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Formal expert elicitation is a widely used method for quantifying uncertain variables in decision and risk 

analysis. When estimating uncertain variables, experts and laypeople exhibit overprecision, meaning that 

the ranges of their estimates are too narrow. Overprecision, a form of overconfidence, is pervasive and 

hard to correct, thus posing a challenge to expert elicitation. Following the increasing interest toward 

improving judgments in Behavioral Operational Research (OR), and the limited evidence about the effec- 

tiveness of debiasing tools, the aim of our research is to test the effectiveness of commonly employed 

practices for debiasing overprecision. We conducted two experiments, testing a set of debiasing tech- 

niques when eliciting points of a cumulative distribution functions for general knowledge questions. The 

debiasing procedures included hypothetical bets, counterfactual argumentation, and automatic stretching 

to increase the ranges of subjects’ initial estimates. We find that two debiasing strategies that require 

further reasoning after initial estimates (hypothetical bets and counterfactuals) were not very effective 

for reducing overprecision, while the use of multipliers that increase the initial range of distributions, 

coupled with a re-elicitation of the distribution with the new range, provided more positive results. We 

provide some recommendations for expert elicitation in OR practice, based on our findings, and suggest 

avenues for further research into debiasing overprecision. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Formal expert elicitation is a common method used in several 

perational Research (OR) methods, such as decision analysis and 

isk analysis, whenever variables or events are uncertain, data are 

parse, and models and expertise conflict ( Aloysius et al., 2006 ; 

ias et al., 2018 ; Keeney & von Winterfeldt, 1991 ; Morgan, 2014 ;

rtiz et al., 1990 ; Werner et al., 2017 ). 

It is well known that experts and laypeople have biases when 

aking probability judgments ( Kirshner & Shao, 2019 ; Montibeller 

 von Winterfeldt, 2015 ), which can lead to low-quality OR mod- 

ls, as these judgments are critical inputs for the decision analy- 

is. Among the many biases, overconfidence is the most common 

nd important one, occurring both in informal and formal elicita- 
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ions of uncertainties. For binary uncertain quantities, overconfi- 

ence is the tendency to assign unreasonably high probabilities to 

he event that one believes to be true. For continuous uncertain 

uantities, overconfidence is the tendency to provide ranges of es- 

imates that are far too narrow. This phenomenon is also known as 

verprecision , or overconfidence in interval estimation ( Soll & Klay- 

an, 2004 ). 

Overprecision is a persistent and poorly understood form of 

verconfidence ( Moore et al., 2015b ), which can lead to serious 

nd detrimental consequences in decision and risk analysis. If the 

anges of the estimated variable are too narrow, analysts are likely 

o miss the true value, i.e., it falls outside of their estimated range. 

or instance, when planning mitigation measures against sea level 

ise and estimating the range of this variable, overprecision can 

ause two potential problems. If the true value turns out to be 

bove the estimated range, sea level rise would be underestimated, 

hus leading to unpreparedness and insufficient mitigation. On the 

ther hand, if the true value turns out to be lower than the esti- 
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ated range, sea level rise would be overestimated, thus leading 

o inefficient use of resources due to overpreparedness, with costly 

nd unnecessary risk mitigation. 

Research has repeatedly found that the true value of an uncer- 

ain quantity falls outside of people’s estimated ranges (i.e., out- 

ide the lower and upper bounds of an uncertain quantity) more 

ften than should be expected ( Alpert & Raiffa, 1982 ; Barberis & 

haler, 2003 ; Bolger & Harvey, 1995 ; Clemen, 2001 ; Fischhoff et al., 

978 ; Lichtenstein et al., 1982 ; Soll & Klayman, 2004 ; Wallsten 

t al., 1983 ). Expert predictions of future events tend to be closer 

o the true value, but they are also narrower than the predictions 

rovided by laypeople (e.g., Graf-Vlachy, 2017 ; Haran et al., 2010 ; 

cKenzie et al., 2008 ; Onkal et al., 2003 ). 

Within this context, most research has focused on overcon- 

dence in estimating the probability of binary outcomes (e.g., 

guyen, 2018 ) and on overprecision in eliciting confidence inter- 

als over a range (e.g., Schall et al., 2016 ). Our research focuses on

 similar task as the latter one, on overprecision in eliciting con- 

inuous probability distributions, as these distributions are often 

equired in decision and risk analysis ( Keeney & von Winterfeldt, 

991 ; McNamee & Celona, 2008 ; Spetzler et al., 1975 ; Wallsten 

t al., 2016 ) and in policy analysis practices ( Morgan, 2014 ). 

While there is now extensive knowledge about the bias and its 

auses and consequences, we know less about how to effectively 

educe overprecision in the elicitation of continuous probability 

istributions. Four main directions for debiasing overprecision have 

een suggested so far: (i) varying the elicitation presentation for- 

at (e.g., Abbas et al., 2008 ; Seaver et al., 1978 ); (ii) encourag-

ng the consideration of more information (e.g., Haran et al., 2010 ); 

iii) warning against the bias (e.g., Schall et al., 2016 ); and (iv) pro-

iding training and/or immediate feedback (e.g., Mannes & Moore, 

013 ; von Winterfeldt & Edwards, 1986 ). However, very limited re- 

earch has been conducted to test and compare the effectiveness 

f different debiasing strategies to reduce overprecision, with the 

xception of Abbas et al. (2008) and Seaver et al. (1978) . 

Following the increasing interest toward improving judgments 

n Behavioral Operational Research ( Franco et al., 2021 ), the objec- 

ive of the research presented in this paper is to experimentally 

est and compare widely employed practices in decision and risk 

nalysis for debiasing overprecision in the elicitation of continuous 

robability distributions. 

The most commonly used debiasing procedures consist of using 

ypothetical bets, counterfactuals, and some form of stretching of 

he ranges of the elicitation variables after an expert defines what 

hey believe are the absolute minimum and the absolute maxi- 

um bounds for a variable ( Ferretti et al., 2016 ; Montibeller & 

on Winterfeldt, 2015 ; Morgan, 2014 ). To test the effectiveness of 

hese commonly used methods for debiasing, we conducted two 

xperiments. We started by testing and comparing the hypotheti- 

al bet and counterfactual methods but found low effectiveness in 

educing overprecision in terms of the indicators employed in the 

omparison. We subsequently tested the automatic stretching pro- 

edure and found this to be a more promising debiasing approach. 

This research makes three contributions. This is the first study, 

o our knowledge, that has attempted to experimentally test and 

ystematically compare the effectiveness of commonly employed 

ethods for debiasing overprecision in the elicitation of points of 

ontinuous probability distributions. The second contribution con- 

ists of a comparative study of debiasing strategies, which moves 

eyond traditional “think harder” strategies and includes adjust- 

ents of ranges using multipliers. Our results indicate that both 

he use of counterfactuals and hypothetical bets were not effective 

n reducing this bias. Linked to these results, our third contribu- 

ion is to provide practical guidelines on how the use of multi- 

liers may be implemented in decision and risk analysis practice, 

ith the use of automatic stretching, the selection of adequate au- 
662 
omatic multiplier, and the adoption of the fixed value elicitation 

rotocol ( Abbas et al., 2008 ). 

The remainder of the paper is organized as follows. 

ection 2 reviews the literature on debiasing overprecision. 

ection 3 presents the research design and the evolution of the 

tudy across the two experiments. Section 4 provides a discussion 

f the findings of the experiments and is followed by conclusions 

nd directions for further research. 

. Debiasing overprecision: literature review 

Since Alpert & Raiffa (1982) discovered the overprecision bias, 

everal researchers have found that this bias occurs strongly and 

onsistently across many contexts and people, including different 

rofessions, ages, genders, levels of expertise, cultures, and elicita- 

ion formats (e.g., Jonsson & Allwood, 2003 ; Moore et al., 2015b , 

015a ). 

After more than 50 years of research on identifying and de- 

cribing biases in judgment and decision-making, the more recent 

iterature has highlighted the need to develop strategies and tech- 

iques to reduce these biases (e.g., Jain et al., 2013 ; Lahtinen et al., 

020 ; Milkman et al., 2009 ; Montibeller & von Winterfeldt, 2015 ; 

orewedge et al., 2015 ; Schall et al., 2016 ). This is evidenced by 

he increasing focus on improving judgments in behavioral eco- 

omics (e.g., Thaler & Sunstein, 2008 ), behavioral operations man- 

gement (e.g., Ren & Croson, 2013 ), behavioral policy (e.g., Galizzi, 

014 ), behavioral decision research (e.g., Milkman et al., 2009 ), and 

ehavioral operational research (e.g., Franco & Hamalainen, 2016 ; 

ranco et al., 2021 ). 

