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How could the station-based bike sharing system and the free-floating 

bike sharing system be coordinated? 
 

 

Abstract 

The station-based bike sharing system (SBBSS) and the free-floating bike sharing 

system (FFBSS) have been adopted on a large scale in China. However, the overlap 

between the services provided by these two systems often makes bike sharing 

inefficient. By comparing the factors that affect the usage of the two systems, this paper 

aims to propose appropriate strategies to promote their coordinated development. Using 

data collected in Nanjing, a predictive model is built to determine which system is more 

suitable at a given location. The influences of infrastructure, demand distribution, and 

land use attributes at the station level are examined via the support vector machine 

(SVM) approach. Our results show that the SBBSS tends to be favored in areas where 

there is a high concentration of travel demand, and proximity to metro stations and 

commercial properties, whereas locations with a higher density of major roads and 

residential properties are associated with more frequent use of the FFBSS. With regard 

to the methods used, a comparison of several machine learning approaches shows that 

the SVM has the best predictive performance. Our findings could be used to help policy 

makers and transportation planners to optimize the deployment and redistribution of 

docked and dockless bikes. 

 

Keywords: Station-based bike sharing system; Free-floating bike sharing system; 

Support vector machine; Coordinated development; Land use 
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1. Introduction 

The bike sharing system was first launched in Amsterdam, in the Netherlands, in 1965 in order 

to meet the ‘last-mile’ travel demand (DeMaio, 2009; Parkes et al., 2013). The system provides 

a new mode of transportation for citizens, which is recognized to have both traffic and health 

benefits, such as flexible mobility, support for multimodal transportation connections, and 

engagement in physical activity (Shaheen et al., 2010). Another advantage it offers is that 

traveling by bike is relatively quick and convenient, and therefore saves time (Faghih-Imani et 

al., 2014). In general, bike sharing systems can be divided into two categories according to 

whether they have docking stations or not. A station-based bike sharing system (SBBSS) has 

fixed docking stations, and users have to rent and return bikes at a station (see Figure 1a). The 

emerging free-floating bike sharing system (FFBSS) has no docking stations, and bikes can be 

parked anywhere that is appropriate (see Figure 1b). The built-in GPS tracking module allows 

users to locate and unlock bikes that are nearby via smartphone applications (Xu et al., 2018). 

The FFBSS system has attracted numerous users due to the freedom that it offers, as well as 

convenience of payment and parking (Pan et al., 2019). 

 

   

(a) Station-based bike sharing system           (b) Free-floating bike sharing system 

Figure 1. Station-based bike sharing system and free-floating bike sharing system 

(Source: (a) Nanjing Institute of City and Transport Planning (2018); (b) Li et al. (2018)) 

 

The FFBSS differs from the SBBSS in terms of users’ travel demands, socio-economic 

characteristics, and operating modes (Chen et al., 2020a; Du and Cheng, 2018; Hua et al., 2020; 

Lyu et al., 2020). The FFBSS is often supported by venture capital funding. With the purpose 

of making profits, the majority of bikes are placed in ‘hot’ zones of a city where users are 

concentrated and the demand is high. In this case, inhabitants in ‘cold’ zones, such as suburbs 

and peripheral areas, are better served by the SBBSS (a non-profit making scheme). The wider 

spatial distribution of SBBSS docking stations satisfies the travel demand in lower-density 

neighborhoods (particularly suburban areas). In addition, consistent evidence suggests that 
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these two systems show different patterns of use by people with different socio-demographic 

characteristics (Chen et al., 2020a; Fishman et al., 2015; Li et al., 2019). According to 

observations in Hangzhou and Kunming, the SBBSS is used more by older population groups 

and those with a relatively low level of education, whereas younger people and those with a 

higher level of education are more likely to favor the FFBSS (Chen et al., 2020a; Li et al., 2019). 

This may be due to a greater willingness to use and trust new technologies among younger and 

more educated people. In addition, with regards to the purpose for which people use the 

schemes, one recent study showed that the SBBSS is primarily used for commuting between 

homes and offices, while FFBSS services are used for various purposes, including commuting, 

recreation, and tourism, etc. (Chen et al., 2020a). 

