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Abstract We find experimental plans for hypothesis testing when a prior ordering
of experimental groups or treatments is expected. Despite the practical interest of the
topic, namely in dose finding, algorithms for systematically calculating good plans
are still elusive. Here, we consider the Intersection-Union principle for constructing
optimal experimental designs for testing hypotheses about ordered treatments. We
propose an optimization-based formulation to handle the problem when the power
of the test is to be maximized. This formulation yields a complex objective func-
tion which we handle with a surrogate-based optimizer. The algorithm proposed is
demonstrated for several ordering relations. The relationship between designs maxi-
mizing power for the Intersection-Union Test (IUT) and optimality criteria used for
linear regression models is analyzed; we demonstrate that IUT-based designs are well
approximated by C–optimal designs and maximum entropy sampling designs while
DA-optimal designs are equivalent to balanced designs. Theoretical and numerical
results supporting these relations are presented.
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1 Motivation1

Researchers in different areas often have prior beliefs about the order or direction2

of the parameters in comparisons. For example, a researcher might anticipate that a3

clinical treatment h2 performs better than another (h1), and simultaneously that both4

are better than a control. Confirming these beliefs corresponds to testing the hypothe-5

ses that µ2, the expected outcome of h2, is larger than that of µ1 from h1, which in6

turn outperforms the control with expectation µ0. Specifically, the hypotheses to be7

tested are H1 : µ0 ≤ µ1 ≤ µ2 vs. H0 : µ0 = µ1 = µ2 with at least one strict8

inequality in H1. H1 is an order-constrained hypothesis, and includes more informa-9

tion than that of the simple alternative H1 : µi ̸= µj for at least one pair of i, j10

where i ̸= j ∈ {0, 1, 2}. A major advantage of testing such one-sided hypotheses is11

that power can be increased or equivalently, that a smaller sample size is needed for12

equivalent power.13

The problem of testing the homogeneity of the means of K groups against an14

ordered alternative was first addressed by Bartholomew (1959a,b). The incorporation15

of order constraints allows improving the precision of the estimators, as measured by16

their mean squared errors, and increasing the power of the associated tests (Davidov17

et al., 2014; Davidov and Herman, 2012; Farnan et al., 2014).18

Despite the large body of literature on optimal design of experiments for parame-19

ter estimation and model discrimination, the optimal design of experiments for testing20

among groups is rarely addressed. An exception is that of finding optimal designs for21

comparing test treatments with a control, first introduced by Dunnett (1955, 1964).22

Later, the optimal allocation problem was solved by Bechhofer and Turnbull (1971);23

Bechhofer (1969); Bechhofer and Nocturne (1972).24

Papers addressing the optimal design of experiments for ordered treatments are25

scarce. They are typically based on Likelihood Ratio Tests, being designated Re-26

stricted Likelihood Ratio Test (RLRT) designs if they explicitly incorporate the or-27

dering relations and Unrestricted Likelihood Ratio Test (ULRT) designs otherwise.28

Hirotsu and Herzberg (1987) demonstrated that the optimal design allocates weights29

only to extreme groups, see also Antognini et al. (2021). An alternative formulation,30

using the weights of Abelson and Tukey (1963), circumvents this problem, with some31

weight being given to all groups. Singh et al. (1993) and Singh et al. (2008) evaluated32

the power function for various ordering schemes and found the optimal designs for33

three and five subgroups. Vanbrabant et al. (2015) investigated the effect of sample34

size reduction, when an increasing number of constraints is included into the hy-35

pothesis and obtained tables for a specified power level via Monte-Carlo sampling.36

Recently, Singh and Davidov (2019) proposed a minimax formulation for finding ex-37

perimental designs for testing in the presence of order restrictions. The approach al-38

lows obtaining designs with more power than those of Dunnett (1955) and Singh et al.39

(1993). However, the authors noted that the designs obtained, although maximizing40

power, do not allocate any observation to intermediate groups, if any. Singh and Davi-41

dov (2019) also noted that, unlike Likelihood Ratio Tests, Intersection-Union Tests42
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(IUT) lead to optimal designs in which observations are allocated to all groups. The43

authors derived theoretical results for designs for some order relations but pointed44

out the complexity of generalizing to other orderings. Our methodology uses IUT45

to provide a general systematic approach to find experimental designs for ordered46

treatments.47

This paper contains four elements of novelty: i. an optimization-based formula-48

tion to find optimal (exact) experimental designs for ordered treatments using the49

IUT–principle; ii. the use of surrogate-based optimization (SBO) to handle the com-50

plexity of the optimal design problem; we believe this to be the first paper that uses51

SBO to handle problems in the optimal design of experiments for IUT tests; iii. the52

application of the proposed methods to different ordering relations and treatments;53

and iv. the demonstration that IUT–based optimal designs are close to exact C–54

optimal and maximum entropy designs while the balanced designs are equivalent55

to exact DA–optimal designs.56

The paper is organized as follows. Section 2 provides the background and the no-57

tation used to formulate the optimal design problem and solve it with SBO. Section58

3 introduces the formulation used to solve the IUT design problem. Comparisons for59

different ordering schemes and distances between groups are presented in §4. Sec-60

tion 5 analyzes the relation between IUT-based designs and designs using alphabetic61

optimality criteria when the focus is on the parameters of the model. Section 6 re-62

views the formulation and offers a summary of the results obtained.63

2 Notation and background64

This section establishes the nomenclature used in the representation of the models. In65

