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Abstract
We propose a new method for changepoint estimation
in partially observed, high-dimensional time series that
undergo a simultaneous change in mean in a sparse sub-
set of coordinates. Our first methodological contribution
is to introduce a ‘MissCUSUM’ transformation (a gener-
alisation of the popular cumulative sum statistics), that
captures the interaction between the signal strength and
the level of missingness in each coordinate. In order to bor-
row strength across the coordinates, we propose to project
these MissCUSUM statistics along a direction found as
the solution to a penalised optimisation problem tailored
to the specific sparsity structure. The changepoint can
then be estimated as the location of the peak of the abso-
lute value of the projected univariate series. In a model
that allows different missingness probabilities in differ-
ent component series, we identify that the key interaction
between the missingness and the signal is a weighted
sum of squares of the signal change in each coordinate,
with weights given by the observation probabilities. More
specifically, we prove that the angle between the estimated
and oracle projection directions, as well as the change-
point location error, are controlled with high probability
by the sum of two terms, both involving this weighted
sum of squares, and representing the error incurred due
to noise and the error due to missingness respectively.
A lower bound confirms that our changepoint estimator,
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which we call MissInspect, is optimal up to a loga-
rithmic factor. The striking effectiveness of the MissIn-
spectmethodology is further demonstrated both on sim-
ulated data, and on an oceanographic data set covering the
Neogene period.
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1 INTRODUCTION

The Big Data era offers the exciting prospect of being able to transform our understanding of
many scientific phenomena, but at the same time many traditional statistical techniques may
perform poorly, or may no longer be computable at all, when applied to contemporary data chal-
lenges. A core assumption that underpins much of statistical theory, as well as the way in which
we think about statistical modelling, is that our data are realisations of independent and iden-
tically distributed random variables. However, practical experience reveals that this is typically
unrealistic for modern data sets, and developing methods and theory to handle departures from
this important but limited setting represents a key theme for the field.

In contexts where data are collected over time, one of the simplest generalisations of an
independent and identically distributed data stream is given by changepoint models. Here, we pos-
tulate that our data may be segmented into shorter, homogeneous series. Of course, the structural
break, or changepoint, between these series is often of interest in applications, such as distributed
denial of service monitoring of network traffic (Peng et al., 2004), disease progression tracking via
the alignment of electronic medical records (Huopaniemi et al., 2014) and the analysis of ‘shocks’
in stock price data (Chen & Gupta, 1997).

Another issue that turns out to be critical in working with Big Data in practice is that of
missing data. One reason for this is that when each observation is high-dimensional, it is fre-
quently the case that most or even every observation has missingness in some coordinates; thus
a complete-case analysis, which simply discards such observations, is unviable (Zhu et al., 2019).

The aim of this paper is to study the core, high-dimensional changepoint problem of a sparse
change in mean, but where our data are corrupted by missingness. In fact, in cases where our
data arise as discrete observations of several continuous processes, the observation times in dif-
ferent coordinates may not be the same, and such a setting also fits within our framework. A key
feature of both our methodology and theory is that we wish to be able to handle heterogeneous
missingness, that is, where the levels of missingness may differ across coordinates. Specifically,
our primary theoretical goal is to understand the way in which the missingness interacts with the
signal strengths in the different series to determine the difficulty of the problem.

In Section 2, we consider a setting where the practitioner has access to a partially observed
p×n data matrix, where p is the number of series (coordinates) being monitored, and n is the num-
ber of time points. We seek to identify a time at which the p-dimensional mean vector changes,
in at least one coordinate. One of the key ideas that underpins our methodological contribution
is to define a new version of the popular cumulative sum (CUSUM) transformation (Page, 1955)
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that is able to handle the missingness appropriately. This operation, which we refer to as the Miss-
CUSUM transformation, returns a p × (n − 1) matrix, and the intuition is that in coordinates that
undergo a change in mean, the transformed series should peak in absolute value near the change-
point. One of the main advantages of our proposal is that it avoids the need to impute missing
data1.

Since the changepoint location is shared across the signal coordinates, it is natural to seek to
borrow strength across the different data streams to estimate the changepoint. To this end, our
next goal is to estimate a projection direction, in order to convert the MissCUSUM transforma-
tion into a univariate CUSUM series. Such a projection direction should ideally maximise the
signal-to-noise ratio of the projected series. When the data are fully observed, the oracle projection
direction turns out to be the leading left singular vector of the (rank one) CUSUM transforma-
tion of the mean matrix. This facilitates estimation approaches based on entrywise 𝓁1-penalised
M-estimation, as in the inspect algorithm of Wang and Samworth (2018). A crucial difference
when we have to handle missing data, however, is that the MissCUSUM transformation of the
mean matrix is no longer of rank one, which means that the entrywise 𝓁1-penalty no longer ade-
quately captures the sparsity structure of the vector of mean change. Instead, we introduce a
new optimisation problem that penalises the 𝓁1-norm of the leading left singular vector of a rank
one approximation of the MissCUSUM transformation. This methodological proposal, which we
call MissInspect, leads to considerably improved performance. Implementation code for our
method is available in the GitHub repository https://github.com/wangtengyao/MissInspect and
in the R package InspectChangepoint (Wang et al., 2022).

A further benefit of theMissInspectmethodology is that it is amenable to theoretical analy-
sis. In particular, we study a missing completely at random (MCAR) model with row homogeneous
missingness; in other words, the observation probability remains constant in each row, but may
vary arbitrarily across rows. In Proposition 1 in Section 3, we provide a high-probability bound on
the angle between the estimated and oracle projection directions. Theorems 1 and 2 then estab-
lish high-probability bounds on the accuracy of the estimated changepoint location whenever
the estimated and oracle projection directions are sufficiently well aligned, for a sample splitting
variant of our algorithm. Theorem 1 provides a very general guarantee, while Theorem 2 estab-
lishes a faster rate whenever the observation probability in each row satisfies a lower bound. This
faster rate comprises two terms, representing the error incurred due to noise in the observations,
and the error due to missingness respectively. The key quantity in both of these terms turns out
to be a weighted Euclidean norm of the vector of mean change, where the weights are given by
the observation probabilities in each row. This weighted average therefore captures the interac-
tion between the signal strength and the missingness probabilities, and suggests that our analysis
handles effectively the heterogeneity of the missingness across rows (a more naive analysis would
see the worst-case observation probability appearing in the bounds). This intuition is confirmed
by our minimax lower bound (Theorem 3), which indicates that the MissInspect algorithm
attains the minimax rate of convergence in all problem parameters, up to a logarithmic factor.

Section 4 explores the empirical performance of our MissInspect methodology. We study
the ability of the algorithm to estimate both the oracle projection direction and the changepoint

1In fact, our initial approach to this problem was to consider iterating between imputating missing entries using row
means on either side of a potential changepoint, and then updating the current changepoint location estimate using the
imputed data matrix. This turns out to perform poorly, because the imputation step tends to reinforce bias in the
changepoint estimate, leading to the iterations becoming stuck (potentially far from the true location) very quickly; see
Section 4.3.

https://github.com/wangtengyao/MissInspect
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location, and compare with three alternative approaches. The first two use different imputation
strategies in combination with the inspect algorithm, while the third is an adaptation of the
method of Londschien et al. (2021), which was originally proposed in the context of change-
point problems in dynamic graphical models. We find that the MissInspect algorithm has very
strong numerical performance, and this provides further evidence of its practical utility in missing
data settings. In this section, we also present an application of the MissInspect methodol-
ogy to detect changes in oceanographic currents from carbon isotope measurements extracted
from cores drilled into the ocean floor. Section 5 discusses various methodological and theoreti-
cal extensions of our proposal to more complicated problems, such as the estimation of multiple
changepoints, or more general data generating and missingness mechanisms. Proofs of our main
results are given in Section 6, with auxiliary results deferred to the Appendix in the supplementary
material.

The study of changepoint problems dates at least back to Page (1955), and has since found
applications in many different areas, including genetics (Olshen et al., 2004; Zhang et al., 2010),
disease outbreak watch (Sparks et al., 2010), aerospace engineering (Henry et al., 2010) and func-
tional magnetic resonance imaging studies (Aston & Kirch, 2013), in addition to those already
mentioned. Entry points to the literature include Csörgő and Horváth (1997) and Horváth and
Rice (2014). In high-dimensional changepoint settings, where we may have a sparsity assumption
on the coordinates of change, prior work includes Bai (2010), Zhang et al. (2010), Horváth and
Hušková (2012), Cho and Fryzlewicz (2014), Chan and Walther (2015), Jirak (2015), Cho (2016),
Soh and Chandrasekaran (2017), Wang and Samworth (2018), Enikeeva and Harchaoui (2019),
Padilla et al. (2022) and Liu et al. (2021). Our focus in this work is on the offline version of
the changepoint estimation problem, where the practitioner sees the whole data set prior to
determining a changepoint location. The corresponding online version, where data are observed
sequentially and the challenge is to declare a change as soon as possible after it has occurred, has
also received attention in recent years; see, for example, Mei (2010), Xie and Siegmund (2013),
Chan (2017) and Chen et al. (2022). In addition to Londschien et al. (2021) discussed above, the
only works of which we are aware on changepoint estimation with missing data are those of Xie
et al. (2013), Cao et al. (2019) and Enikeeva and Klopp (2021). Xie et al. (2013) study a situation
where partially observed sequential data lie close to a time-varying, low-dimensional submani-
fold embedded within an ambient space; Cao et al. (2019) consider a sketching approach to online
changepoint detection with missing data, while Enikeeva and Klopp (2021) study the detection
of structural breaks in dynamic networks with missing links.

We conclude this section by introducing some notation that is used throughout the paper.
Given n ∈ N, we let [n] := {1, … , n}. For a vector u = (u1, … ,uM)⊤ ∈ RM , a matrix A = (Aij) ∈

RM×N and for r ∈ [1,∞), we write ||u||r ∶=
(∑M

i=1|ui|
r
)1∕r

and ||A||r ∶=
(∑

i∈[M]
∑

j∈[N] |Aij|
r
)1∕r

for their entrywise 𝓁r-norms, as well as ||u||∞ ∶= max
i∈[M]

|ui| and ||A||∞ ∶= max
i∈[M],j∈[N]

|Aij|. Writ-

ing 𝜎1(A), … , 𝜎s(A) for the non-zero singular values of A, where s := rank(A), we let
||A||op ∶= max

i∈[s]
𝜎i(A), ||A||∗ ∶=

∑s
i=1𝜎i(A) and ||A||F ∶= ||A||2 =

{∑s
i=1𝜎i(A)2

}1∕2 denote its oper-

ator, nuclear and Frobenius norms respectively. We also write ||u||0 ∶=
∑M

i=11{ui≠0}. Given q =

(q1, … , qM)⊤ ∈ [0, 1]M , we write
√

q ∶=
(√

q1, … ,

√
qM
)
⊤ and let ||u||r,q ∶=

(∑M
i=1|ui|

rqi

)1∕r
.

We denote by diag(u) the M × M diagonal matrix with u as its diagonal. For S ⊆ [M] and
T ⊆ [N], we write uS ∶= (ui ∶ i ∈ S)⊤ ∈ R|S| and write AS,T ∈ R|S|×|T| for the sub-matrix of A
obtained by extracting the rows and columns with indices in S and T respectively. For two
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matrices A,B ∈ RM×N , we denote their trace inner product as ⟨A,B⟩ ∶= tr(A⊤B). We also denote
their Hadamard product as A◦B ∈ RM×N . For non-zero vectors u, v ∈ RM , we write

∠(u, v) ∶= cos−1
(
|⟨u, v⟩|
||u||2||v||2

)

for the acute angle bounded between them. We let BM ∶= {RM ∶ ||x||2 ≤ 1} and SM−1 ∶= {x ∈
RM ∶ ||x||2 = 1} denote the unit Euclidean ball and sphere in RM respectively, and define
SM−1(k) ∶= {x ∈ SM−1 ∶ ||x||0 ≤ k}. Given positive sequences (an), (bn), we write an ≲ bn to mean
that there exists a universal constant C > 0 such that an ≤ Cbn for all n.