 

Provided by the government as a basic public transport service, most SBBSS schemes in China 

are subsidized. Therefore, they can offer good-quality services at relatively low costs, which 

benefits lower-income cohorts. The first 30 or 45 minutes of use is free in most cities for every 

journey made. In addition, the SBBSS has advantages in terms of controlling and redistributing 

the bicycle fleets between designated stations. However, due to the limited amount of docks at 

each station, it is often difficult to meet the demand for rent and return turnovers during peak 

hours. Having to walk the first and last mile to and from a docking station also reduces the 

attractiveness of the scheme (Link et al., 2020). By contrast, the FFBSS allows users to easily 

locate and unlock a bike via a smartphone and return it almost anywhere (as long as parking is 

permitted) once they have completed a trip. Consequently, it avoids the problem of there being 

no available docks nearby and provides seamless travel with a door-to-door service. Despite its 

strengths, the FFBSS also has some drawbacks, such as its unsustainable business model, over-

sized fleets, disruption of public spaces, and vandalism (Shen et al., 2018; Xu et al., 2019). For 

instance, in China, competition for market share between different companies has led to an 

excess of bikes. In combination with inadequate redistribution and maintenance, this has caused 

a large amount of abandoned and damaged bikes to remain on the streets and in public spaces. 

As the redistribution of FFBSS bikes occurs over a larger geographical area rather than just 

between designated docking stations, it is more difficult to control and redistribute shared bikes 

than with the SBBSS.  

 

Therefore, the SBBSS and FFBSS are likely to serve different groups of travelers and to 

supplement each other because they each have their own merits and demerits. As Gu et al. (2019) 

and Chen et al. (2020b) also concluded in their recent review papers, it is difficult to judge 

which one is better. The two systems could coexist in a coordinated and complementary way 

that enriches the urban transportation systems. However, currently, the two types of bike sharing 

system overall operate independently of each other, and there is a lack of research into their 

coordinated development. There is always some overlap between the services provided by the 
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two systems, resulting in fierce competition. In some regions, the bicycle fleet exceeds travel 

demand, resulting in inefficient utilization of the bike sharing system as a whole. This study 

takes Nanjing as a case study with which to analyze how the development of the two systems 

could be properly coordinated. There are currently more than 96,000 SBBSS bikes and 2,656 

stations operating in Nanjing. Meanwhile, the FFBSS has rapidly expanded since 2017 and now 

accounts for a sizeable proportion of the bike sharing market. There were more than 500,000 

dockless bikes in Nanjing at the end of 2017 (Nanjing Institute of City and Transport Planning, 

2018). 

 

In this study, we use the SBBSS smart card data and the FFBSS order data to compare the 

factors affecting demand for the two bike sharing systems. The database is augmented with 

information on infrastructure, demand distribution, and land use attributes. The main objectives 

are to evaluate which system is more suitable at a given location, as well as to quantify the 

importance of the influencing factors.  

 

The rest of the paper is organized as follows. Section 2 provides a literature review of prior 

studies and positions our research within the existing literature. Section 3 explains the case 

study and the multi-source data used. Section 4 describes the methods. Section 5 presents the 

model estimation results, and finally, Section 6 concludes the paper by summarizing the main 

findings. 

 

2. Literature review 

In order to improve the performance of the conventional bike sharing system with docking 

stations, numerous studies have been conducted to understand the factors that affect the demand 

for SBBSS. Buck and Buehler (2012) explored the influence of various factors – including the 

number of households without a car, cycle lanes, population density, and retail destinations 

around the stations – on bike sharing trips in Washington D.C. Rixey (2013) investigated the 

effects of demographic and built environment characteristics on monthly bicycle usage in three 

different cities in the US at the station level. He concluded that population density, job density, 

income levels, and the proportion of alternative commuters are the critical factors affecting bike 

sharing ridership. A station level analysis was also conducted in Toronto to examine the effects 

of the built environment and weather on bike sharing demand (El-Assi et al., 2017). Faghih-

Imani et al. (2014) examined the influence of meteorological data, temporal characteristics, 

land use and built environment attributes on arrival and departure flows. Zhao et al. (2014) 

investigated the effects of urban features and bike sharing system characteristics on daily trip 

frequency. Wang et al. (2016) conducted analyses which considered annual rates for each station 

and examined the effects of socio-demographics, nearby business and job densities, the built 

environment, and transportation infrastructure variables on annual usage flows. 
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Several recent studies have discussed the factors that influence travel demand for the FFBSS. 

For example, using data collected from Hangzhou, Chen et al. (2020a) compared the factors 

influencing the use frequency of the SBBSS and FFBSS. They found that gender and type of 

monthly mobile phone data package purchased were the two most significant factors affecting 

the usage of the FFBSS; while education, household car ownership, travel purpose and travel 

distance were the key factors influencing SBBSS usage. In addition, Li et al. (2018) explored 

the factors affecting FFBSS users’ behaviors, using data collected in Jiangsu Province. 

