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Standard rational inattention models suppose that agents process noisy signals about oth- 

erwise fully revealing data. I show that introducing imperfect data quality yields new in- 

sights in settings in which volatility is time-varying. I impose a two-layered signal struc- 

ture in which agents learn imperfectly about noisy sources. Treating data as only partially 

revealing of the true fundamental amplifies impulse responses to a second moment shock 

and, if data quality is sufficiently poor, can change the qualitative direction of the response. 

I apply my findings to the price-setting problem of firms and find that higher data qual- 

ity enhances the transmission of monetary policy and reduces macroeconomic volatility. 

I also show how the empirically documented procyclicality of data quality has non-trivial 

implications for the Phillips curve. 
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’Steering the economy has sometimes been likened to driving along a winding road looking only in the rear-view mirror. I wish

it were that easy. In practice, the rear window is also a little misted up ... Not only do we not know where we are going, but we

have only an imperfect idea of where we have been.’ - Charles Bean (2007) 

1. Introduction 

Data uncertainty has long been recognised as an inherent feature of real-time decision making. Official statistics are 

revised continuously and often subject to substantial measurement errors (see Aruoba, 2008, Croushore, 2011, Croushore 

and Stark, 2001, Manski, 2015 and Orphanides, 2001 ). What is more, data inaccuracies are found to be more pronounced

during recessions and periods of heightened uncertainty – precisely at times when vital decisions must be made ( Jordá et al.,

2020; Swanson and van Dijk, 2006 ). Croushore (2011) illustrates this point with a notable example: The largest revision from

advance to first release data ever recorded for quarterly real GDP occurred in the middle of the financial crisis of 2008/09.

Likewise, at the deepest point of the Covid recession US real GDP growth was subject to an above average absolute revision.

Given the empirical evidence that this literature has uncovered the Bank of England started to provide an estimate of 

data uncertainty in their quarterly Monetary Policy Report (formerly Inflation Report) in August 2007. The Monetary Policy 

Committee has since published output growth projections for both the past and the future, using fan charts to indicate the

uncertainty around those values. Fig. 1 illustrates one of these fan charts from the January 2020 Monetary Policy Report and
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Fig. 1. January 2020 UK GDP Fan Chart. Source : Bank of England. 

 

 

 

 

 

 

 

 

 

 

 

indicates considerable uncertainty around the official ONS data. The Bank of England is not only concerned about the noise 

contained in past observations but believes imperfect data to be sufficiently vital to economic agents as to communicate it 

to them. 

The Covid crisis has further heightened the attention of policymakers to the need for frequent and reliable real-time 

statistics as well as highlighted the noisiness of real-time data. As a case in point, the UK’s Office for National Statistics

(ONS) started in March 2020 to attach a disclaimer to their initial data releases citing governments imposed public health 

restrictions as well as current economic conditions due to the pandemic as generating additional uncertainty around real- 

time GDP estimates. 

Using the Real-Time Dataset for Macroeconomics created by Croushore and Stark (2001) I confirm the above cited em- 

pirical regularities. In particular, I document three stylised facts for revisions to quarterly US inflation, nominal GDP growth 

and real GDP growth. First, corrections to real-time data can be substantial with large mean absolute revisions (MAR) and a

signal to noise ratio mostly ranging between 1 and 3. As an implication we may expect the measurement error in real-time

data to play a non-negligible role in the decision-making process of agents. Second, we observe a long-run decline in the

size and volatility of revisions over time. This reflects the advances in statistical methods, survey quality and the way data

is collected. Third, the data highlights the time-varying nature of revision errors. As a case in point, the noise in initial data

releases for the above three macroeconomic variables was twice as large and volatile during the Great Recession relative to 

the period of the Great Moderation. 

The above empirical and anecdotal evidence underscores the practical importance of data revisions for real-time decision 

making. In the present paper, I explicitly model these considerations and place additional constraints on the set of available

information. Agents are restricted to learn about the fundamental from noisy sources such as reading real-time statistics or 

central bank reports akin to the Monetary Policy Report by the Bank of England. In effect, agents choose their private signal

of a noisy public signal. This ‘signal of a signal’ structure captures the notion by Myatt and Wallace (2012) that information

is subject to both ”sender” and ”receiver” noise. That essentially introduces a distinction between the set of learnable in- 

formation available to agents and the probability space spanned by the fundamental. But what do we lose, if anything, by

treating data sources as fully revealing of the fundamental? This question lies at the core of the present paper. 