2 MISSINSPECT METHODOLOGY

Throughout this work, we will assume that the practitioner has access to a partially observed
p × n data matrix. We will denote the full data matrix as X = (Xj,t) ∈ Rp×n, and let Ω = (𝜔j,t) ∈
{0, 1}p×n denote the revelation matrix, so that 𝜔j,t = 1 if Xj,t is observed, and is equal to zero oth-
erwise. Formally, then, we can regard the observed data as (X ◦ Ω, Ω); note here, that since the
practitioner has access to the matrixΩ, they are able to distinguish between an observed zero and
a zero caused by missingness in X ◦Ω. For our theoretical analysis, the ◦ notation is a convenient
way of avoiding the need to introduce an ‘NA’ category for missing values.

In our theory, we will regard X as a realisation of a random matrix, whose mean matrix we
denote by𝝁 = (𝜇1, … , 𝜇n) ∈ Rp×n. The changepoint structure of 𝜇 is encoded via the assumption
that there exist z ∈ [n − 1] and 𝜇(1), 𝜇(2) ∈ Rp with 𝜃 ∶= 𝜇(2) − 𝜇(1) ≠ 0 such that

𝜇1 = · · · = 𝜇z = 𝜇(1) and 𝜇z+1 = · · · = 𝜇n = 𝜇(2). (1)

In Section 3, we will assume that the change in mean is sparse, in the sense that ||𝜃||0 ≤ k for some
k that is typically much smaller than p. However, we remark that our methodology is adaptive to
this unknown sparsity level.

Our goal is to estimate the changepoint location z. To this end, we first introduce a new
version of the CUSUM transformation that is appropriate in our missing data setting. Writing
Lj,t ∶=

∑t
r=1𝜔j,r, Rj,t ∶=

∑n
r=n−t+1𝜔j,r and Nj ∶= Lj,n = Rj,n for j ∈ [p] and t ∈ [n], we define the

MissCUSUM transformation  Miss
p,n ∶ Rp×n × {0, 1}p×n → Rp×(n−1) by

[ Miss
p,n (M,Ω)]j,t ∶=

√
Lj,tRj,n−t

Nj

(

1
Rj,n−t

n∑

r=t+1
(M ◦Ω)j,r −

1
Lj,t

t∑

r=1
(M ◦Ω)j,r

)

when Lj,t > 0 and Rj,n−t > 0, and define [ Miss
p,n (M,Ω)]j,t ∶= 0 otherwise. Since the subscripts p and

n of  Miss
p,n can be inferred from the dimensions of its arguments, we will frequently abbreviate this

transformation as  Miss. We note that this transformation only depends on M through M ◦ Ω. In
practice, we will always apply this transformation to pairs of the form (M ◦Ω,Ω); in other words,
an entry of the first argument is zero whenever the corresponding entry of the second argument
is zero. When the data matrix is fully observed (i.e. Ω is an all-one matrix), the MissCUSUM
transformation reduces to the standard CUSUM transformation  (M) ∶=  Miss(M,Ω).
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A key feature of the MissCUSUM transformation is that it captures the interaction between
the signal strength and the number of observations in each coordinate. To illustrate this, we focus
on a single (jth) coordinate, and the noiseless setting where X = 𝝁. In this case, the peak level of

the absolute MissCUSUM transformation is |𝜃j|

√
Lj,zRj,n−z

Nj
. Since

√
min(Lj,z,Rj,n−z)

2
≤

√
Lj,zRj,n−z

Nj
≤

√

min(Lj,z,Rj,n−z),

we see that the peak level in the jth coordinate is controlled by the absolute mean change |𝜃j|,
together with the effective sample size min(Lj,z,Rj,n−z).

Another interesting property of the MissCUSUM transformation is that the multivariate set-
ting allows us to borrow strength across the different coordinates to compensate for some of the
missingness. To see this, note that the MissCUSUM transformation is piecewise constant in each
coordinate. In particular, even in the noiseless setting, the absolute MissCUSUM series will typ-
ically not have a unique maximiser in each coordinate, but combining the information across
coordinates allows us to pin down the changepoint location to an interval of length

min

{

t > z ∶
p∑

j=1
𝜔j,t ≠ 0

}

−max

{

t ≤ z ∶
p∑

j=1
𝜔j,t ≠ 0

}

.

This will often be a shorter interval than one would obtain from any of the individual component
series.

The next step of the MissInspect algorithm is to use the MissCUSUM transformation to
find a good projection direction v̂ ∈ Sp−1. The idea is that even though it is not possible to project
the data along v̂, due to the missingness, we can nevertheless compute the univariate series
((v̂⊤TΩ)t)t∈[n−1], where TΩ ∶=  Miss(X ◦Ω,Ω). Writing AΩ ∶=  Miss(𝝁 ◦ Ω, Ω) and A ∶=  (𝝁), if
each column of X has identity covariance matrix, then for a generic projection direction v ∈ Sp−1,
we find that E{(v⊤TΩ)t | Ω} = (v⊤AΩ)t, and Var{(v⊤TΩ)t | Ω} = 1. In Proposition 2 below, we will
show that in a heterogeneous missingness model in which each entry in the jth coordinate is
observed with probability qj, and q ∶= (q1, … , qp)⊤, the matrix AΩ can be well approximated by
the rank one matrix

(
diag
√

q
)

A = (𝜃 ◦
√

q)𝛾⊤, where

𝛾∶= 1
√

n

(√
1

n − 1
(n − z), … ,

√
z − 1

n − z + 1
(n − z),

√
z(n − z),

√
n − z − 1

z + 1
z, … ,

√
1

n − 1
z

)
⊤

∈ R
n−1

attains its peak in absolute value at the true changepoint location z. Substituting this rank one
approximation into the expression for E{(v⊤TΩ)t |Ω} = (v⊤AΩ)t suggests that an oracle projection
direction is a unit vector in the direction of 𝜃 ◦

√
q, which is the leading left singular vector of

(diag
√

q)A.
For the corresponding problem with fully observed data, Wang and Samworth (2018) proposed

a semi-definite relaxation technique to estimating the oracle projection direction. Unfortunately,
since AΩ is not a rank one matrix when some data are missing, this relaxation turns out to be too
coarse, and a new approach is required. Motivated by the fact that 𝜃 ◦

√
q has the same sparsity

pattern as 𝜃, and viewing TΩ as a perturbation of (diag
√

q)A, we propose to estimate the oracle
projection direction by solving the following optimisation problem:
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(v̂, ŵ) ∈ argmax
(ṽ,w̃)∈Bp×Bn−1

{⟨TΩ, ṽw̃⊤⟩ − 𝜆||ṽ||1}, (2)

where 𝜆 > 0 is a tuning parameter to be specified later. Here, with a suitable choice of 𝜆, the
𝓁1 penalty on ṽ in Equation (2) exploits the sparsity of the oracle projection direction to allow
for consistent estimation of (𝜃 ◦

√
q)∕||𝜃 ◦

√
q||2, even when the dimension p is large, as will be

shown in Proposition 1 in Section 3. A further advantage of Equation (2) over the semi-definite
relaxation approach is that it directly exploits the row sparsity pattern of the rank one matrix
(𝜃 ◦
√

q)𝛾⊤, as opposed to just the overall entrywise sparsity of this matrix. Using the estimated
oracle projection direction v̂, we can project the MissCUSUM transformation TΩ of (X ◦Ω,Ω),
and estimate the changepoint by the location of the maximum absolute value in the univariate
projected series. Pseudocode for the MissInspect algorithm is given in Algorithm 1.

The optimisation problem in Step 2 of Algorithm 1 is bi-concave in (ṽ, w̃); that is, the objective
is concave in ṽ for every fixed w̃ and concave in w̃ for every fixed ṽ. Hence, we can alternate
between optimising over ṽ and w̃ in (2). By inspecting the Karush–Kuhn–Tucker conditions as
in Lemma 1 in the supplementary material, we see that when 𝜆 < ||TΩ||2→∞, both steps of each
iteration have closed form expressions; this motivates the iterative procedure to optimise (2) given
in Algorithm 2. In that algorithm, we define the soft-thresholding function soft ∶ Rp × [0,∞)→
Rp such that for v = (v1, … , vp)⊤ ∈ Rp, we have (soft(v, 𝜆))j = sgn(vj)max{|vj| − 𝜆, 0} for j ∈ [p].
We remark that TΩ is known to the practitioner, so we can always choose 𝜆 < ||TΩ||2→∞. As usual
for such iterative algorithms for bi-concave optimisation, the objective increases at each iteration;
empirically, we have not observed any convergence issues. In Step 3 of Algorithm 1, we take the
median of the maximisers of the series {|(v̂⊤TΩ)t | ∶ t ∈ [n − 1]} for definiteness, although our
theory would hold for any other (measurable) choice of element in this maximising set.

We conclude this section by illustrating the MissInspect algorithm in action in Figure 1.
Here, with n= 250 and p= 100, we generated n independent p-variate Gaussian observations with
mean structure (1) and identity covariance matrix. We took z = 100, and 𝜃 = (𝜗1k∕k1∕2

, 0p−k)⊤,
with k = 10 and 𝜗 = 2. Thus, the first 10 coordinates represent signals, while the remaining 90
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F I G U R E 1 MissInspect algorithm in action. Top-left: visualisation of the data matrix with p = 100 and
n = 250, where each column represents a p-dimensional observation and missing entries are shown in white.
Darker colours indicate larger values. Time runs from left to right, and a change in mean occurs at time 100 in
each of the first ten rows. Top-right: visualisation of the MissCUSUM transformation of the data. Bottom-left: the
first five rows of the MissCUSUM matrix are plotted in colour, and the black curve shows the projected
MissCUSUM series, which is maximised at the estimated changepoint location of 90 (black dashed line). The
true changepoint is shown as a grey solid line. Bottom-right: histogram of estimated changepoints over 1000
repetitions from the same data setting; a log-concave estimated density is shown in red.

are noise coordinates. All entries of our data matrix were observed independently (and indepen-
dently of the data), with probability 0.2. The top panels display visualisations of the data and
the MissCUSUM transformation respectively. In the bottom-left panel, the coloured lines are the
first five components of the MissCUSUM transformation; we see that these traces are piecewise
constant, with jumps at observed data points. Even though each of these five is obtained from a
signal coordinate, the locations of the peaks of these individual series would not yield very reliable
changepoint estimates, both because the noise introduces considerable variability (e.g. the peak
of the purple series runs from time 217 to 228), and because the missingness can lead to fairly long
stretches where these series are constant. Nevertheless, once all 100 series are aggregated appro-
priately by our MissInspect algorithm, the resulting black trace does have a sharper peak close
to the true changepoint. The bottom-right plot shows two nonparametric density estimates of the
estimated changepoint locations from the MissInspect procedure over 1000 repetitions from
this data generating mechanism; the first is a histogram, which requires the choice of a binwidth,
while the second is the log-concave maximum likelihood estimator (Cule et al., 2010; Dümbgen
& Rufibach, 2009), which is fully automatic. Both indicate a sharp peak for the density close to
the true changepoint; in the latter case, the mode is exactly at 100.
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3 THEORETICAL GUARANTEES

We will focus our theoretical analysis on the single changepoint setting, in order to try to
articulate more clearly the way that the coordinate-wise signal-to-noise ratio and missingness
mechanism interact to determine both the performance of the MissInspect algorithm and
the fundamental difficulty of the problem. Moreover, we assume that the revelation matrix
Ω = (𝜔j,t) ∈ {0, 1}n×p has a row-homogeneous distribution, in the sense that there exists a vector
q = (q1, … , qp)⊤ ∈ (0, 1]p such that 𝜔j,t ∼ Bern(qj), independently for all j ∈ [p] and t ∈ [n]. We
will refer to q as the observation rate vector. Such a row-homogeneous assumption may be appro-
priate, for instance, in applications where each component series is measured by a separate device
with its own observation rate. As for the data, we will assume that the columns (Xt)t∈[n] of the
data matrix X = (Xj,t)j∈[p],t∈[n] ∈ Rn×p satisfy

Xt ∼p(𝜇t, 𝜎
2Ip), independently for t ∈ [n], (3)

where 𝜇1, … , 𝜇n satisfy Equation (1).
For n ∈ N, z ∈ [n − 1], 𝜃 = (𝜃1, … , 𝜃p)⊤ ∈ Rp, 𝜎 > 0 and q = (q1, … , qp)⊤ ∈ (0, 1]p we write

Pn,p,z,𝜃,𝜎,q for the joint distribution of (X , Ω), where X and Ω are independent, where X satisfies
(3) with the vector of mean change 𝜃 ∶= 𝜇(2) − 𝜇(1) ∈ Rp ⧵ {0} satisfying ||𝜃||0 ≤ k, and where Ω
has a row-homogeneous distribution with observation rate vector q = (q1, … , qp)⊤ ∈ (0, 1]p. We
write 𝜏 ∶= n−1 min(z,n − z). Recall our notation ||𝜃||22,q ∶=

∑p
j=1𝜃

2
j qj, a quantity that captures a

key interaction between the signal strength and observation rate. Our first result below shows
that the projection direction v̂ obtained from Step 2 of Algorithm 1 is closely aligned with 𝜃 ◦

√
q,

which, as argued in Section 2, can be regarded as an oracle projection direction.

