude than the geometric and harmonic means and the
median. In contrast, in the size distribution all are similar and close together. All statistics for maximum, range, inter
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Table 2
The ten largest firm sizes in England and Wales for each census year.
Source: Censuses 1851–81.
Rank Size Frequency Flast/Fi Rank Size Frequency Flast/Fi Rank Size Frequency Flast/Fi Rank Size Frequency Flast/Fi
1 6000 1 1 1 5444 1 1 1 8000 1 1 1 7000 1 1
2 4287 1 1 2 5000 1 1 2 4500 1 1 2 4861 1 1
3 2180 1 1 3 4500 1 1 3 4350 1 1 3 4500 1 1
4 2010 1 1 4 4000 1 1 4 4250 1 1 4 3500 1 1
5 1600 1 1 5 3000 1 1 5 4000 1 1 5 3300 1 1
6 1503 1 1 6 2900 1 1 6 3570 1 1 6 2800 1 1
7 1413 1 1 7 2400 1 1 7 2400 1 1 7 2600 1 1
8 1400 1 1 8 2341 1 1 8 2195 1 1 8 2500 1 1
9 1363 1 1 9 2146 1 1 9 2068 1 1 9 2450 1 1

10 1342 1 1 10 1849 1 1 10 2000 1 1 10 2400 1 1

1851 Census 1861 Census 1871 Census 1881 Census

Note: Flast/Fi denotes the ratio of each frequency relative to the frequency of the least frequent firm size.

Fig. 3. Size distribution for Size < 40 for the censuses 1851, 1861, 1871, 1881.

quantile range, standard deviation (and variance) and standard error of the mean of the frequency distribution are greater
than for firm size. While the size distribution has a greater skewness and kurtosis, both distributions exhibit similar
coefficients of variation.

Table 4 shows the correlations among the frequency and size distributions for each of the four censuses. At first sight,
there is a high correlation within the distributions: the four frequency distributions are correlated at about 0.99, while
the four size distributions are correlated at 0.95. The correlations across types are also high at 0.7 and above.

3. Empirical analysis

A relationship y = f (x) follows a Power-law if, after the unit increase of x, y increases by a power. This Power Law is
an intermediate rate of increase between the linear and the exponential. If you take the logs of the dependent variable
and also the logs of the independent variable, there is a straight line relationship. The exponential, a model with a higher
rate of growth just requires the logs of the dependent variable to get a straight line. Thus, finding the linear behaviour
after taking logs was one of the holy grails for identifying the type of growth, but as we will see this does not suffice
as a test. Indeed, a straight line is only a necessary but not a sufficient behaviour of a Power Law. In our cases, the
Lognormal presents an exponential decline while the Power Law just a power decay. Consequently, the Lognormal goes
to zero faster than the Power Law. Nevertheless, it is also well-known that for certain parameter values, the Lognormal
can present pseudo-linear patterns in the meaningful intervals of analysis. As shown by Malevergne et al. [31] a Lognormal
with standard deviations in the interval [2,3] ‘‘is close to linear over almost four decades’’ of city sizes over time. This is
observed in our data. Thus it is of crucial importance to use other more advanced methods to distinguish between the
Power Law and the Lognormal in the dataset.
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Fig. 4. Diagram of the frequency of firms in 1851–1881. (Upper left quadrant 1851, upper right quadrant 1861, lower left quadrant 1871, lower
right quadrant 1881.)

Consequently, we have two competing behaviours: Pareto (a Power Law with a cut-off—the xmin or u parame-
ter—defining the tail as shown below) and Lognormal distributions.3 The probability density function of the Pareto
distribution as presented in equation 2.2 of Clauset et al. [5] is:

p(x) =
α − 1
xmin

(
x

xmin

)−α

while Malevergne et al. [31] equation (21) use:

α0
uα0

x1+α0
, x > u (3.1)

It is immediate that:

α = 1 + α0

and that

xmin = u

Moreover, the Power-law, Pareto, and Zipf are related by the following relation

Power-law ⊃ Pareto ⊃ Zipf

3 It may be confusing the jump between Pareto Law, Pareto, and Zipf. To clarify this, we argue, as will become clear below, that Power Law
includes Pareto and that Pareto includes Zipf. This means that when we are saying Pareto we are also saying ‘‘Power Law with a cut-off—the xmin or
u parameter—’’. So these terms are both interchangeable, but also subtlety different. The title of the paper uses Power Law because it is the more
general terminology but the tail behaviour is just restricted to Pareto because we are thinking of a ‘‘Power Law with a Lentement term equals to
xmin ’’. At the same time, when we explore the Zipf behaviour we are thinking of a ‘‘Pareto with an exponent equal to 1’’ or a ‘‘Power Law with a
cut-off and an exponent equal to 1’’.
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Table 3
Summary statistics of the frequency and size firm distributions. (N = count of non-missing observations, mean = arithmetic mean, geo mean =

geometric mean, har mean = harmonic mean, sum = sum of the values of non-missing observations, max = maximum, min = minimum, range =

max – min, sd = standard deviation, variance = variance of each distribution, c = coefficient of variation (sd/mean), se(mean) = standard error of
mean (sd/sqrt(n)), skewness = skewness of each distribution, kurtosis = kurtosis of each distribution, p1 = 1st percentile, p5 = 5th percentile, p10
= 10th percentile, p25 = 25th percentile, median = median (same as p50), p75 = 75th percentile, p90 = 90th percentile, p95 = 95th percentile,
p99 = 99th percentile, iqr = interquartile range = p75 − p25). Notice that the sum of the frequency distributions is equal to the count (N) of the
size distributions.
Stats Frequency Size

1851 1861 1871 1881 1851 1861 1871 1881

N 390 488 468 576 181,900 175,451 138,105 181,125
mean 466.41 360.88 295.10 314.45 6.52 9.28 10.69 11.83
geo mean 4.85 5.12 5.58 5.16 3.09 3.89 4.12 4.10
har mean 1.89 1.98 2.11 2.01 2.14 2.54 2.60 2.57
sum 181,900 176,107 138,105 181,125 1,185,602 1,628,912 1,476,743 2,142,404
max 47,231 33,230 25,644 34,291 6000 5444 8000 7000
min 1 1 1 1 1 1 1 1
range 47,230 33,229 25,643 34,290 5999 5443 7999 6999
sd 3480.76 2602.95 2021.41 2413.43 32.81 45.85 56.69 64.38
variance 12,100,000 6,775,322 4,086,098 5,824,624 1076.6 2102.1 3213.8 4145.2
c 7.46 7.21 6.85 7.67 5.03 4.94 5.30 5.44
se(mean) 176.26 117.83 93.44 100.56 0.08 0.11 0.15 0.15
skewness 10.62 10.29 9.99 11.24 65.90 42.82 47.70 35.10
kurtosis 125.61 117.96 111.69 140.78 8565.04 3391.43 4333.46 2149.57
p1 1 1 1 1 1 1 1 1
p5 1 1 1 1 1 1 1 1
p10 1 1 1 1 1 1 1 1
p25 1 1 1 1 1 2 2 2
median 2 2 3 2 3 3 4 4
p75 10 11 14 12 6 7 8 8
p90 103 96 95 95 12 15 17 18
p95 584 498 469 434 19 25 29 32
p99 17,960 11,456 8990 9627 51 98 125 150
iqr 9 10 13 11 5 5 6 6

Table 4
Matrix correlation of the frequency and size distributions.
CORR Freq51 Freq61 Freq71 Freq81 Size51 Size61 Size71 Size81

Freq51 1
Freq61 0.9858 1
Freq71 0.9858 0.9997 1
Freq81 0.9879 0.9998 0.9998 1
Size51 0.838 0.8448 0.8522 0.8506 1
Size61 0.8124 0.8566 0.8626 0.8592 0.9598 1
Size71 0.81 0.8386 0.8477 0.8443 0.9734 0.9815 1
Size81 0.7083 0.7548 0.7642 0.7595 0.9498 0.9782 0.9787 1

By definition, a Power Law has a complementary cumulative distribution function (CCDF) equal to P(X > x) ∼ L(x)x−α0 ,
where α0 > 0 and L(x) is a slowly varying function—‘‘Lentement’’ in French—as suggested by Karamata’s classical
definition [47,48], and [49] if for all a > 0:

lim
x→∞

L(ax)
L(x)

= 1

From this general equation, one can impose an additional constraint that L(x) = xmin so that the Pareto distribution is
defined. Finally, if the parameter α0 in Eq. (3.1) is equal to 1 a Zipf distribution is defined. Notice, importantly, that the
coefficient in the CCDF is α0, as defined in Eq. (3.1), so that Zipf’s law is fulfilled when Malevergne et al. α0 = 1 but by
Clauset et al. when α = 2. Henceforth, we call the cut-off parameter u as in Malevergne et al. and we use Clauset et al.
α so the Zipf’s law will be attained for a value of α = 2.