The most immediate interpretation sees the irreducible noise in public signals as measurement error of real-time data 

as in the introductory example. Complementarily, Haldane et al. (2020) use an analogous set-up in which the noise term 

is a stand-in for imperfect or incomplete central bank communication. This interpretation can be rationalised as follows. As 

part of a more general central bank communication strategy the Bank of England regularly transmits their views on current 

and future economic conditions to the public, mainly via the quarterly Monetary Policy Report. Notably, these reports are 

orthogonal to news about future policy decisions. Instead, the Bank reviews the economic developments it considers most 

pressing given current conditions, publishes summary tables of real-time data and gives projections on a variety of economic 

indicators. This constitutes an effort to inform the public about current economic conditions. To the extent that the central 

bank does not include all or simplifies some data or gives imperfect projections the Monetary Policy Report can be viewed

as a noisy public signal about the true state of the economy - not very dissimilar to real-time data. 
2 
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Though non-standard, the ‘signal of a signal’ structure of the type discussed above is not entirely novel in the rational

inattention literature (see Myatt and Wallace, 2012 and Fuster et al., 2018 ). 1 Whereas previously the focus lied on the static

choice between information sources with varying levels of accuracy I examine how optimal attention allocations change 

dynamically in response to volatility shocks, once the notion of noisy data is taken seriously in the model. The dynamic

perspective is paramount as, if volatilities were time-invariant, we could always find an isomorphism between the standard 

rational inattention model and its counterpart with noisy data by adjusting the generally free marginal cost parameter. In a 

world of time-varying volatility, however, this tight correspondence no longer holds. 

I consider a variant of the standard Linear Quadratic Gaussian rational inattention model in which I impose the above 

‘signal of a signal’ structure. Agents are restricted to processing information about the fundamental only indirectly through 

noisy public signals while their payoff function remains the squared difference between the optimal and their realised 

action. I examine two distinct types of volatility shocks: i) a change in the variance of the fundamental and ii) a change in

the variability of the irreducible noise contained in the public signal. I call the former a fundamental shock and the latter an

information quality or irreducible noise shock. 

In a macroeconomic application of the model I place the two-layered ‘signal of a signal’ framework into the economic 

environment of Afrouzi and Yang (2021) to propose an attention-driven Phillips curve that links fundamental uncertainty 

and data uncertainty to the structure of the economy. I find a set of three results. 

Comparative statics show that data quality can have substantive effects on the transmission of monetary policy. More 

accurate public signals increase attention levels, enhance the transmission of monetary policy and reduce the persistence 

of inflation and output deviations. Even as agents are more attentive I find that the unconditional variance of inflation and

output is lower the higher data quality, highlighting how better data quality can aid the central bank fulfil their mandate. 

When variances are time-varying the presence of noisy data carries additional non-trivial implications. I identify a region 

in the parameter space for the marginal cost of information processing for which in the short run a more dovish mon-

etary policy regime increases attention in a model with irreducible noise and lowers information processing in a model 

without such information quality concerns. I show that when initial information quality is poor this range is substantial ow- 

ing to large interaction effects between the underlying variances. This insight can help contextualise some implications of 

Afrouzi and Yang (2021) . Using a dynamic LQG rational inattention model with perfect data the authors find that a shift in

monetary policy which increases the variance of the fundamental may explain a temporary flattening of the Phillips curve. 

I show that this mechanism is weaker in an environment in which observable information is a noisy signal of reality. 

I propose a mechanism which may have contributed to a temporary flattening of the Phillips curve during the Great 

Recession. A fall in information quality induced by the Great Recession could have lowered attention levels in the economy 

temporarily and thereby disrupted the relationship between inflation and output as well as rendered macroeconomic vari- 

ables more persistent, ceteris paribus. Even if fundamental volatility increases concurrently as has been observed empirically 

I show that the class of rational inattention models considered has a tendency for attention to fall in response to a joint

increase in the underlying variances. However, this result is sensitive to whether the signal to noise ratio increases and to

the initial level of the signal to noise ratio. Nonetheless, incorporating data uncertainty into a rational inattention model 

may have important quantitative effects. The idea that fluctuations in information quality have real effects follows in spirit 

Van Nieuwerburgh and Veldkamp (2006) and Fajgelbaum et al. (2017) , who find respectively that changes in data quality

can account for the asymmetry observed in GDP data and the sluggish recovery after the Great Recession. 