Proposition 1 Let (X ,Ω) ∼ Pn,p,z,𝜃,𝜎,q and let (v̂, ŵ) be obtained from Step 2 in Algorithm 1, applied
with inputs XΩ = X ◦Ω, Ω and 𝜆 ≥ 2𝜎

√
n log(pn). Then

P

{

sin ∠ (v̂, 𝜃 ◦
√

q) ≤ 32𝜆
√

k
n𝜏||𝜃||2,q

+ 112||𝜃||2
𝜏||𝜃||2,q

√
6 log(kn)

n

}

≥ 1 − 6
kn
.

Considering the case 𝜆 = 2𝜎
√

n log(pn) for simplicity, Proposition 1 reveals that, with high
probability, the sine of the acute angle between v̂ and 𝜃 ◦

√
q is controlled by the sum of two terms:

the first of these represents the estimation error caused by the noise in the data we observe, and
we see that ||𝜃||2,q∕𝜎 can be thought of as an effective signal-to-noise ratio. On the other hand, the
second term reflects the error due to our incomplete observations (and would be present even in
the noiseless case with 𝜎 = 0); here ||𝜃||22,q∕||𝜃||

2
2 may be regarded as a signal-weighted observation

probability. Observe that in this discussion we assume that 𝜎 is known; extensions to the case
of unknown 𝜎, as well as more general cross-sectional covariance structures, are discussed in
Section 5.

From a theoretical point of view, the fact that v̂ is estimated using the entire available data
set XΩ makes it difficult to analyse the post-projection noise structure. For this reason, in the
analysis below, we work with a sample-splitting variant of Algorithm 1, as given in Algorithm 3.
Here, the projection direction v̂ is estimated using only the observed data at odd-numbered time
points, and the MissCUSUM transformation of the observed data at even-numbered time points
is then projected along v̂ to obtain the final estimate of the changepoint location. We emphasise,
however, that while this sample splitting facilitates an informative theoretical analysis, in practice
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we recommend using the full data set to estimate v̂ as in Algorithm 1. Indeed, it is this version of
MissInspect that we used throughout our numerical studies in Section 4.

Theorem 1 is our first main result on the performance of Algorithm 3 in contexts where our
data are generated from the single changepoint, row-homogeneous model Pn,p,z,𝜃,𝜎,q.

Theorem 1 Suppose (X ,Ω) ∼ Pn,p,z,𝜃,𝜎,q. Assume for simplicity that n and z are even. Let ẑ be the
output of Algorithm 3 with inputs X ◦ Ω, Ω and 𝜆 = 2𝜎

√
n log(pn). There exist universal

constants C,C′
> 0 such that whenever

C′

𝜏

√
log(pn)

n

(
𝜎

√
k

||𝜃||2,q
+ ||𝜃||2

||𝜃||2,q

)

≤
1
2
, (4)

we have

P

{
|ẑ − z|

n𝜏
> C
√

log(kn)
n𝜏

(
𝜎

||𝜃||2,q
+ ||𝜃||2

||𝜃||2,q

)}

≤
22
n
.

Condition (4) ensures that the projection direction v̂ obtained in Step 6 of Algorithm 3 has
non-trivial correlation with the oracle projection direction 𝜃 ◦

√
q; cf. Proposition 1. An attractive

feature of Theorem 1 is the way that the interaction between the signal strength and the obser-
vation rate vector is captured through ||𝜃||2,q. As mentioned in the introduction, this weighted
average provides much greater understanding of the influence of missingness on the performance
of the MissInspect algorithm than more naive bounds that depend on the worst-case missing-
ness probability across all rows. For instance, we see that a high degree of missingness in noise
or weak signal coordinates may not have too much of a detrimental effect on performance com-
pared with complete observation of these coordinates. See also Theorem 3 below for confirmation
of the way in which ||𝜃||2,q also controls the fundamental difficulty of the problem (not just for
our procedure).

A further attraction of Theorem 1 is the absence of any condition on the number of observa-
tions in each row. On the other hand, it turns out that if the expected number of observations in
each row is at least k∕𝜏2 (up to logarithmic factors), then we can obtain a substantially improved
bound on the rate of estimation of Algorithm 3.



FOLLAIN et al. 11

Theorem 2 Suppose (X ,Ω) ∼ Pn,p,z,𝜃,𝜎,q. Assume for simplicity that n and z are even. Let ẑ be the
output of Algorithm 3 with inputs X ◦ Ω, Ω and 𝜆 = 2𝜎

√
n log(pn). Define

𝜌 ∶= 1
𝜏

√
log(pn)

n

(
𝜎

√
k

||𝜃||2,q
+ ||𝜃||2

||𝜃||2,q

)

.

Then there exist universal constants c,C1,C2 > 0 such that if 𝜌 ≤ c and n𝜏2 min
j∈[p]

qj ≥

C1k log(pn), then

P

{
|ẑ − z|

n𝜏
>

C2 log(pn)
n𝜏

(

𝜎

2

||𝜃||22,q
+
||𝜃||2∞

||𝜃||22,q

)}

≤
23
n
.

The rate obtained in Theorem 2 is essentially the square of that obtained in Theorem 1. In fact,
an additional improvement is the reduction of ||𝜃||2 in the second term to ||𝜃||∞. Again, we see
the decomposition of the estimation error into terms reflecting the noise in the observed data and
the incompleteness of the observations respectively.

As a complement to Theorem 2, we now present a minimax lower bound, which studies the
fundamental limits of the expected estimation error that are achievable by any algorithm. We
write ̃ for the set of estimators of z, that is, the set of Borel measurable functions ẑ ∶ Rn×p ×
{0, 1}n × p → [n − 1].

Theorem 3 Let M ≥ 1 satisfy ||𝜃||∞ ≤ M min
j∈[p]∶𝜃j≠0

|𝜃j|. If max{𝜎2
, ||𝜃||2∞∕(2M2)} ≥ ||𝜃||22,q, then

there exists c > 0, depending only on M, such that for n ≥ 3,

inf
z̃∈ ̂

max
z∈[n−1]

EPn,p,z,𝜃,𝜎,q

|z̃(X ◦ Ω, Ω) − z|
n

≥
c
n

min

{

𝜎

2

||𝜃||22,q
+
||𝜃||2∞

||𝜃||22,q
,n

}

.

Theorem 3 reveals that theMissInspect algorithm as given in Algorithm 3 attains the minimax
optimal estimation error rate up to logarithmic factors in all of the parameters of the problem,
at least in settings where the signals are of comparable magnitude. Note that the MissInspect
algorithm also matches (deterministically) the second term in the minimum in Theorem 3,
because it trivially satisfies |ẑ − z| ≤ n − 2. The form of the lower bound in Theorem 3 confirms
that ||𝜃||2,q is the correct functional of the mean change vector 𝜃 and observation q for capturing
the difficulty of the changepoint estimation problem in our missing data setting.

4 NUMERICAL STUDIES

4.1 Choice of tuning parameter

The tuning parameter choice of 𝜆 = 2𝜎
√

n log(pn) is convenient in our theoretical analysis. How-
ever, this choice often turns out to be slightly too conservative in practice, so to explore this, we
considered the output of Algorithm 2 for a range of 𝜆 values, under several different settings of n,
p, k, 𝜃 and q. Figure 2 displays the mean angle between the estimated projection direction v̂ from
Equation (2) and the oracle projection direction 𝜃 ◦

√
q∕||𝜃 ◦

√
q||2 as a function of 𝜆 in two such
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F I G U R E 2 Mean angle in degrees (averaged over 200 repetitions) between the oracle projection direction
and the estimated projection direction from Algorithm 2 with 𝜆 = a𝜎

√
n log(pn) for a ∈ [0,2]. Data are generated

under (3) with row-homogeneous missingness, independent of the data. Parameters: n = 1000, p = 500, z = 400,
𝜎 = 1. Left panel: all entries observed independently with probability 0.2, k ∈ {3, 10, 50} and 𝜗 ∈ {1, 1.5, 2, 2.5, 3}.
Right panel: k = 3, 𝜗 = 2, signal coordinates are observed with probability qs ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and noise
coordinates are observed with probability qn ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

sets of simulations. In both panels, we set n = 1000, p = 500, z = 400 and took 𝜆 = a𝜎
√

n log(pn)
for a ∈ [0, 2]. The vector of mean change is 𝜃 = 𝜗k−1∕2(1⊤k , 0

⊤

p−k)
⊤. Data were observed according

to the row-homogeneous missingness model with qj = qs if 𝜃j ≠ 0 and qj = qn otherwise. In the
left panel of the figure, we set qs = qn = 0.2 and vary k ∈ {3, 10, 50} and 𝜗 ∈ {1, 1.5, 2, 2.5, 3},
whereas in the right panel, we took k = 3, 𝜗 = 2, 𝜎 = 1 and vary qs

, qn ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We
note that the choice 𝜆 = 2−1

𝜎

√
n log(pn) performs well in all settings, especially when the signal

is relatively sparse. We therefore settled on this choice of 𝜆 throughout our numerical studies. It
is reassuring to see from the right panel of Figure 2 that the performance of the projection direc-
tion estimator has almost no dependence on qn, as predicted by our Proposition 1 (since ||𝜃||2,q
does not depend on qn).

4.2 Validation of theoretical results

The aim of this subsection is to provide empirical confirmation of the forms of the bounds
obtained in Proposition 1 and Theorem 2. In particular, we would like to verify that the crucial
quantity ||𝜃||2,q does indeed capture the appropriate interaction between signal and missing-
ness that determines the performance of the version of the MissInspect algorithm given
in Algorithm 1. The two panels of Figure 3 study the angle between the estimated and ora-
cle projection directions, and the estimated changepoint location error respectively. To obtain
this figure, we set n = 1200, p = 1000 and generated data vectors under (3) with every entry
observed independently with probability q ∈ {0.1, 0.2, 0.4, 0.8}, independent of the data. A sin-
gle change occurred at z = 400 with vector of mean change 𝜃 = 𝜗k−1∕2(1⊤k , 0

⊤

p−k)
⊤ and k = 3.