According to their analyses, a higher level of education, higher daily transportation costs, the 

convenience of picking up and parking/dropping off, and the health benefits for users have 

significant effects on FFBSS usage. Furthermore, the built environment is also related to travel 

demand for the FFBSS, through factors such as whether an area is residential and commercial, 

land use mix, public transit accessibility, and population density (Du et al., 2019; Shen et al., 

2018; Xu et al., 2019). In Singapore, Xu et al. (2019) found that locations with a higher density 

of public housing are associated with more shared bicycle trips in the evening and fewer in the 

morning. Du and Cheng (2018) studied the factors that affect FFBSS travel patterns and 

observed that the number of malfunctioning bicycles is an important factor which restricts the 

development of the FFBBS. Weather is another important factor that plays a role in FFBSS 

usage. It was found that fewer trips were made on cold and rainy days, in a case study of Munich 

(Reiss and Bogenberger, 2015), while a similar trend was also observed with respect to hot 

weather in Singapore (Shen et al., 2018). 

 

Different modeling techniques have been used to identify which factors contribute to bike 

sharing demand. Campbell et al. (2016) used a multinomial logit model to investigate which 

factors contributed to users’ choice of shared bikes, via a stated preference survey conducted in 

Beijing. Zhao et al. (2014) employed a partial least squares regression model to explore the 

relationship between daily trip frequency and urban population, government expenditure, the 

number of registered scheme members, the number of shared bikes, and the number of docking 

stations. Faghih-Imani et al. (2014) employed a linear mixed model to study how land use and 

urban form impact bicycle flows. El-Assi et al. (2017) evaluated the effects of the built 

environment and weather on bike sharing demand in Toronto using a distributed lag model. 

Meanwhile, Fournier et al. (2017) developed a sinusoidal model to predict the pattern of 

seasonal demand for bike sharing. 

 

In general, previous studies have provided valuable insights into understanding the factors that 

influence the demand for SBBSS and FFBSS. However, few studies have drawn comparisons 

between the two systems in terms of these influencing factors. To fill this gap, this paper 

examines the differences in the relative importance of these factors, and thereby proposes 

strategies that could be used to develop effective cooperation between the bike sharing systems. 
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3. Study area and data 

3.1 Study area 

The data used were collected from an area totalling 782.45 km2, comprising the central part of 

the city of Nanjing (Figure 2), and consisting of Xuanwu (XW) District, Gulou (GL) District, 

Jianye (JY) District, Qixia (QX) District, Qinhuai (QH) District, and Yuhuatai (YHT) District.1 

As the capital of Jiangsu Province, Nanjing is a large city located on the east coast of China. In 

September 2017, the study area contained 1,212 SBBSS stations (Figure 2). A buffer area with 

a radius of 250 meters is set as the service area for each SBBSS station, which is in line with 

the study carried by Faghih-Imani et al. (2014). This is also considered to be the overlapping 

service area for the SBBSS and FFBSS. 

 

 
Figure 2. Spatial distribution of SBBSS stations in the study area 

(Sources: Authors' elaboration) 

 

3.2 Data source 

The multi-source data used in this study consists of SBBSS smart card data, FFBSS order data, 

and, urban spatial data. The SBBSS data were provided by the Nanjing Public Bicycle Company, 

and the FFBSS data were obtained from one of the operating companies in Nanjing. To inform 

our analysis, we examined the SBBSS smart card data and the FFBSS order data from 11 to 24 

September 2017. The smart card data consists of the anonymized user ID, bike ID, leasing 

 
1 Nanjing consists of 11 administrative districts in total. However, the study area only covers 6 of these districts 

(i.e. the central part of the city). 



7 

 

station name, leasing time, returning station name, and returning time. The information relating 

to the order data is consistent with the SBBSS smart card data, except for the station location. 

The station location information contained in the FFBSS order data includes the latitude and 

longitude of pick-up and destination points. We removed the records of trips that occurred 

outside the study area. As a result, the SBBSS smart card dataset is composed of 1.64 million 

trips, 42.46 thousand docked bikes, and 0.12 million users. Meanwhile, the FFBSS dataset 

comprises a total of 5.63 million trips made by 0.51 million users using 187.81 thousand 

dockless bikes. The SBBSS docking station data were also provided by the Nanjing Public 

Bicycle Company, and include the name, longitude, and latitude of each station. 