The rest of the paper proceeds as follows. Section 2 briefly reviews the traditional rational inattention model and then

characterises the extended variant with irreducible noise. Section 3 applies the mechanism to the dynamic pricing deci- 

sion of producers and derives an attention-driven Phillips curve. Section 4 considers the impulse responses of attention to 

changes in underlying volatilities in the dynamic setting and Section 5 concludes. The Appendix contains omitted proofs, 

model derivations and additional results and figures. 

2. The model 

To fix ideas I first review the traditional rational inattention problem of Sims (2003),(2010) . I then introduce imperfect

data quality into the set-up to capture its role in the agent’s attention problem. 

2.1. The traditional RI problem 

Let θ ∈ � denote the underlying fundamental relevant for an agent’s decision making, y ∈ Y the action taken by the agent

and ˜ ω the marginal cost of processing information. Agents have access to an imperfect signal s ∈ S . Rationally inattentive

agents flexibly choose the distribution of their signal subject to an entropy-based cost. This captures the idea that the types

of mistakes that agents make are not arbitrary but subject to choice ( Ma ́ckowiak et al., 2018b ). 

It is common to place the two following restrictions on the model: preferences are linear-quadratic, i.e. E θ | s u (θ, y ) =
−E θ | s 1 2 (θ − y ) 2 and the fundamental follows a Gaussian distribution, i.e. θ ∼ N (0 , σ 2 

θ
) . It is a standard result from infor- 

mation theory that under those assumptions the agent’s optimal signal structure will be Gaussian with independent noise 
1 Bloedel and Segal (2021) use an analogous multi-layered signal structure to answer the question of how a principal should communicate with a 

rationally inattentive agent. 

3 
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Fig. 2. Two Stage Information Processing About Public Signal. 

 

 

 

 

 

 

 

 

ζ ∼ N (0 , σ 2 
ζ
) . In such a case, the problem simplifies to choosing the posterior variance conditional on signal s to solve 

max 
V ar(θ | s ) 

−V ar(θ | s ) − ˜ ω log 

(
V ar(θ ) 

V ar(θ | s ) 
)

(1) 

subject to 

0 ≤ V ar(θ | s ) ≤ V ar(θ ) 

I refer to (1) as the traditional RI problem . 

2.2. RI With imperfect data quality 

In the traditional RI problem the agent could in principle observe the fundamental perfectly if either their capac- 

ity were infinite or information processing costless. In the modified model I follow Myatt and Wallace (2012) and 

Fuster et al. (2018) and change the signal structure to prevent agents from learning the fundamental perfectly, even un- 

der those extreme cases. That effectively places a constraint on the set of available information. Agents have at best access

to a public signal with common Gaussian irreducible noise 

x = θ + ε, ε ∼ N (0 , σ 2 
ε ) 

Agents now optimally choose a mapping from public signals (and not the fundamental directly) to distributions over 

private signals s : χ → 	(S) . 2 It is this information flow – from public signal x to private signal s – that is subject to a cost

proportional to the Shannon mutual information function denoted as I(x ; s ) . This follows the interpretation in Myatt and

Wallace (2012) that information is subject to both ”sender” and ”receiver” noise. While the cost of information transmission 

is relative to the public signal, the objective function remains the mean squared error between actions and the fundamental. 

In effect, there is a disconnect between the set of information available to the agent and what they fundamentally care

about. This modelling assumption has the additional implication of mechanically increasing the effective cost of learning by 

constraining the set of available information. This is an issue I will return to at the end of the section and throughout the

paper. 

Following the above reasoning I model the information transmission process of agents as two separate activities (see 

Fig. 2 ). First, information is acquired and collected in a public signal. For example, a statistics agency compiles information

about real-time aggregate variables such as inflation or nominal output. The noise σ 2 
ε contained in that best possible signal 

is a reduced form way to capture that data collection is imperfect even before the information is transmitted to agents. Once

the data has been compiled into a public signal it is published, communicated to the agents and subsequently incorporated 

into their decision making process. A natural candidate to measure that flow of information and their associated costs is the

Shannon mutual information. 

