
Appendix. Omitted proofs

Proof of Lemma 1. The attack takes place during the time interval J = [M,M +α]. Since S

satisfies the unit speed condition (1), we have that λ (S (J))≤ |J |= α, where |J | is the length of

J . By the definition of the uniform attack strategy, the probability that the attack takes place in

S (J), and is thus intercepted, does not exceed λ (S (J))/µ, giving the claimed bound. �

Proof of Lemma 2. First observe that the new metric d′ will still have speed one. If S is a patrol

on Q, then it satisfies (1) so

d′ (S (t) , S (t′))≤ d (S (t) , S (t′))≤ |t− t′| ,

which means that S is still a patrol on Q′, d′. On the other hand, attacks on Q′, d′ are the same

as the attacks on Q,d. So the Patroller might have additional strategies whereas the Attacker has

no new strategies. Thus the new game can only be the same or better for the Patroller, giving the

main inequality. If the length of an arc is decreased then the new metric satisfies the assumption

0≤ d′ (x, y)≤ d (x, y). Finally suppose x and y are identified, so thatQ′, d′ has the quotient topology.

For any points z and w in Q−{x, y} we have

d′ (z,w) = min{d (z,w) , d (z,x) + d (x,w) , d (z, y) + d (y,w)} ≤ d (z,w) ,

so the result follows from the first part of the proof. �

Proof of Lemma 3 This proof mimics the usual proof of Euler’s Theorem. We first construct a

circuit C satisfying condition (2), which we call a ∗-circuit, using the following rules:

1. Start at any node x and leave by any passage P (we let P ′ be the paired passage of P ).

2. Always leave a node by an untraversed passage not paired with the arriving passage.

3. If, after arriving at a node, there are three untraversed passages with exactly two of them

paired, leave by one of this pair.

4. If, after arriving at node x, there are two untraversed passages, leave by passage P ′, if it is

untraversed.

5. If there are no remaining untraversed passages after arriving at a node, stop.

To simply obtain a circuit (not necessarily satisfying (2)) starting and ending at x, we would

follow the usual method of simply leaving a node by any untraversed passage, a simpler form of

Rule 2. The existence of an untraversed passage (at any node other than the starting node x) follows

from the fact the after arriving at a node an odd number of passages will have been traversed, so

an odd number (hence not 0) are untraversed. We show that the full form of Rule 2 along with the
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other rules ensure that we can always leave a node in a way that satisfies (2) whether the node is

the initial node x or another node y.

We first check that after arriving at a node y other than the starting node x, there cannot be only

one remaining untraversed passage which is paired with the arriving passage. Since every node has

even degree and there are no degree two nodes, the node y must have been previously arrived at.

After this previous arrival at y, there must have been three untraversed passages with exactly two

of them paired. But Rule 3 ensures the circuit left by one of those two passages, so after arriving

by the other one on the final visit, the last untraversed passage must have a different label.

To check that the final arriving passage at the initial node x is not P ′, note that if P ′ had not

been traversed before the penultimate visit to x, Rule 4 ensures that it will be traversed on that

visit, and it will not be the final arriving passage.

If C is a tour (contains all the arcs), we are done. Otherwise, since Q is connected, there is a node

z with some passages in C and some not in C (see Figure 1). Suppose that C leaves z beginning via

passage a and ends at z via passage b. We create a new ∗-circuit starting at z, called C ′, using the

same rules and using only passages not in C. Suppose C ′ begins with a passage called d (which we

can choose) and ends with a passage called e (which we cannot control). The combined circuit CC ′

which starts at z and traverses C and then C ′ will satisfy (2) except possibly for the transitions

b, d and e, a between the two circuits, so we need d 6= b′ and e 6= a′ (this means d is not paired with

b and e is not paired with a). The arc d is chosen as follows.

Figure 1 How to join two ∗-circuits at node z.