 

The urban spatial data within the buffer area were extracted from the web mapping service 

developed by AutoNavi on Amap. AutoNavi (also known as ‘Gaode’ in Chinese) is a Chinese 

web mapping, navigation and location-based services provider. The data are divided into three 

categories: (a) spatial vector surface data of buildings, which include function type 

(business/office, residential property, etc.), number of floors, and floor area; (b) spatial vector 

line data of roads, which include road grade (major road, minor road, etc.) and road length; (c) 

spatial location data of points of interest (POI), which include the latitude, longitude and 

function type of each POI (e.g. residential property, business/office, or commercial property). 

 

3.3 Variable generation 

In this study, we examine whether or not a service area is SBBSS dominant. More specifically, 

if SBBSS usage exceeds that of FFBSS in the overlapping service area, it is regarded as SBBSS 

dominant and denoted by a one; otherwise, it is denoted by a zero. The independent variables 

considered in our analysis are divided into three categories: (a) infrastructure, (b) demand 

distribution, and (c) land use. The selection of variables is based on theoretical considerations 

(e.g. a wider spatially distributed demand favors the use of the FFBSS) and a review of other 

relevant studies (e.g. Buck and Buehler, 2012; Chen et al., 2020a; Du et al., 2019; Faghih-Imani 

et al., 2014; Shen et al., 2018). The infrastructure data consist of major road density, minor road 

density, and number of neighboring docking stations. These variables are able to capture the 

effect of cycling facilities on bike sharing demand. Moreover, the influences of minor roads and 

major roads can help to identify cyclists’ preferences for different routes. The number of 

neighboring stations within the service area is computed to capture the spatial dependence effect. 

The number of metro stations is also taken into consideration.
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Table 1. Variables and descriptive analysis 

Variables Mean Std. Min. Max. 

Dependent variable     

Whether a service area is SBBSS dominant (yes = 1; no = 0) 0.34 0.47 0 1 

Independent variable     

Infrastructure 

Major road density (km/km2) 0.83 0.86 0 5.64 

Minor road density (km/km2) 0.89 0.63 0 3.97 

Number of neighboring stations 0.70 0.93 0 5 

Number of metro stations 0.09 0.29 0 1 

Demand distribution 

Dispersion of demand points 44.96 12.40 0 74.68 

Average station distance to demand points (m) 105.85 29.78 10.18 244.61 

Std. of station distance to demand points 53.22 15.13 0 103.98 

Land use  

Business/office area (km2) 161,699 423,497 0 4,329,883 

Residential area (km2) 505,063 571,677 0 4,879,651 

Number of residential properties 5.17 4.97 0 35 

Number of commercial properties 5.05 6.26 0 53 

Number of businesses/offices 17.19 28.79 0 252 

Number of Edu. & Cul. 7.72 11.22 0 120 

Dispersion of residential properties 30.32 25.84 0 91.08 

Dispersion of commercial properties 24.59 26.01 0 98.11 

Dispersion of businesses/offices 30.87 26.17 0 95.72 

Dispersion of Edu. & Cul. 71.81 53.08 0 195.18 

Average station distance to residential properties (m) 124.91 51.30 0 210.99 

Average station distance to commercial properties (m) 103.64 62.56 0 210.94 

Average station distance to businesses/offices (m) 117.14 55.01 0 211.41 

Average station distance to Edu. & Cul. (m) 113.76 58.20 0 210.44 

Std. of station distance to residential properties 33.93 24.16 0 118.65 

Std. of station distance to commercial properties 29.22 26.42 0 112.11 

Std. of station distance to businesses/offices 32.13 23.98 0 111.28 

Std. of station distance to Edu. & Cul.  32.42 25.95 0 131.82 

Note: Std. = standard deviation; Edu. & Cul. = educational and cultural amenities; Network distance is used in the 

calculation. 

 

Because the FFBSS has no fixed stations, the demand points are spread haphazardly over space. 

We therefore use the dispersion of demand points and average distance to the nearest docking 

station to represent the demand distribution of the FFBSS in the overlapping service area. Three 

variables relating to demand distribution are generated accordingly: the dispersion of demand 

points, the average and standard deviation of the distances between demand points and the 
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nearest docking station. It should be noted that the dispersion referred to here is described by 

the standard deviation of the distance between demand points and the geometric center of the 

buffer area (i.e. the position corresponding to the average latitude and longitude of all points in 

the buffer area). 