We investigated the performance of MissInspect over 200 Monte Carlo repetitions for each
of 𝜗 ∈ {0.5, 1, 1.5, 2} and 𝜎 ∈ {0.2, 0.4, 0.8, 1.6}. The left panel of Figure 3 shows that the
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F I G U R E 3 Estimation accuracy of MissInspect as a function of ||𝜃||2,q. Data are generated under (3)
with row-homogeneous missingness, independent of the data. Parameters: n = 1200, p = 1000, z = 400, k = 3,
𝜗 ∈ {0.5, 1, 2}, 𝜎 ∈ {0.2, 0.4, 0.8, 1.6} and q = q1p with q ∈ {0.1, 0.2, 0.4, 0.8}. Colours indicate 𝜗, line type indicates
𝜎, and the circle, triangle, square and diamond plotting characters correspond to q = 0.1,0.2,0.4,0.8 respectively.
Left panel: logarithm of the mean sine angle loss (averaged over 200 repetitions) between estimated and oracle
projection directions. Right panel: logarithm of mean changepoint location loss (averaged over 200 repetitions).

logarithm of the mean sine angle loss decreases approximately linearly with log ||𝜃||2,q, with gra-
dient approximately−1. This is consistent with the conclusion of Proposition 1, which shows that
the sine angle loss is controlled with high probability by an upper bound that is inversely pro-
portional to ||𝜃||2,q = 𝜗q1∕2. Moreover, curves corresponding to 𝜎 = 0.2, 0.4, 0.8, 1.6 are roughly
equally spaced on the logarithmic scale, which corresponds to the linear dependence on 𝜆 =
2−1

𝜎

√
n log(pn) of the first term in the high-probability bound in Proposition 1. For fixed 𝜎, the

blue, orange and green curves are approximately overlapping, especially when the sine angle loss
is large. In particular, doubling 𝜗 and reducing q by a factor of four leaves the sine angle loss
virtually unchanged in these settings, which is consistent with the first term in the high prob-
ability upper bound in Proposition 1 being the dominant one, with its reciprocal dependence
on ||𝜃||2,q = 𝜗q1∕2. The contribution from the second term in Proposition 1 is still visible in the
high signal-to-noise ratio settings, where, for instance when 𝜎 = 0.2, the 𝜗 = 2 curve (green) lies
above the 𝜗 = 1 curve (orange). This is again consistent with the form of the second term in the
bound in Proposition 1, which, in our setting, does not depend on 𝜗, but is inversely proportional
to q1∕2.

A similar story emerges in the right panel of Figure 3 for the changepoint location estima-
tor accuracy. Here, for fixed 𝜗 and 𝜎, most points lie on approximate straight lines with slope
−2, which is in agreement with the ||𝜃||−2

2,q dependence in the high probability bound of |ẑ − z|
in Theorem 2. The 𝜎2 dependence in the first term of the bound in Theorem 2 is represented
by the mostly equi-spaced curves for the four different equi-spaced 𝜎 values on the logarithmic
scale. The contribution of the second term in the bound in Theorem 2 can be seen from the three
curves corresponding to the smallest noise scale 𝜎 = 0.2. Here, the estimation error only improves
slightly as 𝜗 increases, which is in agreement with our theoretical prediction, since, in the setting
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of this simulation, the second term in Theorem 2 is proportional to q−1∕2 and does not depend
on 𝜗.

4.3 Comparison with alternative approaches

In this subsection, we compare the performance of MissInspect with three alternatives. The
first two combine the idea of handling missing data via imputation and the original inspect
procedure. Specifically, given a data matrix with incomplete observations, we consider applying
the softImpute procedure of Mazumder et al. (2010), with the maximum matrix rank parame-
ter set to 2 (since X ◦Ω can be viewed as a perturbation of its mean (diag

√
q)𝝁, which has rank 2).

We then perform changepoint estimation on the imputed data matrix using the inspect proce-
dure of Wang and Samworth (2018), with the suggested regularisation parameter choice therein.
This method is denoted as ImputeInspect.

An alternative imputation strategy was mentioned briefly in the introduction: after an initial
imputation of missing entries with the corresponding row mean, we iterate between applying the
inspect algorithm to update our estimate of the changepoint location, and then re-imputing
the missing entries with the row means to the left and right of the current changepoint location
estimate. We call this method IteratedMeanImputation.

Our final comparator is an adaptation of the method of Londschien et al. (2021), who consider
dynamic Gaussian graphical models with piecewise constant, but unknown, mean vectors and
precision matrices. Although in such a graphical modelling context, it is changes in the precision
matrix that are of primary interest, one can nevertheless apply this method with the precision
matrices fixed in advance to be the identity matrix. In that case, the method can be regarded as
reporting the location of the peak of the absolute value of the 𝓁2-aggregatedMissCUSUM transfor-
mation of the observed data; equivalently, it seeks the most extreme generalised likelihood ratio
statistic for testing the alternative of a change at a particular time point. We refer to this method
as GeneralisedLikelihoodRatio.

Table 1 compares the performance of the four changepoint estimation algorithms
MissInspect, ImputeInspect, IteratedMeanImputation and GeneralisedLike-
lihoodRatio under various settings. Here, we choose n = 1200, p = 2000, k ∈ {3, ⌊

√
p⌋, p},

𝜗 ∈ {1, 2, 3}. Data are generated according to Equation (3) with row-homogeneous miss-
ingness, independent of the data. The changepoint occurs at z = 400, with vector of mean
change having 𝓁2 norm 𝜗 and proportional to (1, 2−1∕2

, … , k−1∕2
, 0, … , 0)⊤. The observation

rate vector q = (q1, … , qp)⊤ is randomly generated, independent of all other sources of ran-
domness, such that qj

iid∼ Beta(10𝜈, 10(1 − 𝜈)) for j ∈ [p], where 𝜈 ∈ {0.1, 0.5}. Since the
MissInspect and ImputeInspect procedures are based on a single projection, we can
compare their performance in projection direction estimation; we also compare all methods
in terms of their changepoint estimation risk. Note that the oracle projection direction for
ImputeInspect is parallel to 𝜃 (since the imputed matrix has no missing entries), whereas
the oracle projection direction of MissInspect is parallel to 𝜃 ◦

√
q. We see in Table 1

that MissInspect consistently outperforms ImputeInspect and IteratedMeanImpu-
tation, often dramatically, for all observation fractions, sparsity levels and signal strengths
considered. The MissInspect approach also achieves much smaller average estimation errors
than the GeneralisedLikelihoodRatio method when there is some sparsity to the
signal, with comparable performance when k = p. This is unsurprising in view of the fact that
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T A B L E 1 Location and projection direction estimation errors (averaged over 200 Monte Carlo repetitions)
for MissInspect (denoted by superscript MI), ImputeInspect (denoted by superscript II),
IteratedMeanImputation (denoted by IMI) and GeneralisedLikelihoodRatio (denoted by GLR).
Other parameters: n = 1200, p = 2000, z = 400, q1, … , qp

iid∼ Beta(10𝜈, 10(1 − 𝜈)). The best performing method is
highlighted in bold in each case

𝝂 k 𝝑 ∠(v̂MI
, 𝜽 ◦

√
q) ∠(v̂II

, 𝜽) |ẑMI − z| |ẑII − z| |ẑIMI − z| |ẑGLR − z|

0.1 3 1 71.4 86.8 141.7 468.0 184.1 212.4

0.1 3 2 40.6 56.7 36.5 304.8 147.7 139.8

0.1 3 3 26.1 40.1 14.5 257.5 101.0 66.6

0.1 44 1 82.6 88.9 185.9 468.9 187.6 209.4

0.1 44 2 63.5 83.2 66.9 404.5 133.7 118.3

0.1 44 3 49.0 72.8 18.7 308.6 90.8 52.0

0.1 2000 1 86.5 88.2 180.0 485.0 184.1 219.6

0.1 2000 2 76.9 87.6 121.2 457.3 138.9 137.5

0.1 2000 3 67.7 82.9 50.4 376.9 79.2 41.0

0.5 3 1 32.3 81.0 11.9 358.4 150.8 176.0

0.5 3 2 13.6 42.1 1.6 7.2 44.8 10.5

0.5 3 3 9.6 24.8 0.7 6.9 7.6 2.1

0.5 44 1 62.7 88.4 50.1 438.5 159.4 207.1

0.5 44 2 37.3 73.6 2.3 174.2 41.8 7.3

0.5 44 3 26.9 58.1 0.7 1.8 3.3 1.6

0.5 2000 1 77.5 88.6 114.3 448.1 162.5 202.9

0.5 2000 2 59.2 85.5 6.7 338.6 40.6 6.8

0.5 2000 3 52.0 72.4 1.7 48.2 3.9 1.7

theGeneralisedLikelihoodRatioprocedure does not exploit sparsity in the vector of mean
change.

4.4 Real data analysis

In this subsection, we illustrate the applicability of the MissInspect algorithm on an oceano-
graphic data set covering the Neogene geological period. Oceanographers study historic changes
in the global ocean circulation system by examining microfossils that record the isotopic compo-
sition of water at the time at which they lived (Wright & Miller, 1996). In particular, large cores
are extracted from the ocean floor and a species of microfossils called foraminifera are taken from
small slices of sediment at different depths within the core. The ratio of the abundances of 13C to
12C isotopes in their calcium carbonate shells is compared against a standard, to understand the
carbon composition within the oceans during their lifetime, and hence to determine the direction
in which ocean currents flowed. The depth of the foraminifera within the core is used as a proxy
for the geological age of the fossil, measured in millions of years (Ma).
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Our data, which are available in a GitHub repository2, and were previously analysed by Sam-
worth and Poore (2005) and Poore et al. (2006), consist of measurements from 16 cores extracted
from the North Atlantic, Pacific and Southern Oceans and are displayed in Figure 4. In total, there
are 7369 observations at 6295 distinct time points, but Figure 4 makes clear that the heteroge-
neous nature of the data collection process means that it is appropriate to think of the data as
containing missingness. The figure also indicates the 10 most prominent changepoints identified
by applying theMissInspect algorithm in combination with binary segmentation, as discussed
in Section 5 below. It is notable that the first changepoint, found by applying the algorithm to the
full data set, occurs at 6.13Ma, a time that has previously been identified as a time of rapid change
in oceanographic current flow (Poore et al., 2006, p. 13).

5 EXTENSIONS

As mentioned in the introduction, one of our main theoretical goals in this work is to understand
the way in which the missingness and the signal interact in changepoint problems to determine
the difficulty of the problem. This is particularly challenging when we seek to handle both high
dimensionality and different levels of missingess in different coordinates. For the purposes of our
theoretical analysis, then, it is natural to impose stronger assumptions elsewhere, so as to best
expose the interesting phenomena at play. Nevertheless, it remains of interest to consider the
extent to which the methodology could be generalised, and the assumptions could be relaxed, to
cover a wider range of scenarios and problems one might see in practice.

As we saw in analysing the oceanography data in Section 4.4, it may be that we wish
to identify multiple changepoints. There are several standard techniques for extending single
changepoint procedures to such settings, including binary segmentation and different versions
of wild binary segmentation (Fryzlewicz, 2014; Kovács et al., 2020). Any of these approaches can
be used in conjunction with the MissInspect algorithm to identify multiple changepoints in
high-dimensional data streams in the presence of missingness. The theoretical analysis of such a
procedure would be technically involved, but would proceed along similar lines to that of Wang
and Samworth (2018) for the case of fully observed data.

As always when handling missing data, the situation becomes much more complicated when
the missingness and the data are not independent, that is, the missing completely at random
(MCAR) assumption does not hold. In the worst case, the missingness may render the change-
point estimation problem impossible, for instance if no signal coordinate has observed data on
both sides of the changepoint. A less adversarial setting would be one in which all observations
exceeding 1 are censored. Thus, if the vector of mean change had positive entries in signal coor-
dinates, we would expect to see fewer observations in these coordinates after the change. The
censoring would lead to (different) truncated Gaussian distributions before and after the change,
but a difference in mean of these distributions would persist, so changepoint estimation may still
be possible. In general, careful and problem-specfic modelling of the dependence of the data and
the missingness mechanism is recommended.