§2.1 we overview the ANOVA model used to describe the ordered treatments test and66

introduce its equivalent graph-based representation. In §2.2 the IUT fundamentals67

and their use in the context of optimal design of experiments are introduced. Finally,68

§2.3 overviews the fundamentals of SBO which serve for solving the optimal design69

problem for the IUT criterion.70

In our notation, bold face lowercase letters represent vectors, bold face capital let-71

ters stand for continuous domains, blackboard bold capital letters are used to denote72

discrete domains and capital letters are adopted for matrices. Finite sets containing73

ι elements are compactly represented by JιK ≡ {1, · · · , ι}. The transpose operation74

of a matrix or vector is represented by “⊺”. The cardinality of a vector is represented75

by card(•), the trace of a matrix by tr(•), and ldet(•) represents ln[det(•)]. The76

n-element row vector of ones is represented by 1n and the square identity matrix of77

size n is represented by In.78

2.1 Ordered treatments ANOVA model79

The sequence of (partially) ordered means can be represented as an order graph80

(Hwang and Peddada, 1994). Examples of the most common ordering schemes are81

shown in Figure 1. The vertices (or nodes) represent group means and an arrow from82
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vertex µj to µi signifies that µj ≥ µi. Vertices are called roots when there are only83

arrows leaving them, leaves when there are only arrows arriving, and intermediate84

when leaving and arriving arrows are involved. Let R be the set of roots in a ordering85

scheme, L the set of leaves, and P the set of ordering relations (corresponding to86

directed arrows) µi ≤ µj , i, j ∈ {1, · · · , p}. r = card(R) is the number of roots,87

l = card(L) the number of leaves and p = card(P) the number of ordering relations88

(i.e., pairs (i, j) in P).89

µ1 µ2 µ3 µ4 µ5

a)

µ2 µ3 µ4 µ5

µ1

b)

µ1 µ2 µ3 µ4 µ5

c)

µ3 µ4 µ5

µ1 µ2

d)

µ1

µ2 µ3 µ4

µ5

µ6

µ7

µ8 µ9 µ10

µ11

µ13

µ12

e)

Figure 1 Examples of ordering schemes: a) simple ordering (SO); b) tree ordering (TO); c) umbrella
ordering (UO); d) bipartite ordering (BO); and e) complex tree ordering (CTO).

The goal of experimental design for hypothesis testing is maximizing the power90

of rejecting the null hypothesis, H0, in favor of an alternative hypothesis, H1, through91

the allocation of individuals to treatments. Let the number of individuals included92

in the study be N , with K being the number of treatments; the first is reserved to93

be the control group. Further, let µµµ = (µ1, · · · , µK)⊺ be the vector of means of the94

K treatments; Π0 = {µµµ ∈ RK : µ1 = µ2 = · · · = µK} is the set of parameter95

(equality) relations under H0, and Π1 = {µµµ ∈ RK : Q µµµ ≥ 0⊺
p} the parameter96

inequalities under H1 where Q ∈ Rp×K is an ordering matrix (also known as a97

contrast matrix), 0p is the p−element row vector of zeros and p is the number of98

ordering relations. Consequently, we have Π0 ⊂ Π1. In subsequent sections we use99

Πδ : {µµµ ∈ RK : Q µµµ ≥ δ 1⊺
p} to generically represent a larger class of tests where100

the distance of means is located at δ(> 0) from the null. Here, δ is the difference101

between treatment means which for simplicity we assume equal for all pairs (i, j) in102

P . Matrix Q is formed by elements Qi,j ∈ {−1, 0,+1} where −1 is associated with103

groups with dominated means and +1 with groups with dominant means, 0 to the104

absence of a relationship, and p is the number of ordering restrictions or, equivalently,105

of arrows in the graph. In this paper we consider that the matrix of contrasts is known106

a priori and is fixed. Problems where the initial ordering is not confirmed by the107
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experimental design are out of the scope of the paper, as they require treating the108

values of Q as additional parameters to be inferred from experiments.109

The one-way Analysis of Variance (ANOVA) model considered in this study is110

represented as111

yi,j = µi + ϵi,j , (1)

where yi,j is response of ith experimental group to jth experiment where i ∈ {1, · · · ,K}112

and j ∈ {1, · · · , ni}. The mean of group i is ŷi, i ∈ JKK, ni is the number of indi-113

viduals allocated to group i,
∑K

i=1 ni = N and N is the total number of individuals114

tested. The errors ϵi,j are assumed i.i.d. with normal distribution N (0, σ2), where σ115

is the standard deviation.116

Herein, ξ is a K−point design supported at 1, · · · , k, · · · ,K treatments with nk117

replicates allocated to treatment k, subject to
∑K

k=1 nk = N . In what follows, let118

n be the vector of all possible replicates at the design points, with ΩN
K = {nk ∈119

Z≥0 :
∑K

k=1 nk = N, k ∈ JKK} being a K − 1-dimensional standard simplex120

(containing K-groups allocation) where the superscript stands for the total number121

of individuals to allocate and the subscript for the number of groups; Z≥0 is the set122

of non-negative integers. An experimental design is compactly represented by123

ξ =

(
1 · · · k · · · K
n1 · · · nk · · · nK

)
,

where the first line is for group ordering, and the second for the number of individ-124

uals allocated to each group. Thus, ΞN
K ≡ JKK × ΩN

K is the set of all K−group125

feasible (ordered) exact designs constrained to ΩN
K . This paper addresses the calcula-126

tion of exact optimal designs, where by exact we mean small sample designs where127

the numbers of observations at design points are integers that sum to N . The opti-128

mization problem is complex and finding optimal exact designs is computationally129

challenging, especially when the IUT principle is used.130

2.2 Intersection Union Tests131

In this section we review the fundamentals of Intersection-Union Tests, a common132

alternative to Likelihood Ratio Tests, which is appropriate when the null hypothesis133

is expressed as a union of sets. A seminal version of IUT was proposed by Lehmann134