1. If a′ is not in C, take d= a′. This ensures that d= a′ 6= b′ since a 6= b. Also e 6= d= a′.

2. If a′ is in C, take d 6= b′. We know that also e 6= a′ because a′ is in C.

If the circuit CC ′ is not a tour, we iteratively continue to add new circuits until we end up with

a tour, noting that the process is guaranteed to end since every new circuit contains at least one

new arc and there are a finite number of arcs. �
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Proof of Lemma 8. We fix a best response S to the E-attack strategy, and show that the

probability of interception is no more than v∗. To do this, we will define a new network Q′ of total

length µ+ λ(E) and a patrol S′ of Q′, and show that the probability S intercepts the E-attack

strategy on Q is equal to the probability that S′ intercepts the uniform attack strategy (starting

at time t=M) on Q′. The latter probability is at most v∗, by Lemma 1, so this will complete the

proof.

The network Q′ is derived from Q by replacing each component Ei of E with a loop Li of

length 2ei, where ei = λ(Ei). This is possible by the Leaf Condition, and clearly λ(Q′) = µ+λ(E).

Note that the probability the attack takes place on Ei under the E-attack strategy is equal to

the probability the attack takes place on Li under the uniform attack strategy. Since S is a best

response, we can assume that whenever it enters some component Ei, it proceeds directly to the

leaf node of Ei, arriving at some time t1, then leaves at a later time t2, and returns directly to Ec.

We will show later that we can assume t1 = t2, so that S performs tours of the components of E.

We define the Patroller strategy S′ on Q′ by setting it equal to S when S is in Ec, and replacing

any tour that S performs of a component Ei of E in Q with a tour of the loop Li in Q′.

Let p0 be the probability the attack on Q is intercepted by S, conditional on it taking place on

Ec and let q0 be the corresponding conditional probability for S′ and Q′. Clearly, p0 = q0. For every

component Ei of E, we also define pi to be the probability that the attack on Q is intercepted by

S, conditional on it taking place at the leaf node xi in the closure of Ei. Similarly, we define qi to

be the probability that the attack on Q′ is intercepted by S′ conditional on it taking place in Li.

It is sufficient to show that pi = qi for each i.

The timing of the attacks on Q is shown in Figure 2. The first attack at xi finishes at time

M − ei +α and the last attack starts at time M + ei. By the Leaf Condition, M + ei ≤M − ei +α,

so pi = 1 if and only if the patrol visits xi in the time interval [M + ei,M − ei +α]. Recall that t1

and t2 are the respective times that S arrives at and leaves node xi.

Figure 2 Timing of the attacks on Q.

First suppose pi = 1. In this case, there is some time t0 ∈ [M + ei,M − ei +α] when the Patroller

is at x1, so we may as well assume that t1 = t2 = t0 (otherwise we can replace S with a patrol that
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dominates it). So that S performs a tour of Ei during the time interval [t0−ei, t0 +ei]⊂ [M,M+α].

This means that S′ also performs a tour of Li during this time interval, and therefore qi = 1.

Now suppose that pi < 1. In this case, we must have either t1 >M − ei+α or t2 <M + ei. In the

former case, the probability of an attack starting at xi after time t1 is zero, so we can assume that

t2 = t1. In other words, S performs a tour of Ei in the time interval [t1−ei, t1 +ei], and S′ performs

a tour of Li in the same time interval. If t1 ≥M + ei +α then pi = qi = 0. If t1 ≤M + ei +α, then

S intercepts the attack if it starts at xi in the time interval [t1 − α,M + ei], so pi = (M + ei +

α− t1)/(2ei). Furthermore, S′ intercepts the attack if it takes place in S([t1− ei,M +α])⊂Li, so

qi = pi.

A similar argument holds for the case of t2 <M + ei and this completes the proof. �

Proof of Theorem 8. It is enough to show the statement is true for the case that x> n and 2n≤

α≤ 2x. Assume the Attacker uses the symmetric-skewed attack strategy. Let pi be the probability

that the attack is intercepted, conditional on it taking place at node ai for i= 1, ..., n. Let qj be the

probability that the attack is intercepted, conditional on it taking place at Ec at time α/2 + 2j,

for j = 0, ..., n−1. Let pb be the probability that the attack is intercepted, conditional on it taking

place at node b.