In this paper, we have focused on the problem of estimating a changepoint location in settings
where such a change is known to exist. An interesting complementary problem is that of detecting
whether or not there is a change; in other words, testing H0 ∶ 𝜃 = 0 against H1 ∶ 𝜃 ≠ 0. To address

2https://github.com/wangtengyao/MissInspect/tree/main/real_data

https://github.com/wangtengyao/MissInspect/tree/main/real_data
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F I G U R E 4 Ratios of carbon isotope measurements taken from foraminifera in 16 different cores from the
North Atlantic, Pacific and Southern Oceans. The label of each panel indicates both the ocean and the number of
the core, while the horizontal axis measures geological time (0–23 Ma). The red dashed lines indicate the 10 most
prominent changepoints identified by applying the MissInspect algorithm in combination with binary
segmentation, with the most significant change plotted with a solid line.
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this challenge, first, for j∈ [p], let Tj,1 ∶= min{t ∈ [n] ∶ 𝜔j,t = 1} denote the first observation time
in the jth coordinate, and for 𝓁 = 2, … ,Nj, let Tj,𝓁 ∶= min{t > Tj,𝓁−1 ∶ 𝜔j,t = 1} denote the 𝓁th
observation time in the jth coordinate. Then, under the null hypothesis and conditional on Ω,

( Miss(X ◦Ω,Ω)j,Tj,𝓁 ∶ 𝓁 ∈ [Nj − 1])
d
=

(
Bt

√
t(1 − t)

∶ t = 1∕Nj, … , (Nj − 1)∕Nj

)

, (5)

where (Bt)t∈[0,1] denotes a standard Brownian bridge. Under the alternative hypothesis, the con-
ditional distribution of the absolute value of the peak of the left-hand side in (5), given Ω, is
stochastically larger than under the null. This leads to various possible test statistics, including

T(1) ∶= max
j∈[p]

max
𝓁∈[Nj−1]

| Miss(X ◦ Ω, Ω)j,Tj,𝓁 | and T(2) ∶= max
𝓁∈[Nj−1]

p∑

j=1
 Miss(X ◦ Ω, Ω)2j,Tj,𝓁

,

with pivotal null distributions, conditional on Ω.
Finally, we discuss settings of temporal and spatial dependence in the data. In the former case,

a natural model is to replace (3) with

Xt = 𝜇t +Wt, for t = 1, … ,n,

where 𝜇1, … , 𝜇n satisfy (1) and where the noise vectors (W1, … ,Wn) form a mean-zero, station-
ary Gaussian process. In this case, with row-homogeneous missingness independent of the data,
the oracle projection direction remains (𝜃 ◦

√
q)∕||𝜃 ◦

√
q||2, and the MissInspect method-

ology does not need to be altered. On the other hand, if spatial dependence is introduced into
Equation (1) by replacing the identity covariance matrix there with a general covariance matrix
Σ, then the oracle projection direction becomes proportional to Σ−1(𝜃 ◦

√
q). If Σ is unknown,

then estimatingΣ−1 may represent a significant challenge, but it may be considerably simplified if
our data stream satisfies additional structural assumptions. For instance, if Σ = diag(𝜎2

1 , … , 𝜎

2
p),

where 𝜎1, … , 𝜎p are unknown, then we can estimate these quantities robustly using, for example,
the median absolute deviation of the marginal one-dimensional series (Hampel, 1974). As another
example, if Σ is Toeplitz with Σ = (𝜌|j−k|)j,k∈[p] for some 𝜌 ∈ (−1,1), then Σ−1 is tridiagonal, and its
form can again be used to estimate 𝜌 (Wang & Samworth, 2018, lemma 12).

6 PROOF OF MAIN RESULTS

6.1 Proof of Proposition 1

The proof of Proposition 1 requires the following result.

Proposition 2 For n ≥ 2, suppose (X ,Ω) ∼ Pn,p,z,𝜃,𝜎,q and let A =  (E(X)) ∈ Rp×(n−1) and AΩ =
 Miss(E(X)◦Ω,Ω) ∈ Rp×(n−1). We have that

P
(
|(AΩ)j,t −

√
qjAj,t| > 7

√
6|𝜃j|

√
log(kn)

)
≤

4
k2n2
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for all j ∈ [p] and t ∈ [n − 1]. Consequently,

P(||AΩ − (diag
√

q)A||F > 7
√

6||𝜃||2
√

n log(kn)) ≤ 4
kn
.

Proof. LetΔ ∶= AΩ − (diag
√

q)A ∈ Rp×(n−1) have (j, t)th entryΔj,t and let S ∶= {j ∈ [p] ∶ 𝜃j ≠ 0}.
Since Δj,t = 0 for j ∉ S, it suffices to bound |Δj,t| for each j ∈ S and t ∈ [n − 1]. Without
loss of generality, we may assume that 𝜃j > 0.

First assume that j satisfies n𝜏qj ≥ 24 log(kn). Let aj ∶=
⌈

8 log(kn)
3qj

⌉

. It follows that aj ≤ n𝜏∕6.
Define

𝛿j,t ∶=
⎧
⎪
⎨
⎪
⎩

4 log(kn)
tqj

if 1 ≤ t ≤ aj − 1
√

6 log(kn)
tqj

if aj ≤ t ≤ n.

Recall that Lj,t =
∑t

r=1𝜔j,r and Rj,t =
∑n

r=n−t+1𝜔j,r for j ∈ [p] and t ∈ [n]. We consider the event

j,t ∶=

{

max

(
|
|
|
|
|

Lj,t

tqj
− 1
|
|
|
|
|

,

|
|
|
|
|

Rj,t

tqj
− 1
|
|
|
|
|

)

≤ 𝛿j,t

}

.

By Bernstein’s inequality (Lemma 3 in the supplementary material), we obtain that

P(c
j,t) ≤ 4 exp

{

−
𝛿

2
j,ttqj

2(1 + 𝛿j,t∕3)

}

= 4 exp
{

−
8 log2(kn)

tqj + 4 log(kn)∕3

}

1{t<aj} + 4 exp

{

−
3 log(kn)

1 +
√

2 log(kn)∕(3tqj)

}

1{t≥aj}

≤ 4e−2 log(kn) ≤
4

k2n2 ,

where we have used the facts that tqj ≤ 8 log(kn)∕3 for t ≤ aj − 1 and
√

2 log(kn) ≤
√

3tqj∕2 for
t ≥ aj in the penultimate inequality.

We will now bound |Δj,t| for different values of t on j,t. First, consider aj ≤ t ≤ z. Since
n − z ≥ n𝜏 > aj, we have 𝛿j,n−z ≤ 𝛿j,n𝜏 ≤ 1∕2. We deduce from the definition of AΩ that

(AΩ)j,t =

√
Lj,t

Rj,n−t(Lj,t + Rj,n−t)
Rj,n−z𝜃j ≤

√
(1 + 𝛿j,t)tqj

(1 − 𝛿j,n−t)2(n − t)nq2
j

(1 + 𝛿j,n−z)(n − z)qj𝜃j

≤
√

qjAj,t

√
1 + 𝛿j,t(1 + 𝛿j,n−z)

1 − 𝛿j,n−z
. (6)

It follows that for j ∈ S and aj ≤ t ≤ z,

Δj,t ≤
√

qjAj,t

{√
1 + 𝛿j,t(1 + 𝛿j,n−z)

1 − 𝛿j,n−z
− 1

}

≤
√

qjAj,t{(1 + 𝛿j,t)(1 + 4𝛿j,n−z) − 1}

≤
√

qjAj,t(3𝛿j,t + 4𝛿j,n−z).
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By a similar calculation for deviations in the opposite direction, we have

Δj,t ≥ −
√

qjAj,t(𝛿j,t + 4𝛿j,n−z∕3).

Thus, using the fact that Aj,t ≤ 𝜃j min
(√

t,
√

n − z
)
, we deduce that

|Δj,t| ≤
√

qjAj,t(3𝛿j,t + 4𝛿j,n−z) ≤ 7
√

qj𝜃j min
(√

t,
√

n − z
)

max(𝛿j,t, 𝛿j,n−z) ≤ 7𝜃j
√

6 log(kn).

By symmetry, if z < t ≤ n − aj, we also have |Δj,t| ≤ 7𝜃j
√

6 log(kn).
Next, if t ≤ aj − 1, then we necessarily have t ≤ n𝜏. The calculation in (6) still applies, and we

have

(AΩ)j,t ≤
√

qjAj,t

√
1 + 𝛿j,t(1 + 𝛿j,n−z)

1 − 𝛿j,n−z
≤ 3
√

qjAj,t
√

1 + 𝛿j,t.

Hence, since sgn((AΩ)j,t) = sgn(Aj,t), we have

|Δj,t| ≤ max
(
(AΩ)j,t,

√
qjAj,t

)
≤ Aj,t

√
qj max

(
3
√

1 + 𝛿j,t, 1
)

≤ 𝜃j
√

tqj max
⎧
⎪
⎨
⎪
⎩

3

√
tqj + 4 log(kn)

tqj
, 1
⎫
⎪
⎬
⎪
⎭

≤ 8𝜃j
√

log(kn).

A symmetric argument shows that |Δj,t| ≤ 8𝜃j
√

log(kn) for n − aj ≤ t ≤ n − 1. Combining the
above bounds on |Δj,t|, we see that for j satisfying n𝜏qj ≥ 24 log(kn) and all t ∈ [n−1], we
have that

P
(
|Δj,t| > 7

√
6𝜃j
√

log(kn)
)
≤ P(c

j,t) ≤
4

k2n2 . (7)

We now turn our attention to j satisfying n𝜏qj < 24 log(kn). If qj = 0, then Δj,t = 0. So we may
assume qj > 0. Define

𝜖j ∶=
24 log(kn)

n𝜏qj
,

so that 𝜖j > 1. For j ∈ S, consider the event

j ∶=
{

max
(Lj,z

zqj
,

Rj,n−z

(n − z)qj

)

≤ 1 + 𝜖j

}

.

By Lemma 3 in the supplement again, we have

P(c
j ) ≤ 2 exp

{

−
𝜖

2
j n𝜏qj

2(1 + 𝜀j∕3)

}

≤ 2e−9 log(kn) = 2
(kn)9

.

On j, we have

(AΩ)j,t ≤ (AΩ)j,z ≤ 𝜃j

√

min{Lj,z,Rj,n−z} ≤ 𝜃j

√

(1 + 𝜖j)n𝜏qj ≤ 𝜃j
√

48 log(kn).
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On the other hand,

√
qjAj,t ≤

√
qjAj,z ≤

√
qj min{

√
z,
√

n − z}𝜃j = 𝜃j
√

n𝜏qj ≤ 𝜃j
√

24 log(kn).

Consequently, when n𝜏qj < 24 log(kn), we have

P
(
|Δj,t| > 𝜃j

√
48 log(kn)

)
≤ P
(
(AΩ)j,t > 𝜃j

√
48 log(kn)

)
≤ P(c

j ) ≤
2

(kn)9
. (8)

The first claim follows from Equations (7) and (8). It now follows that

P
(
||Δ||F > 7

√
6||𝜃||2

√
n log(kn)

)
≤
∑

j∈S

n−1∑

t=1
P
(
|Δj,t| > 7

√
6𝜃j
√

log(kn)
)
≤

4
kn
,

as desired.

Proof of Proposition 1. Let v ∈ Sp−1 denote the leading left singular vector of AΩ and let 𝜎1 ≥ 𝜎2 ≥

0 denote the two largest singular values of AΩ. We start by controlling the angle between
v̂ and v. Write Δ ∶= AΩ − (diag

√
q)A ∈ Rp×(n−1) as in the proof of Proposition 2. Since A =

𝜃𝛾

⊤, we have (diag
√

q)A = (𝜃 ◦
√

q)𝛾⊤. Hence, by Weyl’s inequality (e.g. Stewart & Sun,
1990, Corollary IV.4.9), we obtain

𝜎1 − 𝜎2 ≥ ||𝜃||2,q||𝛾||2 − 2||Δ||op ≥
n𝜏||𝜃||2,q

4
− 2||Δ||F,

where the final bound uses Wang and Samworth (2018 Lemma 3). By Proposition 2, there
is an event  with probability at least 1−4∕(kn) such that ||Δ||F ≤ 7

√
6||𝜃||2

√
n log(kn).

We may assume that
√

n𝜏||𝜃||2 ≥ 112||𝜃||2,q
√

6 log(kn), since otherwise, the proposition is
trivially true. With this assumption, we have on  that 𝜎1 − 𝜎2 ≥ n𝜏||𝜃||2,q∕8. Thus, by
Lemma 2 in the supplementary material, on the event  ∩ {||TΩ − AΩ||∞ ≤ 𝜆n−1∕2}, we have
that

sin∠(v̂, v) ≤ 4𝜆
√

k
𝜎1 − 𝜎2

≤
32𝜆
√

k
n𝜏||𝜃||2,q

. (9)

On the other hand, by Wang (2016, Theorem 1.4) (an extension of Yu et al., 2015, Corollary 1), on
, we also have that

sin∠(v, 𝜃 ◦
√

q) ≤
4||Δ||op

n𝜏||𝜃||2,q∕4
≤

112||𝜃||2
𝜏||𝜃||2,q

√
6 log(kn)

n
. (10)

By the triangle inequality, we deduce from Equations (9) and (10) that on  ∩ {||TΩ − AΩ||∞ ≤

𝜆n−1∕2},

sin∠(v̂, 𝜃 ◦
√

q) ≤ 32𝜆
√

k
n𝜏||𝜃||2,q

+ 112||𝜃||2
𝜏||𝜃||2,q

√
6 log(kn)

n
.

