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ABSTRACT
This article studies multiple structural breaks in large contemporaneous covariance matrices of high-
dimensional time series satisfying an approximate factor model. The breaks in the second-order moment
structure of the common components are due to sudden changes in either factor loadings or covariance
of latent factors, requiring appropriate transformation of the factor models to facilitate estimation of the
(transformed) common factors and factor loadings via the classical principal component analysis. With
the estimated factors and idiosyncratic errors, an easy-to-implement CUSUM-based detection technique is
introduced to consistently estimate the location and number of breaks and correctly identify whether they
originate in the common or idiosyncratic error components. The algorithms of Wild Binary Segmentation
for Covariance (WBS-Cov) and Wild Sparsified Binary Segmentation for Covariance (WSBS-Cov) are used
to estimate breaks in the common and idiosyncratic error components, respectively. Under some technical
conditions, the asymptotic properties of the proposed methodology are derived with near-optimal rates (up
to a logarithmic factor) achieved for the estimated breaks. Monte Carlo simulation studies are conducted to
examine the finite-sample performance of the developed method and its comparison with other existing
approaches. We finally apply our method to study the contemporaneous covariance structure of daily
returns of S&P 500 constituents and identify a few breaks including those occurring during the 2007–
2008 financial crisis and the recent coronavirus (COVID-19) outbreak. An R package “BSCOV” is provided
to implement the proposed algorithms. Supplementary materials for this article are available online.
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1. Introduction

Estimation of covariance matrices is of fundamental importance
in modern multivariate statistics, and has applications in various
fields such as biology, economics, finance, and social networks.
Suppose that (Xt : t = 1, . . . , n) is a collection of n observations
from a d-dimensional random vector with E(Xt) = 0 and
E
(
XtXᵀ

t
) = �, where 0 is a null vector whose size may change

from line to line and � is a d × d positive definite covariance
matrix. When the dimension d is fixed or significantly smaller
than the sample size n, the population covariance matrix � can
be well estimated by the conventional sample covariance matrix
(see Anderson 2003):

�n = 1
n

n∑
t=1

(
Xt − Xn

) (
Xt − Xn

)ᵀ , Xn = 1
n

n∑
t=1

Xt . (1.1)

However, when d exceeds n, the sample covariance matrix �n
defined in (1.1) becomes singular. Estimation of such a large
covariance matrix is generally challenging and has received
increasing attention in recent years. Some techniques have been
introduced to regularize covariance matrices and produce reli-
able estimation (see Wu and Pourahmadi 2003; Ledoit and
Wolf 2004; Bickel and Levina 2008a, 2008b; El Karoui 2008a,
2008b; Lam and Fan 2009; Rothman, Levina, and Zhu 2009;
Cai and Liu 2011; Fan, Liao, and Mincheva 2013; Huang and
Fryzlewicz 2019). A comprehensive review on large covariance
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matrix estimation can be found in Pourahmadi (2013), Cai,
Ren, and Zhou (2016) and Fan, Liao, and Liu (2016). All of
the aforementioned literature assumes that the large covariance
matrix is a constant matrix throughout the entire course of data
collection, which may be too restrictive in practical situations.
Some recent papers including Chen, Xu, and Wu (2013) and
Chen and Leng (2016) attempt to relax this restriction and con-
sider a large dynamic covariance matrix estimation by allowing
the covariance matrix to evolve smoothly over time (or with an
index variable).

The main interest of this article is to detect and estimate
multiple structural breaks in large covariance matrices, to
which setting the methodology in Chen, Xu, and Wu (2013)
and Chen and Leng (2016) is no longer applicable. Structural
breaks are very common in many areas such as economics
and finance, and may occur for various reasons. If such abrupt
structural changes are ignored in covariance matrix estimation,
subsequent statistical analysis would lead to invalid inference
and misleading conclusions. The classical Binary Segmentation
(BS) technique is commonly used to detect structural breaks,
and has been extensively studied since its introduction by
Vostrikova (1981). For instance, in the setting of univariate
mean regression models, theoretical properties, computational
algorithms and relevant empirical applications of the traditional
BS and its generalized version have been systematically studied
by Venkatraman (1992), Bai (1997), Cho and Fryzlewicz (2012),
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Killick, Fearnhead, and Eckley (2012), Fryzlewicz (2014, 2020)
and the references therein. In recent years, there has been
increasing interest in extending this technique to high-
dimensional settings such as high-dimensional time series and
large panel data (see Cho and Fryzlewicz 2015; Jirak 2015; Cho
2016; Aston and Kirch 2018; Wang and Samworth 2018; Wang
et al. 2019; Safikhani and Shojaie 2022). However, most of the
aforementioned literature mainly considers break detection
and estimation in the first-order moment structure. Aue et
al. (2009) use the BS method with mean-corrected cumulative
sum (CUSUM) to detect structural breaks in fixed dimensional
covariance matrices, and establish the limit distributions for
the test statistics and the convergence rate for the estimated
break date. Korkas and Fryzlewicz (2017) detect breaks in the
second-order moment structure of time series by combining the
wavelet-based transformation and the univariate Wild Binary
Segmentation (WBS) algorithm proposed by Fryzlewicz (2014).
However, their technique is not directly applicable to our case
when the size of the covariance matrix diverges to infinity as the
sample size n increases.

In this article, we consider the second-order moment struc-
ture of the high-dimensional random vector Xt generated by an
approximate factor model, that is,

Xt = �Ft + εt , t = 1, 2, . . . , n, (1.2)

where � = (λ1, . . . , λd)
ᵀ is a matrix of factor loadings with λi

being an r-dimensional vector, Ft is an r-dimensional vector of
common factors, and εt = (εt1, . . . , εtd)

ᵀ is a d-dimensional
vector of idiosyncratic components uncorrelated with Ft . The
approximate factor model is very popular in economics and
finance, and has become an effective tool in analyzing high-
dimensional time series (see Chamberlain and Rothschild 1983;
Fama and French 1992; Stock and Watson 2002; Bai and Ng
2002, 2006; Chen et al. 2018). Our main focus is the contempo-
raneous second-order moment structure, which plays a crucial
role in various fields such as the classic mean-variance portfolio
choice theory and risk management. Note that

� = cov(Xt) = �cov(Ft)�
ᵀ + cov(εt) = �(�, F) + �(ε),

(1.3)
where �(ε) is the covariance matrix of the idiosyncratic com-
ponents εt and �(�, F) is the covariance matrix of the com-
mon components �Ft . In this article, we aim to study multiple
structural breaks in the covariance structure of Xt generated
by the approximate factor model, estimating the break points
and number of breaks. Structural breaks may occur in either
the covariance structure of the common components or that
of the idiosyncratic components, indicating that the constant
covariance structure in (1.3) is replaced by the following time-
varying version:

�t = �t(�, F) + �t(ε), t = 1, . . . , n. (1.4)

The main contributions of this article, the fundamental nov-
elty of the proposed methodology and its connection to some
recent literature are summarized as follows.

• A transformation mechanism is introduced to convert the
approximate factor model with multiple structural breaks to
that with constant factor loadings, justifying applicability of

the classical Principal Component Analysis (PCA) technique
(see Bai and Ng 2002; Stock and Watson 2002) to a more
general model setting. Note that breaks in the second-order
moment structure of the common components are due to
changes in factor loadings, covariance of latent factors or
factor number. This makes it challenging to directly estimate
the latent common factors and factor loadings via PCA.
When there are multiple breaks in factor loadings, we trans-
form the original factor model to one with time-invariant
factor loadings and a time-varying covariance structure for
transformed factors, and then use the PCA method to esti-
mate the transformed factors and factor loadings, which are
shown to be consistent with convergence rates comparable
to those in the existing literature on PCA for approximate
factor models without breaks (see Bai and Ng 2002; Fan,
Liao, and Mincheva 2013). This transformation technique
is also used by Han and Inoue (2015) and Baltagi, Kao,
and Wang (2017, 2021) to estimate and test factor models
with structural instability. However, they assume that the
number of factors does not change. In contrast, we consider a
more general setting, allowing changes of factor numbers and
multiple breaks in the covariance matrices of idiosyncratic
components.

• With the estimated factors and idiosyncratic errors, we
propose an easy-to-implement CUSUM-based detection
technique to estimate the location and number of breaks
and identify whether they originate in the common or
idiosyncratic components. The developed CUSUM statistics
are directly computed via the empirical second moments
of the estimated factors and idiosyncratic errors. Based on
Fryzlewicz’s (2014) WBS algorithm, we propose a Wild
Binary Segmentation for Covariance (WBS-Cov) to locate
multiple breaks in the common components. For breaks in
the idiosyncratic error components, we introduce a Wild
Sparsified Binary Segmentation algorithm for Covariance
(WSBS-Cov), combining WBS-Cov and the Sparsified
Binary Segmentation (SBS) proposed by Cho and Fryzlewicz
(2015) in the high-dimensional mean estimation context.
A recent paper by Barigozzi, Cho, and Fryzlewicz (2018)
combines the wavelet-based transformation and the double
CUSUM technique (Cho 2016) to estimate the break time
as well as break number within the second-order moment
structure. However, a disadvantage of the wavelet-based
transformation on the piecewise-constant “signals,” involv-
ing selection of the wavelet filter and scale parameter, is that
it could destroy the piecewise constancy and subsequently
affect the estimation accuracy of the break number and
location. When we only focus on a specific feature of the data,
data transformation, even one-to-one transformation, would
distort the interpretation of breaks of the structure. Another
recent method to deal with sparsity in high-dimensional
break detection is the sparse projection introduced by Wang
and Samworth (2018) but their method only detects breaks
in the first-order moment structure. Wang, Yu, and Rinaldo
(2021) extends the BS and WBS techniques to detect multiple
breaks in large covariance matrices, but they limit attention
to the independent sub-Gaussian random vector and assume
that the dimension is divergent at a slow polynomial rate
of n. In contrast, we allow the dimension to grow faster, for
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example, at an exponential rate of n, a typical setting in big
data analysis.