(1952), and later named by Gleser (1973). Applications of IUT to quality control135

problems were discussed by Berger (1982) and Saikali and Berger (2002). Berger136

and Hsu (1996) uses IUT to formalize bioequivalence tests, and Xiong et al. (2005)137

consider the application to two-arm clinical trials.138

In our context, the IUT is used to test139

H0 =
⋃

(i,j)∈P

H(i,j)
0 vs. H1 =

⋂
(i,j)∈P

H(i,j)
1 (2)

where H(i,j)
0 is the null hypothesis for the (i, j)th pair of treatments (i.e., µi =140

µj , (i, j) ∈ P) and H(i,j)
1 is the alternative hypothesis (i.e., µj − µi ≥ δ (>141
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0), (i, j) ∈ P). The rationale behind an IUT is that the overall null hypothesis, H0,142

can be rejected only if each of the individual null hypotheses, H(i,j)
0 can be rejected.143

Each pair of hypotheses H(i,j)
0 vs H(i,j)

1 can be tested using the statistic144

g(i,j) =
(ŷj − ŷi)

σ

√
ni nj

ni + nj
, (3)

where g is a column vector with p elements gi,j , (i, j) ∈ P . The null hypothesis145

for pairs (i, j) requires µi = µj ; consequently g(i,j) will follow a standard normal146

distribution for all pairs (i, j) ∈ P . The global null hypothesis is rejected if g(i,j) >147

cα, (i, j) ∈ P with cα = Φ−1(1 − α, 0, 1) where Φ−1(1 − α, 0, 1) is the inverse148

of the 100 × (1 − α) % percentage point of the standard normal distribution. It is149

noteworthy that only one critical value (cα) is used for comparing all the pairs of150

treatments considered. When σ in (3) is unknown, it can be replaced by the usual151

mean squared error estimator, s, and the normal cdf is replaced by a noncentral t-152

distribution with the ratio (ŷj − ŷi)/s being the measure of the effect size (Cohen,153

1988).154

Intersection-union tests differ from union-intersection tests in not requiring mul-155

tiplicity adjustment (Tamhane, 1996, Section 3.3). Consequently, the design problem156

for intersection-union tests is simpler than that for union-intersection tests.157

Now, let c = cα 1⊺
p be a p-elemental vector populated with the critical values cα.158

Vector g follows a p-dimensional multivariate (non-central) normal distribution with159

mean ννν and a p× p correlation matrix R, i.e. Np(ννν,R). The elements of ννν ∈ Rp are160

represented as follows161

ν(i,j) =
µi − µj

σ

√
ni nj

ni + nj
=

δ

σ

√
ni nj

ni + nj
, (i, j) ∈ P.

The matrix R contains the correlation between pairs (i, j) ∈ P , each term depending162

on n. The sample size as well as the effect size increase the power of a statistical test163

(Cohen, 1988). Herein, we consider the most inefficient scenario where the differ-164

ences of means under analysis are equal to δ.165

The power function measuring the probability that the test (2) rejects H0 when166

H1 is true is167

π(g|c, ννν,R) =P

 ⋂
(i,j)∈P

{g(i,j) > cα}

 = Φ(c, ννν,R), (4a)

where Φ(c, ννν,R) is the cumulative multivariate normal distribution function for the168

p−dimensional domain ⊗p
i=1[cα,+∞(∈ Rp, given by169

Φ(c, ννν,R) =

∫ +∞

c1

· · ·
∫ +∞

cK

ϕ(z, ννν,R) dz, (5)

R is the correlation matrix between pairs of ordering relations, say (i, j) and (k, l),170

and171

ϕ(z, ννν,R) =
1√

2p det(R)
exp

[
− (z− ννν)⊺ R−1 (z− ννν)

2

]
(6)
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is the multivariate normal distribution function on z. R is a positive definite matrix172

formed by elements ρ(i,j),(k,l), with (i, j), (k, l) ∈ P relating the pairs of ordering173

relations (Bretz, 1999; Dunnett, 1955; Dunnett and Sobel, 1954; Lee and Spurrier,174

1995):175

ρ(i,j),(k,l) =



1 if i = k ∧ j = l

−
√

ni nl

(ni+nj) (nk+nl)
if (j = k ∧ i ̸= l) ∨ (i = l ∧ j ̸= k)√

nj nl

(ni+nj) (nk+nl)
if (i = k ∧ j ̸= l) ∨ (j = l ∧ i ̸= k)

0 otherwise.