The proposition follows on observing that
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P(c ∪ {||TΩ − AΩ||∞ > 𝜆n−1∕2}) ≤ 4
kn

+
p∑

j=1

n−1∑

t=1
P(|(TΩ)j,t − (AΩ)j,t| > 𝜆n−1∕2)

≤
4

kn
+ pne−𝜆2∕(2n𝜎2) ≤

6
kn
,

where the penultimate inequality uses the fact that (AΩ)j,t − (TΩ)j,t |Ω ∼ N(0, 𝜎2) for all t ∈ [n− 1]
and j ∈ [p] such that Lj,tRj,n−t ≠ 0, and is equal to 0 when Lj,tRj,n−t = 0.

6.2 Proof of Theorem 1

Proof of Theorem 1. Recall from Algorithm 3 that n1 = n∕2, and for 𝓁 ∈ {1, 2}, let Ω(𝓁) ∈
{0, 1}p×n1 , X (𝓁) ∈ Rp×n1 and X (𝓁)

Ω ∈ Rp×n1 denote the matrices formed from the n1 odd
columns (when 𝓁 = 1) and the n1 even numbered columns (when 𝓁 = 2) of Ω, X and XΩ =
X ◦Ω respectively. For 𝓁 ∈ {1,2}, let T(𝓁)Ω ∶=  Miss(X (𝓁)

Ω ,Ω(𝓁)) ∈ Rp×(n1−1). By Proposition 1,
the output v̂ of Algorithm 1 with inputs T(1)Ω and 𝜆 satisfies

P

⎧
⎪
⎨
⎪
⎩

sin∠(v̂, 𝜃 ◦
√

q) > 32𝜆
√

k
n1𝜏||𝜃||2,q

+ 112||𝜃||2
𝜏||𝜃||2,q

√

6 log(kn1)
n1

⎫
⎪
⎬
⎪
⎭

≤
6

kn1
= 12

kn
. (11)

We can therefore find a universal constant C′
> 0 such that whenever (4) holds, we have that the

event ∶= {sin∠(v̂, 𝜃 ◦
√

q) ≤ 1∕2} has probability at least 1−12/(kn).
Writing 𝜇(2) ∶= E(X (2)) ∈ Rp×n, let A(2) =  (𝜇(2)) and A(2)

Ω =  Miss(𝜇(2) ◦Ω(2),Ω(2)). Our main
decomposition of interest here is

T(2)Ω = (diag
√

q)A(2) + Δ(2) + E(2)Ω ,

where Δ(2) ∶= A(2)
Ω −

(
diag
√

q
)

A(2) and E(2)Ω ∶= T(2)Ω − A(2)
Ω . Since Algorithm 3 remains the same

if we replace v̂ in Step 6 with −v̂, we may assume without loss of generality that v̂⊤
(
𝜃 ◦
√

q
)
≥ 0.

Since
(
diag
√

q
)

A(2) =
(
𝜃 ◦
√

q
)
𝛾

(2)⊤, where 𝛾 (2) =
(

𝛾

(2)
1 , … , 𝛾

(2)
n1−1

)
⊤

∈ Rn1−1

𝛾

(2)
t ∶=

⎧
⎪
⎨
⎪
⎩

√
t

(n1−t)n1
(n1 − z∕2) if t ≤ z∕2,

√
(n1−t)

tn1
(z∕2) if t > z∕2,

we have
(

v̂⊤(diag
√

q)A(2))

t ≥ 0 for all t ∈ [n1 − 1]. On the event, we have

(
v̂⊤(diag

√
q)A(2))

z∕2 ≥

√
3

2
||𝜃||2,q𝛾

(2)
z∕2 ≥

√
3

4
||𝜃||2,q

√
n𝜏. (12)

Observe that for every t ∈ [n1 − 1], we have

(

v̂⊤E(2)Ω
)

t
|Ω(2) ∼ N(0, 𝜎2||v̂Jt ||

2
2),
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where Jt ∶= {j ∈ [p] ∶ min
(∑t

r=1
(
Ω(2)
)

j,r ,
∑n1

r=t+1(Ω
(2))j,r

)

> 0}. Since||v̂Jt ||2 ≤ 1, we deduce that
(

v̂⊤E(2)Ω
)

t
is stochastically dominated by N(0, 𝜎2). Hence, together with the first conclusion of

Proposition 2 and a union bound, there exists an event  with probability at least 1 − 4∕(kn1) −
1∕n1 such that on  we have

max
t∈[n1−1]

|
|
|

(
v̂⊤Δ(2)

)

t
|
|
|
≤ 7
√

6||𝜃||2
√

log(kn) and max
t∈[n1−1]

|
|
|

(

v̂⊤E(2)Ω
)

t

|
|
|
≤ 2𝜎

√
log n. (13)

Combining (12) and (13), and by increasing the universal constant C′
> 0 if necessary, we have

by Equation (4) that on ∩ ,

(

v̂⊤T(2)Ω
)

z∕2
=
(

v̂⊤
(
diag
√

q
)

A(2))

z∕2 +
(

v̂⊤E(2)Ω
)

z∕2
+
(

v̂⊤Δ(2)
)

z∕2

≥ max
{

0, max
t∈[n1−1]

{

−(v̂⊤E(2)Ω )t − (v̂
⊤Δ(2))t

}}

> max
t∈[n1−1]

(

−v̂⊤T(2)Ω
)

t
.

In particular, on  ∩ , we have from the definition of ẑ that (v̂⊤T(2)Ω )ẑ∕2 ≥ (v̂⊤T(2)Ω )z∕2 ≥ 0, so on
this event we have the basic inequality

(v̂⊤(diag
√

q)A(2))z∕2 − (v̂⊤(diag
√

q)A(2))ẑ∕2

≤ |(v̂⊤E(2)Ω )z∕2 − (v̂⊤E(2)Ω )ẑ∕2| + |(v̂⊤Δ(2))z∕2 − (v̂⊤Δ(2))ẑ∕2|. (14)

By (Wang and Samworth 2018 Lemma 7) on the event ∩ , for every t ∈ [n1 − 1], we have

(v̂⊤(diag
√

q)A(2))z∕2 − (v̂⊤(diag
√

q)A(2))t = |v̂⊤(
√

q◦ 𝜃)|(𝛾z∕2 − 𝛾t)

≥

√
3

2
||𝜃||2,q ⋅

2
3
√

6
min

(
|z∕2 − t|
√

n1𝜏
,

√
n1𝜏

2

)

= 1
3
√

2
||𝜃||2,q min

(
|z∕2 − t|
√

n1𝜏
,

√
n1𝜏

2

)

. (15)

Combining Equations (13)–(15), we then have on ∩  that,

1
3
√

2
||𝜃||2,q min

(
|ẑ − z|
2
√

n1𝜏
,

√
n1𝜏

2

)

≤ 4𝜎
√

log n + 14
√

6||𝜃||2
√

log(kn). (16)

For C′ ≥ 84
√

3, we have by Equation (4) that

24
√

2𝜎
||𝜃||2,q

√

log n
n1𝜏

+
168
√

3||𝜃||2
||𝜃||2,q

√

log(kn)
n1𝜏

<

2C′

𝜏

√
log(pn)

n

(
𝜎

√
k

||𝜃||2,q
+ ||𝜃||2

||𝜃||2,q

)

≤ 1,

which means that the minimum on the left-hand side of (16) must be achieved by the first term.
We therefore deduce with probability at least P( ∩ ) ≥ 1 − 22∕n that,
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|ẑ − z|
n𝜏

≤
24𝜎
√

log n + 84
√

6||𝜃||2
√

log(kn)

||𝜃||2,q
√

n𝜏
≤ 84

√
6
(

𝜎

||𝜃||2,q
+ ||𝜃||2

||𝜃||2,q

)√
log(kn)

n𝜏
,

as desired.

6.3 Proof of Theorem 2

The proof of Theorem 2 will make use of the following propositions.

Proposition 3 Let (X ,Ω) ∼ Pn,p,z,𝜃,𝜎,q, let A = (Aj,t) =  (E(X)) ∈ Rp×(n−1) and let AΩ =
(AΩ)j,t =  Miss(E(X)◦Ω,Ω) ∈ Rp×(n−1). Write Δ = (Δj,t) = AΩ − (diag

√
q)A ∈ Rp×(n−1),

fix v = (v1, … , vp)⊤ ∈ Sp−1 and let 𝜏 ∶= n−1 min{z,n − z}. For any given 𝛿 ∈ (0, 1], if
n𝜏 min

j∈[p]
qj ≥ 60k log(12p∕𝛿), then for t satisfying |z − t| ≤ n𝜏/50, we have with probability at

least 1 − 𝛿 that

|(v⊤Δ)z − (v⊤Δ)t| ≤
2||𝜃||2,q|z−t|

9
√

n𝜏
+

√
√
√
√

2|z−t|
∑

j∈[p]
v2

j 𝜃
2
j log(12∕𝛿)

n𝜏
+

4 log(12p∕𝛿)

3
√

n𝜏
max
j∈[p]

|vj𝜃j|

q1∕2
j

.

Proof. Without loss of generality, we may assume that t < z. For each j ∈ [p], by two Taylor
expansions, there exist 𝜉j, ̃𝜉j ∈ [t, z] such that

Aj,z − Aj,t =
(n − z)𝜃j
√

n

(√
z

n − z
−
√

t
n − t

)

= 𝜃j(z − t)
√

z−1 + (n − z)−1

2
+ 𝜃j(z − t)2

n1∕2(n − z)(n − 4𝜉j)

8𝜉3∕2
j (n − 𝜉j)5∕2

= 𝜃j(z − t)
√

t−1 + (n − z)−1

2
+ 𝜃j(z − t)2

⎧
⎪
⎨
⎪
⎩

n1∕2(n − z)(n − 4𝜉j)

8𝜉3∕2
j (n − 𝜉j)5∕2

− 1

4 ̃𝜉2
j

√
̃
𝜉

−1
j + (n − z)−1

⎫
⎪
⎬
⎪
⎭

.

Similarly, by another two Taylor expansions, there exist random variables Ξj, ̃Ξj ∈ [Lj,t,Lj,z] such
that

(AΩ)j,z − (AΩ)j,t = 𝜃j(Lj,z − Lj,t)

√
L−1

j,t + R−1
j,n−z

2

+ 𝜃j(Lj,z − Lj,t)2
⎧
⎪
⎨
⎪
⎩

N1∕2
j Rj,n−z(Nj − 4Ξj)

8Ξ3∕2
j (Nj − Ξj)5∕2

− 1

4 ̃Ξ2
j

√
̃Ξ−1

j + R−1
j,n−z

⎫
⎪
⎬
⎪
⎭

.

We write

D1,j ∶=
𝜃j

2

√

t−1 + (n − z)−1

qj
{(Lj,z − Lj,t) − qj(z − t)}

D2,j ∶=
𝜃j(Lj,z − Lj,t)

2

{
√

L−1
j,t + R−1

j,n−z −

√

t−1 + (n − z)−1

qj

}
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D3,j ∶= |𝜃j|q1∕2
j (z − t)2

⎧
⎪
⎨
⎪
⎩

1
2

(
n

𝜉j(n − 𝜉j)

)3∕2

+ 1
4 ̃𝜉3∕2

j

⎫
⎪
⎬
⎪
⎭

D4,j ∶= |𝜃j|(Lj,z − Lj,t)2
⎧
⎪
⎨
⎪
⎩

1
2

( Nj

Ξj(Nj − Ξj)

)3∕2

+ 1
4 ̃Ξ3∕2

j

⎫
⎪
⎬
⎪
⎭

.