Given the Linear Quadratic Gaussian nature of the problem agents formally solve 

max 
f ( X , S ) ( x,s ) 

− V ar ( θ | s ) − 2 ωI ( x ; s ) 

subject to ∫ 
s ∈S 

f (X , S) (x, s ) ds = f X (x ) ∀ x ∈ X 
2 Bloedel and Segal (2021) refer to this as costly communication as opposed to delegated information acquisition as in Lipnowski et al. (2020) since the 

agent cannot learn about the state itself but only about the public signal. 

4 
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I ( x ; s ) = 

∫ 
x ∈X 

∫ 
s ∈S 

f ( X , S ) ( x, s ) log 

(
f ( X , S ) ( x, s ) 

f X ( x ) f S ( s ) 

)
dxds 

The following result allows us to greatly simplify the problem. 

Proposition 1. Suppose that preferences are quadratic in θ and x = θ + ε , where θ and ε are independently Gaussian distributed.

Given that agents can only learn the public signal the joint distribution of the public and the private signal f (X , S) (x, s ) will be

Gaussian. 

Proposition 1 states that we can restrict our focus to signals of the type s = x + ζ , ζ ∼ N (0 , σ 2 
ζ
) . Note that the Gaussian-

ity of the posterior signal follows from optimal agent behaviour. This allows us to rewrite the objective function in a similar

fashion as in (1) . By an application of the Total Law of Variance agents choose their optimal posterior variance about the

public signal to maximise 

max 
V ar(x | s ) 

−V ar(θ | x ) −
[ 

V ar(θ ) 

V ar(x ) 

] 
2 
V ar(x | s ) − ω log 

(
V ar(x ) 

V ar(x | s ) 
)

(2) 

subject to 

0 ≤ V ar(x | s ) ≤ V ar(x ) 

Isomorphism result Restricting the learning technology of agents to processing information about the fundamental indi- 

rectly through noisy public signals has rendered information processing effectively more costly. In fact, learning about the 

fundamental from a public signal is isomorphic to learning about the public signal in the standard fashion at a higher

information processing cost. To see this point, note that (2) has the same solution as 

max 
V ar(x | s ) 

−V ar(x | s ) − ˆ c log 

(
V ar(x ) 

V ar(x | s ) 
)

(3) 

where the total effective cost is denoted as ˆ c := ω 

[ 
V ar(θ ) 
V ar(x ) 

] 
−2 . 

The above equivalence relation illustrates that the traditional RI problem and the RI problem with irreducible noise are 

closely related. The latter introduces an additional term capturing imperfect information quality that amplifies the standard 

cost parameter ω. 3 This highlights that when the set of available information is constrained to public signals an agent ef-

fectively faces two distinct types of costs. They incur the standard disutility from processing a bit of information as well as

additional losses from the fact that the rate at which a reduction in uncertainty about the public signal translates into a

reduction in uncertainty about the fundamental is below one. In that sense rational inattention with imperfect data qual- 

ity can be viewed as a variant of traditional rational inattention that endogenises the cost of information processing. The 

endogenous nature also implies that this isomorphism breaks down in a world of time-varying volatility. 

2.3. Attention with time-Varying volatility 

Empirical evidence indicates that the distribution of economic shocks is time-varying. Bloom (2009) and 

Bloom et al. (2018) show that second moment shocks are integral features of business cycles and key drivers of macroeco-

nomic fluctuations. Likewise, Jordá et al. (2020) and Swanson and van Dijk (2006) find that the volatility of revision errors 

fluctuates with economic conditions. 4 Motivated by these findings I examine how attention levels respond to two distinct 

types of uncertainty shocks: 

(i) to the variance of the underlying fundamental σ 2 
θ

ii) to the variance of the non-fundamental, irreducible noise σ 2 
ε 

The model at hand allows for the traditional discussion on the effects of shocks to the fundamental volatility but also on

how a change in data quality impacts attention choices of agents. Note that the model nests the classic rational inattention

model with time-varying volatility by letting σ 2 
ε → 0 . This is a useful benchmark case to keep in mind throughout this

section and all results presented below carry through to that limiting case. 