As mentioned in the introduction, effort s f or debiasing over- 

recision in individual estimates have taken several paths and can 

e grouped into the following four categories: (i) varying the elic- 

tation/presentation format; (ii) encouraging the consideration of 

ore information; (iii) using warnings against the bias; and (iv) 

roviding training and/or feedback. We revise briefly the main de- 

elopments within each category next. 

Within the first category, several elicitation protocols have been 

uggested to reduce overprecision in expert elicitation. Several 

tudies (e.g., Juslin et al., 1999 ; Seaver et al., 1978 ; Teigen & 

orgensen, 2005 ) found that judging probabilities with fixed in- 

ervals produces less overprecision than estimating intervals for 

xed probabilities. Winman et al. (2004) proposed a method for 

daptive interval assessment of eliciting judgments, starting with 

 confidence level for a given interval and interactively revis- 

ng this during the elicitation task. They found that the results 

f this method displayed less overprecision than intervals that 

re elicited directly, given a confidence level. Soll & Klayman 

2004) tested interval estimates and used three elicitation formats, 

howing that asking for fractiles separately led to better calibra- 

ion of estimates than asking for confidence intervals. Bedford & 

ooke (2001) suggest a formula for adjusting the original upper 

nd lower bound from the expert’s stated confidence (see also 

urgman (2016) for a more detailed discussion on eliciting inter- 

als from experts and on quality measures for estimates, such as 

alibration). 

The elicitation of continuous distribution has been studied by 

eaver et al. (1978) , who tested five procedures for eliciting sub- 

ective probability distributions over continuous variables. They 

howed that asking for probabilities for given intervals of the un- 

ertain quantity performed better in reducing overprecision than 

sking for fractiles. In addition, asking for odds performed slightly 

etter than asking for probabilities in their experiment. Within the 

ractice of probability assessment, Abbas et al. (2008) compared 

ifferent methods using direct quantile assessments – fixed prob- 

bility (FP), fixed variable (FV), and a mixture of the two – and 

ound the fixed variable method to be superior when measured 
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n terms of monotonicity and accuracy. However, Budescu & Du 

2007) have shown that this better performance of FV for probabil- 

ty judgements is not consistently true for all levels of confidence. 

When examining a forecast of time to complete a task, Jain 

t al. (2013) found that decomposing the interval estimation 

ask into its time elements can substantially widen the inter- 

als and thereby potentially improve calibration. Welsh & Begg 

2018) showed that the more-or-less elicitation (MOLE) approach 

educed overconfidence ranges when participants were asked to 

uccessively choose between computer-generated values rather 

han making their interval estimates directly. Once a participant 

hose the value which they believed was closer to the true value of 

he parameter under analysis, the MOLE approach then proposed 

wo new values from the revised range and repeated the process 

or several iterations. 

Camilleri & Newell (2019) explored how overprecision is af- 

ected by information processing. They showed that asking par- 

icipants to generate 90% confidence intervals and presenting un- 

ertainty information sequentially leads to underprecision, while a 

ummary format of presenting information leads to overprecision. 

The second category of debiasing tools encompasses strategies 

hat encourage the consideration of more information, contrary ev- 

dence, and possible alternatives (“think harder” strategies). Within 

his category, Koriat et al. (1980) asked participants to make esti- 

ates in a forced choice format (two-alternative questions from 

hich to choose an answer). Subsequently, they asked subjects to 

ist arguments contradicting their selection. When asked to pro- 

ide counterarguments, participants showed lower overconfidence, 

easured by comparing the assessed probabilities with the ob- 

erved relative frequencies of being correct (“hit rates”). For inter- 

al estimates, Soll & Klayman (2004) asked their participants to 

pecify a lower and upper bound of their initial fractiles. However, 

he efficacy of counterfactuals with confidence intervals and con- 

inuous distributions remains untested ( Moore et al., 2015b ). 

More recently, Haran et al. (2010) proposed the subjective prob- 

bility interval estimates (SPIES) method, which forces subjects to 

onsider a pre-specified range of possible outcomes of a target 

ariable. This range is then divided into intervals, and the partic- 

pants are asked to estimate the probability that the true value 

alls within each interval. They found that SPIES led to signifi- 

antly lower surprise rates compared to other elicitation meth- 

ds (90% confidence intervals and fractiles). In addition, Walters 

t al. (2017) introduced another debiasing technique, “consider the 

nknowns” and tested it with two-alternative forced-choice ques- 

ions. In this technique, participants first generate a list of un- 

nowns before stating their uncertainties. They showed that the 

rotocol reduced overprecision more than a simple “consider the 

lternative” technique ( Koriat et al., 1980 ). 

Herzog & Hertwig (2009) proposed a special version of the 

consider the opposite” strategy for point estimates and called it 

ialectical bootstrapping. This strategy has shown to create better 

uantitative judgments by averaging the respondent’s first estimate 

ith a second, dialectical estimate. This approach leads to a gain in 

ccuracy if the second estimate by the same judge is based on non- 

edundant knowledge and assumptions, thus leading to a different 

rror compared to the first estimate. 

The third category of overprecision debiasing tools, providing 

arnings against the occurrence of the bias, has usually been con- 

idered one of the least effective measures to debias interval over- 

onfidence (e.g., Plous, 1995 ). However, more recently, Schall et al. 

2016) showed that a significantly higher reduction of overpreci- 

ion in interval estimates can be achieved by combining a dy- 

amic process of warning content and stimulus change to make 

he warnings more salient. 

Finally, research in the fourth category has shown that im- 

ediate feedback can improve the quality of subject’s probabil- 
663 
ty assessments (e.g., Mannes & Moore, 2013 , for point estimates; 

lock & Harper, 1991 , for both point and interval estimates). For in- 

tance, Murphy & Winkler (1977) demonstrated that weather fore- 

asters, who are given daily feedback on their forecasts, have excel- 

ent calibration results for point probability estimates. There is also 

ehavioral evidence that training (see, for example, Hora, 2007 , for 

robability estimates) may improve the calibration of subjects (e.g., 

hang et al., 2016 , for probability estimates with binary forecast 

uestions; Keren, 1987 , for point probability estimates; Alpert & 

aiffa, 1982 , for probability intervals), although results lack gener- 

lizability (e.g., Lichtenstein & Fischhoff, 1980 , for both probability 

nd interval estimates). Table 1 summarizes the type of elicitation 

asks tested with the debiasing approaches discussed in this sec- 

ion. 

In conclusion, despite a plethora of elicitation protocols sug- 

ested in the literature, there is limited systematic comparisons of 

he effectiveness of different debiasing strategies against overpre- 

ision for cumulative distribution functions, except for Abbas et al. 

2008) and Seaver et al. (1978) . The comparison that we thus pro- 

ose in this paper is an attempt to address this gap. 

. Overview of two experiments: methods and research 

uestions 

This section presents an overview of two behavioral experi- 

ents designed to test some of the commonly employed practices 

n decision and risk analysis to debias overprecision. We focus here 

n elicitation protocols, as other approaches, reviewed in the pre- 

ious section, may be less relevant in practice. For instance, pro- 

iding immediate feedback about the accuracy of estimates is not 

easible in most real-world decision and risk analysis applications, 

hich are often characterized by long-term horizons and one-off

ecisions ( Larrick, 2004 ). In the same spirit, we do not consider 

ethods or protocols that require pre-specified ranges, e.g., SPIES 

y Haran et al. (2010) , because it is often not possible to iden-

ify ranges a priori for variables with high levels of uncertainty, 

hich are typical in situations that require expert judgment elic- 

tation (e.g., Dias et al., 2018 ; Hora, 2007 ; Keeney & von Winter- 

eldt, 1991 ). In addition, providing a pre-specified range might an- 

hor the responses on these extreme values ( Morgan, 2014 ) or be 

nterpreted by participants as information (i.e., defining the “cor- 

ect” range of uncertainty). Finally, we note that probability train- 

ng and cautioning experts against biases are usually part of a for- 

al elicitation process (e.g., Keeney & von Winterfeldt, 1991 ) and, 

herefore, we assume these preliminary activities as common prac- 

ice. 

.1. Methods 

In the first experiment, we tested two widely employed debi- 

sing tools for stretching the bounds of the distribution (the x 0 
nd the x 100 fractiles): the use of counterfactual (CF) questions 

 Morgan, 2014 ) and hypothetical betting (HB) questions (e.g., Fox 

 Tversky, 1998 ; Kennedy, 1986 ; Montibeller & von Winterfeldt, 

015 ; Rapoport, 1964 ; Winkler, 1971 ). Given the low effectiveness 

f these two debiasing tools, which we observed in the first ex- 

eriment, we introduced in the second experiment a new treat- 

ent which automatically stretches (AS) the initial bounds pro- 

ided by participants (x 0 and x 100 ) and subsequently re-elicits the 

0th, 50th, and 90th fractiles using these new ranges. The stretch- 

ng is “automatic”, since it provides the participants with new ex- 

remes by multiplying their highest estimate by 2 and dividing 

heir lowest estimate by 2. (We acknowledge that other multipli- 

rs could have been considered; however, we also note that this 

as the first controlled test of this debiasing approach, as far as 

e know, and starting from a factor of two seemed a reasonable 
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Table 1 

Type of Tasks Tested with the Main Debiasing Approaches. 