We then have the bound

|(v⊤Δ)z − (v⊤Δ)t| ≤
|
|
|
|
|
|

p∑

j=1
vjD1,j

|
|
|
|
|
|

+
|
|
|
|
|
|

p∑

j=1
vjD2,j

|
|
|
|
|
|

+
p∑

j=1
|vj|D3,j +

p∑

j=1
|vj|D4,j. (17)

We control the four terms on the right-hand side of (17) separately. For the first term, setting
y ∶=

√
2(z − t)

∑
j∈[p] v2

j 𝜃
2
j log(12∕𝛿) + (1∕3)max

j∈[p]
|vj𝜃j|q−1∕2

j log(12∕𝛿), we consider the event

t ∶=
⎧
⎪
⎨
⎪
⎩

|
|
|
|
|
|

p∑

j=1

vj𝜃j

q1∕2
j

z∑

r=t+1
(𝜔j,r − qj)

|
|
|
|
|
|

≤ y
⎫
⎪
⎬
⎪
⎭

.

Since (𝜔j,r)j∈[p],r∈(t,z] are independent Bern(qj) random variables, we have by Lemma 3 in the
supplementary material that P(c

t ) ≤ 𝛿∕6. On t, we have that

|
|
|
|
|
|

p∑

j=1
vjD1,j

|
|
|
|
|
|

= 1
2
√

t−1 + (n − z)−1
|
|
|
|
|
|

p∑

j=1

vj𝜃j

q1∕2
j

z∑

r=t+1
(𝜔j,r − qj)

|
|
|
|
|
|

≤
0.8y
√

n𝜏
. (18)

For the second term on the right-hand side of (17), let  denote the 𝜎-algebra generated by (𝜔j,r ∶
j ∈ [p], r ∈ [n], r ∉ [t + 1, z]), then Lj,z − Lj,t is independent of  , whereas

Gj ∶=
vj𝜃j

2

{√

L−1
j,t + R−1

j,n−z − q−1∕2
j

√
t−1 + (n − z)−1

}

is measurable with respect to  . We can therefore apply Lemma 3 in the supplement conditional
on  to obtain that there is an event t with P(c

t | ) ≤ 𝛿∕6 on which

|
|
|
|
|
|

p∑

j=1
vjD2,j

|
|
|
|
|
|

=
|
|
|
|
|
|

p∑

j=1
Gj

z∑

r=t+1
𝜔j,r

|
|
|
|
|
|

≤ (z − t)
|
|
|
|
|
|

p∑

j=1
Gjqj

|
|
|
|
|
|

+

√
√
√
√2(z − t) log(12∕𝛿)

p∑

j=1
G2

j qj +
1
3

max
j∈[p]
|Gj| log(12∕𝛿). (19)

For 0 ≤ a < b ≤ n, define

Hj,(a,b) ∶=
|
|
|
|
|

Lj,b − Lj,a

(b − a)qj
− 1
|
|
|
|
|

. (20)
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We consider the event

j,t ∶=
{

max(Hj,(0,t),Hj,(0,z),Hj,(z,n)) ≤
1
5

}

∩

{

Hj,(t,z) ≤

√
2 log(12p∕𝛿)
(z − t)qj

+
log(12p∕𝛿)
3(z − t)qj

}

.

By Lemma 3 in the supplement again, we obtain that

P(c
j,t) ≤ 6 exp

{

−
(1∕5)2(1 − 1∕50)n𝜏qj

2(1 + 1∕15)

}

+ 𝛿

6p
≤ 6e−n𝜏qj∕60 + 𝛿

6p
≤

2𝛿
3p
,

where we used the assumption n𝜏qj ≥ 60 log(12p∕𝛿) in the final inequality. Onj,t, we have

|Gj| ≤
|vj𝜃j|

2q1∕2
j

(
√

5∕4 − 1)
√

t−1 + (n − z)−1 ≤
0.084|vj𝜃j|

(n𝜏qj)1∕2 ,

where we have used the fact that t ≥ (49/50)n𝜏. Combining the above inequality with (17), on
∩j∈[p]j,t ∩ t, we have by the Cauchy–Schwarz inequality that

|
|
|
|
|
|

p∑

j=1
vjD2,j

|
|
|
|
|
|

≤ 0.084
||𝜃||2,q(z − t) + y

(n𝜏)1∕2 . (21)

For the third and fourth terms on the right-hand side of (17), since |z − t| ≤ n𝜏/50, we have

D3,j ≤ |𝜃j|q1∕2
j (z − t)2

{

1
2

(
2

min(t,n − z)

)3∕2

+ 1
4t3∕2

}

≤
1.8|𝜃j|q1∕2

j (z − t)2

(n𝜏)3∕2 .

Moreover, onj,t,

D4,j ≤ |𝜃j|q2
j (z − t)2(1 +Hj,(t,z))2

⎧
⎪
⎨
⎪
⎩

1
2

(
2

min(Lj,t,Rj,n−z)

)3∕2

+ 1
4L3∕2

j,t

⎫
⎪
⎬
⎪
⎭

≤
2.4|𝜃j|q1∕2

j (z − t)2

(n𝜏)3∕2 (1 +Hj,(t,z))2 ≤
4.8|𝜃j|q1∕2

j (z − t)2

(n𝜏)3∕2 +
60|𝜃j|log2(12p∕𝛿)

(n𝜏qj)3∕2 ,

where the final step uses the fact that (1 +
√

2a + a∕3)2 ≤ 2 + 25a2 for any a > 0. Therefore, on
∩j∈[p]j,t, since |z − t| ≤ n𝜏/50 and n𝜏 min

j∈[p]
qj ≥ 60k log(12p∕𝛿), we have by the Cauchy–Schwarz

inequality again that
p∑

j=1
|vj|(D3,j + D4,j) ≤

6.6||𝜃||2,q(z − t)2

(n𝜏)3∕2 +
60log2(12p∕𝛿)

(n𝜏)3∕2

∑

j∶𝜃j≠0

|vj𝜃j|

q3∕2
j

≤
0.132||𝜃||2,q(z − t)

(n𝜏)1∕2 +
log(12p∕𝛿)
(n𝜏)1∕2 max

j∶𝜃j≠0

|vj𝜃j|

q1∕2
j

. (22)

Therefore, combining (17), (18), (21) and (22), we have on ∩j∈[p]j,t ∩ t ∩ t that
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|(v⊤Δ)z − (v⊤Δ)t| ≤
y
√

n𝜏
+

2||𝜃||2,q(z − t)

9
√

n𝜏
+

log(12p∕𝛿)
(n𝜏)1∕2 max

j∈[p]

|vj𝜃j|

q1∕2
j

≤
2||𝜃||2,q(z − t)

9
√

n𝜏
+

√
√
√
√

2(z − t)
∑

j∈[p]
v2

j 𝜃
2
j log(12∕𝛿)

n𝜏
+

4 log(12p∕𝛿)
3(n𝜏)1∕2 max

j∈[p]

|vj𝜃j|

q1∕2
j

.

Since
∑p

j=1P(
c
j,t) + P(c

t ) + P(c
t ) ≤ 𝛿, the proof is complete.

Proposition 4 Suppose thatΩ = (𝜔j,t)j∈[p],t∈[n] and W = (Wj,t)j∈[p],t∈[n] are independent, with𝜔j,t ∼
Bern(qj) independently and qj ∈ (0, 1], and with Wj,t

iid∼ N(0, 𝜎2). Let EΩ ∶=  Miss(W◦Ω,Ω),
let z ∈ [n− 1] and let 𝜏 ∶= n−1 min{z,n − z}. Suppose that t ∈ [n− 1] satisfies |z− t|≤ n𝜏/2.
For a fixed v ∈ Sp−1, if n𝜏 min

j∈[p]
qj ≥ 20 log(11p∕𝛿), then we have for any 𝛿 ∈ (0,1] that

P

⎧
⎪
⎨
⎪
⎩

|(v⊤EΩ)z − (v⊤EΩ)t| > 70𝜎

√
√
√
√|z − t| log(11∕𝛿) + log2(11∕𝛿)max

j∈[p]
v2

j ∕qj

n𝜏

⎫
⎪
⎬
⎪
⎭

≤ 𝛿.

Proof. By symmetry, we may assume without loss of generality that t < z. We note that (EΩ)j,z −
(EΩ)j,t is a centred normal random variable conditional on Ω, so we start by looking at its
conditional variance. By definition of  Miss, we have

(EΩ)j,z − (EΩ)j,t =

√
Nj

Lj,zRj,n−z

(
Lj,z

Nj

n∑

r=1
Wj,r𝜔j,r −

z∑

r=1
Wj,r𝜔j,r

)

−

√
Nj

Lj,tRj,n−t

(
Lj,t

Nj

n∑

r=1
Wj,r𝜔j,r −

t∑

r=1
Wj,r𝜔j,r

)

=

√
Nj

Lj,zRj,n−z

(
Lj,z − Lj,t

Nj

n∑

r=1
Wj,r𝜔j,r −

z∑

r=t+1
Wj,r𝜔j,r

)

+

(√
Nj

Lj,zRj,n−z
−

√
Nj

Lj,tRj,n−t

)(
Lj,t

Nj

n∑

r=1
Wj,r𝜔j,r −

t∑

r=1
Wj,r𝜔j,r

)

. (23)

Now, by the mean value theorem, there exists a random variable Ξj ∈ [Lj,t,Lj,z] such that

|
|
|
|
|
|

√
Nj

Lj,zRj,n−z
−

√
Nj

Lj,tRj,n−t

|
|
|
|
|
|

≤ (Lj,z − Lj,t)
|
|
|
|
|

Ξj

Nj
− 1

2

|
|
|
|
|

( Nj

Ξj(Nj − Ξj)

)3∕2

≤

√
2(Lj,z − Lj,t)

min (Ξj,Nj − Ξj)3∕2 .

(24)

Also, observe that

Lj,t

Nj

n∑

r=1
Wj,r𝜔j,r −

t∑

r=1
Wj,r𝜔j,r =

n∑

r=t+1
Wj,r𝜔j,r −

Rj,n−t

Nj

n∑

r=1
Wj,r𝜔j,r. (25)

Substituting (24) and (25) into Equation (23), and observing that
∑n

r=1Wj,r𝜔j,r is positively
correlated with each of

∑z
r=t+1Wj,r𝜔j,r,

∑t
r=1Wj,r𝜔j,r and

∑n
r=t+1Wj,r𝜔j,r, we have that
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Var
(
(EΩ)j,z − (EΩ)j,t |Ω

)
≤

2𝜎2Nj

Lj,zRj,n−z

( (Lj,z − Lj,t)2

Nj
+ Lj,z − Lj,t

)

+
4𝜎2(Lj,z − Lj,t)2

min (Ξj,Nj − Ξj)3
min

(
L2

j,t

Nj
+ Lj,t,Rj,n−t +

R2
j,n−t

Nj

)

≤ 4𝜎2(Lj,z − Lj,t)
(

1
Lj,z

+ 1
Rj,n−z

)

+
8𝜎2(Lj,z − Lj,t)2

min {Lj,t,Rj,n−z}2 max
(Lj,z

Lj,t
,

Rj,n−t

Rj,n−z

)

. (26)

Recalling the definition of Hj,(a,b) from Equation (20) in the proof of Proposition 3, we consider
the event

j,t ∶=
{

max{Hj,(0,z),Hj,(0,t),Hj,(z,n),Hj,(t,n)} ≤
1
2

}

∩
{

Hj,(t,z) ≤
n𝜏

z − t

}

.

By Bernstein’s inequality (Lemma 3 in the supplementary material), we obtain that

P(c
j,t) ≤ 8 exp

{

−
(1∕2)2(n𝜏∕2)qj

2(1 + 1∕6)

}

+ exp
{

−
(n𝜏∕(z − t))2(z − t)qj

2(1 + n𝜏∕{3(z − t)})

}

≤ 9e−n𝜏qj∕20
,

where we used the fact that z − t ≤ n𝜏/2 in the final inequality. It therefore follows from
Equation (26) that on the eventj,t,

Var
(
(EΩ)j,z − (EΩ)j,t |Ω

)
≤

16𝜎2

n𝜏qj
(Lj,z − Lj,t) +

768𝜎2

(n𝜏qj)2
(Lj,z − Lj,t)2 ≤

1168𝜎2

n𝜏qj
(Lj,z − Lj,t).