(7)

When R is not positive definite, which may occur in some initial iterations of SBO,176

we use the nearest symmetric positive definite (nspd) matrix (in the sense of Frobe-177

nius norm) computed with the algorithm of Higham (1988). The multivariate nor-178

mal cdf is numerically computed with adaptive quadrature methods for bivariate and179

trivariate cases (Drezner, 1994; Genz, 2004), and a quasi-Monte Carlo integration180

scheme for more than 3-dimensions (Genz and Bretz, 2002).The positive definite-181

ness of R is required, and is checked in each iteration before the computation of182

the multivariate normal cdf. The positive definiteness of R is checked by: i. finding183

the respective minimum eigenvalue (λmin(R)); and ii. deciding whether the property184

holds (or not). When λmin(R) is larger than a small constant ϵ, the matrix is consid-185

ered to be positive definite otherwise the positive definiteness validation check fails,186

and it is replaced by the corresponding nspd matrix. Here, we use ϵ = 1× 10−8.187

The optimal design aims at maximizing (4a) by choice of the number of replicates188

of each of the K treatments under analysis, n, in the space of feasible designs ΞN
K .189

We note the objective function is computationally challenging as it involves com-190

puting Φ(c, ννν,R) and the nspd of the correlation matrix, if needed. Apart from the191

complexity of constructing the gradient and the Hessian information, the problem is192

non-convex due to i. the decision variables (n) being integer; ii. the necessity of ap-193

proximating R by the nspd when required; and iii. the possible existence of multiple194

optima. The statistical approximations of numerically expensive objective functions195

in continuous Bayesian experimental designs, or for integrals in likelihood expres-196

sions, are considered by Overstall and Woods (2017) and Waite and Woods (2015)197

among others.198

2.3 Surrogate-based optimization199

In this Section we introduce the fundamentals of SBO which is used for solving the200

problem outlined in §2.2.201

Surrogate-based optimization falls into the class of polynomial response surface202

methods and is typically used to handle problems involving complex and black-box203

functions, say r(x), where the cost of fitting and evaluating the surrogate model is204

much less than a function evaluation and there are no algebraic expressions for the205

gradient nor for the Hessian matrix (Bhosekar and Ierapetritou, 2018; Kim and Bouk-206

ouvala, 2020). The approach involves three stages: i. simulate the “real (complex)207
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model”, which may or may not be a black box model, for a limited number of well208

chosen data points; ii. construct an “approximate model” – a surface model – based209

on generated data; and iii. solve (optimize) the approximate model (also designated210

surrogate model) to generate a new set of points that emulate the “real model” but211

whose computation is much faster. Then iterate the three stages until convergence of212

the response of f(x) to r(x) is attained for a point x (Müller and Woodbury, 2017).213

The models are generally formulated as214

min
x∈X

f(x) (8a)

s.t. r(x) ≤ 0 (8b)
xι ∈ Z≥0 for ι ∈ I, (8c)

where f(•) is the computationally cheap objective function that approximates the215

more complex one r(x), (8b) denote the set of computationally expensive black-box216

inequality constraints, X is the finite domain of decision variables. Equation (8c)217

accounts for problems involving integer variables, say ι variables xι, ι ∈ I; I is the218

set of integer variables.219

The surrogate model is created from an initial number of simulations generated220

according to a sampling plan. Among the techniques used for generating initial sam-221

pling points the most common are the Latin Hypercube (LHC) designs (Müller and222

Day, 2019). Among the surrogate models, i.e. f(•), the most commonly used are223

interpolating models such as kriging (Martin and Simpson, 2005) and Radial Ba-224

sis Functions (RBFs) (Buhmann, 2009; Powell, 1992). Both model types have been225

used for optimizing problems with computationally expensive objective functions,226

see Müller et al. (2013) for an example. Polynomial regression models and multi-227

variate adaptive regression splines can also be used but they are non-interpolating228

surrogate models.229

The iterative part of the algorithm has a sequence of steps: i. fit/update the230

surrogate model f(x) using the set of sampling points available, i.e. Bn =231

{(xi, r(xi)) : i ∈ {1, · · · , n}}; ii. determine the “best point”, xbest =232

argminx m(x) since the last surrogate reset, where m(x) is a merit function that233

includes both the surrogate function and a distance from existing points; iii. generate234

a set of ℓ trial points, Dn,ℓ = {xtrial
n,ȷ = xbest

n + eȷ : eȷ ∈ Rd, ȷ ∈ JℓK} by adding235

normal random perturbations scaled by the bounds in each dimension i ∈ JdK to xbest;236

iv. determine the merit function at trial points and find the optimum (also designated237

the “adaptive point”), xadap; v. evaluate r(xadap), then update Bn+1 ≡ Bn∪xadap with238

this new point and update the surrogate function, f(x) ; vi. if r(xadap) < r(xbest),239

the “best solution” is replaced by the adaptive point and the procedure iterated from240

step i.; vii. otherwise, the adaptive point is not included in Bn; viii. the scale length is241

updated and the procedure iterated from step i. (Regis and Shoemaker, 2013). When242

integer variables are included in the problem, as here, the algorithm is similar, ex-243

cept for the computation of the minimum of the merit function where three different244

methods of sampling random points are used. Here, the merit function balances ex-245

ploration – filling the gaps between the existing sample points by sampling in differ-246

ent zones of the optimization domain – and exploitation – using the available sample247
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points to find an optimum (Regis and Shoemaker, 2007). Alizadeh et al. (2020) pro-248

vide a recent review of the application of surrogate models in optimization. There are249

various tools for surrogate optimization available; see, for example, Eriksson et al.250