 

Land use variables aim to capture the influence of different types of land use within the 

overlapping service area. Residential and business/office areas are calculated using the spatial 

vector surface data. We also consider two types of POI-related variables: (a) the number and 

dispersion of POIs associated with residential property, commercial property, business/office, 

educational and cultural amenities; and (b) the average and standard deviation of the distance 

between an SBBSS station and POIs. A descriptive summary of the data is provided in Table 1. 

 

 

4. Methodology 

4.1 Model comparisons 

Predicting the dominant type of bike sharing system is essentially a binary classification 

problem. Several measures are used to evaluate the effectiveness of a method: accuracy, 

precision, sensitivity, and the receiver operating characteristic (ROC) curve. These measures 

can be readily calculated based on a confusion matrix which contains information about actual 

and predicted classifications (Provost and Kohavi, 1998). Table 2 shows the confusion matrix 

for a two-class classifier.  

 

Table 2. Confusion matrix 

Actual Predicted 

Positive Negative 

Positive True positive (TP) False negative (FN) 

Negative False positive (FP) True negative (TN) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                                                 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                       (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                     (3) 

 

The ROC curve is a reliable technique based on the values of the true positive rate and the false 

positive rate. Therefore, it offers a trade-off between precision and sensitivity (Akay, 2009). 

The true positive rate is also known as the sensitivity, and the false positive rate is defined as: 
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𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                              (4) 

 

In order to find the optimal method, we compared the predictive abilities of different approaches, 

i.e. support vector machine (SVM), logistic regression (Logistic), K-nearest neighbors (KNN), 

random forest (RF), and Gaussian process regression (GPR)). These approaches are commonly 

used in the literature to address classification problems (Cheng et al., 2019; Sze and Wong, 

2007; Xu et al., 2020). They were run using Python with normalized raw data. The grid search 

and ten-fold cross-validation technique were used to determine the optimal parameter setting 

for the SVM. The penalty parameter was set as one and the kernel was set as ‘linear’. To 

maintain fairness when making comparisons, each method was run multiple times with varying 

parameter settings, and the one with the optimal performance was chosen to carry out the 

comparison. Finally, the penalty parameter of the logistic regression was set as one. The K value 

of the KNN was set as five, and the output was weighted by the reciprocals of the Euclidean 

distances between five points and its neighbors. For the RF, the number of estimators was set 

as 30, and the maximum number of features was set as 19. The performance of the GPR relies 

on the selection of the covariance function (Yu et al., 2016). In this study, the squared 

exponential function expressed in Equation (5) was chosen to calculate the covariance 

(Rasmussen and Williams, 2003): 

 

𝐾𝑆𝐸(𝐱𝑖, 𝐱𝑗) = 𝜎𝑠
2 exp (−

1

2𝑙2 (𝐱𝑖 − 𝐱𝑗)
2

) + 𝜎𝑛
2𝛿𝑖𝑗                                 (5) 

 

where 𝜎𝑠
2  is the signal variance, 𝑙  is the length scale and 𝜎𝑛

2  is the noise variance. The 

optimal setting of these three parameters can be achieved by maximizing the marginal log-

likelihood function with hyperparameters (Yu et al., 2016). All five of the methods (i.e. SVM, 

Logistic, KNN, RF, and GPR) were undertaken using the same training sample. Table 3 and 

Figure 3 compare their predictive performances for the validation sample. 

 

Table 3. Performance comparison of different methods 

Method Accuracy 
Precision Sensitivity 

FFBSS SBBSS FFBSS SBBSS 

SVM 0.8418 0.8603 0.7805 0.9286 0.6275 

Logistic 0.7966 0.8261 0.6923 0.9048 0.5294 

KNN 0.7345 0.7762 0.5588 0.8810 0.3725 

RF 0.7627 0.7838 0.6552 0.9206 0.3725 

GPR 0.7062 0.7761 0.4884 0.8254 0.4118 
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(a) Predictive performance for different indices (b) Predictive performance of different methods 

Figure 3. Comparison of predictive performances for different methods (ACC = Accuracy, Pre = 

Precision, Ses = Sensitivity)  

 

There are twice as many FFBSS dominant areas in our sample as there are SBBSS dominant 

areas (Table 1). Due to potential concerns about class imbalance, it is necessary to consider 

precision and sensitivity as well as accuracy. The SVM has significantly higher predictive 

accuracy than other methods. Logistic regression is the second most accurate approach, and the 

difference between the SVM and Logistic regression is 4.52%. The SVM also performs best in 

terms of precision and sensitivity. The overall performance of the Logistic regression is nearly 

as good as the SVM (Figure 3a). This is reasonable because the optimization problem of the 