Sometimes this relation is firstly presented, as we do in Figs. 5 and 7, as a linear relation between the rank, r, and firm
size, x, in a log–log plot. But it is important to admit that a linear relation is only a necessary condition for a Power Law
behaviour but not a sufficient condition, as mentioned before. Hence, a linear regression does not corroborate a Power
Law because Lognormal, exponential (see [5]) and other distributions can manifest themselves as linear in a rank/size
log–log plot. The following equation, Equation (2) of Hoon et al. [25], further describes this relation:

xrβ
= A
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Fig. 5. Rank/Frequency plots in decimal logarithmic scales of the frequency of firms by rank of firm size frequency in 1851–1881. (Upper left
quadrant 1851, upper right quadrant 1861, lower left quadrant 1871, lower right quadrant 1881.)

where A is the size of the largest firm, i.e. A = max(x). Or taking logs,

ln(x) = ln(A) − β ln(r)

In this case Malevergne et al. α0 corresponds to 1/β of Hoon et al. So again, Zipf’s law is guaranteed with a Hoon et al.
β = 1. These authors add ‘‘The larger the value of β [the smaller the value of the Malevergne et al. α0], the greater the
relative size of a large firm (high ranked firm) as compared with a smaller firm (low ranked firm)’’. Hoon et al. also provide
intuition with the following differential equation:

dx
x

= −β
dr
r

which can be interpreted as ‘‘for any two companies in the ranking, the difference in their sizes is proportional to their
difference in ranks and β is the proportionality constant’’. In other words, that the elasticity of the relation between rank
and firm size is constant.

The Lognormal model has two parameter µ and σ . According to Johnson et al. [50], x is Lognormally distributed with
parameters µ and σ , if the logarithm of x is normally distributed with the same parameters. The probability density
function is the following:

fX (x) =
1

xσ
√
2π

e−
(ln x−µ)2

2σ2 , x > 0

Limpert et al. [51], and [52] argue that ‘‘[s]kewed distributions are particularly common when mean values are low,
variances are large, and values cannot be negative’’. For the difference between Lognormal and normal variability, they
say ‘‘[a] major difference . . . is that the effects can be additive or multiplicative, thus leading to normal or lognormal
distributions’’. Limpert et al. [51], as discussed in the Introduction, show how the Lognormal distribution is generated
from a sequence of multiplicative random effects, x × c and x

c , where x is a given value of the distribution and c any
constant, equivalent to the additive random effects that generate a normal distribution, x + c , and x − c . They add that,
as in the normal distribution, an additive 68–95–99.7 rule applies (i.e., the arithmetic value plus and minus one, two, or
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Fig. 6. Pareto plots decimal logarithmic scales of the frequency of firms in 1851–1881 using the functions plfit and plplot in the paper of Clauset
et al. [5]. x = frequency. (Upper left quadrant 1851, upper right quadrant 1861, lower left quadrant 1871, lower right quadrant 1881.)

three standard deviations), so also in the Lognormal distribution a multiplicative 68–95–99.7 rule emerges for iterative
multiplication and division by standard deviations.

3.1. Testing the tails: Pareto distribution or Lognormal?

3.1.1. The u cut-off parameter
The first step to test the behaviour at the tails is to establish at what point each tail starts. To the left of the u

parameter the behaviour is assumed to be Lognormal. To the right there is competing behaviour between the Pareto
and the Lognormal. To establish the u parameter we use the Clauset et al. methodology described in [10] and [5]: they
choose the u that minimises the distance between the Power Law model and the empirical data. To measure the distance
they use the maximum distance between the cumulative distribution function (CDF):

D = max
x≥u

|S(x) − P(x)|

S(x) is the CDF of the data for the observations with value at least u, and P(x) is the CDF of the Power-law model
that best fits the data in the region x ≥ u. u is then the value that minimises D [5]. Clauset et al. use the max or infinity
metric, d∞, i.e, the so-called Chebyshev distance in the space of functions. They suggest that this Kolmogorov–Smirnov
(KS) statistic is well behaved for this model. They even show that this method performs better than a Bayesian information
criterion (BIC) another alternative they implement. Malevergne et al. [31] propose a Maximum-likelihood estimation
(MLE) method maximising the likelihood of a piecewise-function of a Lognormal below u and a Pareto at and above
u. We tested our results against this methodology with similar u estimates. Bee et al. [33] add a ME methods, that is
the best approximating density in a non-parametric setup. Generalising it can be said that what is needed is a point
estimation method to infer the most statistically plausible estimate that accommodates the Lognormal model to the left
and the Pareto one to the right of the estimate.
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Fig. 7. Rank/Size plots in decimal logarithmic scales of rank and size of firms in 1851–1881. (Upper left quadrant 1851, upper right quadrant 1861,
lower left quadrant 1871, lower right quadrant 1881.)