(2019); Le Digabel (2011); Müller (2014, 2016); Müller and Woodbury (2017). In §3251

we use the algorithm proposed by Regis and Shoemaker (2007) which in turn uses a252

cubic RBF with a linear tail as the surrogate model (Gutmann, 2001).253

3 Formulation for optimal design of experiments254

In this section we introduce optimization formulations for finding K−treatment de-255

signs for ordered relations.256

The optimization problem is as follows:257

max
n

Φ(c, ννν,R) (9a)

s.t. ci ≥ Φ−1(1− α, 0, 1), i ∈ JpK (9b)

ν(i,j) =
δ

σ

√
ni nj

ni + nj
, (i, j) ∈ P (9c)

Equation (7) (9d)
R = {ρ(i,j),(k,l)}, (i, j), (k, l) ∈ P (9e)

nK = N −
K−1∑
k=1

nk (9f)

n ∈ Z≥0, n ≤ N 1K . (9g)

Equation (9a) is the objective function, (9b) is used to construct c, (9c) finds the258

mean difference for all pairs of treatments, (9d) computes the elements of the cor-259

relation matrix and (9e) estimates the correlation matrix between ordered pairs. To260

reduce the degrees of freedom of the problem by one and simultaneously avoid the261

need to include an integer equality constraint (which may cause additional problems262

for the optimization solver), the simplex condition that guarantees that the summation263

of replicates to all groups is N is reformulated; the last treatment, K, receives any264

trials not previously allocated, see (9f). Finally, Eq. (9g) sets the domain of decision265

variables. The problem falls into the general form presented in (8) where (9b–9f) form266

the set of Equations represented by (8b), and (9g) corresponds to Eq (8c); the com-267

plexity of evaluating the objective function is notorious. Furthermore, the problem268

may have multiple optima. However, the equality constraints in (9) are explicit rela-269

tions that can be computed sequentially with the objective function being a function270

of previously evaluated quantities.271

The initial sample provided to the solver is formed by a set of max(20, 2K) points272

generated with a LHC sampling algorithm on the integer domain of interest. Then,273

the objective function (9a) is evaluated at the initial sample of points. The results274

are used to construct and optimize an approximate model, and new “improvement”275

points are added to the initial sample. This procedure is iterated until convergence.276

We use two stopping criteria in the numerical solution: i. reaching the maximum277
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number of function evaluations, which was set to 700 in all problems solved; and278

ii. the tolerance of the objective function. To stop we require absolute and relative279

improvements of the objective function below 1× 10−6 and 1× 10−7, respectively,280

in 150 consecutive iterations. The procedures that support the examples presented in281

this study were coded in Matlab® and call the SBO solver available on this platform282

– surrogateopt – and MISO, a solver developed by Müller (2016) for Mixed283

Integer Surrogate Optimization problems. All computations in this paper were carried284

using an AMD 8-Core processor machine running 64 bits Windows 10 operating285

system with 3.80GHz.286

4 Results287

This Section presents optimal designs obtained by employing the formulation derived288

in §3. All the results were obtained with σ = 1 and δ = 0.7 except when explicitly289

stated otherwise. We call a design uniformly distributed (or uniform) when the num-290

ber of individuals allocated to each treatment is equal to N/K.291

To help in the interpretation of the tables of results, each of the columns of the292

optimal designs is for a treatment; the first line is the treatment identifier (i) and the293

second line gives the respective value of ni, ∀i in the order graph (see Fig. 1). In §4.1294

we study the influence of significance level, N and δ on optimal designs obtained for295

simple ordering. In Section 4.2 we find optimal designs for other ordering relations.296

All examples presented in the following sections require less than 2min of CPU time.297

4.1 The impact of significance level, sample size and difference between treatment298

means on optimal designs for simple ordering299

In this Section we analyze the impact of the significance level (α), N and δ on optimal300

designs obtained for simple ordering with K ∈ {3, 4, 5, 6, 7}. As an example, the301

ordering matrix Q for K = 3 is302

Q =

(
−1 1 0
0 −1 1

)
.

First, we study the impact of the significance level and find the optimal designs303

for α = 0.05 and α = 0.025, with N = 60 and δ = 1.0 for K ∈ {3, 4, 5}.304

To avoid small values of power in the results for K ∈ {6, 7}, for those cases δ305

is increased to 1.5. The symbol ∆ is used to measure the percentage improvement306

of the power of the IUT-based designs relative to the equivalent balanced designs.307

The results are presented in Table 1, and are in good agreement with the theoretical308

results derived by Singh and Davidov (2019, Theorem 7). The optimal designs found309

for both α’s are close, but not necessarily equal. Although the displayed designs are310

equal, for other settings they may not be so. Further, as expected, the designs obtained311

for higher significance levels ensure higher power. For constant δ, the power of the312

optimal designs decreases with the number of ordering relations, and the designs313

become almost symmetric with respect to the middle treatment. Small distortions314
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are observed relative to symmetry which are attributable to the integer nature of the315

decision variables, n.316

Now, we study the influence of N on optimal designs; α is fixed to 0.05 and317

δ = 1.0. The optimal designs obtained for N = {30, 45} are in Table 8 in Appendix318

A, and allow comparison with those obtained for N = 60 in Table 1. The compari-319

son reveals, as expected, that increasing N increases the power. The relative optimal320

allocations are similar to those obtained for N = 60 (see Table 1). The designs are321

also nearly symmetric where the point of symmetry is the middle group.322

Finally, we analyze the impact of δ on optimal designs. Table 9 in Appendix323

A contains the designs obtained for δ = {0.9, 1.1} for K ∈ {3, 4, 5} and δ =324

{1.4, 1.6} for K ∈ {6, 7} assuming N = 60 and α = 0.05. To get a clearer picture325

of the influence of δ, these designs can be analyzed together with those obtained for326