• Simulation studies are implemented to assess the finite-
sample performance of the proposed method and its compar-
ison with other competing methods. The simulation results
show that our method has superior numerical performance
in most settings, whereas the method by Barigozzi, Cho,
and Fryzlewicz (2018) tends to perform poorly when the
number of covariance matrix entries with breaks is small
relative to the matrix size. Our simulation also shows that
the proposed methods are robust when the factor number is
over-estimated.

• The developed model and method are applied to the daily
return series of S&P 500 constituent which contain 375 firms
over the period from January 01, 2000 to February 28, 2021,
and detect five breaks in the covariance structure of the
common components and three breaks in the idiosyncratic
error components. In particular, we identify the breaks
occurring during the 2007–2008 global financial crisis and
the recent coronavirus (COVID-19) outbreak. With an
additional comparison with break detection result of low-
dimensional observable risk factor series, we emphasize
that the breaks in covariance structure of returns cannot
be fully explained by the breaks in the covariance structure
of observed risk factors nor the breaks in loadings of these
factors.

The rest of the article is organized as follows. Section 2 intro-
duces the setting of multiple structural breaks, the PCA esti-
mation and CUSUM-based detection methods, and the WBS-
Cov and WSBS-Cov algorithms. Section 3 presents the asymp-
totic theory for the developed WBS-Cov and WSBS-Cov meth-
ods. Section 4 discusses some practical issues in the detec-
tion procedure. Sections 5 and 6 give the simulation studies
and the empirical application, respectively. Section 7 concludes
the article. The technical assumptions are given in Appendix
A and proofs of the main theoretical results are available in
Appendices C–E of a supplementary materials . An R package
“BSCOV” for implementing the proposed methods is available
from https://github.com/markov10000/BSCOV . Throughout the
article, we let || · ||2 and || · ||F denote the Euclidean norm of
a column vector and the Frobenius norm of a matrix, respec-
tively; let vech(·) denote the half vectorization of a symmetric
matrix obtained by vectorizing only the lower triangular part
of the matrix; let �·� denote the floor function; let a ∨ b and
a ∧ b denote max{a, b} and min{a, b}, respectively; and let
an � bn denote that an = O(bn) and bn = O(an) hold
jointly.

2. Methodology

In this section, we first introduce the setting of multiple struc-
tural breaks in the contemporaneous covariance structure of
both the common and idiosyncratic components, and transform
the approximate factor models to construct PCA estimation of
the latent common factors and factor loadings (with appropriate
rotation). Using the estimated factors and idiosyncratic errors,
we then introduce the CUSUM-based statistics to estimate the

location and number of structural breaks as well as the WBS-
Cov and WSBS-Cov algorithms.

2.1. Model Structure for Multiple Structural Breaks

We consider the following multiple structural breaks in the
covariance matrix of the common components, that is, �t(�, F)

in (1.4) is specified as

�t(�, F) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�0
1(�, F), 1 ≤ t ≤ ηc

1,
�0

2(�, F), ηc
1 + 1 ≤ t ≤ ηc

2,
...

...
�0

K1+1(�, F), ηc
K1

+ 1 ≤ t ≤ n,

(2.1)

where �0
k(�, F) �= �0

k+1(�, F) for k = 1, . . . , K1, and
ηc

1, . . . , ηc
K1

are unobservable breaks with the superscript “c”
denoting the “common component.” For convenience, we let
ηc

0 = 0 and ηc
K1+1 = n. The above structural breaks may be

caused by one or a combination of the following cases,

• Case (i): sudden changes in the factor loadings;
• Case (ii): sudden changes in the covariance matrix for com-

mon factors;
• Case (iii): sudden changes in the number of factors.

Let �0
k be a d × rk factor loading matrix and Ft,k be the

corresponding factor vector with dimension rk when ηc
k−1+1 ≤

t ≤ ηc
k, and write the approximate factor model as

Xt = �0
kFt,k + εt , ηc

k−1 + 1 ≤ t ≤ ηc
k. (2.2)

Letting �0
k(�, F) = �0

kcov(Ft,k)(�
0
k)

ᵀ, the structural break
structure (2.1) can be equivalently written as

�t(�, F) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�0
1cov(Ft,1)(�0

1)
ᵀ, 1 ≤ t ≤ ηc

1,
�0

2cov(Ft,2)(�0
2)

ᵀ, ηc
1 + 1 ≤ t ≤ ηc

2,
...

...
�0

K1+1cov(Ft,K1+1)(�0
K1+1)

ᵀ, ηc
K1

+ 1 ≤ t ≤ n.

Note that, although �0
k(�, F) �= �0

k+1(�, F) for k =
1, . . . , K1, �0

k may be the same as �0
k+1 (when cases (i) and

(iii) do not occur at the break time). It is worthwhile to point
out that case (i) is similar to the approximate factor model with
structural breaks; see, for example, Breitung and Eickmeier
(2011), Chen, Dolado, and Gonzalo (2014), Han and Inoue
(2015), Cheng, Liao, and Schorfheide (2016), Baltagi, Kao, and
Wang (2017), Bai, Han, and Shi (2020), and Duan, Bai, and
Han (2022). However, the aforementioned papers consider
the case of a single structural break in the factor loadings
and usually assume that the covariance of the idiosyncratic
error components is time invariant. Ma and Su (2018) consider
detecting and estimating multiple structural breaks in the factor
loadings with a three-step procedure using the adaptive fused
group Lasso. Case (iii) is an important type of structure break in
the factor model, which has received much attention in recent
years (see Baltagi, Kao, and Wang 2017; Barigozzi, Cho, and
Fryzlewicz 2018; Li et al. 2019). Section 2.2 will give a unified
factor model framework covering cases (i)–(iii) which facilitates
the construction of PCA estimation, and then proceed to

https://github.com/markov10000/BSCOV
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introduce the relevant CUSUM statistics in Section 2.3 to detect
the multiple structural breaks in the common component.

The structural breaks in the covariance matrix of the error
components are specified as follows

�t(ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�0
1(ε), 1 ≤ t ≤ ηe

1,
�0

2(ε), ηe
1 + 1 ≤ t ≤ ηe

2,
...

...
�0

K2+1(ε), ηe
K2

+ 1 ≤ t ≤ n,

and �0
k(ε) �= �0

k+1(ε) for k = 1, . . . , K2, where ηe
1, . . . , ηe

K2
are unobservable breaks with the superscript “e” denoting the
“idiosyncratic error component.” For convenience, we let ηe

0 = 0
and ηe

K2+1 = n.
Let

Bc = {
ηc

1, . . . , ηc
K1

}
and Be = {

ηe
1, . . . , ηe

K2

}
. (2.3)

In this article, we assume that the minimum length of the subin-
tervals separated by ηc

k is of order n, see Assumption 4(ii) in
Appendix A. Such a restriction is mainly to ensure that the PCA
method is applicable to estimate the latent factors and factor
loadings. In contrast, the minimum length of the subintervals
separated by ηe

k is allowed to be of order smaller than n, see
Assumption 4(iii). We do not impose any restriction on how the
break points in Bc and those in Be are located with respect to
each other.

2.2. Transformed Factor Models and PCA Estimation

Although the multiple structural breaks formulated in (2.1)
and (2.2) may be caused by one or a combination of cases
(i)–(iii) described in Section 2.1, we next show that multiple
structural breaks in the factor loadings and factor number can
be transformed to breaks in the factor covariance structure.

Proposition 2.1. The approximate factor model (2.2) can be
equivalently written as a transformed factor model like

Xt = ��F�
t + εt , t = 1, . . . , n, (2.4)

where �� denotes the transformed factor loading matrix which
is time invariant, and F�

t denotes the transformed factors. In
addition, the number of factors in the original factor model
and that in the transformed factor model, satisfy the following
inequalities,

max
1≤k≤K1+1

rk ≤ q0 ≤
K1+1∑
k=1

rk ≤
K1+1∑
k=1

rk, (2.5)

where q0 is the number of transformed factors, rk is the column
rank of �0

k and rk is the number of original factors Ft,k when
ηc

k−1 + 1 ≤ t ≤ ηc
k.

Remark 2.1. A representation similar to Proposition 2.1 is also
given in Han and Inoue (2015) and Baltagi, Kao, and Wang
(2017, 2021). Note that construction of �� in the transformation
mechanism is not unique due to the factor model identification

issue. When each of �0
k is of full column rank, we have rk = rk,

and consequently the inequalities in (2.5) would be simplified to

max
1≤k≤K1+1

rk ≤ q0 ≤
K1+1∑
k=1

rk.

The upper bound for q0 can be achieved if �0
k, k = 1, . . . , K1 +

1, are linearly independent. Appendix B in the supplementary
materials gives a simple motivating example for the above trans-
formation. Proposition 3.1 in Section 3.1 will further explore
the limiting behavior of 1

n
∑n

t=1 F�
t F�ᵀ

t as n → ∞, which is
crucial to application of the classic PCA method to estimate
the transformed factors and factor loadings. Through the above
transformation, it is sufficient to construct the CUSUM statistic
using the estimated transformed factors for all of cases (i)–(iii)
discussed in Section 2.1.

As the common factors are latent, we have to obtain their
estimates (subject to appropriate rotation) in practice. By Propo-
sition 2.1, we consider the transformed factor model like (2.4)
with time-invariant factor loadings, and apply the PCA estima-
tion technique. Let Xn = (X1, . . . , Xn)

ᵀ be an n × d matrix of
observations. For the time being, we assume that the number
of transformed factors q0 is known, and will discuss how to
determine it later in this section. The estimated factors F̂t as well
as the estimated idiosyncratic errors ε̂t will be used to construct
the CUSUM statistics in Sections 2.3 and 2.4. The algorithm for
PCA estimation is given as follows.