After calculating u, it is direct to use another MLE estimation to fit the Pareto tail to find the α parameter. Finally, using
a non-parametric bootstrapping procedure, i.e. by repeatedly subsampling from the empirical distributions, we can find
95% confidence intervals for each described parameter. Figs. 6 and 8 show the fitted CCDF distributions with a dashed
line going from the estimated u throughout the tail with a slope equal to the estimated α for all the distributions.

We use different methods to implement each statistic including code by Clauset [53] for MATLAB [54], Alstott et al. [35]
for Python [55], and Gillespie [36] and Shalizi [56] for R [57], and our own code to implement the methods not readily
available. Our results for the number of firms and the total employees at the u parameter for the eight distributions under
analysis are presented in Table 5 and the 95% confidence intervals in Table 6 and Figs. 9 and 10. It can be seen from the
results that both reported methods, Clauset et al. and Gillespie, provide the same outcomes: for the small sample frequency
distributions, the û cut-off includes the whole distribution (but for 1851 this starts at a û of three for the frequency of
firms), while for the large sample size distributions the cut-off is evenly at a û of ten employees. The α̂ estimations of the
shape parameter are also given. In Table 6, it is also shown the number of observations within the tail or Total obs−rank(û)
and the percentage of firms or employees respectively in the frequency and the size tails, which range from 53% to 100%
for the frequency tail and from 60% to 77% for the size tail.4

3.1.2. A proper Pareto test
Hypothesis testing, following Casella and Berger [58], is an inferential method where a statement about a population

parameter is assessed to decide based on a sample of the population, which of two complementary hypotheses is true:
the null, H, and the alternative hypotheses, K. A test is a function of the sample T (x1, x2, . . . , xn) = T (X) which specifies a
region on the parameter space Θ where the null hypothesis is accepted, ΘH , and a rejection region where the alternative
is accepted, ΘK .

4 We have tested all our methods by replicating the well-known US Census cities data in Clauset et al. dataset [5] to ensure that the calculation
methods are equivalent. We also used synthetic Power Law distributions to test the various tests generated by means of the following random number
generator for Power Law stated by Clauset et al. [5]:

⌊
(xmin −

1
2 )(1 − rrn)−

1
(α−1) +

1
2

⌋
where rrn is a random real number uniformly distributed in

the interval [0, 1) and ⌊ ⌋ is the floor function.
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Fig. 8. Pareto plots in decimal logarithmic scales of size of firms in 1851–1881 using the functions plfit and plplot in the paper of Clauset et al. [5].
x = size. (Upper left quadrant 1851, upper right quadrant 1861, lower left quadrant 1871, lower right quadrant 1881.)

Table 5
Kolmogorov–Smirnov procedure to estimate the cut-off parameter u and
maximum likelihood estimation of the shape parameter α using Clauset
et al. MATLAB package [53], and Gillespie’s R package [36].

Frequency

1851 1861 1871 1881

Clauset et al.

û (frequency of firms) 3 1 1 1
α̂ 1.433 1.469 1.45 1.467

Gillespie

û (frequency of firms) 3 1 1 1
α̂ 1.433 1.469 1.45 1.467

Size

1851 1861 1871 1881

Clauset et al.

û (size of firms) 10 10 10 10
α̂ 2.481 2.321 2.242 2.144

Gillespie

û (size of firms) 10 10 10 10
α̂ 2.481 2.321 2.242 2.144

Clauset et al. [5] present a proper Pareto test claiming that ‘‘[m]ost previous empirical studies of ostensibly power-law
[they use power-law but in practice they refer to Pareto] distributed data have not attempted to test the power-law
hypothesis quantitatively’’. They introduce a null hypothesis of a Pareto distribution versus an alternative hypothesis that
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Fig. 9. Confidence intervals for the frequency distributions parameters (upper row) and standard deviations of the parameters (lower row) u (left),
α (centre), and the tail (right) i.e. Total obs− rank(û). See text for details. (Upper left quadrant 1851, upper right quadrant 1861, lower left quadrant
1871, lower right quadrant 1881.) Own implementation of Gillespie [36] method.

Table 6
Point estimation and 95% confidence intervals of Kolmogorov–Smirnov statistic to estimate the cut-off u parameter, and
maximum likelihood estimation of the shape α parameter using Gillespie’s R package [36] with tails or Total obs−rank(û)
and percentage of frequency and size of firms in the tail.