Categories of Debiasing Type of task 

Point estimates Interval estimates Probability estimates 

Varying the elicitation/presentation 

format 

Bedford and Cooke (2001) , Camilleri & 

Newell (2019) , Jain et al. (2013) , Juslin 

et al. (1999) , Seaver et al. (1978) , Soll 

& Klayman (2004) , Teigen & Jorgensen 

(2005) , Welsh & Begg (2018) , Winman 

et al. (2004) 

Budescu & Du (2007) , Seaver et al. 

(1978) , Abbas et al. (2008) 

Encouraging the consideration of 

more information 

Herzog & Hertwig (2009) , Koriat et al. 

(1980) , Walters et al. (2017) 

Haran et al. (2010) , Soll & Klayman 

(2004) 

Using warnings against the bias Schall et al. (2016) , Plous (1995) 

Providing training and/or feedback Mannes & Moore (2013) , Block & 

Harper (1991) 

Alpert & Raiffa (1982) , Block & Harper 

(1991) , Lichtenstein & Fischhoff (1980) 

Hora (2007) , Keren (1987) , 

Lichtenstein & Fischhoff (1980) , 

Murphy & Winkler, 1977 
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1 We assumed a piecewise linear function between each pair of elicited data 

points to obtain a continuous CDF. This linearization takes into account the lack of 

information between each of those two points and assumes a uniform distribution 

based on the principle of maximum entropy ( Jaynes, 1957 ). 
ssumption. We conduct a sensitivity analysis on this parameter in 

ection 4 .) 

While the automatic stretching is a computational change of 

he range of the estimates presented to the participants, a perfectly 

alibrated participants should not change their fractiles, just be- 

ause the presented range has changed. By re-eliciting the three 

nternal fractiles (10th, 50th, and 90th) with the stretched ex- 

remes, we can determine how the change in the extremes affects 

he assessed cumulative probability distribution and whether it re- 

uces overprecision. Some may argue that automatic stretching is 

ot really a debiasing method, but rather a computational inter- 

ention without a behavioral implication. However, in real world 

licitations, ranges of uncertain variables are not always given, but 

bsolute minima and maxima often exist. Additionally, there is, in 

rinciple, no difference in creating ranges artificially or asking the 

articipants for it. In the second experiment we re-elicited the cu- 

ulative distribution after changing the ranges, thus adding the 

ehavioral component of an effect of the ranges. 

To elicit fractiles of the distributions (x 10 , x 50 and x 90 ) within 

hese three methods we tested and compared the fixed value (FV) 

nd fixed probability (FP) elicitation protocols, which are the most 

ommon methods for eliciting probability distributions of continu- 

us variables in decision and risk analysis. In the FP approach, the 

ecision analyst selects a set of cumulative probabilities ( p i , i = 1 ,

, n ) and subjects are asked to report variable values ( x i , i = 1 , …,

 ) such that the Pr (X ≤ x i ) = p i , where n is the number of data

oints. In the FV approach, instead, the decision analyst selects a 

et of variable values ( x i , i = 1 , …, n ) and asks the subjects to pro-

ide their cumulative probabilities ( p i , i = 1 , …, n ) such that Pr (X ≤
 i ) = p i ( Abbas et al., 2008 ). Many practitioners limit the number of

licitation points to three or five to reduce the elicitation burden. 

or instance, in Cooke’s classical model, experts are asked to pro- 

ide their 5%, 50%, and 95% quantiles. Other protocols, such as the 

ne suggested by Burgman (2016) , ask for the lowest and highest 

lausible estimates before eliciting other quantiles (for details see 

ias et al., 2018 ; Morgan, 2014 ). 

In summary, the independent variables in this series of experi- 

ents are the debiasing tools used to stretch the bounds (CF, HB, 

nd AS) as well as the elicitation protocols (FV and FP) for a three-

y-two design. We used general knowledge questions, as typically 

mployed in many previous behavioral experimental studies (e.g., 

oriat et al., 1980 ; Langnickel & Zeisberger, 2016 ; Moore et al., 

015a ; Ren & Croson, 2013 ; Seaver et al., 1978 ). We have selected

ifficult questions, as it has been shown that those questions tend 

o produce overprecision, whereas easy questions may produce un- 

erprecision (e.g., Moore & Healy, 2008 ; Moore et al., 2015b ). The 

dvantage of this type of general knowledge question design is 

hat, contrary to prediction tasks, the true answer is available to 

rovide an immediate reward for accuracy. 
664 
To minimize the influence of “anchoring and adjustment” when 

liciting probability distributions, the decision analyst usually does 

ot begin with central tendency questions but, instead, probes the 

xtreme lower and upper values ( Connolly & Dean, 1997 ; Morgan, 

014 ). We thus set up the elicitation tasks by asking first the ex- 

remes, then the median, followed by the 10% and 90% fractiles. To 

eplicate as much as possible real-world elicitation processes, we 

llowed each subject to see their initial distributions as a graph 

nd revise them as much as they wished before proceeding to the 

ext elicitation step, as opposed to more artificial settings in which 

evisions are not allowed. 

As experts and novices exhibit similar levels of overprecision, 

he participants in our experiment were master’s degree students 

hat had taken a course in statistics during their studies. All par- 

icipants in this study watched a short training video at the begin- 

ing of the experiment to make sure that they clearly understood 

he elicitation task and the way their performance was measured 

i.e., scoring rule). 

We incentivized accuracy in two ways. We paid a fixed fee for 

articipation in the experiment (£10 per hour) and rewarded the 

est performer with a lump sum (£100). For the latter, we used the 

atheson & Winkler (1976) scoring rule, a widely accepted rule 

or measuring the accuracy of continuous distributions (e.g., Seaver 

t al., 1978 ): 

 = 

x t ∫ 

0 

[ F ( x ) ] 
2 dx + 

∞ ∫ 

x t 

[ 1 − F ( x ) ] 
2 dx, (1) 

here x t is the true value (standardized as 100) and F(x) is 

he elicited cumulative probability distribution 

1 of variable x . The 

ower S is, the more accurate the judgments. The duration of the 

xperiment was 60 minutes, encompassing 10 general knowledge 

uestions presented in a random order, and there was no incen- 

ive for a faster/slower response time. The average S over the 10 

uestions was used to measure the accuracy of each subject and 

eward the best performer. 

.2. Research questions, design and dependent variables 

The research question in the two experiments is whether the 

xperimental debiasing methods can reduce overprecision. In ex- 

eriment 1 we used two debiasing methods (CF and HB) and two 

licitation methods (FV and FP) in a two-by-two design. The design 
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Table 2 

General knowledge questions for Experiment 1. 

Ref. Number Variables True Value 

1 Height of Turin Tower “La mole Antonelliana” [m] 167.5 

2 Distance between Turin and Milan central train stations [km] 147 

3 “Piazza Vittorio Veneto” inclination from its highest to its lowest point [cm] 719 

4 Length of Turin’s Arcades [km] 18 

5 Area of Italy [km 

2 ] 301,340 

6 Height of the Turin skyscraper by Renzo Piano [m] 167.5 

7 Mean global sea level rise in 2100 projected by the 5th IPCC report for the high emission scenario [cm] 75 

8 Mean global average increase in the surface temperature in 2100 projected by the 5th IPCC report for the high emission scenario [ °C] 4 

9 Number of days in which Turin has gone beyond the legislative limit of air pollution in 2013 106 

10 % of reused waste from the construction phase (from January 2010 to August 2014) of the Renzo Piano Skyscraper in Turin 93 
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as similar in experiment 2, but we replaced the hypothetical bet 

ethod (HB) with the automatic stretching method (AS). 

In both experiments we used the following dependent variables 

we denote estimated variable values from the initial elicitation as 

 i and from the revised elicitation as x’ i ): 

DV1: number of judgments revised after the subject has been 

exposed to different debiasing tools; 

DV2: proportion of surprises among the responses, measured 

by 10% surprises (if the true value is outside the 90% range 

of the distribution) and by 20% surprises (if the true value is 

outside the 80% range of the distribution); 

DV3: width of the variable’s overall range (x 0 to x 100 ); 

DV4: width of the 80% inner range (x 10 to x 90 ) under the fixed

value or fixed probability condition. 

In experiment 2 we used two additional dependent variables: 

DV5: marginal improvement of the 80% inner range overpreci- 

sion (measured as initial x 90 – x 10 and revised x’ 90 – x’ 10 ); 

DV6: the proportion of inner revised estimates that are mov- 

ing toward the right direction after auto-stretching (lower 

for the 10% fractile and higher for the 90% fractile in rela- 

tion to their original estimates). 