Algorithm 1 Standard PCA
Input: Xn, q0

1. Let F̂n =
(

F̂1, . . . , F̂n
)ᵀ

be the n × q0 matrix consisting of
the q0 eigenvectors (multiplied by

√
n) corresponding to the

q0 largest eigenvalues of XnXᵀ
n /(nd).

2. The transformed factor loading matrix is estimated as

�̂n = Xᵀ
n F̂n/n =:

(
λ̂1, . . . , λ̂d

)ᵀ
. (2.6)

3. The idiosyncratic component εt is approximated by

ε̂t = Xt − �̂nF̂t =:
(
ε̂t1, . . . , ε̂td

)ᵀ
with ε̂tj = Xtj − λ̂

ᵀ
j F̂t , 1 ≤ j ≤ d, (2.7)

where Xtj is the jth element of Xt .

Output: F̂t , ε̂t for t = 1, . . . , n

A key issue in the PCA estimation is to appropriately choose
the number of latent factors. As the above PCA method focuses
on the transformed factor model, our aim is to estimate the
number of transformed factors rather than that of the original
ones. In general, the number of transformed factors q0 could be
much larger than maximum of rk (or rk) over k = 1 . . . , K1 + 1.
However, when both (rk, k = 1 . . . , K1 +1) and K1 are assumed
to be fixed, from (2.5) in Proposition 2.1, we have the true
number of transformed factors to be upper bounded by a finite
positive integer denoted by Q. Some existing criteria developed
for stable factor models can be applied to the transformed factor
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model (2.4) to obtain a consistent estimate of q0. In this article,
we use a commonly used information criterion proposed by Bai
and Ng (2002).

For any 1 ≤ q ≤ Q, we let F̂n(q) =
[

F̂1(q), . . . F̂n(q)
]ᵀ

be
the estimated factors obtained in Algorithm 1 replacing q0 by q.
Define

Vn(q) = min
�(q)

1
nd

d∑
j=1

n∑
t=1

[
Xtj − λj(q)F̂t(q)

]2

= min
�(q)

1
nd

n∑
t=1

[
Xt − �(q)F̂t(q)

]ᵀ [
Xt − �(q)F̂t(q)

]

=
d∑

j=q+1
μj

(
XnXᵀ

n /(nd)
)

,

where �(q) = [
λ1(q), . . . , λd(q)

]ᵀ is a d × q factor loading
matrix and μj(·) denotes the jth largest eigenvalue. Conse-
quently, we can choose the following objective function:

IC(q) = log
[
Vn(q)

] + q ·
(

n + d
nd

)
log(n ∧ d), (2.8)

and obtain the estimate q̂ via

q̂ = arg min
0≤q≤Q

IC(q), (2.9)

where the common components disappear when q = 0. Alter-
native IC functions with different penalty terms in (2.8) can be
found in Bai and Ng (2002) and in Alessi, Barigozzi, and Capasso
(2010) for the case of large idiosyncratic disturbances. With the
asymptotic results given in Theorem 2 of Bai and Ng (2002), we
may show that q̂ is a consistent estimator of the true number q0,
indicating that q̂ = q0 whose probability converges to one as the
sample size increases.

Although accurate estimation of the factor number may
be difficult in practice, slight over-estimation of the (trans-
formed) factor number may be not risky in break detection
(see Barigozzi, Cho, and Fryzlewicz 2018). In Appendix F of
the supplementary materials, we provide a simulation to show
that over-estimating q0 would not negatively affect accuracy
of multiple break detection. It is possible to avoid precisely
estimating the factor number by following Barigozzi, Cho, and
Fryzlewicz’s (2018) method, multiplying the estimated factors
and factor loadings to obtain the estimated common compo-
nents. However, this would lead to a high-dimensional break
detection for the common components.

2.3. Break Detection in the Common Components

We start with the Binary Segmentation for Covariance (BS-
Cov) technique to detect breaks in the common components
and then introduce the WBS-Cov algorithm. As breaks in the
factor loadings and factor number can be transformed to those
in the covariance of transformed factors after reformulating the
approximate factor model to the one with time-invariant factor
loadings, we next define a CUSUM statistic using the estimated
factors F̂t . For 1 ≤ l ≤ s < u ≤ n, define

CF̂
l,u(s) =

√
(s − l + 1)(u − s)

u − l + 1

[
1

s − l + 1

s∑
t=l

vech
(

F̂tF̂
ᵀ
t

)

− 1
u − s

u∑
t=s+1

vech
(

F̂tF̂
ᵀ
t

)]
, (2.10)

which is a column vector with dimension q0(q0 + 1)/2. Maxi-
mizing

∥∥∥CF̂
l,u(s)

∥∥∥
2

with respect to s, we obtain

η̃c
1 = arg max

l≤s<u

∥∥∥CF̂
l,u(s)

∥∥∥
2

, (2.11)

the first candidate break point (which is not necessarily the esti-
mate of the first break time point ηc

1). If the quantity
∥∥∥CF̂

l,u(η̃
c
1)
∥∥∥

2
exceeds certain threshold, say ξ c

n, we split the closed interval
[l, u] into two subintervals: [l, η̃c

1] and [η̃c
1 + 1, u]. Then, letting

(l, u) = (l, η̃c
1) or (l, u) = (η̃c

1 + 1, u), we compute CF̂
l,u(s)

with s in either of the two subintervals, maximize
∥∥∥CF̂

l,u(s)
∥∥∥

2
with respect to s, estimate the next candidate break points, and
examine whether a further split is needed. We continue this until
no more split is needed.

Remark 2.2.

(i) It may be possible to extend (2.11) to a weighted version
(see Hariz, Wylie, and Zhang 2007; Cho 2016; Yu and Chen
2021)

η̃c
1 = arg max

l≤s<u

{[
(s − l + 1)(u − s)

(u − l + 1)2

]υ ∥∥∥CF̂
l,u(s)

∥∥∥
2

}
,

with −1/2 < υ ≤ 1/2. A smaller υ may help detect breaks
that are close to boundary. For simplicity, we only consider
the unweighted version, that is, υ = 0, otherwise υ would
affect the asymptotic analysis.

(ii) In the above BS-Cov, we use the l2-type aggregation of
the CUSUM quantities. Alternatively, we may use different
norms in the aggregation such as the l1-norm and l∞-
norm. It may be also possible to consider a weighted aggre-
gation and seek an optimal projection direction as rec-
ommended by Wang and Samworth (2018). However, it is
not clear how to implement the optimal direction method
in a computationally efficient way for break detection in
our model setting, so we do not pursue it in the present
article. In Appendix F of the supplementary materials, we
compare numerical performance among different types of
aggregation on the CUSUM quantities and find that the
l2-type aggregation produces the most accurate detection
result.

(iii) The l2-aggregation in (2.11) ignores possible correlation
structure between elements of the vector CUSUM statistic.
Such a simplification would not affect estimation consis-
tency of the break number and locations. For break detec-
tion in fixed-dimensional covariance matrices, Aue et al.
(2009) propose a weighted quadratic form of the CUSUM
vector using an estimated long-run covariance matrix. This
refinement in the l2-aggregation may improve break esti-
mation efficiency. However, consistent estimation of the
long-run covariance structure for vech

(
F̂tF̂

ᵀ
t

)
is difficult

to obtain when there are unknown multiple breaks.
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In order to accurately estimate the break time and delete
possible spurious spikes in the CUSUM statistics, instead of
using BS-Cov, we next extend the WBS algorithm introduced
by Fryzlewicz (2014) to detect the multiple structural breaks
in the common components. Let η̂c

1, . . . , η̂c
K̂1

be the estimated

break points (arranged in an increasing order) and K̂1 be the
estimate of the unknown break number K1 obtained in the
following WBS-Cov algorithm. A discussion on selection of the
threshold ξ c

n can be found in Section 4. The method to draw
random intervals in the WBS-Cov algorithm is the same as
that in Fryzlewicz (2014) (see also Algorithm 4 in Section 4).
Fryzlewicz (2020) provides an alternative recursive method of
drawing random intervals in the WBS algorithm. In general, the
intervals drawn in Algorithm 2 do not have to be random but
can be taken over a fixed grid.

Algorithm 2 WBS-Cov algorithm
Input: ξ c

n, Mc
n, F̂t , t = 1, . . . , n

generate random intervals [lm, um] within [1, n] for m =
1, . . . , Mc

n

set Wc = {[1, n]} and B̂c = ∅
while Wc �= ∅ do

take an element out of Wc and denote it as [l, u]
Mc

l,u = {m : [lm, um] ⊂ [l, u]}
(mc

0, sc
0) = arg max

m∈Mc
l,u,lm≤s<um

∥∥∥CF̂
l,u(s)

∥∥∥
2

if
∥∥∥∥CF̂

lmc
0

,umc
0
(sc

0)

∥∥∥∥
2

> ξ c
n then

add sc
0 to B̂c

add
[
l, sc

0
]

and
[
sc
0 + 1, u

]
to Wc

end if
end while

Output: B̂c

2.4. Break Detection in the Idiosyncratic Components

We next turn to detection of multiple structural breaks in
the covariance structure of the idiosyncratic vector, which
is much more challenging as the dimension involved can be
ultra large and εt is unobservable. In the existing literature, to
obtain reliable estimation of ultra-high dimensional covariance
matrices (without breaks), it is often common to impose certain
sparsity condition, limiting the number of nonzero entries.
Consequently, the thresholding or other generalized shrinkage
methods (Bickel and Levina 2008a; Rothman, Levina, and
Zhu 2009; Cai and Liu 2011) have been developed to estimate
high-dimensional covariance matrices. A similar thresholding
technique is also introduced by Cho and Fryzlewicz (2015)
to detect multiple structural breaks in high-dimensional time
series setting. We next generalize the latter to detect breaks in
the large covariance structure of the idiosyncratic error vector,
using the approximation of εt obtained in the PCA algorithm.
Define the normalized CUSUM-type statistic using ε̂tj defined
in (2.7):

cε̂,σ̂
l,u (s; i, j) = 1

σ̂l,u(i, j)