Logistic regression method is similar to that of the SVM. Figure 3b shows that the precision 

and sensitivity of the FFBSS predictions are higher than those of the SBBSS, which is due to 

the likelihood of a FFBSS dominant prediction caused by class imbalance. It is worth noting 

that these indices for the SBBSS predictions are more important for policy makers than those 

for the FFBSS, because the locations of SBBSS stations are regulated by the government, while 

the FFBSS bikes are controlled by market forces. Furthermore, the cost of constructing a new 

SBBSS station is higher than that of repositioning FFBSS bikes. In terms of precision and 

sensitivity, the SVM method reveals a powerful predictive capability for the SBBSS (Figure 

3a). The differences between the SVM and the Logistic regression method (i.e. the second-best) 

in terms of precision and sensitivity are 8.82% and 9.81%, respectively. 

 

An ROC curve is a graphical plot that illustrates the diagnostic ability of a binary classifier 

system. The area under the curve (AUC) provides a tool for selecting potentially optimal 

methods in general circumstances. Table 4 and Figure 4 compare the AUC and ROC curves for 

different methods. The GPR performs the worst, followed by the KNN and the RF. GPR is a 

kernel-based regression technique used to model nonlinear multivariate relationships, and it 

assumes that the random variables follow Gaussian distributions. This rule may not be 
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applicable to our dataset. The SVM outperforms other methods according to this index. 

 

Table 4. AUC for different methods 

Method SVM Logistic KNN RF GPR 

AUC 0.8604 0.8409 0.7399 0.8268 0.5962 

 

 

Figure 4. ROC curves for different methods 

 

4.2 Support vector machine method 

In addition to the tests results for the predictive abilities of various methods, described above, 

in which the SVM method ranked highest, many prior studies have also shown that the SVM is 

very useful for classification problems because of its flexibility, lower risks of overfitting, 

computational efficiency and capacity to handle high-dimensional data (Nguyen and De la 

Torre, 2010; Plakandaras et al., 2019; Yu and Abdel-Aty, 2013). However, the SVM was not 

originally developed as a feature selection tool (Bradley and Mangasarian, 1998). A 

conventional SVM approach extracts features and learns parameters independently. However, 

performing these two steps independently might result in a loss of information in relation to the 

classification process (Nguyen and De la Torre, 2010). To address this problem, we used a 

method of feature selection based on SVM recursive feature elimination (SVM-RFE) in our 

analyses. The method has demonstrated good generalization performance and is able to 

overcome the overfitting problem (Guyon et al., 2002). In addition, it is capable of recognizing 

key factors that influence the target variable. 

 

The SVM-RFE method was proposed by Guyon et al. (2002), and has been widely used in 
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different fields (Akay, 2009; Huang et al., 2014; Xue et al., 2018). It is a sequential backward 

feature elimination method based on SVM. By removing an irrelevant feature from the feature 

set in each iteration, a less important or irrelevant feature is eliminated in advance or sorted to 

the back of a ranked feature list (Huang et al., 2014). The method can be described starting from 

a conventional SVM algorithm, as follows. Consider n training data pairs {(𝐱𝑖, 𝑦𝑖)}𝑖=1
𝑛 , where 

𝐱𝑖 ∈ 𝑅𝑚 is a feature vector representing the ith sample, and 𝑦𝑖 is the class label of 𝐱𝑖. The 

decision function of SVM is 𝑓(𝐱) = 𝐰𝑇𝐱 + 𝑏 , where 𝐰 = [𝑤1, 𝑤2, … , 𝑤𝑚]𝑇  is the weight 

vector and 𝑏 is a scalar. By using a kernel trick, the dual optimization problem associated with 

SVM can be expressed as follows (Akay, 2009; Xue et al., 2018): 

 

{

𝑚𝑖𝑛
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(x𝑖x𝑗) − ∑ 𝛼𝑖

𝑛
𝑖=1

𝑛
𝑗=1

𝑛
𝑖=1

𝑠. 𝑡. ∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 = 0                    

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, ⋯ , 𝑛               

                                   (6) 

 

where the predefined parameter 𝐶 represents a trade-off between training accuracy and model 

complexity. If 𝛼𝑖
∗ is the non-zero optimal solution, the classifier function can be expressed as 

follows: 

 