δ = 1.0 and δ = 1.5 in Table 1. The values of δ used for simulation were obtained by327

the addition and subtraction of 0.1 to reference values. The designs follow the trends328

found before and are equal to those in Table 1. Similarly, the designs are symmetrical,329

and one notices that the power increases with δ.330

We now consider in more detail the optimal design obtained for K = 3, N =331

60, σ = 1.0, δ = 1.0 and α = 0.05 (first line of Table 1). Figure 2 displays the332

power of designs obtained by varying n1 and n2 within the integer set J58K such333

that n3 = N − n1 − n2, n3 > 0. The response surface is convex, the maximum334

coinciding with the optimal design found in Table 1. Finally, we note that all IUT-335

based designs are more powerful than the equivalent balanced designs, the increment336

ranging from 0 to about 3.7%. Thus the loss of power from use of balanced designs337

is small. Further, the exact designs obtained from rounding the approximate designs338

of Singh and Davidov (2019) will also perform well as they are better than balanced339

designs.340

Figure 2 Objective function for experimental designs obtained varying n1 and n2 for K = 3, N = 60,
σ = 1.0, δ = 0.7 and α = 0.05.



12 B.P.M. Duarte et al.

4.2 Optimal designs for other ordering relations341

In this Section we find optimal designs for the other ordering arrangements in Fig-342

ure 1 except complex tree ordering which is practically uncommon. All cases were343

solved for N = 60 and two values of α; i. 0.05; and ii. 0.025.344

First we consider the umbrella ordering scheme and find designs for K =345

{3, 5, 7} where the middle treatment is allocated to the maximum µ. Specifically,346

when K = 3 the dominant treatment is allocated to k = 2 and µ2−µ1 = µ2−µ3 = δ.347

Similar approaches were followed for K = {5, 7}. For K = 3 the ordering matrix is348

Q =

(
−1 1 0
0 1 −1

)
.

Here, we consider δ = 1.0 for K ∈ {3, 5} and δ = 1.5 for K ∈ {7}. Table 2349

presents the resulting optimal designs, which are symmetric. As expected, the power350

of the designs for α = 0.05 are larger than those for α = 0.025 . The symmetrical351

allocation is independent of the significance level.352

Now, we consider the tree ordering. The treatment allocated to k = 1 (first column353

in the contrast matrix) corresponds to the control group in many-to-one hypothesis354

testing. Specifically, for K = 3,355

Q =

(
−1 1 0
−1 0 1

)
.

The optimal designs for tree ordering with K = {3, 4, 5, 6, 7} are in Table 3. For356

comparison we set δ = 1.0 for K ∈ {3, 4, 5} and δ = 1.5 for K ∈ {6, 7}. We note357

that i. as with other ordering schemes, the power of the optimal designs decreases as358

K increases; and ii. more individuals are allocated to the control group than to other359

groups. As for previous ordering schemes, the power increases with α but the designs360

are not substantially affected by the significance level. For K = {3, 4} these designs361

are in good agreement with those of Dunnett (1955).362

Finally, for the bipartite ordering (see Figure 1) we find optimal designs for K =363

5 and p = {5, 6} corresponding to the ordering matrices364

Q1 =


−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1
0 −1 0 1 0
0 −1 0 0 1

 and Q2 =


−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1
0 −1 1 0 0
0 −1 0 1 0
0 −1 0 0 1

 ,

respectively. Matrix Q2 includes an additional ordering relation between µ1 and µ3,365

and p is 6; the number of ordering relations for Q1 is 5. Table 4 shows the optimal366

designs found for the two ordering matrices. The designs are the same for both values367

of α, with the designs obtained for Q2 being slightly less powerful.368
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5 Relating the IUT criterion to other optimality criteria369

In this Section we analyze the relation between the IUT-based designs of previous370

sections and the optimal designs obtained from other criteria such as those from al-371

phabetic optimality. Because of the similarity of the ANOVA model to a multivariate372

linear regression model, there is interest in criteria that can be used for parameter es-373

timation in regression. We first consider the DA-optimality criterion (see §5.1), then374

C–optimality, also known as AA–optimality, is considered (see §5.2); finally, in §5.3375

the maximum entropy criterion is considered. Optimal designs are obtained for all of376

these criteria and compared with IUT-based designs.377

5.1 DA–optimal designs378

Here we analyze the relation between IUT designs and DA–optimal designs. DA–379

optimality is the generalization of D–optimality when interest lies in estimating380

only s linear combinations of the parameters, represented by A⊺ µµµ (Atkinson et al.,381

2007; Sibson, 1974). In our context A = Q⊺, s = p and the number of param-382

eters to be estimated is K. Here, the set of contrasts of interest is E(θθθ) = Q µµµ.383

The variance-covariance matrix of the estimates θ̂θθ is C(ξ) = Q [M(ξ)]
−1

Q⊺,384

where M(ξ) is the Fisher Information Matrix (FIM) for the model (1); [M(ξ)]
−1

=385

diag(1/n1, . . . , 1/nK) is a K ×K matrix, ni being the number of individuals allo-386

cated to treatment i. We note that C(ξ) depends on the design which also affects the387

correlation matrix resulting from the standardization of C(ξ), here denoted as R(ξ).388