.3. Experiment 1 

The aim of this first experiment was to test and compare the 

ffectiveness of two debiasing protocols (CF and HB) and two elic- 

tation methods (FV and FP), introduced above, on the bounds of 

he participants’ subjective probability distributions. 

.3.1. Methods - experiment 1 

One hundred and ten subjects participated in this experiment 

n a large computer laboratory of the Politecnico of Torino (Italy). 

ll participants had been exposed to probability encoding in a 

lass lecture. Participants were asked to provide estimates for the 

0 general knowledge variables (listed in Table 2 ). 

Each participant had been randomly allocated to one of the four 

xperimental conditions: CF-FV, CF-FP, HB-FV, HB-FP. The elicita- 

ion task for each variable consisted of the following two phases: 

i) elicitation of the initial estimates for x 0 , x 100 , x 50 , x 10 , x 90 (in

his order); and (ii) revision of the estimates for x’ 0 , x’ 100 , x’ 50 (in

his order). 

Participants were working on a pre-programmed interactive Ex- 

el file which allowed them not only to see, while responding, the 

umulative probability distributions in linear piecewise form plot- 

ed on the side of the screen, but also to revise their estimations 

efore proceeding to each subsequent phase. The elicitation proto- 

ol followed two phases. These two phases were repeated for all 

0 variables, which were randomly presented to each subject. 

Phase 1 in the FP-CF and FP-HB conditions required the partici- 

ants to provide the following values for the variable under analy- 

is: (a) the lowest number such that they are absolutely sure that 
665 
he true answer would not be below it (x 0 ); (b) the highest num- 

er such that they are absolutely sure that the true answer would 

ot be above it (x 100 ); (c) the best guess so that the chances of

he true answer falling below or above is 50/50 (x 50 ); (d) a low

nd such that there is a 10% chance that the true answer is be- 

ween this low end point and their lowest value (x 10 ); and a high

nd such that there is a 10% chance that the true value answer 

s between this high end point and their highest value (x 90 ). This 

licitation protocol is illustrated on the left-hand side of Fig. 1 . 

In the FV-CF and FV-HB conditions, participants were first asked 

o provide the following values: (a) the lowest number such that 

hey are absolutely sure that the true answer would not be be- 

ow it (x 0 ) and (b) the highest number such that they are ab- 

olutely sure that the true answer would not be above it (x 100 ). 

ubsequently, we provided (by automatic calculation in the Excel 

preadsheet) 50% of the interval value (x 50 ), then 10% (x 10 ) and 

0% (x 90 ) of the interval value, and subjects were asked to pro- 

ide the cumulative probabilities for each of these three values. 

he probability estimates were then elicited from each of these 

alues (but subjects were not informed that it was 10%, 50%, and 

0% of the range, to avoid anchoring their probability estimate on 

hose proportions). Therefore, in the FP protocol participants pro- 

ided the median, while in the FV protocol the median was inter- 

olated from the participants’ probability judgments, assuming a 

iece-wise linear cumulative distribution. This elicitation protocol 

s illustrated on the right-hand side of Fig. 1 , with the calculated 

edian highlighted in the same graph. 

For example, consider the general knowledge question num- 

er 7 employed in the experiment, the mean sea level rise in 

100 (see Table 2 ) and the CDF elicited on the lefthand side 

f Fig. 2 . In this case, the subject identified p( X ≤ 40 centime-

ers) = 0, p( X ≤ 70 centimeters) = 100%, followed by p( X ≤ 60 cen-

imeters) = 50%, p ( X ≤ 44 centimeters) = 10%, and p( X ≤ 68 cen-

imeters) = 90%. The thresholds in the same graph indicate the lim- 

ts for two measures of surprise, 10% surprises (if the true value 

ere below 42 centimeters or above 69 centimeters) and 20% 

urprises (if the true value were below 44 centimeters or above 

8 centimeters). The true value is x t = 75 centimeters, thus the ini- 

ial distribution is both a 10% surprise and a 20% surprise. 

During Phase 2 of the elicitation protocol, the counterfactuals 

nd hypothetical betting debiasing techniques were used to reduce 

verprecision on the initial estimates. In the FP-CF and FV-CF con- 

itions, participants were asked if they could think of plausible ex- 

lanations under which the true answer was (i) lower than their 

nitial estimate for x 0 and (ii) higher than their initial estimate for 

 100 . If they stated they could think of an explanation, they were 

equested to revise their initial estimates downward for the for- 

er estimate (i.e., x’ 0 < x 0 ), and upward for the latter estimate 

i.e., x’ 100 > x 100 ). Otherwise, no revision was required. 

In the FP-HB and FV-HB conditions, participants were posed hy- 

othetical bets for both the lower bound and upper bound of the 

ange. For the former, they would need to pay £100 if the true 
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Fig. 1. Fixed-Probability (FP) and Fixed-Value (FV) Elicitation Protocols Employed in the Experiments. 

Fig. 2. Example of Initial and Revised Estimates and Surprise Thresholds. 
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alue was below their initial estimate for the lowest value or re- 

eive £1 otherwise. For the latter, they would have to pay £100 

f the true value was above their initial estimate for the highest 

alue or receive £1 otherwise. If they rejected the bet, they were 

sked to revise their initial lower bound estimate downward (i.e., 

’ 0 < x 0 ) or the upper bound estimate upward (i.e., x’ 100 > x 100 ),

espectively. 

Hypothetical betting was also used for the revision of the me- 

ian, as this type of protocol is widely employed to elicit frac- 

iles of continuous distributions ( Dias et al., 2018 ; Morgan & Hen- 

ion, 1990 ). Subjects were asked if they wished that the true value 

ould fall below or above the median. They were then asked to 

djust their median estimate (x’ 50 ) until they would be indifferent 

o betting on its lower or upper side. 2 

For instance, in the same example above illustrated in Fig. 2 , let 

s assume that the subject has decided to revise the upper bound, 

ith x’ 100 = 80 centimeters, either by considering a counterfactual 

CF treatment) or from the hypothetical betting (HB treatment), 

nd has revised the median to x’ 50 = 65 centimeters. This revised 

istribution is shown on the righthand side of the same figure and 

s now neither a 10% surprise nor a 20% surprise, as the true value

75 centimeters) is below both surprise thresholds (78.5 centime- 

ers and 77 centimeters, respectively). 

.3.2. Results - experiment 1 

All 110 participants completed the probability estimates for all 

0 questions. We considered only estimates that produced mono- 

onic cumulative distributions and focused on responses that were 

ore informed about the specific question, in the sense that re- 
2 We tested the effectiveness of this protocol in moving the median estimate to- 

ard the true value but found inconclusive results. The proportion of revisions to- 

ard the true value were 56.5% in Exp. 1 but only 48.5% in Exp. 2. 

v

t

r

666 
pondents had an approximate idea about the location of the true 

alue. Specifically, we considered an elicited distribution to be in- 

ormed if the median fell in a range between 1/5th and 5 times 

he true value. In fractile terms, we defined an informed response 

s x 50 ≤ 0.2x t or x 50 ≥ 5x t (where x t is the true value). In contrast, 

n uninformed distribution was one where the median fall outside 

f the 1/5th to 5 time range around the true value. While dividing 

nd multiplying the true value by five creates a wide range, our 

ain intent was to avoid considering responses that were based 

n pure guesswork or misunderstanding of the metric of the un- 

ertain variable. 

We had 1028 monotonic distributions (93.5% of the total num- 

er of estimates), of which 817 (79.5%) were classified as informed. 

ost questions had responses with a rate of informed responses 

ver 80%, but three variables had a lower rate, as detailed in 

able 3 . Question number 3 in particular proved difficult for many 

articipants. This was probably due to the fact that the response 

as to be given in cm, while the true answer was several meters, 

eading to a severe response bias. The number of monotonic and 

nformed responses per treatment are shown in Table 4 . 

As mentioned previously, to allow comparisons across the vari- 

bles, we set up the x t as 100 and linearly normalized the other 

ata points between 0 (the actual zero value) and 100 (x t ). We 

xplored the effectiveness of the debiasing tools and elicitation 

ethods by examining four dependent variables considering the 

nformed responses, as detailed next. 3 

DV1: number of judgments revised after the subject was exposed 

o a debiasing tool 
3 The statistical tests that we employed in the data analysis are non-parametric 

ersion of t-tests or ANOVAs. We established that the data are not normally dis- 

ributed, primarily due to skewness and/or kurtosis of the distributions. Thus, we 

everted to the most common and powerful non-parametric tests. 
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Table 3 

Monotonic distributions and informed responses for Exp. 1 (110 responses per variable). 