√
(s − l + 1)(u − s)

(u − l + 1)(
1

s − l + 1

s∑
t=l

ε̂tiε̂tj − 1
u − s

u∑
t=s+1

ε̂tiε̂tj

)
(2.12)

for 1 ≤ l ≤ s < u ≤ n and 1 ≤ i, j ≤ d, where
σ̂l,u(i, j) is a properly chosen scaling factor. The value of the
scaling factor depends on both the time interval [l, u] and the
index pair (i, j). The scaling factors ensure that we can choose
a common threshold for each index pair. Note that the scaling
factor is not needed for the CUSUM statistic (2.10) to detect
breaks in the common components since the estimated factors
have been normalized. We choose σ̂l,u(i, j) as the differential
error median absolute deviation using ε̂tj, whose detailed con-
struction is given in Section 4. To derive the consistency result
for break detection, we assume that the random scaling factors
are uniformly bounded away from zero and infinity over 1 ≤
i, j ≤ d and 1 ≤ l < u ≤ n with probability tending
to one (see Assumption 5 in Appendix A). As the dimension
d → ∞ and might be much larger than the sample size n (see
Assumption 4(i)), a direct aggregation of the CUSUM statistics
cε̂,σ̂

l,u (s; i, j) over i and j might not perform well in detecting the
breaks in particular when the sparsity condition is imposed.
Hence, we compare cε̂,σ̂

l,u (s; i, j) with a thresholding parameter,

say ξ e
n, and delete the index pair (i, j) when maxl≤t<u

∣∣∣cε̂,σ̂
l,u (t; i, j)

∣∣∣
is smaller than ξ e

n. For m ∈ Me
l,u (to be defined in Algorithm 3)

such that [lm, um] is a random subinterval of [l, u], we define

Cε̂
lm,um

(s) =
d∑

i=1

d∑
j=i

∣∣∣cε̂,σ̂
lm,um

(s; i, j)
∣∣∣2 I (max

l≤t<u

∣∣∣cε̂,σ̂
l,u (t; i, j)

∣∣∣ > ξ e
n

)
,

(2.13)
where I(·) is an indicator function. It is easy to see that the
truncation component in (2.13) is independent of the random
subintervals [lm, um]. Therefore, if maxl≤t<u

∣∣∣cε̂,σ̂
l,u (t; i, j)

∣∣∣ ≤ ξ e
n,

the algorithm will no longer search for breaks within the interval
[l, u) for the index pair (i, j). The main difference between our
method and that in Cho and Fryzlewicz (2015) is that they
sparsify the classical Binary Segmentation to locate the break
points and estimate the break number, whereas we combine the
sparsified CUSUM quantity with the WBS-Cov algorithm intro-
duced as in Section 2.3. Thus, we call the proposed algorithm the
Wild Sparsified Binary Segmentation for Covariance or WSBS-
Cov. The detailed algorithm is given as follows.

Note that the sparsified CUSUM statistic Cε̂
lm,um

(s) cannot
take any value between 0 and (ξ e

n)2 and

Cε̂
lme

0
,ume

0
(se

0) > 0 ⇔ Cε̂
lme

0
,ume

0
(se

0) > (ξ e
n)2.

Hence, the thresholding parameter ξ e
n in WSBS-Cov plays a

similar role to ξ c
n in WBS-Cov. With the WSBS-Cov algorithm,

we obtain the estimated break points denoted by η̂e
1, . . . , η̂e

K̂2

(arranged in an increasing order), where K̂2 is the estimate of
the break number K2. Finally, the sets of break points Bc and Be

defined in (2.3) are estimated by

B̂c =
{
η̂c

1, . . . , η̂c
K̂1

}
and B̂e =

{
η̂e

1, . . . , η̂e
K̂2

}
.
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Algorithm 3 WSBS-Cov algorithm
Input: ξ e

n, Me
n, ε̂t , t = 1, . . . , n

generate random intervals [lm, um] within [1, n] for m =
1, . . . , Me

n

set We = {[1, n]} and B̂e = ∅
while We �= ∅ do

take an element out of We and denote it as [l, u]
Me

l,u = {m : [lm, um] ⊂ [l, u]}
(me

0, se
0) = arg max

m∈Me
l,u,lm≤s<um

Cε̂
lm,um

(s)

if Cε̂
lme

0
,ume

0
(se

0) > 0 then

add se
0 to B̂e

add
[
l, se

0
]

and
[
se
0 + 1, u

]
to We

end if
end while

Output: B̂e

3. Large-Sample Theory

In this section we establish the large-sample theory for the meth-
ods proposed in Section 2 under some technical assumptions
listed in Appendix A. The asymptotic properties for the WBS-
Cov and WSBS-Cov methods are given in Sections 3.1 and 3.2,
respectively.

3.1. Asymptotic Theory of WBS-Cov for the Common
Components

We start with the following proposition on some fundamental
properties for the transformed factors F�

t and factor loadings ��

in (2.4).

Proposition 3.1. Suppose that Assumption 2 in Appendix A is
satisfied and let κc

n = min1≤k≤K1+1(η
c
k − ηc

k−1). The trans-
formed factor loading matrix �� is of full column rank and the
transformed factors F�

t satisfy that
∥∥∑n

t=1 F�
t F�ᵀ

t
∥∥

F = OP(n)

when κc
n → ∞. If, in addition, κc

n � n, there exists a q0 × q0
positive definite matrix �F such that

1
n

n∑
t=1

F�
t F�ᵀ

t
P→ �F as n → ∞. (3.1)

The above proposition shows that the sample second-order
moment of the transformed factors converges in probability
under some regularity conditions in Assumption 2. The con-
vergence result (3.1) is sometimes given directly as a high-
level condition in the literature (e.g., Assumption A1 in Ma
and Su 2018). The restriction κc

n � n is crucial to ensure
positive definiteness of �F . If the order of the minimum distance
between breaks is smaller than n, the limit matrix �F may be
singular.

We next study the asymptotic theory for the WBS-Cov algo-
rithm in Section 2.3 to detect breaks in the common compo-
nents. Define an infeasible CUSUM statistic using the latent
transformed factors:

CHF�

l,u (s) =
√

(s − l + 1)(u − s)
u − l + 1

[
1

s − l + 1

s∑
t=l

vech
(

HF�
t F�ᵀ

t Hᵀ
)

− 1
u − s

u∑
t=s+1

vech
(

HF�
t F�ᵀ

t Hᵀ
)]

, (3.2)

and H is a q0 × q0 rotation matrix defined by

H = �−1
q0

(
1
n

n∑
t=1

F̂tF�ᵀ
t

)⎛
⎝1

d

d∑
j=1

λ�
j λ

�ᵀ
j

⎞
⎠ , (3.3)

in which �q0 is a q0 × q0 diagonal matrix with the diagonal
elements being the first q0 largest eigenvalues of XnXᵀ

n /(nd)

arranged in a descending order, and �� = (
λ�

1, . . . , λ�
d
)ᵀ with λ�

j
being a q0-dimensional vector of transformed factor loadings.

Proposition 3.2. Suppose that Assumptions 1–3 and 4(i) in
Appendix A are satisfied. If κc

n � n,

max
(l,u): 1≤l<u≤n

max
s: l≤s<u

∥∥∥CF̂
l,u(s) − CHF�

l,u (s)
∥∥∥

2
= OP (1) . (3.4)

Proposition 3.2 plays a crucial role in our proofs, indicating
that the CUSUM statistic CF̂

l,u(s) can be replaced by the infeasible
CUSUM statistic CHF�

l,u (s) in the asymptotic analysis. The follow-
ing theorem establishes the convergence result for the estimates
of break points and break number in the covariance structure of
the common components.

Theorem 3.1. Suppose that Assumptions 1–3 and 4(i)(ii) in
Appendix A are satisfied, and there exist two positive constants
c1 and c̄1 such that the threshold ξ c

n satisfies

c1 log2 n ≤ ξ c
n ≤ c̄1

(
κc

nω
c
n
)1/2 , (3.5)

where κc
n is defined in Proposition 3.1 and ωc

n denotes the
minimum break size (in the common components) defined in
Assumption 4(ii). Then there exists a positive constant ιc such
that

P
(

K̂1 = K1; max
1≤k≤K1

|η̂c
k − ηc

k| < ιcϕc
n

)
→ 1, (3.6)

where ϕc
n = log4 n/ωc

n.

Remark 3.1. The convergence result (3.6) shows that the pro-
posed estimator of the break points in the common components
via WBS-Cov has the approximation rate of ϕc

n = log4 n/ωc
n,

which can be further simplified to the rate of log4 n if the mini-
mum break size ωc

n is larger than a small positive constant. Note
that, even if the factors are observable, the optimal estimation
rate of the break points in their covariance structure is OP(1)

(Korostelev 1988; Aue et al. 2009) when the binary segmentation
is used in break detection. Hence, our approximation rate in
Theorem 3.1 is nearly optimal up to a fourth-order logarith-
mic rate. Since we remove the Gaussian assumption on the
observations and further allow temporal dependence in the data
over time, our approximation rate is slightly slower than that in
Theorem 3.2 of Fryzlewicz (2014).
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3.2. Asymptotic Theory of the WSBS-Cov for the
Idiosyncratic Components

We next present the asymptotic theory of structural break esti-
mation in the idiosyncratic error components. Similarly to that
in Section 3.1, we define the following infeasible CUSUM-type
statistics using the unobservable εtj,

cε,σ̂
l,u (s; i, j) = 1

σ̂l,u(i, j)

√
(s − l + 1)(u − s)

(u − l + 1)(
1

s − l + 1

s∑
t=l

εtiεtj − 1
u − s

u∑
t=s+1

εtiεtj

)

(3.7)

for 1 ≤ l ≤ s < u ≤ n and 1 ≤ i, j ≤ d, where σ̂l,u(i, j) is defined
as in (2.12), and

Cε
lm,um

(s) =
d∑

i=1

d∑
j=i

∣∣∣cε,σ̂
lm,um

(s; i, j)
∣∣∣2 I (max

l≤t<u

∣∣∣cε,σ̂
l,u (t; i, j)

∣∣∣ > ξ e
n

)
(3.8)

for m ∈ Me
l,u.