𝑓(𝒙) = 𝑠𝑔𝑛(∑ 𝛼𝑖
∗𝑛

𝑖=1 𝑦𝑖𝐾(𝒙𝑖, 𝒙𝑗) + 𝑏∗)                                        (7) 

 

The linear SVM uses the linear kernel 𝐾(𝐱𝑖, 𝐱𝑗) = 𝐱𝑖
𝑇𝐱𝑗. In the nonlinear SVM, a range of 

different options exist and the Gaussian kernel is widely used: 

 

𝐾(𝒙𝒊, 𝒙𝒋) = 𝑒𝑥𝑝(−
‖𝒙𝒊−𝒙𝒋‖

2

2𝜎2 )                                                 (8) 

 

where ‖∙,∙‖  denotes the distance between two vectors (usually defined as the Euclidean 

distance), 𝜎 is a constant and the value can be obtained through a cross-validation process. 

 

The SVM-RFE method is used to remove irrelevant features from the feature set. In each 

iteration, the importance of various features depends on their weight coefficients. If the kernel 

is a linear kernel, the weight is 𝐰 = ∑ 𝛼𝑖𝑦𝑖𝐱𝑖
𝑛
𝑖=1 , where 𝛼𝑖 is obtained by solving Equation 

(6). The ranking score of the pth feature can be computed as 𝑐𝑝_𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑤𝑝
2. If the kernel is a 

Gaussian kernel, the ranking score of feature p can be written as follows (Xue et al., 2018): 

 

𝑐𝑝_𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 =
1

2
|𝛼𝑇𝑯𝛼 − 𝛼𝑇𝑯(−𝑝)𝛼|, 𝑝 = 1, … , 𝑚                               (9) 
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where 𝐾(𝐱𝒊, 𝐱𝒋)  is the Gaussian kernel, 𝐇 ∈ 𝑅𝑛×𝑛  with 𝐻𝑖,𝑗 = 𝑦𝑖𝑦𝑗𝐾(𝐱𝒊, 𝐱𝒋) , 𝐇(−𝒑) ∈

𝑅𝑛×𝑛 with 𝐻𝑖,𝑗
(−𝑝)

= 𝑦𝑖𝑦𝑗𝐾(𝐱𝑖
(−𝑝)

, 𝐱𝑗
(−𝑝)

). The notation (−𝑝) means that feature 𝑝 has been 

removed. The feature with the smallest ranking score was removed in each iteration. 

 

5. Results 

In this section, the results of the SVM-RFE are discussed in order to gain insights into the 

effects of different variables. It should be noted that only statistically significant coefficients at 

a 95% confidence level are presented in Table 5. The positive value of a variable means it has 

a positive correlation with the probability that a service area is classified as SBBSS dominant. 

 

Table 5. Model estimation results 

Variables Coef. Variables Coef. 

Major road density -0.324 Dispersion of residential properties 0.097 

Minor road density 0.039 Dispersion of commercial properties -0.101 

Number of neighboring stations 0.180 Dispersion of businesses/offices 0.018 

Number of metro stations 0.135 Dispersion of Edu. & Cul. -0.037 

Dispersion of demand points -0.449 Average station distance to residential properties -0.027 

Average station distance to demand points -0.616 Average station distance to commercial properties -0.363 

Std. of station distance to demand points 0.220 Average station distance to businesses/offices -0.027 

Business/office area -0.014 Average station distance to Edu. & Cul. 0.062 

Residential area -0.012 Std. of station distance to residential properties -0.026 

Number of residential properties -0.578 Std. of station distance to commercial properties -0.208 

Number of commercial properties -0.283 Std. of station distance to businesses/offices -0.085 

Number of businesses/offices 0.437 Std. of station distance to Edu. & Cul. 0.011 

Number of Edu. & Cul. -0.288   

Note: Std. = standard deviation; Edu. & Cul. = educational and cultural amenities 

 

5.1 Infrastructure 

As expected, there is a positive correlation between the number of neighboring docking stations 

and SBBSS dominant areas. The more docking stations there are, the more likely an area is to 

be SBBSS dominant. The density of major roads has a negative impact, indicating that this 

variable contributes to the use of the FFBSS. However, the density of minor roads is positively 

correlated with SBBSS usage. SBBSS users often combine their bicycle trips with travelling by 

metro, which is reflected by the positive impact of the presence of metro stations. This implies 

that the proximity to a metro station is likely to increase SBBSS usage. This is plausible because 

the SBBSS provides more reliable services near metro stations than the FFBSS due to the 

existence of fixed docking stations. In reality, there is at least one SBBSS station near every 

metro station in Nanjing. 
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5.2 Demand distribution 