Reference Variable Monotonic Distributions % Monotonic Distributions Informed Responses % Informed Responses 

1 106 96.4% 101 95.3% 

2 97 88.2% 94 96.9% 

3 102 92.7% 21 20.6% 

4 102 92.7% 90 88.2% 

5 102 92.7% 70 68.6% 

6 105 95.5% 100 95.2% 

7 103 93.6% 64 62.1% 

8 105 95.5% 89 84.8% 

9 105 95.5% 96 91.4% 

10 101 91.8% 92 91.1% 

Totals 1028 93.5% 817 79.5% 

Table 4 

Monotonic and informed responses per treatment for Exp. 1. 

Fixed-Value (FV) Elicitation Fixed Probability (FP) Elicitation 

Monotonic Informed % Informed Monotonic Informed % Informed 

Counterfactual (CF) 249 194 77.9% 275 221 80.4% 

Hypothetical Betting (HB) 237 182 76.8% 267 220 82.4% 

Table 5 

Counts and percentage of revisions of both bounds of the probability distribution for counterfactuals vs. hypothetical betting 

for Exp. 1. 

Total estimates Revised x 0 Revised x 100 

Counterfactuals (CF) 415 58 (14.0%) 80 (19.3%) 

Hypothetical bets (HB) 402 37 (9.2%) 72 (17.9%) 

Two sample test for equality of proportions with continuity correction p = 0.04 p = 0.68 

Total (CF and HB) 817 95 (11.6%) 152 (18.6%) 

Table 6 

Counts and percentage of 10% surprises for CF and HB (for FP and FV, and across all variables) for Exp. 1. 

Counterfactuals (CF) Hypothetical Betting (HB) 

Surprises Non-surprises Total Surprises Non-surprises Total 

Initial estimates 200 (48.2%) 215 (51.2%) 415 213 (53.0%) 189 (47.0%) 402 

Revised estimates 191 (46.0%) 224 (54.0%) 415 198 (49.3%) 204 (50.7%) 402 
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4 The Wilcoxon tests were selected whenever the data were non-normally dis- 
Regarding the first dependent variable, Table 5 shows that there 

ere more revisions for the upper bound (x 100 ) than for the lower 

ound (x 0 ) across debiasing treatments, 18.6% vs 11.6% respectively, 

nd this difference is statistically significant (X-squared = 14.96, 

f = 1, p -value < 0. 01). Moreover, CF has led to slightly more revi-

ions for both bounds compared to HB (the p value is statistically 

ignificant for the lower bound, but not for the upper bound). 

If we consider the number of subjects that made these judg- 

ents, there are 31 subjects that revised the lower bound under 

he CF condition (i.e., 28.2% of the total) and 25 subjects that re- 

ised the same estimate under the HB condition (i.e., 22.7%). Sim- 

larly, 35 subjects revised the upper bound under the CF condition 

i.e., 31.8%) and 34 under the HB condition (i.e., 30.9%). Not only 

o these figures confirm that counterfactuals lead to slightly more 

eople revising their judgment, they also indicate that the re- 

ponse to the treatment is judgment-based and not subject-based 

large number of subjects making few revisions vs. a small number 

f people revising most of the variables). 

DV2: proportion of 10% surprises 

Moving to the second dependent variable, we consider as sur- 

rises those instances in which the true value falls outside the 

0% range of the participant’s estimates, hence the denomination 

f 10% surprises. Table 6 summarizes the number and percent- 

ge of 10% surprises before and after employing each debiasing 

echnique. There were many surprises, about 50% for both debi- 

sing techniques vs. the 10% expected result with perfect calibra- 
t

667 
ion. We note that the proportion of surprises in revised estimates 

s slightly lower, although not statistically significant, for counter- 

actuals compared to hypothetical betting (McNemar’s Chi-squared 

est with continuity correction leading a Chi-squared = 0.73 and 

 = 0.39). Overall, there was no significant effect of the treatments 

i.e., CF or HB) in reducing surprises. 

DV3: width of the variable’s overall range 

When considering the third dependent variable, the width of 

he variable’s range (initial x 100 – x 0 vs. revised x’ 100 – x’ 0 ), we 

btain the results shown in Fig. 3 (for CF, the median of the initial

idth is ˜ x CF = 69.89 with an inter-quartile range of IQ R CF = 92.08, 

nd for the revised width the median is ˜ x ′ CF = 75.00 with an inter- 

uartile range of IQR ′ 
CF 

= 94.62; for HB, the median of the initial 

idth is ˜ x HB = 55.56 with IQ R HB = 78.34, and for the revised width, 

˜  ′ HB = 59.14 with IQR ′ HB = 82.81). These differences are significant 

or both CF and HB (Wilcoxon signed rank test with continuity cor- 

ection, 4 for CF: V = 1849, z = -6.72, p < 0.01; for HB: V = 849.5,

 = -6.86, p < 0.01). 

Fig. 4 shows the comparison between treatments of the second 

ependent variable (DV2), measured as the change in percentage 

f 10% surprises, where values are calculated as the ratio of the 

ost-treatment surprise proportion to the pre-treatment surprise 

roportion (i.e., lower ratios are preferable), and the third depen- 
ributed, as verified with the Shapiro-Wilk normality test. 
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Fig. 3. Boxplot of initial (x 100 – x 0 ) vs. revised (x’ 100 – x’ 0 ) width of the overall 

ranges, for counterfactuals vs. hypothetical betting in Exp. 1. 

Table 7 

Results of the statistical test for range change and for the percentage 

change in 10% surprises – Exp. 1. 

Overall Range Change Change in Surprises 

Elicitation (FP vs FV) H = 0.41, p = 0.52 H = 0.07, p = 0.78 

Treatment (CF vs HB) H = 0.27, p = 0.61 H = 1.17, p = 0.28 

Elicitation ∗Treatment H = 0.43, p = 0.52 H = 1.57, p = 0.21 
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Fig. 5. Boxplot of the width of 80% inner range of initial estimates (x 90 – x 10 ) for 

FP vs. FV in Exp. 1. 
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ent variable (DV3), where the overall range change is calculated 

s the ratio of the post-treatment range to the pre-treatment range 

i.e., higher ratios are preferable). 

No statistically significant result has been found in effective- 

ess between the tested overprecision debiasing tools (CF vs. HB) 

nd elicitation protocols (FP vs. FV). Specifically, Fig. 4 a shows that 

here is an interaction effect between treatment type and elici- 

ation protocol on the percentage change in 10% surprises, with 

he combination HB-FV performing slightly better than the oth- 

rs. However, there seems to be no interaction between the elic- 

tation protocol and the treatment on the bounds for the width of 

he range, as shown in Fig. 4 b. We tested the significance of these

esults using the Scheirer-Ray-Hare test 5 as shown in Table 7 . 

DV4: width of the 80% inner range 

Let us consider the fourth dependent variable, the 80% inner 

ange overprecision, measured as initial [x 90 – x 10 ] when using 

xed value vs. fixed probability elicitation protocols. The FV proto- 

ol led to significantly wider initial inner ranges [x 90 – x 10 ] when 

ompared to the FP protocol (see Fig. 5 , ˜ x = 33.67, IQ R = 54.67; 
F P F P 

5 The Scheirer-Ray-Hare test is a factorial extension of the Kruskal-Wallis test, 

hich is itself a non-parametric version of a one-way ANOVA. The test assumes 

qual distributions across all groups and is less powerful than a traditional ANOVA. 
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Fig. 4. Interaction between treatments a

668 
˜  F V = 48.44, IQ R F V = 66.84; Wilcoxon rank sum test with continuity 

orrection, W = 67,258, z = -4.51, p < 0.01). 

.4. Experiment 2 

As presented above, neither of the two methods to stretch the 

anges tested in Experiment 1 (CF and HB) was very effective in re- 

ucing the number of surprises. However, they were both effective 

n increasing the initial ranges, albeit not sufficiently. We decided 

o further explore CF efficacy while eliminating HB as the informal 

eedback from the participants highlighted that HB questions were 

ore difficult to understand when compared to CF questions. 

We thus introduced automatic stretching (AS) as a new debias- 

ng method for the bounds for Experiment 2. The aim of this sec- 

nd experiment was to test and compare the effectiveness of CF 

s. AS on the tails of the participants’ subjective probability distri- 

utions and to explore whether there is any behavioral effect of AS 

n overprecision. We investigate the 80% inner ranges provided in 

he revised estimates (x’ 90 – x’ 10 ) as a main indicator of debiasing 

he extremes. 

.4.1. Methods – experiment 2 

One hundred and one students participated in this experiment 

n the Behavioral Lab of the London School of Economics and Po- 

itical Science. All participants had been exposed to probability en- 

oding in their studies. Participants were asked to provide esti- 

ates for the 10 general knowledge variables (listed in Table 8 ). 

ach participant was randomly allocated to one of the following 

our experimental conditions: FP-CF, FP-AS, FV-CF, or FV-AS. 