The D-optimality criterion is applied to C(ξ).389

The uniform design is DA–optimal for any model Q µµµ when Q has rank K − 1.390

This follows from the invariance of the ordering induced by D–optimality with re-391

spect to any regular reparameterization, see Pukelsheim (1993, Section 6.2), corrob-392

orated by Rosa (2018, Section 3.2). Thus, approximate DA–optimal designs for θθθ are393

uniform, that is balanced, designs. The extension of the result to exact DA–optimal394

designs is straightforward, only requiring that N/K be integer. When N/K is non-395

integer the designs allocate ⌊N/K⌋ to each group and the remaining N −K ⌊N/K⌋396

are allocated indifferently, one to each different group; here ⌊•⌋ is the floor opera-397

tor. Since balanced designs were used in Tables 1-4 for comparing power, we omit398

further presentation here. We recall that balanced designs have less power than IUT399

designs (the difference is 2.15% on average). Consequently, the DA–optimality crite-400

rion produces designs that under perform IUT designs when the purpose is hypothesis401

testing.402

5.2 C–optimal designs403

In this Section we relate IUT-based designs to C–optimal designs. The C–optimality404

criterion is used when several linear combinations of parameters are of interest and405

we minimize tr{Q [M(ξ)]−1 Q⊺} where Q is the matrix of contrasts.406
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In our settings, C–optimality (see Silvey (1980, p. 48) and Atkinson et al. (2007,407

p. 143)) provides designs which are almost powerful as IUT designs. An approximate408

C–optimal design for model (1) is obtained by solving the following optimization409

problem410

min
ξ∈ΞN

K

tr[C(ξ)] = min
ξ∈ΞN

K

tr[Q [M(ξ)]
−1

Q⊺]. (10)

For evidence that the design criterion (10) is connected to IUT de-411

signs, we consider a tree ordering relation. For tree order the mean vec-412

tor of z = (z(1, 1), . . . , z(1, K))
⊺ is µµµ = λ g(β) 1K−1, where g(β) =413 √

β (1− β)/[β (K − 2) + 1], β = n1/N , λ =
√
N δ/σ (Singh and Davidov, 2019).414

Since the power function is an increasing function of g(β), for large λ the power is415

maximized when g(β) is also maximized. It can be shown that g(β) attains its max-416

imum when β = βIUT = βC-opt = 1/(
√
K − 1 + 1). Therefore, for large λ’s, the417

proportion assigned by the IUT design to the control group is βIUT(= βC-opt) and418

is (1 − βIUT)/(K − 1) to each treatment group. For these designs the ratio of con-419

trol to treatment allocation is
√
K − 1 which coincides with Dunnett’s allocations420

for control versus multiple treatments comparisons. See especially Figures 1 and 2421

of Dunnett (1955). Theorem 1 establishes properties of C–optimal designs which we422

compare with IUT-based designs.423

Theorem 1 For a contrast matrix Q an approximate C–optimal design is given by424

ξC-opt = (wC-opt,1, . . . , wC-opt,K)⊺, where425

wC-opt,i =

√
qi

⊺qi∑K
k=1

√
qk

⊺qk

for i ∈ JKK, (11)

qi is the ith column of Q.426

The proof follows from Pukelsheim (1993, Corollary 8.8) by assuming that X = Ip427

and K = Q⊺ (to simplify the comparison we follow the original nomenclature with428

K being the matrix containing the set of linear parametric combinations of interest).429

Two immediate corollaries follow from (11).430

Corollary 1 Approximate C–optimal allocations for simple ordering are given by431

wC-opt,1 = wC-opt,K = 2/[2 + (K − 2)
√
2] and wC-opt,2 = wC-opt,K−1 = (1 −432

2 wC-opt,1)/(K − 2).433

Corollary 2 For a bipartite ordering relation, approximate C–optimal allocations434

are given by435

wC-opt,i =
1

card(R) +
√
card(L) card(R)

for i ∈ Jcard(R)K and

wC-opt,j =
1

card(L) +
√
card(L) card(R)

for j ∈ Jcard(L)K.

Now, we formulate the optimization problem to determine exact C–optimal prob-436

lems in the design space ΞN
K . The optimal design problem is437

min
ξ

tr[C(ξ)] (12a)
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s.t. C(ξ) = Q [M(ξ)]
−1

Q⊺ (12b)

[M(ξ)]
−1

=

1/n1

. . .
1/nK

 (12c)

1⊺
K n = N (12d)

n ∈ ZK
≥0. (12e)

This problem was solved with a MINLP formulation proposed by Duarte et al. (2020)438

using the GAMS environment (GAMS Development Corporation, 2013). Specifically,439

a MINLP global solver based on the branch-and-reduce algorithm – BARON (Sahini-440

dis, 2014) – is used.441

Table 5 presents the C–optimal designs for the setups used for computing IUT442

designs for simple and tree ordering relations, i.e. N = 60, σ = 1, δ = 1.0 for443

K ∈ {3, 4, 5} and δ = 1.5 for K ∈ {6, 7}. The results show that C–optimum444

designs have power only very slightly less than those of the IUT designs. Further,445

C–optimal designs are in good agreement with i. IUT designs (see Tables 1 and 3); ii.446

the designs found by Dunnett (1955) for tree ordering relations for K ∈ {3, 4}; iii.447

approximate designs predicted by Corollary 1; and iv. the maximum entropy designs448

to be described in §5.3. The results for umbrella ordering for K ∈ {3, 4, 5} and449

bipartite ordering for both contrast matrices (Q1 and Q2) in Table 6 show the same450

trends. The designs are again similar to IUT designs and the approximate designs of451