It is easy to see that if pb = 1, then the patrol must either stay at node b until time α+ 2(n− 1)

or arrive at node b at time α or earlier (then stay there). In both cases, we have qj = 0 for all j

since the patrol cannot be in λ(Ec) during the time interval [α/2,3α/2 + 2(n− 1)]. Similarly, we

have pi = 0 for all i. Thus, the probability of interception is α/(µ+λ(E)).

Next, suppose pb < 1 and the patrol stays at node b until some time t < α+ 2(n− 1). We will

split this case into two subcases: 2n≤ α≤ µ and µ≤ α≤ 2x.

Considering the first subcase, 2n≤ α≤ µ, we assume the patrol arrives node v (the right side of

Ec) at time r= t+α/2, and q0 will be bounded by the function γ(r) as below.

If λ(Ec)≥ α,

γ(r) =


r+λ(Ec)−α/2

λ(Ec)
if 0≤ r≤ 3α/2−λ(Ec),

α
λ(Ec)

if 3α/2−λ(Ec)≤ r≤ α/2,
3α/2−r
λ(Ec)

if α/2≤ r≤ 3α/2,

0 if 3α/2≤ r.

If λ(Ec)≤ α,

γ(r) =


r+λ(Ec)−α/2

λ(Ec)
if α/2−λ(Ec)≤ r≤ α/2,

1 if α/2≤ r≤ 3α/2−λ(Ec),
3α/2−r
λ(Ec)

if 3α/2−λ(Ec)≤ r≤ 3α/2,

0 if 3α/2≤ r.

Thus, for j = 1, ..., n− 1, the probability qj is bounded by γ(r− 2j).
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Without loss of generality, we assume the patrol arrives at node a1 at time s= t+ x+ 1 then

moves within all ai (i= 1, ..., n) thereafter. If the patrol visits every other node ai (i 6= 1) before

returns to a1, it takes time 2n≤ α. So, all attacks at node a1 happening from time s−α will be

intercepted and p1 is bounded above by

δ(s) =

{
1 if 0≤ s≤ α+n− 1,
(2α+n−1)−s

α
if α+n− 1≤ s≤ 2α+n− 1.

If the patrol moves directly from a1 to a2, then p2 is bounded above by δ(s+ 2). Upper bounds for

the other pi can be calculated in the same way.

A patrol that leaves node b at time t, arrives at Ec at time t+α/2, crosses Ec to reach node a1

at time t+x+ 1, then moves within ai thereafter has interception probability p(t) given by

p(t) =
α

µ+λ(E)
f(t) +

λ(Ec)

n(µ+λ(E))

n−1∑
j=0

γ(t+
α

2
− 2j)

+
α

n(µ+λ(E))

n∑
i=1

δ(t+x+ 1 + 2(i− 1))

=
α

µ+λ(E)
.

We now consider the second subcase, µ≤ α≤ 2x. In this case, λ(E) = µ so that Ec is empty and

there are no middle attacks. We assume the patrol leaves node b at time t, visits all nodes ai at

time t+x+ 1 + 2(i− 1) then returns to x at time t+ 2µ.

Let s be the time the patrol arrives at node ai. Then pi is bounded by the function g(s) given

below.

g(s) =


s−(α−x−1)
2(x+n)−α if α−x− 1≤ s≤ x+ 2(n− 1) + 1,

1 if x+ 2(n− 1) + 1≤ s≤ 2α−x− 1,
α+x+2(n−1)+1−s

2(x+n)−α if 2α−x− 1≤ s≤ α+x+ 2(n− 1) + 1.

Since the patrol stays leaves node b at time t and returns at t+ 2µ, the upper bound h(t) of pb

is

h(t) = f(t) + 1− f(t+ 2µ−α).

So, the interception probability p(t) of the patrol is

p(t) =
α

2µ
h(t) +

2µ−α
nµ

n∑
i=1

g(t+x+ 1 + 2(i− 1)) =
α

2µ
=

α

µ+λ(E)
.
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