As in Experiment 1, participants were working on a pre- 

rogrammed interactive Excel file which allowed them not only 

o see, while responding, the cumulative probability distributions 

n linear piecewise form plotted on the side of the screen, but 
nd elicitation protocol for Exp. 1. 
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Table 8 

General knowledge questions for Exp. 2. 

Ref. Number Variables True Value 

1 Malfunction rate of an iPhone over a two-year period after purchase [%] 7.5 

2 UK present unemployment rate (seasonally adjusted) [%] 5% 

3 Number of immigrants into the UK in the year ending March 2015 [thousand persons] 636 

4 Average number of sunny days (clouds cover less than 30% of the sky) per year in Los Angeles [days] 186 

5 ∗ Area of Italy [km 

2 ] 301,340 

6 CO 2 per capita in the USA in 2015 [metric tons per person] 15.9 

7 ∗ Mean global sea level rise in 2100 projected by the 5th IPCC report for the high emission scenario [cm] 75 

8 ∗ Mean global average increase in the surface temperature in 2100 projected by the 5th IPCC report for the high-emission scenario [ °C] 4 

9 Mean loss of sea ice extent in the Artic from 1981 to 2010 [million km 

2 ] 15.5 

10 Number of sheets of paper that a typical tree produces [sheets] 8333 

∗ = identical general knowledge as in Experiment 1. 

Table 9 

Monotonic distributions and informed responses for Exp. 2 (101 responses per variable). 

Reference Variable Monotonic Distributions % Monotonic Distributions Informed Responses % Informed Responses 

1 100 99.0% 57 57.0% 

2 97 96.0% 80 82.5% 

3 100 99.0% 53 53.0% 

4 99 98.0% 98 99.0% 

5 97 96.0% 56 57.7% 

6 97 96.0% 48 49.5% 

7 100 99.0% 47 47.0% 

8 97 96.0% 66 68.0% 

9 101 100.0% 49 48.5% 

10 97 96.0% 33 34.0% 

Totals 985 97.5% 587 59.6% 
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lso to revise their estimations before proceeding to each subse- 

uent phase. The elicitation task for each variable consisted of two 

hases, as described next. 

In Phase 1, there was the elicitation of the initial estimates for 

 0 , x 100 , x 50 , x 10 , x 90 (in this order), following the same elicita-

ion protocol for Experiment 1 described previously. The elicitation 

hase 2 asked for the revision of the estimates for x’ 0 , x’ 100 , x’ 50 (in

his order). We replicated FP-CF and FV-CF as in Experiment 1, but 

ow also elicited the 10th (x’ 10 ) and 90th (x’ 90 ) revised percentiles, 

ither following FP or FV for this estimate. The auto stretching (AS) 

reatment consisted of eliciting the initial lower and upper bound 

x 0 , x 100 ) then dividing the former by two (x 0 /2) and multiply-

ng the latter by two (2 x 100 ) and informed the subject that: “You 

ight have missed the true value in your original range. We have 

hus automatically stretched the original range dividing by ½ the 

ower bound and multiplying by 2 times the upper bound”. Start- 

ng with the new extremes x’ 0 = x 0 /2 and x’ 100 = 2 x 100 , we then

e-elicited the 50th (x’ 50 ), 10th (x’ 10 ), and 90th (x’ 90 ) percentiles. 

he elicitation protocols for AS were either FP or FV. 

For example, if auto stretching were employed for the initial 

istribution shown on the lefthand side of Fig. 2 , the lower bound 

ould be automatically adjusted to 20 centimeters and the up- 

er bound to 140 centimeters. The subject would be asked then to 

e-estimate the 50th (x’ 50 ), 10th (x’ 10 ), and 90th (x’ 90 ) percentiles 

iven these wider bounds. 

.4.2. Results - experiment 2 

All 101 participants completed the probability estimates for all 

0 questions. Again, we considered only estimates that produced 

onotonic cumulative distributions, and focused on responses that 

ere informed the specific question (i.e., distributions with x 50 

1/5x t or x 50 ≥ 5x t ). We thus had 985 monotonic distributions 

97.5% of the total number of estimates), of which 587 (59.6%) were 

lassified as informed, as detailed in Table 9 . 

This proportion of informed responses is a significantly lower 

ate of informed responses than in Experiment 1 (two-sample 

est for equality of proportions with continuity correction, x- 
669 
quared = 60.99, p < 0.01). On closer analysis, the lower informed 

esponse rate was largely due to the environmental questions vari- 

bles (numbered between 7 and 10 in Exp. 1 and between 6 and 

0 in Exp. 2), with 80.2% in Experiment 1 vs. 48.1% in Experiment 

 (two-sample test for equality of proportions with continuity cor- 

ection, x-squared = 117.31, p < 0.01), while the non-environmental 

uestion variables (numbered between 1 and 6 in Exp. 1 and be- 

ween 1 and 5 in Exp. 2) had similar response rates in both ex- 

eriments (68.4% and 68.1%, respectively), which were not signifi- 

antly different. The number of monotonic and informed responses 

er treatment is shown in Table 10 . 

If we consider the number of subjects that made these judg- 

ents, there are 48 subjects that revised the lower bound under 

he CF condition (i.e., 47.5% of the total) and 44 subjects that re- 

ised the upper bound (i.e., 43.5%). Out of 587 informed distribu- 

ions, there were 118 revisions of the lower bound (20.1%) and 126 

evisions of the high bound (21.5%). We provide below the results 

f the experiment looking at the six dependent variables described 

n Section 3.2 considering the distributions that were classified as 

nformed responses. 

DV1: number of judgments revised after the subject was exposed 

o a debiasing tool 

We analyzed for this first dependent variable only the number 

he number of revised judgments for CF, as the bound revisions (x 0 
nd x 100 ) for AS are revised by default and not decided by the sub-

ect (however, we have analyzed the revisions of the 10th and the 

0th fractiles under the AS condition). There were 293 informed 

esponses for the CF treatment, with 118 revised x 0 (40.27% of to- 

al) and 126 revised x 100 (43.00%). The difference in these propor- 

ions were not statistically significant. 

DV2: proportion of 10% surprises 

Table 11 summarizes the number and percentage of 10% sur- 

rises before and after employing each debiasing technique (CF 

nd AS, respectively), where initial estimates represent the no- 

reatment condition. We observed a significant effect of both 

reatments on the reduction of surprises for both CF (McNe- 

ar’s Chi-squared test with continuity correction leading a Chi- 



V. Ferretti, G. Montibeller and D. von Winterfeldt European Journal of Operational Research 304 (2023) 661–675 

Table 10 

Monotonic and informed responses per treatment for Exp. 2. 

Fixed-Value (FV) Elicitation Fixed Probability (FP) Elicitation 

Monotonic Informed % Informed Monotonic Informed % Informed 

Counterfactual (CF) 246 137 55.7% 257 156 60.7% 

Auto Stretch (AS) 266 156 58.6% 216 138 63.9% 

Table 11 

Counts and percentage of 10% surprises with CF and AS (for FP and FV, and across all variables) for Exp. 2. 

Counterfactuals (CF) Automatic Stretch (AS) 

Surprises Non-surprises Total Surprises Non-surprises Total 

Initial estimates 121 (41.3%) 172 (58.7.0%) 293 106 (36.1%) 188 (63.9%) 294 

Revised estimates 102 (34.8%) 191 (65.2%) 293 53 (18.0%) 241 (82.0%) 294 

Fig. 6. Boxplot of initial (x 100 – x 0 ) vs. revised (x’ 100 – x’ 0 ) width of the overall 

ranges, for counterfactuals vs. automatic stretching for Exp. 2. 

Table 12 

Results of the statistical test for range change and for the change in per- 

centage of 10% surprises for Exp. 2. 

Overall range change Change in% Surprises 

Elicitation (FP vs FV) H = 1.38, p = 0.24 H = 3.73, p = 0.05 

Treatment (CF vs AS) H = 65.69, p = 0.00 H = 15.84, p = 0.00 

Elicitation ∗Treatment H = 0.56, p = 0.45 H = 2.24, p = 0.13 
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quared = 17.38 and p < 0.01) and for AS (Chi-squared = 73.70 and

 < 0.01). Considering the comparison between CF and AS, the 

ame table shows that the proportion of surprises in revised es- 

imates is much lower for AS compared to CF and this difference 

s statistically significant (McNemar’s Chi-squared test with conti- 

uity correction leading a Chi-squared = 76.92 and p < 0.01). 

DV3: width of the variable’s overall range 

When considering the width of the variable’s range (initial 

 100 – x 0 vs. revised x’ 100 – x’ 0 ) we obtain the results shown 

n Fig. 6 (for CF, initial ˜ x CF = 127.66 with IQ R CF = 236.17 and 

or the revised ˜ x ′ 
CF 

= 148.94 with IQR ′ 
CF 

= 269.39; for AS, initial 

˜  AS = 127.66 with IQ R AS = 195.48 and for the revised ˜ x ′ 
AS 

= 254.09 

ith IQR ′ 
AS 

= 431.59). The difference between the revised and ini- 

ial ranges for both treatments is significant (Wilcoxon signed rank 

est with continuity correction, V = 1435.5, z = -9.28, p < 0.01 for 

F, and V = 2547, z = -20.39, p < 0.01 for AS). 