Proposition 3.3. Suppose that Assumptions 1–3, 4(i), and 5 in
Appendix A are satisfied. If κc

n � n,

max
(i,j): 1≤i,j≤d

max
(l,u): 1≤l<u≤n

max
s: l≤s<u

∣∣∣cε̂,σ̂
l,u (s; i, j) − cε,σ̂

l,u (s; i, j)
∣∣∣

= OP
(√

(log d)(log n)
)

. (3.9)

Proposition 3.3 plays a crucial role in our asymptotic analysis,
indicating that the CUSUM statistics cε̂,σ̂

l,u (s; i, j) can be replaced
by the infeasible ones cε,σ̂

l,u (s; i, j), which are much easier to
handle in the proofs. The following theorem establishes the
convergence result for the estimates of the break points and
break number in the covariance structure of the idiosyncratic
components.

Theorem 3.2. Suppose that Assumptions 1–3, 4(i)(iii), and 5 in
Appendix A are satisfied, κc

n � n, and there exist two positive
constants c2 and c̄2 such that

c2 log2(dn) ≤ ξ e
n ≤ c̄2(κ

e
n/n) · (κe

nω
e
n
)1/2 , (3.10)

where κe
n = min1≤k≤K2+1(η

e
k − ηe

k−1) and ωe
n denotes the

minimum break size (in the idiosyncratic components) defined
in Assumption 4(iii). Then there exists a positive constant ιe

such that

P
(

K̂2 = K2; max
1≤k≤K2

|η̂e
k − ηe

k| < ιeϕe
n,d

)
→ 1, (3.11)

where ϕe
n,d = (n/κe

n)
2 · [log4(nd)/ωe

n
]
.

Remark 3.2. The rate in (3.11) relies on both n and d, making
it substantially different from the convergence result in Theo-
rem 3.1. If the dimension diverges to infinity at a polynomial
rate of n (see Barigozzi, Cho, and Fryzlewicz 2018) and assume
κe

n � n, the rate ϕe
n,d becomes log4 n/ωe

n, slightly faster than that
obtained in Theorem 3 of Barigozzi, Cho, and Fryzlewicz (2018)
when the breaks are sparse in covariance of the idiosyncratic
errors.

4. Practical Issues in the Detection Procedure

In this section, we first extend the so-called Strengthened
Schwarz Information Criterion (SSIC) to our model setting to
determine the number of breaks, and then discuss the choice
of the random scaling quantity σ̂l,u(i, j) in (2.12) and the
thresholding parameter ξ e

n in the WSBS-Cov.
The SSIC is proposed by Fryzlewicz (2014) in the context of

univariate WBS, and some modifications are needed to make it
applicable to our setting. For the break detection in the covari-
ance structure of the common components, when the algorithm
proceeds, we estimate the k candidate break points (arranged in
an increasing order) denoted by η̂c

1|k, . . . , η̂c
k|k with the conven-

tion of η̂c
0|k = 0 and η̂c

k+1|k = n. Letting

ZF̂
t = vech

(
F̂tF̂

ᵀ
t

)
=
(

ZF̂
t,1, . . . , ZF̂

t,q0(q0+1)/2

)ᵀ
and

ZF̂•,j =
(

ZF̂
1,j, . . . , ZF̂

n,j

)ᵀ

for j = 1, . . . , q0(q0+1)/2, we define the SSIC objective function
for the univariate process ZF̂•,j by

SSICc
j (k) = n

2
log σ̂ 2

j (k) + kp(n), k = 0, . . . , K̄, (4.1)

where

σ̂ 2
j (k) = 1

n

n∑
t=1

[
ZF̂

t,j − Z̄F̂
t,j(k)

]2
with

Z̄F̂
t,j(k) = 1

η̂c
i+1|k − η̂c

i|k

η̂c
i+1|k∑

s=η̂c
i|k+1

ZF̂
s,j

for η̂c
i|k + 1 ≤ t ≤ η̂c

i+1|k, i = 0, . . . , k, p(n) = n1/2, and K̄ is
a positive constant which is a prespecified upper bound for the
break number. If there exists a positive integer Kc such that

SSICc
j (Kc + 1) > SSICc

j (Kc) ∀j = 1, . . . , q0(q0 + 1)/2, (4.2)

no further break exists in any dimension of the transformed
factors. Let K̂1 be the smallest number such that (4.2) is satis-
fied, and stop the WBS-Cov algorithm in Section 2.3 when the
number of breaks reaches K̂1. By using SSIC, we avoid choosing
the tuning parameter ξ c

n in the WBS-Cov.
Similarly, we can also use the SSIC to obtain the estimated

break number for the idiosyncratic error components. Let
SSICe

i,j(k) be defined similarly to SSICc
j (k) but with ZF̂

t,j and

Z̄F̂
t,j(k) replaced by

Zε̂
t,ij := ε̂it ε̂jt and Z̄ε̂

t,ij(k) = 1
η̂e

i+1|k − η̂e
i|k

η̂e
i+1|k∑

s=η̂e
i|k+1

Zε̂
s,ij (4.3)

for η̂e
i|k + 1 ≤ t ≤ η̂e

i+1|k, i = 0, . . . , k. Let K̂2 be the smallest
number Ke such that

SSICe
i,j(Ke + 1) > SSICe

i,j(Ke) (4.4)

for all 1 ≤ i, j ≤ d, and thus we obtain the estimated break num-
ber for the idiosyncratic error component. In the construction
of the CUSUM statistic in the WSBS-Cov, we need to define the
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random scaling quantity σ̂l,u(i, j). In the numerical studies, we
let σ̂l,u(i, j) be the differential error median absolute deviation
which is defined by

σ̂l,u(i, j) = medl≤t<u
(∣∣(ε̂t+1,iε̂t+1,j − ε̂tiε̂tj)

− medl≤t<u(ε̂t+1,iε̂t+1,j − ε̂tiε̂tj)
∣∣)

in which medl≤t<u(·) denotes the sample median over the time
interval [l, u) (e.g., Fryzlewicz 2014). An advantage of using
the median absolute deviation is that it provides robust scale
estimation.

When implementing the WBS-Cov and WSBS-Cov algo-
rithms, we have to guarantee sufficient length of the random
intervals to facilitate break detection. When l and u are too close,
σ̂l,u(i, j) may be unbounded, leading to violation of Assump-
tion 5 in Appendix A. Consequently, the CUSUM statistics on
those small intervals would be smaller than the thresholding
parameter so that no breaks could be detected. Therefore, we
introduce a quantity 
n as in Barigozzi, Cho, and Fryzlewicz
(2018), to control the minimum length of the random intervals.
Specifically, Algorithm 4 is used to produce a set of random
intervals in WBS-Cov or WSBS-Cov.

Algorithm 4 Drawing random intervals
Input: n, 
n and Mn ( Mn = Mc

n or Me
n)

Draw Mn pairs of random points uniformly from the set
{1, 2, . . . , n − 4
n};
For each pair, let lm be the smaller random point, and um be
the larger one plus 4
n.

Output: random intervals [lm, um] for m = 1, . . . , Mn

We set Mn = Mc
n = Me

n = 400 in the numerical studies.
By Algorithm 4, the random intervals are produced with length
of at least 4
n. In addition, we also trim each random interval
to keep a distance of 
n to both boundaries, indicating that we
only maximize the CUSUM statistics over the interval [lm +

n, um−
n]. Note that 
n should be much smaller than κc

n and
κe

n. Thus, we choose 
n = ⌊
(log2 n) ∧ (0.25n6/7)

⌋
following

the discussion in Barigozzi, Cho, and Fryzlewicz (2018).
A crucial issue in constructing the sparsified CUSUM statis-

tic in the WSBS-Cov algorithm is the choice of the threshold-
ing parameter ξ e

n. Cho and Fryzlewicz (2015) suggest choosing
this parameter using the CUSUM statistic based on a station-
ary process (e.g., a simulated AR(1) process) under the null
hypothesis of no breaks. However, in practical applications, for
the high-dimensional time series data with latent breaks, it is
often difficult to recover the underlying stationary structure. To
address this problem, we propose an alternative approach to
choose ξ e

n: (i) pre-detect the breaks (e.g., combining the classical
BS-Cov and SSIC without knowing ξ e

n a priori) and remove the
breaks from the high-dimensional covariance matrices through
demeaning using the estimated breaks, that is, generate Zε̂

t,ij −
Z̄ε̂

t,ij(K̃e
n) as in (4.3), where K̃e

n is the preliminary estimate of
the break number obtained in the pre-detection of the idiosyn-
cratic components; (ii) calculate the CUSUM statistics of the
“stationary” process

{
Zε̂

t,ij − Z̄ε̂
t,ij(K̃e

n)
}

for each pair (i, j) and

then take the maximum as the chosen thresholding parame-
ter ξ e

n. This technique is more computationally intensive than
any formula-based threshold selection procedures; however,
we have found that it performs well in the numerical studies
reported in Section 5.

5. Monte Carlo Simulation

In this section, we provide a simulation study to compare the
finite-sample performance between the proposed methods and
the method proposed by Barigozzi, Cho, and Fryzlewicz (2018),
and examine the performance of our methods in the weak factor
structure. Additional simulation studies are given in Appendix
F of the supplementary materials, where the proposed methods
are compared with various other competing methods that we
designed. Each of these methods differs from the method pre-
sented in our main text in only one step. Like ablation studies
that are commonly conducted in deep learning research, they
help to gain a better understanding of our methods. Since these
alternative methods are not designed for practical use, nor are
they theoretically justified, we keep them in the supplementary
materials.