Frequency

1851 1861 1871 1881

Gillespie

û (frequency of firms) 2.9 (≈3) 1.32 (≈1) 1.19 (≈1) 1.18 (≈1)
Confidence interval (2.81–3.01) (1.27–1.37) (1.17–1.22) (1.16–1.22)
Tail or Total obs − rank(û) 300 452 453 552
Confidence interval (297–304) (450–455) (452–454) (550–555)
% value in the tail (frequency of firms) 53.08 100 100 100
α̂ 1.433 1.469 1.45 1.467
Confidence interval (1.430–1.436) (1.465–1.474) (1.446–1.454) (1.465–1.468)

Size

1851 1861 1871 1881

Gillespie

û (size of firms) 10.08 (≈10) 9.97 (≈10) 10.005 (≈10) 9.79 (≈10)
Confidence interval (10.05–10.11) (9.96–9.98) (10.00–10.01) (9.77–9.81)
Tail or Total obs − rank(û) 24,290 32,481 28,376 38,016
Confidence interval (24,286–24,295) (32,460–32,505) (28,362–28,385) (37,911–38,105)
% value in the tail (size of firms) 60.64 70.52 74.9 77.5
α̂ 2.481 2.321 2.242 2.144
Confidence interval (2.480–2.482) (2.319–2.324) (2.238–2.246) (2.142–2.146)

Non-parametric bootstrapping 95% confidence intervals in parentheses.

a Pareto distribution is not plausible. The method is straightforward. First they fit the empirical data to a Pareto model
using MLE and then calculate the same KS statistic they used to pin down the u parameter. They then generate a vast
number of Pareto synthetic distributions using as parameters the ones achieved in the first step and calculate KS for these
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Fig. 10. Confidence intervals for the size distributions parameters (upper row) and standard deviations of the parameters (lower row) u (left), α

(centre), and the tail (right), i.e. Total obs − rank(û). See text for details. (Upper left quadrant 1851, upper right quadrant 1861, lower left quadrant
1871, lower right quadrant 1881). Own implementation of Gillespie [36] method.

models. Then the proportion of these values larger than the empirical data is the p-value. Fig. 11 depicts the p-value for
this test of the null hypothesis that the upper tail of our frequency distributions is Pareto using the methodology of Clauset
et al. [5]. The test is positive to the null for all the years except 1871.

3.1.3. Pareto or Lognormal?
When making a decision (see, for example, Lehmann and Romano [59]), it is necessary to distinguish Type I error

(rejecting H when H is true) from Type II error (accepting H when K is true). The power function β(θ )—where θ is the
parameter tested—contains the information to test these. The ideal is to have β(θ ) = 0 for values of the parameter θ ∈ ΘH
and β(θ ) = 1 for values of the parameter θ ∈ ΘH . A test is assessed according to the degree its accomplishes this ideal.
Normally, Type 1 error is fixed at a given level of significance equal to 0.01, 0.05 or 0.1. Moreover, a test is uniformly most
powerful (UMP) if its power function is closer to one than any other test testing the same H and K hypotheses for every
value of the parameter in the K subspace. This means, that after setting a Type 1 error at a given level of significance,
we are trying to find the best test among the tests of the same class comparing its performance not to commit a Type 2
error. Finally, when this is not achievable, it can be demonstrated that sometimes an unbiased UMP, or UMPU, test can
be found, where unbiased simply means that its probability of committing Type 2 error is always higher in the relevant
hypothesis subspace than the probability of committing Type 1 error, which is a generally plausible assumption.

After introducing this approach, we can present the H and K hypotheses we are confronting as summarised by
Malevergne et al. [31]:
‘‘H: Pareto distribution for values of x larger than some threshold u and
K: Lognormal distribution also for values of x above the same threshold u’’ [31]

To test these hypotheses, Malevergne et al. show that an UMP test is not achievable, while they suggest as an UMPU
test the maximum likelihood ratio, that is ‘‘with insertion in the maximum likelihood ratio of the maximum likelihood
estimates of the unknown parameters instead of the true values’’ [31]. In mathematical statistics, this test is called the
Wilks test [31]. Malevergne et al. show that an equivalent statistic to this UMPU-Wilks test is the clipped sample coefficient
of variation ĉ = min(1, c), where c is the sample coefficient of variation, that is the ratio of the sample standard deviation
to the sample mean:

c =
sX
X
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Fig. 11. P-values for frequency distributions in Goodness-of-Fit test as described in Clauset et al. [5] Pareto test. See text for details. (Upper left
quadrant 1851, upper right quadrant 1861, lower left quadrant 1871, lower right quadrant 1881.)