Hence, on ∩j∈[p]j,t, we have

Var
{(

v⊤EΩ
)

z −
(

v⊤EΩ
)

t |Ω
}

≤
1168𝜎2

n𝜏

p∑

j=1

v2
j

qj
(Lj,z − Lj,t) =

1168𝜎2

n𝜏

p∑

j=1

v2
j

qj

z∑

r=t+1
𝜔j,r.

Now, setting y ∶=
√

2(z − t)
∑

j∈[p] v4
j q−1

j log(11∕𝛿) + (1∕3)max
j∈[p]

v2
j q−1

j log(11∕𝛿), consider the
event

t ∶=

{ p∑

j=1

v2
j

qj

z∑

r=t+1
𝜔j,r ≤ z − t + y

}

.

We have by Bernstein’s inequality (Lemma 3 in the supplement) that P(c
t ) ≤ 𝛿∕11. Noting that

∑
j∈[p] v4

j q−1
j ≤ maxj∈[p]

v2
j q−1

j , and using the fact that a +
√

2ab + b∕3 ≤ 2(a + b) for any a, b > 0, we

have from the Gaussian tail bound that for every u > 0,

P

⎧
⎪
⎨
⎪
⎩

|(v⊤EΩ)z − (v⊤EΩ)t| > 49u𝜎

√
√
√
√

z − t + log(11∕𝛿)max
j∈[p]

v2
j ∕qj

n𝜏

⎫
⎪
⎬
⎪
⎭

≤ e−u2∕2 +
p∑

j=1
P(c

j,t) + P(c
t ) ≤ e−u2∕2 + 9

p∑

j=1
e−n𝜏qj∕20 + 𝛿

11
.
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The result follows by taking u ∶=
√

2 log(11∕𝛿) and using the fact that n𝜏 min
j∈[p]

qj ≥ 20 log(11p∕𝛿).

Proof of Theorem 2. We write z1 ∶= z∕2 and n1 ∶= n∕2. Taking C,C′
> 0 from Theorem 1, we

may assume that c ∈ (0, 1/50] is small enough that the hypothesis (4) of Theorem 1 is satis-
fied when 𝜌 ≤ c. Hence, by Theorem 1, there is an event  with probability at least 1−22/n
such that

|ẑ − z|
n𝜏

≤ C
√

log(kn)
n𝜏

(
𝜎

||𝜃||2,q
+ ||𝜃||2

||𝜃||2,q

)

≤ C𝜌.

By further reducing c> 0 if necessary, we may assume that on  , and when 𝜌≤ c, we have|ẑ − z| ≤
n𝜏∕50.

Let A(2)
,Δ(2) and E(2)Ω be defined as in the proof of Theorem 1. With v̂ = (v̂1, … , v̂p)⊤ ∈ Sp−1 as

defined in Algorithm 3, an inspection of the proof of Theorem 1 reveals that on  , we also have
for all t ∈ [z1 − n1𝜏𝜌, z1 + n1𝜏𝜌] and 𝜌 ≤ c that

(
v̂⊤(diag

√
q)A(2))

z1
−
(

v̂⊤(diag
√

q)A(2))

t ≥
|z1 − t|||𝜃||2,q

3
√

2n1𝜏
. (27)

Recall that v̂ is measurable with respect to the 𝜎-algebra generated by the odd-numbered time
points, and that Δ(2) and E(2)Ω are measurable with respect to the 𝜎-algebra generated by the
even-numbered time points. By taking the universal constant C1 > 0 in the statement of the
theorem to be sufficiently large, we can ensure that the lower bounds on n𝜏 min

j∈[p]
qj in Propositions

3 and 4 are satisfied. It follows by these propositions that when 𝜌 ≤ c, for each t ∈ [z1 − n1𝜏𝜌, z1 +
n1𝜏𝜌], there is an eventt of probability at least 1 − n−2 on which both

|(v̂⊤Δ(2))z1 − (v̂
⊤Δ(2))t| −

2||𝜃||2,q|z1 − t|

9
√

n1𝜏
≲

√
√
√
√
√
|z1 − t|

∑

j∈[p]
v̂2

j 𝜃
2
j log n

n𝜏
+

log(pn)
√

n𝜏
max
j∈[p]

|v̂j𝜃j|

q1∕2
j

, (28)

|(v̂⊤E(2)Ω )z1 − (v̂
⊤E(2)Ω )t| ≲

√
|z1 − t|𝜎2 log n

n𝜏
+
𝜎 log n
√

n𝜏
max
j∈[p]

|v̂j|

q1∕2
j

. (29)

Combining Equations (27)–(29) and the basic inequality as in (14) in the proof of Theorem 1, we
have on the event  ∩

⋂
t∈[z∕2−n1𝜏𝜌,z∕2+n1𝜏𝜌]

t and with 𝜌 ≤ c that

|ẑ − z|||𝜃||2,q
√

n𝜏
≲

√
√
√
√
√
|ẑ − z|(𝜎2 +

∑

j∈[p]
v̂2

j 𝜃
2
j ) log n

n𝜏
+

log(pn)
√

n𝜏
max
j∈[p]

|v̂j𝜃j|

q1∕2
j

+
𝜎 log n
√

n𝜏
max
j∈[p]

|v̂j|

q1∕2
j

. (30)

Define v = (vj)j∈[p] ∈ Rp such that vj ∶= 𝜃jq1∕2
j ∕||𝜃||2,q. Then we can write

v̂ = 𝛼v + 𝛽w,

for some unit-length (random) vector w = (wj)j∈[p] that is orthogonal to v and some 𝛼, 𝛽 ∈ R such
that 𝛼2 + 𝛽2 = 1. Moreover, by inspecting the proof of Theorem 1, we see that on  , we have |𝛽| =
sin∠(v̂, v) ≤ 𝜌. Then from Equation (30), we have on  ∩

⋂
t∈[z∕2−n1𝜏𝜌,z∕2+n1𝜏𝜌]

t that
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|ẑ − z| ≲
𝜎

2 + 𝛼2∑
j∈[p] v2

j 𝜃
2
j + 𝛽

2∑
j∈[p] w2

j 𝜃
2
j

||𝜃||22,q
log n

+
|𝛼|max

j∈[p]
|vj𝜃j|q−1∕2

j + |𝛽|max
j∈[p]
|wj𝜃j|q−1∕2

j

||𝜃||2,q
log(pn)

+
𝜎(|𝛼|max

j∈[p]
|vj|q−1∕2

j + |𝛽|max
j∈[p]
|wj|q−1∕2

j )

||𝜃||2,q
log n

≲

𝜎

2 log n
||𝜃||22,q

+
||𝜃||44,q log n

||𝜃||42,q
+
𝜌

2||𝜃||2∞ log n
||𝜃||22,q

+
||𝜃||2∞ log(pn)
||𝜃||22,q

+
𝜌max

j∈[p]
|𝜃j|q−1∕2

j log(pn)

||𝜃||2,q

+
||𝜃||∞𝜎 log n
||𝜃||22,q

+
𝜌𝜎 log n

||𝜃||2,q min
j∈[p]

q1∕2
j

≲

(𝜎2 + ||𝜃||2∞) log(pn)
||𝜃||22,q

+
𝜌(𝜎 + ||𝜃||∞) log(pn)

||𝜃||2,q min
j∈[p]

q1∕2
j

≲

(𝜎2 + ||𝜃||2∞) log(pn)
||𝜃||22,q

,

where the final bound uses the definition of 𝜌 and the fact that n𝜏2 min
j∈[p]

qj ≥ C1k log(pn). The

desired result follows since P

(

 ∩
⋂

t∈[z∕2−n1𝜏𝜌,z∕2+n1𝜏𝜌]
t

)

≥ 1 − 22∕n − (2n1𝜏𝜌 + 1)∕n2 ≥ 1 −
23∕n.

6.4 Proof of Theorem 3

Proof of Theorem 3. For notational simplicity, we abbreviate Pn,p,z,𝜃,𝜎,q as Pz in this proof, with
corresponding expectation operator Ez. For any 1 ≤ z1 < z2 ≤ n − 1, by Le Cam’s two point
testing lemma (e.g. Yu, 1997, Lemma 1), we have that

inf
z̃∈ ̃

max
z∈[n−1]

Ez|z̃ − z| ≥ 1
2
|z1 − z2|{1 − dTV(Pz1 ,Pz2)}. (31)

By Pinsker’s inequality (e.g. Wainwright, 2019, Lemma 15.2), we have

2d2
TV(Pz1 ,Pz2) ≤ KL(Pz1 ||Pz2) = EPz1

[

EPz1

{

log
(dPz1

dPz2

(X ,Ω)
)
|
|
|
Ω
}]

=
p∑

j=1

z2∑

t=z1+1
EPz1

𝜃

2
j 𝜔j,t

2𝜎2 =
(z2 − z1)||𝜃||22,q

2𝜎2 .

Choosing z2 − z1 = min{⌊𝜎2∕||𝜃||22,q⌋,n − 2}, we have dTV(Pz1 ,Pz2) ≤ 1∕2 and consequently if
𝜎

2 ≥ ||𝜃||22,q, then by Equation (31),
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inf
z̃∈ ̃

max
z∈[n−1]

Ez|z̃ − z| ≥ 1
4
min

{⌊

𝜎

2

||𝜃||22,q

⌋

,n − 2

}

≥
1

12
min

{

𝜎

2

||𝜃||22,q
,n

}

. (32)

On the other hand, if ||𝜃||2∞ ≥ 2M2||𝜃||22,q, then

∑

j∶𝜃j≠0
qj ≤

||𝜃||22,q

min
j∶𝜃j≠0

𝜃

2
j

≤
M2||𝜃||22,q

||𝜃||2∞
≤ 1∕2.

Define  ∶= {j ∈ [p] ∶ 𝜃j ≠ 0} and

 ∶= {((xj,t)j∈[p],t∈[n], (𝜔j,t)j∈[p],t∈[n]) ∶ 𝜔j,t = 0 whenever j ∈  and z1 + 1 ≤ t ≤ z2}.

Then the distributions of Pz1 given  and Pz2 given  are identical. Moreover, Pz1() = Pz2().
Thus, for any Borel measurable subset  of Rn×p × {0, 1}n×p, we have

|Pz1() − Pz2()| = |Pz1(|
c) − Pz2(|

c)|Pz1(
c) ≤ Pz1(

c).

Hence, using the fact that 1 − x ≥ e−2x log 2 for x ∈ [0, 1/2], we have

1 − dTV(Pz1 ,Pz2) ≥ Pz1() =
∏

j∶𝜃j≠0
(1 − qj)z2−z1 ≥ exp

⎧
⎪
⎨
⎪
⎩

−2(log 2)(z2 − z1)
∑

j∶𝜃j≠0
qj

⎫
⎪
⎬
⎪
⎭

.

Choosing z2 − z1 = min{⌈(2
∑

j∶𝜃j≠0 qj)−1⌉,n − 2}, we have 1 − dTV(Pz1 ,Pz2) ≥ 1∕4, and conse-
quently, on combining with (31) we obtain that

inf
z̃∈ ̃

max
z∈[n−1]

Ez|z̃ − z| ≥ 1
8

min

{

1
2
∑

j∶𝜃j≠0 qj
,n − 2

}

≥
1

24
min

{
||𝜃||2∞

M2||𝜃||22,q
,n

}

. (33)

By combining (32) and (33), and considering the three possible cases of (i) 𝜎2 ≥ ||𝜃||22,q >

||𝜃||2∞∕(2M2), (ii) ||𝜃||2∞∕(2M2) ≥ ||𝜃||22,q > 𝜎
2 and (iii) min{𝜎2

, ||𝜃||2∞∕(2M2)} ≥ ||𝜃||22,q, we have

inf
z̃∈ ̃

max
z∈[n−1]

Ez|z̃ − z| ≥ 1
12

max

{

𝜎

2

||𝜃||22,q
∧ n

2
,

||𝜃||2∞

2M2||𝜃||22,q
∧ n

2

}

≥
1

12
min

(

max

{

𝜎

2

||𝜃||22,q
,

||𝜃||2∞

2M2||𝜃||22,q

}

,

n
2

)

≥
1

24
min

(

𝜎

2

||𝜃||22,q
+

||𝜃||2∞

2M2||𝜃||22,q
,n

)

,

as required.
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