We consider the following factor model to generate data:

Xti =
r∑

j=1
λij,tFtj + √

θεti, i = 1, . . . , d, t = 1, . . . , n, (5.1)

where θ > 0 is used to control the signal-to-noise ratio. The
replication number in each simulation cases is set to be R =
100. For the 100 simulated samples, we report the estimated
number of break(s) as well as the accuracy measure for each
break location ηk defined by

ACUk = 100%×
[

1
100

·
100∑
i=1

I
(

min
l=1,...,K̂(i)

|η̂l(i) − ηk| ≤ log n

)]
,

(5.2)
for k = 1, . . . , K, where K denotes the break number K1 or
K2, K̂(i) is the corresponding break number estimate in the ith
simulated sample, ηk denotes either ηc

k or ηe
k, and η̂l(i), l =

1, . . . , K̂(i), are the break point estimates in the ith simulated
sample,

Example 5.1. We use model (5.1) to generate the data in sim-
ulation, where θ = 0.5, the number of factors is r = 5, the
sample size is n = 400, and the dimension is d = 200. The factor
process Ft = (Ft1, . . . , Ft5)ᵀ is generated from a multivariate
normal distribution N5

(
0, �∗

F
)

independently over t, where �∗
F

is a covariance matrix with one break specified as follows: for
1 ≤ t ≤ ηc

1 = 133, φF
j , the square root of the jth diagonal

element of �∗
F , is independently generated from a uniform

distribution U(0.5, 1.5), and the (i, j)-entry of �∗
F is defined

as φF
i φF

j (0.5)|i−j| for 1 ≤ i �= j ≤ 5; for ηc
1 < t ≤

n, the (1,2) and (2,1)-entries of �∗
F change from 0.5φF

1 φF
2 to

0.9φF
1 φF

2 , and φF
5 is replaced by 1.3φF

5 resulting in structural
breaks in (5, j) and (j, 5)-entries of �∗

F . For 1 ≤ t ≤ ηc
2 =

267, the factor loadings λij are independently generated from
a uniform distribution U(−1, 1); whereas for ηc

2 < t ≤ n,
the factor loadings corresponding to the first two factors are
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Table 1. Comparison of break detection results.

Common components Idiosyncratic error components

Methods # break(%) ACU1(%) ACU2(%) # break(%) ACU1(%) ACU2(%) ACU3(%)

0 1 2 > 2 ηc
1 = 133 ηc

2 = 267 < 3 3 > 3 ηe
1 = 100 ηe

2 = 200 ηe
3 = 300

�e
1 = 1 W(S)BS-Cov 0 2 98 0 65 93 0 100 0 100 100 100

BCF 12 86 2 0 0 78 0 100 0 100 100 100
�e

1 = 0.5 W(S)BS-Cov 0 2 98 0 64 95 5 95 0 100 96 99
BCF 12 87 1 0 0 81 26 74 0 86 95 83

�e
1 = 0.1 W(S)BS-Cov 0 3 97 0 64 95 67 33 0 73 58 71

BCF 11 88 1 0 0 81 100 0 0 3 14 1

regenerated by a new uniform distribution U(−1, 1). Therefore,
there are two structural breaks in the covariance structure of
the common components covering cases (i) and (ii) discussed in
Section 2.1.

The idiosyncratic errors εt follow a multivariate normal dis-
tribution Nd (0, �ε) independently over t, where φj, the square
root of the jth diagonal element of �ε , is generated from an
independent uniform distribution U(0.5, 1.5), and the (i, j)-
entry of �ε is φiφj(−0.5)|i−j| for 1 ≤ i �= j ≤ d. There are
three breaks, ηe

1 = �n/4� = 100, ηe
2 = �n/2� = 200 and

ηe
3 = �3n/4� = 300, in the idiosyncratic error components.

At each of the break points, we swap the orders of
⌊
�e

1d/2
⌋

randomly selected pairs of elements of εt with �e
1 chosen as 1, 0.5

and 0.1. Note that �e
1 = 0.1 indicates that the structural breaks

are sparse in the high-dimensional error components, whereas
�e

1 = 1 indicates that the breaks are dense.
Table 1 reports the simulation result, where “W(S)BS-

Cov” denotes our proposed methods and “BCF” denotes the
method proposed by Barigozzi, Cho, and Fryzlewicz (2018)
which combines the wavelet-based transformation and the
double-CUSUM method. We find that the proposed WBS-
Cov method has better finite-sample performance in detecting
breaks in the common components with more accurate
estimated break number and the higher ACU, whereas “BCF”
tends to neglect the first break and thus under-estimate the
number of breaks. For the break detection in the idiosyncratic
error components, when �e

1 = 1, the proposed WSBS-Cov
method and “BCF” perform equally well. However, when
�e

1 = 0.5 and 0.1, the WSBS-Cov method clearly outperforms
“BCF.”

We next consider an example with breaks in the weak fac-
tor structure. When factor loadings for the transformed factor
model in (2.4) satisfies μk

(
��ᵀ

��
)

= oP(d), we call the kth
factor as a weak factor. Although our asymptotic framework
(see Assumption 2(ii)) rules out this scenario, we provide the
following simulation to examine the effect of weak factors to the
proposed break detection methods.

Example 5.2. We use model (5.1) with a setting similar to
Freyaldenhoven (2021) to generate the data, where the number
of factors is r = 9, θ = 1.5, the sample size is n = 400, and the
dimension is d = 200. The factor process Ft is generated from a
multivariate normal distribution N9 (0, I9) independently over
t. The jth factor only affects dj elements of the d-dimensional
observation vector, indicating that the factor loading matrix is

sparse with dj nonzero entries in its jth column. The position
of nonzero entries are randomly selected, and their values
are drawn from N (1, 1) independently. We set (d1, . . . , d9) =(
d,
⌊

d0.85⌋ ,
⌊

d0.75⌋ ,
⌊

d2/3⌋ ,
⌊

d2/3⌋ ,
⌊

d0.6⌋ ,
⌊

d1/3⌋ ,
⌊

d1/4⌋ ,⌊
log(d)

⌋)
.

We set two breaks for the common components: ηc
1 = 100

and ηc
2 = 300 and consider nine cases in the simulation. Case j

represents a set-up in which breaks only occur on the jth column
of the factor loading matrix. Specifically, independently for the
three periods: 1 ≤ t ≤ 100, 101 ≤ t ≤ 300, and 301 ≤ t ≤ 400,
the position of nonzero entries in the jth factor loading vector
is randomly selected with its value independently regenerated.
For the idiosyncratic error components, as in Freyaldenhoven
(2021), we let εt = Aεet and generate et = (et1, . . . , etd)

ᵀ
by

eti = ρeet−1,i + (1 − ρ2
e )1/2vti,

vti = ρvvt−1,i + (1 − ρ2
v )1/2ue,ti,

where ue,ti are independently drawn from N(0, 1), and (ρe, ρv) =
(0.3, 0.1). We set two break points on Aε : ηe

1 = 150 and ηe
2 =

250. For 1 ≤ t ≤ 150, we first generate a tridiagonal matrix Ãε

with all diagonal entries being one and the other nonzero entries
drawn from U(0.5, 1.5), and then standardize Ãε by letting each
row multiply a constant so that the row sum of squares is one to
define Aε . The matrix Aε is randomly regenerated in the same
way for 151 ≤ t ≤ 250 and 251 ≤ t ≤ 400.

As shown by Freyaldenhoven (2021), the classic PCA esti-
mators are consistent only for the “relevant” factors whose cor-
responding dj is of an order larger than d1/2. Hence, the number
of relevant factors is 6 in the simulated weak factor model. By the
factor model transformation mechanism in Proposition 2.1, we
expect that the number of factors should be 8 for cases 1–6 (6
relevant factors plus 2 extra factors due to factor transformation
accommodating breaks), and 6 in cases 7–9. Table 2 reports the
simulation results for the break detection. We find that the factor
number is over-estimated in all cases. The break numbers and
locations in both the common and idiosyncratic components are
correctly estimated in general when breaks occur in the relevant
factors which are relatively strong (cases 1–3). The break detec-
tion results are less accurate when there are breaks in loadings
of relevant factors which are relatively weak (cases 4–6). In
cases 7–9, since weak factors with breaks in the loadings are
not selected as the relevant factors via the information criterion,
the proposed WBS-Cov method cannot detect either of the two
breaks in the common components.
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Table 2. Detection results with breaks on weak factors.

Common components Idiosyncratic error components

q̂ # break(%) ACU1(%) ACU2(%) # break(%) ACU1(%) ACU2(%)

0 1 2 > 2 ηc
1 = 100 ηc

2 = 300 0 1 2 > 2 ηe
1 = 150 ηe

2 = 250

Case 1 8.94 0 0 100 0 85 85 0 1 98 1 98 100
Case 2 8.92 0 0 100 0 87 93 0 0 100 0 100 100
Case 3 8.93 0 0 100 0 81 87 0 1 99 0 100 99
Case 4 8.72 3 2 95 0 84 84 0 0 95 5 89 98
Case 5 8.65 1 4 95 0 83 83 0 1 93 6 88 96
Case 6 8.02 21 10 69 0 73 73 0 1 73 26 78 74
Case 7 6.60 100 0 0 0 0 0 0 2 86 12 70 73
Case 8 6.84 100 0 0 0 0 0 0 0 92 8 91 89
Case 9 6.49 100 0 0 0 0 0 0 0 82 18 67 75

6. An Empirical Application

In this section, we use the proposed methods to detect breaks in
the contemporaneous covariance structure of the daily returns
of S&P 500 constituents.

6.1. Break Detection in Covariances

The data are retrieved from Refinitiv Datastream database (for-
merly Thomson Reuters Datastream), covering the time period
from January 01, 2000 to February 28, 2021. We consider 375
firms listed on the S&P 500 index over the entire time period. Let
Xit denote the demeaned percentage price change (without rein-
vesting of dividends) of equity i at time t, where i = 1, . . . , 375
and t = 1, . . . , 5322. We fit the factor model (2.2) to the data
with Xt = (X1t , . . . , X375,t)ᵀ, allowing structural breaks in
the covariance matrices of both the common and idiosyncratic
components.