Corollary 2 for biregular ordering.452

5.3 Maximum entropy designs453

Finally, we consider maximum entropy designs. Shewry and Wynn (1987) introduced454

the notion of sampling by maximum entropy when the design space is discrete. They455

showed that the expected change in information provided by an experiment is max-456

imized by the design that maximizes the entropy of the observed responses since457

entropy is the negative of information. This kind of experimental design has been458

considered for certain spatial models, as well as in the selection of computer exper-459

iments (Currin et al., 1991) and for finding Bayesian optimal experimental designs460

(Sebastiani and Wynn, 2000).461

If the regression parameters are fixed, as they are for Q, the entropy criterion462

reduces to maxξ ldet[R(ξ)] where R(ξ) is the correlation matrix (Jin et al., 2005;463

Koehler and Owen, 1996). Since det[R(ξ)] = det[C(ξ)]/
∏K

k=1 Ci,i, where Ci,i464

are the diagonal elements of C(ξ), the problem is equivalent to maxξ ldet[C(ξ)] +465

ldet{[Ip ◦ C(ξ)]−1} (Anstreicher et al., 2001; Cover and Thomas, 2006). Here Ip ◦466

C(ξ) provides the diagonal matrix formed by the diagonal elements of the matrix467

C(ξ) and ◦ stands for the Hadamard (or elementwise) product. Thus, the MINLP468

problem to find maximum entropy designs is given by:469

max
ξ

ldet[C(ξ)] + ldet{[Ip ◦ C(ξ)]−1} (13a)
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s.t. C(ξ) = Q [M(ξ)]
−1

Q⊺ (13b)

[M(ξ)]
−1

=

1/n1

. . .
1/nK

 (13c)

1⊺ n = N (13d)

n ∈ ZK
≥0. (13e)

Table 7 presents the optimal maximum entropy designs obtained for simple and470

tree ordering relations with (13). A MINLP global solver was also used to assure471

global optimality. The designs obtained are similar to those produced by the IUT472

criterion (see the results in Tables 1 and 3 and C–optimal designs in Table 5), and are473

independent of α. We compared the power of the optimal maximum entropy designs474

for α = {0.05, 0.025} and observed that they are slightly less powerful than the475

IUT, equivalent to C-optimal designs, although more powerful than uniform designs.476

However, the relative differences are small.477

6 Conclusions478

In this paper we consider the optimal design of experiments for hypothesis testing of479

ordered treatments employing the Intersection-Union Test framework. The optimal480

design problem was formalized as a Mixed Integer Nonlinear Programming prob-481

lem. Given the complexity of the objective function, a Surrogate-Based Optimization482

solver was used for the solution. The results obtained are in good agreement with483

previous theoretical results which are available for only a few cases. We tested the484

formulation to study the influence of i. the confidence level; ii. the sample size; and485

iii. the difference between treatment means (i.e., the effect size) for simple ordering486

relations (see §4.1). Optimal designs for other ordering relations are in §4.2. Typi-487

cally, the optimal designs found are more powerful than balanced designs and ensure488

at least equal power to those of Dunnett (1955) for tree ordering relations.489

Singh and Davidov (2019) developed theoretical results supporting the construc-490

tion of optimal experimental designs using the Intersection-Union Test framework491

for ordered treatments. Their results are limited to some ordering relations and num-492

ber of groups. They noted that the generalization is problematic due to the need of493

integrating a complex multivariate cdf. Here we have introduced a systematic way494

to handle the problem of constructing exact designs, a problem which is both more495

challenging than that of finding approximate designs and of immediate applicability.496

We have formulated all our numerical design problems as Mixed Integer Nonlinear497

Programmes. Given the complexity of the objective function, we use SBO to handle498

the resulting formulation for IUT designs. We believe this is the first paper where499

this technique has been used for the construction of exact designs. Our numerical500

approach allows addressing more complex ordering schemes and more groups than501

those of Singh and Davidov (2019). Although of the influence of the sample size on502

standardized mean difference of pairs of treatments, the approximate optimal designs503
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based on IUT provide good estimates to exact optimal designs, see Singh and Davi-504

dov (2021). The main reason is that they maximize the power function and that occurs505

when all values of ci in (5) are equal. This requirement, in turn, is independent of the506

group size since all of the ci’s are limited from above by cα.507

Our MINLP formulation enabled us to compare the IUT designs with designs508

from alphabetic optimality criteria used for model fitting. The theoretical results509

available for C–optimality for ordered treatments are limited to simple and bipar-510

tite ordering (the corollaries to Theorem 1). With the numerical formulation we have511

been able to construct optimal designs for other ordering schemes, for example the512

tree ordering results in Table 5. Finally, there are no theoretical results available for513

maximum entropy designs, so that the numerical treatment is the only approach.514

Our results show that IUT-based designs are well approximated by C–optimal and515

maximum entropy designs which are superior to DA–optimal designs that correspond516

to uniform allocation schemes. The IUT–based designs are systematically slightly517

more powerful than alphabetic designs while the increase in terms of complexity of518

computation is marginal. While the former requires SBO to address the complexity519

and non-convexity of the objective function, the latter criteria require a global MINLP520

optimizer to guarantee the optimum is achieved.521
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