Definition 1. The attention level in an economy is defined as the weight κ placed on the signal in the linear projection

E [ θ | s ] = E [ θ ] + κ(s − E [ s ]) . In a dynamic setting the attention level κt similarly refers to the Kalman gain of the linear

projection E [ θt | s t ] = E [ θt | s t−1 ] + κt (s t − E [ s t | s t−1 ]) . 
3 That learning about a public signal mechanically increases costs can also be seen from the following decomposition of the mutual information I (x ; s ) = 

I (q ; s ) + I (ε; s | q ) . The first term is the cost incurred in the standard model while the latter is the additional cost incurred by the constraint on available 

information. 
4 The empirical literature and data on the cyclicality of data quality is discussed in greater depth in Section 3.1 . 

5 
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By the above definition attention denotes the rate with which agents process incoming signals and respond to contem- 

poraneous shocks. Solving for the optimal attention level of an agent in the static RI model with irreducible noise yields 

κ = max 

{
σ 2 

θ

σ 2 
θ

+ σ 2 
ε 

− ω 

1 

σ 2 
θ

, 0 

}
(4) 

where the solution is interior for sufficiently small effective processing costs ˆ c < σ 2 
θ

+ σ 2 
ε . 

Proposition 2. Attention levels are (i) increasing in the variance of the fundamental, σ 2 
θ

, but (ii) decreasing in the variance of

the irreducible noise, σ 2 
ε . 

The first result of Proposition 2 is well understood in the literature. The greater the fundamental’s variance the greater 

potential losses and thus the higher attention levels to guard against them (see for example Ma ́ckowiak and Wieder-

holt (2009) and Paciello and Wiederholt (2014) ). The time and state-dependency of attention also finds support in recent

empirical studies by Coibion and Gorodnichenko (2015) and Coibion et al. (2018) . 

The second result has drawn less attention in the literature. Notable exceptions are Myatt and Wallace (2012) and 

Fuster et al. (2018) , who show that amongst a set of public signals a rationally inattentive agent will elect to attend only to

the most accurate information source, i.e. that with the smallest variance of the irreducible noise. These papers primarily 

focus on the selection of information sources in the belief formation process. The above results further show that condi- 

tional on the choice of information sources a model which includes imperfect data quality adds additional insights. For this 

the dynamic perspective is central. If volatilities are constant there exists an isomorphism linking the two models via the 

generally free cost parameter ˜ ω . 5 In contrast, in a world of time-varying volatility this isomorphism breaks down. When 

volatility is time-varying a model with imperfect data will necessarily produce distinct responses. Hence, the above speci- 

fication provides a rationale for why we may not wish to treat the reduced form parameter ˜ ω as constant with respect to

time but as endogenous in the economy’s underlying volatility regime. 

Proposition 2 has important implications for how we may think about ‘Bloom type’ uncertainty shocks. Whether higher 

volatility raises or lowers attention levels crucially depends on the type of variance considered. This conclusion calls for 

caution when using general uncertainty indices as a proxy for ‘Bloom type’ second moment shocks. While the latter is 

concerned with changes in the variability of the fundamental, uncertainty indices may in fact capture changes in both 

volatilities, those of the underlying fundamental and the irreducible noise. A case in point could be the widely used VIX,

the volatility of the stock market. One may argue that the source of those fluctuations in volatility is due to changes in

σ 2 
θ

as well as σ 2 
ε . For instance, market volatility could be driven by an increase in the fraction of noise traders for reasons 

orthogonal to the fundamental. It may therefore be useful to devise indices that capture the relevant, effective uncertainty 

in the economy and decompose overall subjective volatility into its three components σ 2 
θ

, σ 2 
ε and σ 2 

ζ
. 

Mechanism Given that losses are convex one may initially think that greater uncertainty of any type induces an agent to

increase the precision of their prediction and thus their information processing. To see why this is not the case, I discuss

the intuition behind the mechanism of the model below. 

One way to think about the economic forces that are at play considers the impact of volatility changes on the cost-side of

the transformed attention problem in (3) . A deterioration (improvement) of information quality raises (lowers) the effective 

cost of information processing and incentivises the agent to lower (raise) their attention level. 