The information criterion introduced in Section 2.2 selects
nine factors (with appropriate transformation), that is, q̂ = 9.
We set 
n = 20 and Mc

n = Me
n = 1000 in the WBS-Cov

and WSBS-Cov algorithms. Combined with SSIC, the WBS-
Cov algorithm detects five breaks in the covariance matrix
of the common components, and the WSBS-Cov algorithm
detects three breaks in the idiosyncratic components. We plot
the estimated break times on the series of the S&P 500 index
and its returns in Figure 1, where the red vertical lines denote
breaks in the common components and the blue dotted vertical
lines denote breaks in the idiosyncratic components. Among
the five breaks in the common components, two occur during
the period of a bearish market from 2000 to 2003, two occur
in 2008 and 2009 during the global financial crisis, and one
occurs recently due to the COVID-19 outbreak. Among the
three breaks in the idiosyncratic errors, the first break occurs
around the end of 2002, the second and third breaks occur in
2008 and 2009.

6.2. Calibration

We next provide a simulation using the factor model with cali-
brated parameters from the empirical study, and aim to further
examine the proposed break detection methods in finite sam-
ples.

• Generate a simulated dataset with n = 5322 and d = 375 as
the real data.

• Consider six sub-periods separated by the five estimated
break dates in the common components (see the red lines
in Figure 1) and use the PCA estimated factor loadings.
The factors are drawn from a standard normal distribution
independently over time and across dimension.

• Divide the estimated idiosyncratic errors into four segments
split by the three estimated breaks in idiosyncratic compo-
nents (see the blue dotted lines in Figure 1), and separately
estimate their sample covariance matrices. For each seg-
ment, generate idiosyncratic errors by a multivariate normal
distribution independently over time with mean zero and
covariance matrix being the sample covariance matrix.

The above generating mechanism guarantees the simulated
covariance structure to be the same as that for the empirical
data. As in the simulation study in Section 5, we repeat the
simulation procedure 100 times and report the break detection
results. For simplicity, we fix ξ e

n = 95.99 in WSBS-Cov, which
is calculated by applying the method in Section 4 to the real
data. Table 3 reports the average break number estimates, the
number of times that the estimated break is within a distance
of log(n) ≈ 8.6 to the true break, denoted as ACU, and
the root-mean-squared distance of the closest estimated break
to the true break, denoted as RMSE. Except for the first two
breaks (April 24, 2000 and November 25, 2002) in the common
components, ACUs are larger than 95% and RMSEs are smaller
than 4, indicating that the break dates are accurately detected.
The low ACUs and large RMSEs of the first two breaks may
be due to the relatively weak break magnitude. The estimated
break numbers reported in Table 3 are slightly larger than the
true break numbers (5 for the common components and 3 for
the idiosyncratic components). In addition, we also fix q0 = 12
in the break detection procedures and obtain similar simulation
results, showing that the proposed methods work when the
factor number is over-estimated.

6.3. Comparison with Observed Risk Factors

As a benchmark, we also download eight observable risk fac-
tors (over January 01, 2000–February 28, 2021) from Kenneth
R. French’s data library1 and study breaks in their covariance
structure. These risk factors include the excess return (MKT),
the size factor (SMB), the value factor (HML), the profitability

1http://mba.tuck.dartmouth.edu/pages/ faculty/ken.french/data_library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 1. The detected break times in the covariance structure of the 375 daily returns of the S&P 500 constituents from January 01, 2000 to February 28, 2021. The
estimated break dates for common components are April 24, 2000, November 25, 2002, September 12, 2008, May 08, 2009 and March 06, 2020 (in red lines); and the
estimated break dates for idiosyncratic components are August 06, 2002, September 11, 2008 and May 11, 2009 (in blue dotted lines).

Table 3. Detection results on calibrated data.

W(S)BS-Cov W(S)BS-Cov (fix q0 = 12)
Mean K̂1 5.01 5.02
Mean K̂2 3.31 3.08

ACU(%) RMSE ACU(%) RMSE

Breaks in common components
24/04/2000 79 8.721 79 8.731
25/11/2002 88 5.725 85 6.813
12/09/2008 99 1.643 100 1.300
08/05/2009 99 2.502 99 2.240
06/03/2020 97 3.838 97 3.929
Breaks in idiosyncratic error components
06/08/2002 97 3.425 96 2.466
11/09/2008 100 1.503 100 1.562
11/05/2009 99 2.995 99 1.912

factor (RMW) and the investment factor (CMA) introduced by
Fama and French (1993, 2015); the Momentum factor (MOM)
proposed by Carhart (1997) in a four-factor model; and the
short term reversal factor (STRev) and the long-term reversal
factor (LTRev) which are less famous but equally important (see
De Bondt and Thaler 1987; Lehmann 1990). They are often
used as observable proxies of latent factors in the approximate
factor model. We plot patterns of observed factors in Figure 2,
from which we can see that they vary drastically during the
global financial crisis and the COVID-19 outbreak. Let Zt =
(Z1t , . . . , Z8t)ᵀ denote the vector containing the eight risk fac-
tors, t = 1, . . . , 5322. As the dimension of Zt is low, there is no
need to impose the approximate factor model framework. Using
the WBS-Cov algorithm (without any latent factor structure) in
Section 2.3, we detect five break dates: April 19, 2001, July 01,
2008, September 12, 2008, May 13, 2009 and March 06, 2020.

Note that the first two estimated break dates (April 19, 2001
and July 01, 2008) are quite different from the first two break
dates (April 24, 2000 and November 25, 2002) in the common
components obtained by applying the proposed WBS-Cov to
the estimated factors, see Figure 1. Table 4 shows the canonical
correlation between the estimated factors and observed factors
for the entire sample and six subsamples divided by the esti-
mated break dates in the common components. p-values are
reported in the brackets using the F-approximations of Rao’s
test statistic related to Wilks’ Lambda (see Rao 1973). Some of
the minimum canonical correlations are small and insignificant,
indicating that the space spanned by the eight observed factors
may be not the same as that spanned by the nine PCA estimated
factors.

To further analyze whether breaks in the common compo-
nents can be explained by the observed factors, we run regres-
sion of stock returns on the eight observed factors and detect
whether breaks exist in covariances of the regression residuals.
We apply the factor model (2.2) to the residual vectors and use
the information criterion to select six factors. Using WBS-Cov,
we detect six breaks in the common components (of the residual
vectors): April 20, 2000, November 22, 2002, July 07, 2008,
September 26, 2008, May 08, 2009 and March 06, 2020, and
one break in the idiosyncratic components which is August 12,
2002. Note that the first two breaks in the common components
April 20, 2000 and November 22, 2002 are very close to April 24,
2000 and November 25, 2002, respectively, which are reported
in Figure 1. Hence, we may conclude that break detection of a
low-dimensional observed risk factor cannot fully capture struc-
tural breaks in covariance of price changes in the entire stock
market.
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Figure 2. Variation of eight commonly used risk factors from January 01, 2000 to February 28, 2021. The estimated break dates are April 19, 2001, July 01, 2008, September
12, 2008, May 13, 2009 and March 06, 2020 (in red lines).

Table 4. Canonical correlation between estimated factors and observed factors.

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Total

From 01/01/2000 25/04/2000 26/11/2002 13/09/2008 09/05/2009 07/03/2020 01/01/2000
To 24/04/2000 25/11/2002 12/09/2008 08/05/2009 06/03/2020 28/02/2021 28/02/2021

First 0.988 0.984 0.993 0.998 0.994 0.996 0.990
p-value 1:8 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Second 0.964 0.898 0.873 0.947 0.861 0.949 0.850
p-value 2:8 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Third 0.742 0.588 0.817 0.877 0.651 0.784 0.726
p-value 3:8 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Fourth 0.605 0.508 0.627 0.760 0.553 0.577 0.554
p-value 4:8 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Fifth 0.517 0.359 0.444 0.615 0.384 0.383 0.292
p-value 5:8 (0.007) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Sixth 0.418 0.280 0.239 0.431 0.256 0.308 0.207
p-value 6:8 (0.129) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Seventh 0.259 0.107 0.134 0.398 0.155 0.219 0.119
p-value 7:8 (0.605) (0.255) (0.000) (0.000) (0.000) (0.007) (0.000)

Eighth 0.051 0.027 0.087 0.256 0.022 0.160 0.039
p-value 8:8 (0.916) (0.795) (0.004) (0.005) (0.510) (0.047) (0.019)

NOTE: p-values are reported in the brackets using the F-approximations of Rao’s test statistics related to Wilks’ Lambda.

7. Conclusion

In this article, we detect and estimate multiple structural breaks
in the contemporaneous covariance structure of the high-
dimensional time series vector. We allow high correlation
between the time series variables by imposing the approximate
factor model, a commonly-used framework in economics and
finance. The structural breaks occur in either the common
or idiosyncratic error components. When there are breaks in
the factor loadings or factor numbers, we transform the factor
model in order to make the classic PCA method applicable and

subsequently obtain estimates of the transformed factors and
approximation of the idiosyncratic errors. The construction of
the CUSUM quantities is based on the second-order moments of
the estimated factors and errors. The WBS algorithm introduced
by Fryzlewicz (2014), combined with SSIC, is extended to the
multivariate setting to detect breaks in covariance structure of
the common components, estimating the location and number
of breaks. For the idiosyncratic error components, we combine
the WBS-Cov algorithm and the sparsified CUSUM statistic to
detect structural breaks (which can be either sparse or dense),
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extending the SBS algorithm proposed by Cho and Fryzlewicz
(2015). Under some regularity conditions, we show consistency
of the estimated break numbers and derive the near-optimal
rates (up to a fourth-order logarithmic factor) for the estimated
breaks. Monte Carlo simulation studies are conducted to
examine the numerical performance of the proposed WBS-Cov
and WSBS-Cov methods in finite samples and its comparison
with the method introduced by Barigozzi, Cho, and Fryzlewicz
(2018). In addition, we examine performance of the proposed
methods when breaks are on weak factors. In the empirical
application to the return series of S&P 500 constituent, we detect
five break in the common components and three breaks in the
idiosyncratic error components by the developed methods.