This test proposed by Malevergne et al. overcomes the biggest deficiency of competing tests previously used in the
literature that have very limited power such as the L-test or χ2-test used in the famous Eeckhout Figure 2 (see [60]) where
the confidence interval under the null of Lognormal behaviour expands disproportionately at the tail of the distribution
completely compromising the test ability to discern between the vying hypotheses. According to Malevergne et al. the
clipped sample coefficient of variation can be deemed as a sufficient statistic for the optimal UMPU test. The critical
function of this test is a function of the sample T (x1, x2, . . . , xn) = T (X) equal to, as shown by [31]:

T (X) = 1 if ĉ < h

T (X) = 0 if ĉ ≥ h

where h is the critical value chosen ‘‘such that the probability that the inequality ĉ < h holds under the null hypothesis
[Pareto distribution] is equal to the (small) preliminary chosen [level of significance]’’ [31]. To derive h, Malevergne et al.
suggest two methods: a saddle point method as shown by Del Castillo and Puig [32] and Gatto and Jammalamadaka [61]
and a simpler Monte Carlo approximation. Malevergne et al. refer to Del Castillo and Puig [32] who showed that for the
problem of testing the null hypothesis that the upper tail is exponential against the alternative of a truncated normal, the
UMPU-Wilks test is, also, the clipped sample coefficient of variation. Finally, they describe how to perform the simpler
Monte Carlo method to find h. For this a large enough number of samples M of the standard exponential function with unit
parameter has to be generated—they suggest at least 10,000—. Then, for each sample, ĉ is calculated and compared with
that of the sample under scrutiny. Therefore, as argued in [31], the ‘‘fraction of exceedances provides a good statistical
estimate of the corresponding p-value of the null hypothesis [Pareto distribution]’’.

Yet another statistic is the logarithm R of the ratio of the likelihoods of the data under two competing distributions
presented by Clauset et al. [5]. If the outcome of the test is positive then the first model has preeminence over the second,
if the outcome is negative the second should prevail. But it is also necessary to correct for random fluctuations. To do
so the ratio R is standardised by the standard deviation σ using the method first presented by Vuong [62]. The method
gives a p-value that tells ‘‘whether the observed sign of R is statistically significant’’ [5]. If the p-value is small, say below
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Table 7
Loglikelihood ratio test for comparing the Pareto hypothesis with an exponential, a
stretched exponential, and a Lognormal. The test results provided are the normalised ratio
and the p-value calculated from it. A small p-value means the direction of change is caused
not only by random variation. A large p-value means that the statistic cannot discern
between each pair of distribution. Alstott package [35] in use with 5000 simulations for
each of the tails.

Frequency

1851 1861 1871 1881

Exponential

Normalised ratio 9.482*** 10.27*** 10.795*** 9.935***
p-value 0.00 0.00 0.00 0.00

Stretched exponential

Normalised ratio 1.715* 1.556 2.584*** 1.412
p-value 0.086 0.12 0.009 0.158

Lognormal

Normalised ratio −0.442 0.241 −0.786 0.158
p-value 0.658 0.809 0.432 0.874

Size

1851 1861 1871 1881

Exponential

Normalised ratio 20.309*** 32.801*** 29.6*** 38.74***
p-value 0.00 0.00 0.00 0.00

Stretched exponential

Normalised ratio 16.612*** 24.21*** 20.813*** 20.788***
p-value 0.00 0.00 0.00 0.00

Lognormal

Normalised ratio 2.342** 10.141*** 1.469 0.808
p-value 0.019 0.00 0.142 0.419

*p < 0.10.
**p < 0.05.
***p < 0.01.

a significance level of 0.01 the test is unlikely to be a chance result of fluctuations. The hypotheses tested by Clauset
et al. [5] are the following:
H: Pareto distribution for values of x larger than some threshold u and
K1: exponential distribution also for values of x above the same threshold
K2: stretched exponential distribution also for values of x above the same threshold
K3: Lognormal distribution also for values of x above the same threshold