Fig. 7 shows the comparison between treatments (CF and AS) 

nd elicitation protocols (FP and FV) on the change in percentage 

f 10% surprises ratio (DV 2) and on the overall range change ra- 

io (DV 3). The figure shows that AS performs better than CF on 

ll dimensions of the analysis (lower 10% surprise ratio and higher 

verall change ratio). Table 12 confirms the statistical significance 

f tail treatments on each of the two dimensions. This analysis 

hows an interaction for the surprise change ( Fig. 7 a) but no in-
670 
eraction effect between the elicitation protocol and the treatment 

n the tails for the overall width of the range ( Fig. 7 b). We tested

he significance of these results using the Scheirer-Ray-Hare test as 

hown in the same table. 

DV4: width of the 80% inner range 

Considering the 80% inner range overprecision, measured as 

x 90 – x 10 ), once again the use of the FV protocol led to wider

nitial inner ranges compared to the FP protocol (see Fig. 8 ) 

ith similar spread ( ̃ x F P = 93.71, IQ R F P = 152.50; ˜ x F V = 100.36, 

Q R F V = 143.89). However, this difference in medians is not statis- 

ically significant (Wilcoxon rank sum test with continuity correc- 

ion, W = 40,512, p = 0.21). 

In Experiment 2 we were also interested in understanding the 

ffect of treatments on estimates for the 10% and 90% fractiles, 

hich were elicited from the subjects for both for CF and AS. They 

re analyzed next. 

DV5: inner range overprecision marginal improvement 

We considered the 80% inner range overprecision marginal im- 

rovement (measured as initial x 90 – x 10 and revised x’ 90 – x’ 10 ) 

hen using FV vs. FP. Starting from the CF treatment (boxplot 

hown in Fig. 9 ), we noticed that the revised ranges are wider 

han the initial ones for both FP (initial ˜ x F P = 91.95, IQ R F P = 156.29, 

evised ˜ x ′ F P = 96.78, IQR ′ F P = 164.79; Wilcoxon signed rank test 

ith continuity correction, V = 1083.5, z = -2.83, p < 0.01) and 

or FV (initial ˜ x F V = 10 6.6 6, IQ R F V = 186.86, revised ˜ x ′ 
F V 

= 119.36, 

QR ′ 
F V 

= 208.26; Wilcoxon signed rank test with continuity correc- 

ion, V = 1235, z = -2.83, p < 0.01). Considering the AS treatment 

boxplot shown in Fig. 10 ), again the revised ranges are wider than 

he original ones for both FP (initial ˜ x F P = 96.26, IQ R F P = 149.61, re- 

ised ˜ x ′ F P = 138.35, IQR ′ F P = 191.60; Wilcoxon signed rank test with 

ontinuity correction V = 573, z = -1.25, p < 0.01) and FV (initial

˜  F V = 94.58, IQ R F V = 113.30, revised ˜ x ′ 
F V 

= 201.63, IQR ′ 
F V 

= 292.29; 

 = 0, z = - 1.25, p < 0.01). 

We also analyzed the change in percentage of 20% surprises 

i.e., x t < x 10 or x t > x 90 ), for the CF and AS treatments un-

er each elicitation protocol (FP or FV), where values are calcu- 

ated as the ratio of the post-treatment surprise proportion to the 

re-treatment surprise proportion, as shown in Fig. 11 a. We also 

onsidered the ratio of the post-treatment 80% range to the pre- 

reatment range, i.e., (x’ 90 – x’ 10 )/(x 90 – x 10 ), as shown in Fig. 11 b. 

We tested the significance of these results using the Scheirer- 

ay-Hare test, as shown in Table 13 . Statistically significant results 

n effectiveness (measured as the width of the variable’s 80% inner 

ange and proportion of 20% surprises) have been found for both 

he elicitation protocols (with FV performing better than FP) and 

he tested overprecision debiasing tools (with AS performing better 

han CF). We observe no interaction between the elicitation proto- 

ol and the treatment on the tails for the 20% surprise ( Fig. 11 a)

nd for the width of the 80% inner range ( Fig. 11 b). 
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Fig. 7. Interaction between treatments and elicitation protocol for Exp. 2. 

Fig. 8. Boxplot of the width of 80% inner range of initial estimates (x90 – x10) for 

FP vs. FV in Exp. 2. 

Fig. 9. Boxplot of the width of the initial (x 90 – x 10 ) and the revised (x’ 90 – x’ 10 ) 

inner range estimated under the FP and FV conditions within the CF treatment in 

Exp. 2. 

Fig. 10. Boxplot of the width of the initial (x 90 – x 10 ) and the revised (x’ 90 – x’ 10 ) 

inner range estimated under the FP and FV conditions within the AS treatment in 

Exp. 2. 

Table 13 

Results of the statistical test for 80% inner range change and for the change in 

percentage of 20% surprises – Exp. 2. 

80% Inner range 

change 

Change in 20% Surprises for 

inner range 

Elicitation (FP vs FV) H = 5.91, p = 0.01 H = 9.32, p < 0.01 

Treatment (CF vs AS) H = 37.42, p = 0.00 H = 9.91, p < 0.01 

Elicitation ∗Treatment H = 1.94, p = 0.16 H = 1.84, p = 0.17 
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DV6: the proportion of revised judgments that are moving toward 

he right direction after auto-stretching 

We now consider the sixth dependent variable, i.e., the propor- 

ion of revised judgments that are moving toward the right di- 

ection after auto-stretching (proportion of x’ 10 becoming lower 

han x 10 , or x’ 90 becoming higher than x 90 ). We tested the sig- 

ificance of the proportions with a two-sample test for equality 

f proportions with continuity correction (see Table 14 ). Consider- 

ng the instances in which x’ 10 became smaller than x 10 after re- 

ision, this table shows that 36.9% of judgments improved under 

F and 59.2% under AS. The proportion of no revision for the inner 

ower bound (i.e., x’ 10 = x 10 ) is 34.1% for CF and 6.5% for AS. For

he inner upper bound (x’ 90 ), a much higher proportion of judg- 

ents under AS (85.7%) was revised upward in comparison with 

F (49.1%). Again, the proportion of no revisions for the inner up- 

er bound (x’ 90 = x 90 ) is very small for AS (1.7%) when compared

ith CF (33.4%). These results are statistically significant. 

. Summary and discussion 

This section compares relevant findings across the two exper- 

ments, considering the research question, design and six depen- 

ent variables (refer to Section 3.2 ). We start with the results from 

bserving the number of revisions (DV1). Both CF and HB had low 

evision rates in Exp. 1, as shown in Table 5 . Considering the pro-

ortion of surprises (DV2), both CF and HB had a larger proportion 

f 10% surprises in the revised judgments in Exp. 1 ( Table 6 ), but

here was a statistically significant reduction in the number of sur- 

rises for both CF and AS in Exp. 2 ( Table 11 ). Noticeably, the new

reatment (AS) introduced in Experiment 2 was by far the most 

uccessful treatment in reducing surprises. 

Considering the width of the overall ranges (DV3) for both ex- 

eriments ( Figs. 3 and 6 ), every tail treatment has resulted in a 

ignificant increase in overall ranges, with ranges under CF becom- 

ng wider in Experiment 2 and AS, by design, generating much 

ider ranges. The analysis of the 80% inner range under the fixed 

alue and fixed probability conditions (DV4) shows that both ex- 

eriments resulted in FV leading to significantly wider ranges than 

P in Exp. 1 ( Fig. 5 ) but not in Exp. 2 ( Fig. 8 ). 
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Table 14 

Revision of inner lower and upper bound for Exp. 2. 

Inner lower bound (x 10 ) Inner upper bound (x 90 ) 

x’ 10 < x 10 x’ 10 > x 10 x’ 10 = x 10 x’ 90 < x 90 x’ 90 > x 90 x’ 90 = x 90 

CF 

(Total = 293) 

108 (36.9%) 85 (29.0%) 100(34.1%) 51 (17.4%) 144 (49.1%) 98 (33.4%) 

AS 

(Total = 294) 

174 (59.2%) 101 (34.4%) 19 (6.5%) 37 (12.6%) 252 (85.7%) 5 (1.7%) 

2-sample test for equality 

of proportions 

X 2 = 28.41, p < 0.01 X 2 = 1.70, p = 0.19 X 2 = 67.80, 

p < 0.01 

X 2 = 2.31, p = 0.13 X 2 = 87.74, 

p < 0.01 

X 2 = 100.04, df = 1, 

p < 0.01 

Fig. 11. Interaction between treatments and elicitation protocol for 80% inner range – Exp. 2. 