Appendix A: Technical Assumptions

The following assumptions are needed to establish the asymptotic
theorems in Sections 3.1 and 3.2. Some of the conditions (such as the
moment conditions) may be not the weakest possible but can be relaxed
at the cost of more lengthy proofs.

Assumption 1.

(i) For each k = 1, . . . , K1 + 1, the process {(Ft,k, εt)} is α-mixing
dependent with the mixing coefficient αk(·) satisfying

max
1≤k≤K1+1

αk(s) � ρs, 0 < ρ < 1.

(ii) For k = 1, . . . , K1 + 1 and j = 1, . . . , d, E[Ft,k] = 0, E[εt] = 0
and E[εtjFt,k] = 0. In addition,

max
1≤k≤K1+1

max
ηc

k−1+1≤t≤ηc
k

E[||Ft,k||δF
2 ] < ∞, max

1≤t≤n
max

1≤j≤d
E[|εtj|δε ] < ∞,

where δF > 2 and δε > 2.

Assumption 2.

(i) For k = 1, . . . , K1 + 1, the covariance matrix cov(Ft,k) = �F,k
of the latent factors when ηc

k−1 + 1 ≤ t ≤ ηc
k, is rk × rk positive

definite. The positive integers K1 and rk, k = 1, . . . , K1 + 1, are all
bounded.

(ii) Letting λ0
k,j be the jth factor loading vector of �0

k defined in (2.2),
||λ0

k,j||2 is bounded from above uniformly over j = 1, . . . , d and

k = 1, . . . , K1 + 1. In addition, letting �̄ =
[
�0

1, . . . , �0
K1+1

]
which is a d × ∑K1+1

k=1 rk matrix, the column rank of �̄ is q0 and
there exist positive constants μ and μ such that

0 < μ ≤ μq0

(
1
d
�̄

ᵀ
�̄

)
≤ μ1

(
1
d
�̄

ᵀ
�̄

)
≤ μ < ∞. (A.1)

Assumption 3.

(i) There exists a positive constant ι0 such that

max
1≤k≤K1+1

max
1≤t≤n

E

⎡
⎢⎣
∥∥∥∥∥∥

d∑
j=1

λ0
k,jεtj

∥∥∥∥∥∥
δε

2

⎤
⎥⎦ ≤ ι0 · dδε/2 (A.2)

and

max
1≤s,t≤n

E

⎡
⎢⎣
∣∣∣∣∣∣

d∑
j=1

{
εsjεtj − E

[
εsjεtj

]}∣∣∣∣∣∣
δε
⎤
⎥⎦ ≤ ι0 · dδε/2. (A.3)

(ii) There exists a positive constant ι1 > 0 such that

max
1≤j≤d

max
1≤t≤n

E
[

exp
{
ι1ε2

tj
}]

< ∞,

max
1≤k≤K1+1

max
ηc

k−1+1≤t≤ηc
k

E
[

exp
{
ι1||Ft,k||22

}]
< ∞. (A.4)

Assumption 4.

(i) There exist positive constants ι2, ι3, and ϑ such that

ι2 log5+ϑ (d) ≤ n ≤ ι3dδ/(δ+4),

where δ = δF ∧ δε .
(ii) Letting κc

n = min1≤k≤K1+1(η
c
k − ηc

k−1),

ωc
n = 1

d2 · min
1≤k≤K1

∥∥∥�0
k+1(�, F) − �0

k(�, F)

∥∥∥2

F

and

ωc
n = 1

d2 · max
1≤k≤K1

∥∥∥�0
k+1(�, F) − �0

k(�, F)

∥∥∥2

F
,

we have

κc
n � n,

ωc
n

ωc
n

· κc
nωc

n
log4 n

→ ∞, Mc
n → ∞,

where Mc
n is the number of random intervals drawn in the WBS-

Cov algorithm.
(iii) Letting κe

n = min1≤k≤K2+1(η
e
k − ηe

k−1),

ωe
n = min

1≤k≤K2
min

(i,j)∈Ik

∣∣∣σ e
k+1|i,j − σ e

k|i,j
∣∣∣2 ,

ωe
n = max

1≤k≤K2
max

(i,j)∈Ik

∣∣∣σ e
k+1|i,j − σ e

k|i,j
∣∣∣2 ,

where Ik =
{
(i, j) : σ e

k+1|i,j �= σ e
k|i,j, 1 ≤ i, j ≤ d

}
and σ e

k|i,j is the
(i, j)-entry of �0

k(ε), we have

ωe
n � ωe

n,
κe

nωe
n

log4(nd)
·
(

κe
n

n

)4
→ ∞,

[
1 − (

κe
n/(3n)

)2
]Me

n → 0,

where Me
n is the number of random intervals drawn in the WSBS-

Cov algorithm.

Assumption 5. There exist 0 < σ < σ < ∞ such that

σ ≤ min
(l,u): 1≤l<u≤n

min
1≤i,j≤d

σ̂l,u(i, j) ≤ max
(l,u): 1≤l<u≤n

max
1≤i,j≤d

σ̂l,u(i, j) ≤ σ

with probability approaching one, where σ̂l,u(i, j) is defined in (2.12).
In addition, σ̂l,u(i, j) = σ̂l,u(j, i).

The assumption of mixing dependence on the latent common factor
and idiosyncratic error process in Assumption 1(i) is very mild and
covers some commonly-used vector time series models. Note that
the α-mixing dependence condition allows the underlying process
to be nonstationary with time-varying covariance structure (e.g., the
piece-wise stationary time series process with breaks in the covariance
matrix). The moment conditions in Assumptions 1(ii) and 3 are crucial
to consistently estimate the factors and factor loadings (with rotation)
in the transformed factor model (2.4).

Assumption 2 contains some fundamental conditions for the
approximate factor model (2.2), which can be seen as a generalized
version of those for the stable factor model without breaks (e.g.,
Bai and Ng 2002; Fan, Liao, and Mincheva 2013). These conditions,
together with κc

n � n in Assumption 4(ii), indicate that there exists
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a nonsingular limiting matrix for 1
n
∑n

t=1 F�
t F�ᵀ

t and �� is of full
column rank (see Proposition 3.1), which are essential to derive the
convergence result for the PCA estimated factors and factor loadings.
In addition, Assumption 2 also guarantees that ωc

n = O(1).
The moment conditions (A.2) and (A.3) in Assumption 3(i) imply

that the idiosyncratic errors εtj are allowed to be weakly dependent over
j. Similar high-level moment conditions can be found in Assumption 4
in Bai and Ng (2002) and Assumption 3.4 in Fan, Liao, and Mincheva
(2013). Assumption 3(ii) is similar to the exponential-tail condition
commonly used in high-dimensional data analysis and is needed to
allow the dimension d to be divergent at an exponential rate of n.

Assumption 4(i) indicates that both d and n diverge to infinity
jointly, which is a typical large panel data setting necessary for consis-
tent estimates of the rotated factors and factor loadings. A very similar
assumption is also used in Theorem 1 of Fan, Liao, and Mincheva
(2013). In particular, Assumption 4(i) shows that d can be divergent to
infinity at an exponential rate of n, further relaxing the corresponding
condition assumed in Barigozzi, Cho, and Fryzlewicz (2018) and Wang,
Yu, and Rinaldo (2021). Although the restriction n ≤ ι3dδ/(δ+4)

indicates that n is of smaller asymptotic order than d, our methodology
is still applicable if n is much larger than d by switching the role of n and
d and the role of the factor loadings and common factors in the PCA
estimation (see sec. 3 in Bai and Li 2012). Assumption 4(ii) is mainly
used for the asymptotics of WBS-Cov in the common components,
and would be automatically satisfied when ι4 ≤ ωc

n ≤ ωc
n ≤ ι5

and Mc
n = ⌊

log n
⌋

, where ι4 < ι5 are two positive constants.
Assumption 4(iii) is mainly used to derive the WSBS-Cov asymptotic
theory in the idiosyncratic error components. The restriction ωe

n � ωe
n

is only imposed to facilitate the proofs. The restrictions on ωc
n and ωe

n
are consistent with the argument in Andrews (1993) and Bai (1997)
that the break points can be identified only if the size of breaks, that is,
(ωc

n)1/2 and (ωe
n)1/2 in our article, is asymptotically larger than n−1/2.

Assumption 4(iii) also indicates that there might be more frequent
breaks in the idiosyncratic error components than in the common

components, and the restriction κe
nωe

n
log4(nd)

·
(

κe
n

n

)4 → ∞ would be

automatically satisfied when κe
n � n� and

(
ωe

nn5�−4
)

/ log4(nd) →
∞ with � ∈ (4/5, 1]. In contrast, the minimum length κc

n of the
subintervals separated by break points in the common components
is of order n. Assumption 5 requires the random normalizers in the
WSBS-Cov to be uniformly bounded away from zero and infinity with
probability approaching one.

In Assumption 2(i), we assume that K1 and rk, k = 1, . . . , K1, are all
bounded, which indicates that q0, the number of transformed factors in
(2.4), is upper bounded by Proposition 2.1. This assumption facilitates
proofs of the consistent estimation theory for the transformed factors
and factor loadings and consistent break estimation theory. It would be
an interesting extension by allowing the break numbers K1 and K2 to
grow slowly as n → ∞. In this case, q0 would be divergent as well,
and the condition of κc

n � n would be violated. Consequently, we need
to amend the estimation and break detection techniques, and modify
some technical assumptions (such as Assumption 4) and the asymptotic
proofs. We will further explore this in our future study.

Supplementary Materials

The supplementary materials contains the detailed proofs of the main
asymptotic results, a simple motivating example for the factor model trans-
formation as well as additional simulation studies.
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