There is a complementary explanation that focuses on the effects of volatility changes on the benefit side. 6 In effect,

Proposition 2 captures that the agent’s ability to influence its objective function fluctuates with changes in the underlying 

information quality. To see this, by the Total Law of Variance we may rewrite expected losses as 

V ar(θ | s ) = V ar(θ | x ) + V ar(E [ θ | x ] | s ) 

Now suppose information quality falls either through an increase in the variance of the irreducible noise or a decrease 

in the variance of the fundamental. There are two immediate effects. The uncertainty about the fundamental given the 

best possible signal x increases. That exposes the agent to larger losses. At the same time, the usefulness of x in predicting

the underlying fundamental θ diminishes. The best prediction of the fundamental given the public signal, E [ θ | x ] , is shrunk

towards the constant prior (its unconditional expectation E [ θ ] ). Hence, the variability of V ar(E [ θ | x ] | s ) vanishes. But the

volatility of the best possible prediction is exactly the mechanism by which the agent controls the objective function. As 

this variability shrinks so does the agent’s ability to influence their payoff function. Since information processing is costly 

the agent reduces their attention to the observable signal x as its power to predict the fundamental diminishes and marginal

benefits fall. 
5 To obtain equivalence between models we can normalise the cost parameter as 

˜ ω = 

σ 2 
θ
σ 2 

ε 

σ 2 
θ

+ σ 2 
ε 

+ ω 

6 Fuster et al. (2018) similarly note that net benefits fall as the irreducible noise in data is perceived to be more pronounced but do not explore this 

point further. 

6
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Table 1 

Impact of the cross-derivative on the semi-elasticity of atten- 

tion. 

Semi-elasticity SNR > 1 SNR < 1 

	κ/ %	σ 2 
θ

Reinforcing in σ 2 
ε Dampening in σ 2 

ε 

	κ/ %	σ 2 
ε Dampening in σ 2 

θ
Reinforcing in σ 2 

θ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Interaction effects 

The underlying variances enter the solution for the optimal attention level jointly through the squared correlation be- 

tween the fundamental and the public signal. Hence, the presence of irreducible noise itself affects the dynamics of attention 

in response to volatility shocks to the fundamental variable. For the reader’s convenience I restate the interior solution to 

the attention problem. 

κ = 

σ 2 
θ

σ 2 
θ

+ σ 2 
ε ︸ ︷︷ ︸ 

(1) Correlational Effect 
=C or r 2 (θ,x ) 

− ω 

1 

σ 2 
θ︸ ︷︷ ︸ 

(2) Fundamental Variance 
Effect 

I define the relevant measure of volatility shocks to be the change in the natural logarithm of the underlying variances.

This specification ensures that a unit shock to uncertainty is of the same magnitude (but clearly not sign) irrespective of

whether log σ 2 
i 

, log 1 /σ 2 
i 

or the signal to noise ratio log (σ 2 
i 
/σ 2 

j 
) changes for i, j ∈ { θ, ε} , i � = j. Intuitively, we can up to

a first order approximation interpret the shift in the attention level in response to a change in the log of the underlying

volatilities in terms of their respective semi-elasticities. 7 

Corollary 1. Define the interaction effect as the change in the semi-elasticity of attention when the other variance rises. The

direction of the interaction effect is determined by whether the signal to noise ratio ≶ 1 . 

Proof. The cross-derivative is given by 

d 2 κ

d log σ 2 
θ

d log σ 2 
ε 

= 

σ 2 
θ
σ 2 

ε 

(σ 2 
θ

+ σ 2 
ε ) 

3 
(σ 2 

θ − σ 2 
ε ) 

�

Corollary 1 states that whether the semi-elasticity of attention is amplified or dampened by larger values of the other 

variance depends on the initial information quality. The semi-elasticity of attention is maximised precisely at the threshold 

where the signal to noise ratio equals one. 

Table 1 summarises whether the interaction effect is reinforcing or dampening the semi-elasticity of attention. 

We can recognise the squared correlation as the sigmoid function C or r 2 (θ, x ) = 

1 
1+ exp (−(z−y )) 

for z := log σ 2 
θ

and y :=
log σ 2 

ε . The upward and downward concave parts of the sigmoid function represent the diminishing returns to greater or 

lower information quality respectively. Overall, this captures the notion that responses are muted at the extremes and am- 

plified for middle-range values of variances. 

Change in the fundamental’s variance Let us consider how the response of attention to an increase in the fundamental’s

variance is impacted by the variance of the irreducible noise. The left panel in 3 plots the two components that determine

the attention level against the log of the fundamental’s volatility. 8 

A larger (smaller) irreducible noise variance is represented by a horizontal translation to the right (left) of the squared 

correlation function denoted by the black solid line. When information quality is initially good the agent is in the right tail

of the sigmoid function in the high SNR parameter region. A horizontal translation to the right will move the agent out of

the flat tail into the steeper part of the sigmoid function. All else equal, a steeper slope of the squared correlation implies a

larger semi-elasticity of attention. The reverse holds if initially information quality is poor and the agent starts off in the flat 

tails in the low SNR parameter region. Combined those two observations confirm that the cross-effects are non-monotone 

and maximised when the signal to noise ratio equals one. 