The results comparing the Pareto distribution with the exponential—which is the absolute minimum alternative
because the usual definition of ‘‘heavy-tail’’ is against the ‘‘light-tailed’’ exponential behaviour [63]—the stretched
exponential, and the Lognormal are given in Table 7. All the distributions are confirmed as ‘‘heavy-tailed’’ because the
likelihood ratios are positive and the p-values smaller than 0.01. For the stretched exponential the frequency distributions
for years 1851 and 1871 are positive and significant, but the other two frequency distributions for 1861 and 1881 are
not, even though they are marginally non-significant. The four size distributions compared to the stretched exponential
have best fit by the Pareto distribution with strongly significant p-values. The comparison between Pareto and Lognormal
for the size distributions, have the year 1851 significant at a 0.05 level and the year 1861 at any level, ruling out the
Lognormal model and confirming the Pareto behaviour. For 1871, the significance is slightly inconclusive and for the
year 1881, the significance is clearly inconclusive. With these results it is possible to answer the main question of this
paper: at least for the years 1851 and 1861 the size distributions have better fit by a Pareto tail than by a Lognormal
one, defining the tails as all the observations above the estimated u cut-off parameter. The test is inconclusive for the
frequency distributions with high p-values and alternating signs. Thus, it is not possible to rule out the Lognormal or the
Pareto distributions with the methods employed for the frequency distributions.

3.2. To Zipf or not to Zipf?

Having constructed, in Table 6, the 95% confidence intervals for the α parameters for the two tails, size and frequency,
it is direct to test the null that the model follows a Zipf behaviour. This is relevant, as noted earlier, where Zipf behaviour
is a ‘‘Pareto behaviour with an exponent equal to 1’’ or a ‘‘Power Law with a cut-off and an exponent equal to 1’’. The
answer is an absolute no. None of the intervals includes a value compatible with Zipf behaviour in the tail. So a rigorous
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Table 8
Comparisons between 1881 (Own data) and 1987 (Robson and Gallagher data, [15]) tabulated in the size categories of Robson and Gallagher ([15]:
Table 1). A typo for Total Firms 905,556 has been corrected, and a column for 1987 was calculated from total employment of 14,433,000 in
Robson and Gallagher ([15]: Table 2). The difference between the UK and England and Wales using population estimates for the periods roughly
equals 10%. Infinity (Inf) is not considered for calculating Total.
Firm size 1881(England and Wales) 1987(UK) Percentage change 1987–1881

Bins Firms Employees % Emp Firms Employees % Emp % Ch in Firms % Ch in Emp % Ch in % Emp

1–4 106,252 234,431 10.9 445,596 1,213,212 8.4 319.4 417.5 −23.2
5–9 37,922 247,681 11.6 234,079 1,559,844 10.8 517.3 529.8 −6.6
10–14 14,226 165,592 7.7 101,159 1,155,440 8.0 611.1 597.8 3.5
15–19 6333 105,447 4.9 49,997 823,251 5.7 689.5 680.7 15.8
20–24 4147 89,461 4.2 14,198 303,303 2.1 242.4 239.0 −49.7
25–29 2191 58,467 2.7 8636 231,088 1.6 294.2 295.2 −41.4
30–39 2794 93,199 4.4 13,908 462,176 3.2 397.8 395.9 −26.4
40–49 1521 65,777 3.1 7780 332,189 2.3 411.5 405.0 −25.1
50–69 1763 100,502 4.7 10,268 577,720 4.0 482.4 474.8 −14.7
70–99 1100 89,482 4.2 7068 563,277 3.9 542.5 529.5 −6.6
100–199 1475 197,034 9.2 7227 967,681 6.7 390.0 391.1 −27.1
200–299 545 126,632 5.9 2014 476,619 3.3 269.5 276.4 −44.2
300–499 429 155,419 7.3 1411 519,948 3.6 228.9 234.5 −50.4
500–699 190 106,860 5.0 456 259,974 1.8 140.0 143.3 −63.9
700–999 117 95,391 4.5 354 288,860 2.0 202.6 202.8 −55.1
1000–1499 66 76,559 3.6 270 274,417 1.9 309.1 258.4 −46.8
1500–1999 22 35,871 1.7 131 173,316 1.2 495.5 383.2 −28.3
2000–4999 29 81,599 3.8 301 592,163 4.1 937.9 625.7 7.6
5000–9999 3 17,000 0.8 123 491,062 3.4 4000.0 2788.6 328.5
+ 10,000 0 0 0.0 179 3,177,460 22.0 Inf Inf Inf

Total 181,125 2,142,404 100.0 905,155 14,443,000 100.0 399.7 574.1 0.0

and simple hypothesis testing permits us to be conclusive in this respect that the two tails are not Zipfian at the 0.05
level as implied by the confidence intervals displayed in Table 6.