Although the existence of docking stations makes the SBBSS more reliable, it also restricts the 

service coverage. If the demand distribution is dispersed, users will have to walk farther, on 

average, to use the SBBSS. Consequently, people may be more likely to use the FFBSS if the 

demand distribution is dispersed. This assumption is supported by the negative coefficients of 

two variables: dispersion of demand points; and average station distance to demand points. This 

finding can assist in understanding the relationship between the SBBSS and FFBSS. When a 

new SBBSS station is to be constructed, demand distribution is a significant factor that should 

be considered. If the distribution is not dispersed, the SBBSS station should be located at the 

geographical center of the distribution. However, if the demand distribution is more dispersed, 

this location may not be appropriate for an SBBSS station. 

 

5.3 Land use 

Four types of POIs were considered in our analyses: residential property, commercial property, 

business/office, and educational and cultural amenities. It was expected that people may be 

more likely to use the FFBSS if an SBBSS station is located farther away from these places. 

This is supported by the negative coefficients for distance to residential properties, commercial 

properties, and businesses/offices. Therefore, it is important to locate SBBSS stations as close 

as possible to crowded places. It is noteworthy that the coefficients for the number of residential 

properties and the number of commercial properties are negative. In fact, the capability of an 

SBBSS station is limited but there may be any number of FFBSS bikes in an area. SBBSS users 

may therefore encounter a problem if they ‘pick up’ a bike at an empty docking station or ‘return’ 

it to a fully occupied one. A service area will become FFBSS dominant if it contains a lot of 

residential properties or shopping centers, even though the SBBSS utilization rate could be high. 

Unlike residential and commercial properties, the coefficient for the number of companies is 

positive. The explanation for this is that the trip pattern for people traveling to work is regular 

and has fixed origins and destinations. Commuters are more likely to choose to use the SBBSS 

if there are SBBSS stations located near their homes and workplaces. 

 

 

6. Conclusions 

This study analyzed the differences between the SBBSS and FFBSS by examining the factors 

influencing the usage of the two bike sharing systems. The impacts of infrastructure, demand 

distribution, and land use attributes were examined at the station level using multi-source data. 

A predictive model was built to assess whether a specific location was suitable for the SBBSS 

or FFBSS. The SVM-RFE method was used to determine the relative importance of the 

variables. The findings will be helpful for improving the coordinated development of the bike 

sharing system as a whole. 
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To coordinate the two bike sharing systems more effectively, we compared the relative 

importance of influencing factors, represented by the magnitude of the coefficients, in order to 

propose appropriate strategies. First, the demand distribution should be a primary consideration 

when planning a new SBBSS station. If the demand distribution is dispersed, the location would 

not be suitable for the SBBSS. In an SBBSS dominant area, docking stations should be located 

near the geographical center of demand distribution. FFBSS bikes should be repositioned so 

that they are away from this area. In this way the area covered by the two systems will expand. 

Second, SBBSS usage decreases when the station is located farther away from commercial 

properties. Therefore, the SBBSS station should be located as close as possible to commercial 

properties (if permitted). This finding could help to determine suitable areas for planning new 

SBBSS stations to ensure high utilization efficiency. Third, the proximity to metro stations 

promotes increased SBBSS usage relative to FFBSS. Thus, it would be good practice to 

construct SBBSS stations near metro stations. Fourth, it is important to reposition FFBSS bikes 

to locations with a high major road density and residential density. 

 

Our research contributes to the existing literature in three ways. First, it captures the effect of 

infrastructure, demand distribution, and land use attributes on the usage of SBBSS and FFBSS, 

whereas most previous studies have only focused on one of the two bike sharing systems (Du 

et al., 2019; Faghih-Imani et al., 2014; Shen et al., 2018). Second, it uses an SVM-RFE method 

to strike a balance between classification performance and interpretability, something which 

has been overlooked in previous research (Akay, 2009; Nguyen et al., 2010; Yu and Abdel-Aty, 

2013). Third, this paper provides policy implications for SBBSS planning and FFBSS 

repositioning from the perspective of coordinated development. 

 

In terms of limitations, a city’s cycling infrastructure can also play a significant role in affecting 

bike sharing demand, through aspects such as the density and length of the cycle lanes (Lazarus 

et al., 2020). However, due to the restriction of data availability, the aforementioned factors 

have not been taken into consideration in this study, but this is something which could be 

addressed in further research. 
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