Fig. 12. Proportion of 10% surprises as a function of the automatic stretch multipliers for both upper and lower bounds (the vertical dashed line indicates the multiplier 

used in Exp. 2). 
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Experiment 2 also enabled us to consider the calibration of the 

licited probabilities of the ranges of the variables. We analyzed 

he influence of the elicitation protocol and the debiasing tool on 

he 80% inner ranges (DV5). We found that, under both CF and AS 

reatments, FV led to wider 80% ranges and lower 20% surprise ra- 

ios, as shown in Figure 11 , thus confirming the preliminary find- 

ngs from Abbas et al. (2008) . At the same time, AS proved more

ffective than CF in reducing 20% surprises and in widening the 

0% inner ranges (DV5), a behavioral effect, stimulating partici- 

ants to revise their initial inner estimates toward a wider range 

y a significantly larger extent than those under CF, as shown in 

able 14 (DV6). 

To summarize, these two experiments led to three key findings. 

irst, our research confirms that overprecision is a pervasive bias 

e.g., Moore et al., 2015b ), as subjects often did not revise their 
672 
stimates even if encouraged to do so. Second, traditional “think 

arder” debiasing strategies (e.g., CF and HB) were not very ef- 

ective, as demonstrated by both the low number of revisions and 

he large proportion of surprises for those participants that indeed 

evised. Third, we found that automatically stretching the initial 

ange provided by the subject was the most effective treatment to 

educe overprecision. Furthermore, the FV elicitation protocol gen- 

rated wider revised 80% inner ranges in the second experiment, 

n comparison with the FP protocol. Therefore, our recommenda- 

ion to reduce overprecision in continuous probability distribution 

licitation tasks is to stretch automatically the tails, then re-elicit 

nner fractiles with the FV protocol. Alternatively, plausible ranges 

an be decided upon by the analyst, making sure that they are 

ide enough to accommodate different opinions, but small enough 

o avoid unreasonable or implausible estimates. 
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One possible reason why auto stretching works better may be 

hat subjects anchor ( Tversky & Kahneman, 1974 ) revised esti- 

ates on their initial estimates and insufficiently adjust from there 

 Moore et al., 2015b ). The key decision when employing this treat- 

ent is thus which multiplier to use for the initial extreme esti- 

ates. We explored the answer to this question by analyzing the 

ffects of different multipliers on the number of surprises using 

he data from our two experiments. For this analysis, we consid- 

red all the monotonic estimates and stretched the initial upper 

nd lower bounds using the multiplier m, with x’ 0 = (1/m) x 0 and 

’ 100 = m x 100 . The revised median was defined as the mid-point 

etween extremes, i.e.: x’ 50 = x’ 0 + (x’ 100 - x’ 0 )/2. The intermediate 

oints x’ 10 and x’ 90 were interpolated linearly between the lower 

ound and the median (with p’ 10 = 10%) and between the median 

nd the upper bound (with p’ 90 = 90%), respectively. 

The graph in Fig. 12 shows the results of using different mul- 

ipliers on the proportion of 10% surprises. There is a significant 

arginal reduction in the number of surprises in both experi- 

ents when a multiplier on the original bounds is employed. How- 

ver, the multiplier which we employed in the second experiment 

 m = 2 ) would only reduce to 17.0% the proportion of surprises in

xperiment 1 and to 18.6% in Experiment 2. Only a multiplier of 

.5 would bring them near the 10% target (10.9% of surprises for 

xperiment 1 and 12.1% for Experiment 2). 

. Conclusions 

Biases in expert elicitation can lead to low-quality decision 

nalysis or risk analysis models ( Montibeller & von Winterfeldt, 

015 ; Morgan, 2014 ). Overprecision is a bias that is particularly 

ard to correct. The research described in this paper has explored 

ebiasing tools that are commonly used to reduce overprecision 

f expert probability judgments in decision and risk analysis. Our 

rst contribution was a systematic comparison of the effectiveness 

f these tools, using controlled behavioral experiments to evalu- 

te their effectiveness. We found that traditional “think harder”

trategies (e.g., use of counterfactuals or hypothetical bets on the 

ounds) were not very effective in making people revise their ini- 

ial judgments. Moreover, in the relatively few instances in which 

ubjects indeed decide to revise, these strategies were not effective 

n sufficiently expanding the range. Our second contribution con- 

isted of the automatic stretching of the bounds, which proved to 

e, by far, the most effective debiasing approach in reducing sur- 

rises and in improving the 10% and 90% quartile estimates. While 

e are not the first ones to suggest automatic stretching as a debi- 

sing tool against overprecision (e.g., Moore et al., 2015a ; Walters 

t al., 2017 ), we are the first, as far as we know, to test it empiri-

ally and compare it to other debiasing tools. Our final contribution 

as to provide preliminary guidelines on how this automatic ad- 

ustment may be implemented in decision and risk analysis and a 

ew evidence-based protocol for the elicitation of subjective con- 

inuous probability distributions: start by eliciting the extremes of 

he distribution, then use a suitable multiplier for each extreme 

nd elicit the internal fractiles using the fixed-value elicitation 

rotocol. 

In terms of implication for OR, our study indicates some point- 

rs. First, it confirms the challenges associated with the debiasing 

f judgments, which are often required by experts and decision 

akers in OR models. Second, the study highlights the importance 

f systematic and evidence-based assessment of debiasing strate- 

ies to guide best practices in OR modeling. Third, it indicates that 

ore automatic debiasing tools may be more effective in the elic- 

tation of judgments for OR modeling than tools that rely solely 

n the willingness of experts and decision makers to revise their 

nitial estimations. Fourth, and perhaps the most important lesson 

or OR is that end points do matter, in experiments and in prac- 
673 
ice. This is especially true for highly uncertain distributions where 

xperts may disagree about both the central tendency and the ab- 

olute minima and maxima. Asking experts to provide minima and 

axima and then stretching the endpoints is only one of several 

ossible approaches to defining the starting points of an elicitation. 

ur research, combined with findings from Seaver et al. (1978) and 

bbas et al. (2008) , shows the merit of this procedure. The down- 

ide of this approach is that it may lead to over-stretching for some 

asier variables and under-stretching for some very difficult vari- 

bles. Another possibility is for the analyst to pre-specify the end- 

oints, as suggested by Welsh and Begg (2018) , using plausibility 

nd logic to cover the widest possible range without violating nat- 

ral laws or logical boundary conditions. For example, many un- 

ertain variables are naturally bounded below by zero and plau- 

ibility arguments may lead to a logical upper bound. The per- 

ent scale is bounded both below and above. The downside of 

his latter procedure is that it may exaggerate the range and lead 

o distributions that are too wide. A compromise between expert 

licited endpoints and the analyst provided ones is to ask multi- 

le experts for endpoints and then use the minimum of the x 0 ’s 

nd the maximum of the x 100 ’s as the endpoints for all experts to 

se. This is a testable procedure that should be explored in future 

esearch. 

We also would like to stress some limitations of our study. 

he first one is that our conclusions come from laboratory exper- 

ments with a student population. Indeed, debiasing studies with 

xperts are rare because it is often challenging to obtain sam- 

les of experts to perform the required experiments ( Graf-Vlachy, 

017 ). The second limitation is that we had a relatively limited 

umber of informed distributions, particularly in Experiment 2. 

 possible explanation for this issue is that the questions might 

ave been too hard. Indeed, we have neither pre-assessed the 

articipants’ degree of knowledge about each variable, nor their 

evel of confidence on their estimates. Lastly, we employed gen- 

ral knowledge questions; they entail a different task compared to 

rediction questions about future events, which would have bet- 

er replicated the elicitation task in settings where predictions are 

eeded. 

We can thus identify some areas for further research. To ad- 

ress the above limitations, future experiments could explore the 

ffects of: (i) involving experts in real decision and risk analysis 

asks, instead of students making estimates of known quantities, 

ho are guided by a decision analyst/facilitator that can encour- 

ge subjects to think harder and further revise their estimates; (ii) 

mploying prediction-type questions more aligned with subjects’ 

nowledge; and (iii) improving the amount of pre-task training on 

robability elicitation and evaluating this knowledge before the ex- 

eriment started. 

To further explore behavioral implications for overprecision de- 

iasing effectiveness, future research could also investigate the im- 

act of individual differences/personality variables (e.g., age, gen- 

er, numeracy, cognitive style, affect) on subjects’ estimates. Fi- 

ally, more research on automatic rules and multipliers would be 

elcome, as we had encouraging results from these comparative 

xperiments. 

Concluding, this research has confirmed that overprecision is 

ndeed a pervasive bias. However, and encouragingly, successful 

ebiasing tools can – and should – be designed to counter this bias 

nd improve the quality of judgments in decision and risk analysis. 
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