4. A comparison with modern times

We compare our data for the latest year (1881) with figures taken from Robson and Gallagher [15] for the UK for 1987,
as shown in Table 8. This is the closest year of modern data to the historical censuses 1851–81. In the table, we compare
the number of firms, the number of employees and the percentage of employment (the percentage of employees in a given
bin out of the total employees in the economy) for size category used by Robson and Gallagher for 1987 with our data for
1881. In this table we have to use bins to match those in the Robson and Gallagher data, although we acknowledge that
bins distort the data, as noted earlier. Unfortunately, we cannot perform here the same tests developed in the previous
sections of the paper because the full dataset of Robson and Gallagher [15] is not archived. If data reemerged it would be a
promising area for future research. Also, it needs to be stressed that UK data are not equivalent to our data for England and
Wales. Nevertheless, the comparisons are valuable. There is an increase of 399.7% (5.8% annually) in the number of firms,
from 181,125 to 905,155; and in the number of employees of 574.1% (6.2% annually), from 2,142,404 to 14,433,000. In the
twenty bin size categories, fifteen show a decrease in the percentage change in percentage employment with a minimum
of −63.9% in the 500–999 bin, while five show an increase with a maximum of infinity in the over 10,000 bin because
there are no firms in this bin for 1881. There are only 179 very large firms over 10,000 in 1987 and they account for a
huge 22% of the employment; in our historical data the largest 179 firms had 12.3% of employment (calculated from our
individual firm data), roughly half the modern figure. Although there is variation between bin categories, the dominant
pattern is for positive and high percentage increases in the two largest bins, and decreases in all but one of the small and
medium-sized categories. Although constrained by differences in the bases of the data over time and the bin categories,
the lengthening and fattening of the tail is a continuation of the trend we observe in 1851–81, and in line with the
expectations of the Pareto and Lognormal distributions: i.e. the tail increases massively in fatness and length over time.
Also, this is in line with economic literature that has suggested that significant concentration into larger firms probably
began in the mid-Victorian period after the 1870s and 1880s and continued thereafter (e.g. Hannah [64]).

5. Discussion and conclusions

This paper explores two distributions of firm data (size and frequency) during the mid-Victorian era to test the Power
Law compared to the Lognormal hypotheses at the tails: that is, a tale of two tails. We show that the Pareto distribution
fits the tails of the size data better than a Lognormal one for at least the years 1851 and 1861, and also with marginally
non-significant values in 1871, but for the frequency distributions the test is inconclusive. Thus, the main contribution
of this paper to the literature is to demonstrate that the new dataset for firms size in mid-Victorian era is heavy-tailed,
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with the tail belonging to the Power Laws rather than the Lognormal distribution. Comparison with more modern data for
1987, although constrained by the available data and categories, confirms that tails have grown larger over time, whilst
the main part of the distribution for small firms has been reduced. Also, we have been able to rule out a Zipf behaviour
in the tails of our size and frequency distributions. Some of the techniques revisited are the UMPU-Wilks clipped sample
coefficient of variation for distinguishing between the Power Laws and Lognormal behaviour, MLE to point estimate the
u and the α parameters, KS to measure the distance between the actual data and the fitted one, and log likelihood ratios
to compare distributions and Vuong procedure to obtain the p-values for this comparison.

We use the original firm size data at individual level which is exhaustive, thus meeting Fujiwara et al. [46] condition
that the data are complete to allow identification of tail effects. And we avoid grouping (binning), which Bee et al. [33]
argue is one of the most overlooked limitations of many previous analyses of firm size. Despite, Fujita et al. [1] questioning
how to distinguish between distributions: ‘‘Is this a solution to the riddle? Our view is that it is ingenious but not entirely
satisfactory’’, we are now in a position to answer for the distributions in the tail. Using the advances in the literature by
Clauset et al. [5] and Malevergne et al. [31] we have shown how rigorous assessments of firm size tail behaviour can be
used to test between these two tales. With these procedures it is possible to answer the main question of this paper: at
least for the years 1851 and 1861 the size distributions have better fit by a Pareto tail than by a Lognormal one, defining
the tails as all the observations above the estimated u cut-off parameter. This outcome is conclusive and stands as a new
addition to the profuse literature on this issue. We are convinced that these new procedures recently discussed in the
literature permits to properly test the tale of the tails: are they Pareto or Lognormal above the cut-off? We expect this
discussion to carry on in the literature as more tails, current and past, being questioned on their tail behaviour. At least,
we deliver the answer for this newly available mid-Victorian firm size and frequency.
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