Change in the irreducible noise variance Let us now consider how the semi-elasticity of attention to an increase in the

variance of the irreducible noise is impacted by the fundamental’s variance. The left panel in 3 plots the attention level

against the log of the irreducible noise volatility. 

A larger (smaller) variance of the fundamental is represented by a shift of the attention function to the lower left (upper

right). When information quality is initially good (poor) the agent is in the left (right) tail. A shift of the sigmoid function to
7 Further, as costs are based on the reduction in the entropy of the prior and posterior distribution the natural way to classify volatility is by the log 

transform. 
8 Note that in the traditional RI model where σ 2 

ε → 0 the black sigmoid function is constant at one and interaction effects are equal to zero. 
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Fig. 3. Attention decomposition. Left: Attention level by components as a function of the fundamental variance. Low SNR denotes region where σ 2 
θ

< σ 2 
ε . 

High SNR is defined analogously. Right: Attention As Function of Irreducible Volatility. 

 

 

 

 

 

 

 

 

 

 

 

 

the lower left will move the agent into a flatter (steeper) region within the High (Low) SNR parameter space. The response

of attention to a change in the volatility of the irreducible noise will thus be dampened (amplified). The converse holds

if the fundamental variance falls. Combined those two observations again confirm that the cross-effects are non-monotone 

and maximised when the signal to noise ratio equals one. All cross-effects operate through a translation of the squared 

correlation function and represent the local returns to information quality. 

Curvature Property The attention function is mostly concave in their own variance. The plots in Fig. 3 provide some

intuition for this result. Note that the non-negativity constraint cuts off much of the region for which the square correlation 

function is most convex. Further, in the left panel of Fig. 3 the curvature is determined by an additional curve (square

marker) which is strictly concave in its own variance. Both those effects tend to render the attention function concave in its

own variance. As a result, a rational inattention model with irreducible noise suggests that attention is more responsive to 

volatility shocks that depress information quality than to those that improve the signal to noise ratio. That is information 

processing changes by more when the fundamental variance falls or the noise variance rises. This generalises from the 

traditional RI model. 9 

3. Application 

I proceed to examine the macroeconomic implications of the rational inattention model with imperfect data quality 

in the dynamic setting. I first present three stylised facts about the dynamics of data quality over time. I then derive an

attention-driven Phillips curve that nests Afrouzi and Yang (2021) as a limiting case and relates both the monetary policy 

and information quality regime of an economy to the slope of the Phillips curve. 

3.1. Data 

In this section, I empirically motivate the relevance of data quality for studying the attention strategies of firms and their

interactions with the transmission of monetary policy. In particular, I examine the statistical properties of data revisions in 

the Real-Time Dataset for Macroeconomics by Croushore and Stark (2001) for quarterly inflation, nominal GDP growth and 

real GDP growth (see Table 2 ). I find a set of three results. 

First, the measurement error in real-time statistics as measured by the difference between initial release and most recent 

data is substantial. I find that over the past 40 years signal to noise ratios mostly ranged somewhere between 1 and 3 for

the period from 1984 to 2020. I use the same methodology to compute signal to noise ratios as in Lorenzoni (2009) , who

finds an estimate for the signal to noise ratio of quarterly PCE inflation that is even lower than the range above. 10 Overall,

low signal to noise ratios indicate that a substantial portion of variation in real-time data is noise. This fact motivates the

study of the macroeconomic implications of imperfect data quality. 

Second, we observe an evident trend improvement in data quality as measured by the variance and the MAR over the

past 55 years. For instance, for all three macroeconomic variables the revision error was approximately twice as large and 

volatile in the time period between 1965–1984 relative to 1984–2020. This reflects the advances in statistical methods, 

survey quality and the way data is collected. 
9 In the traditional RI model, the squared correlation term is constant at 1 and the curvature properties follow from the strict concavity of the −ωσ−2 
θ

function in the right panel of Fig. 3 . 
10 I compute signal to noise ratios by first fitting an AR(2) process to the most recent data series, computing the variance of the residuals and dividing 

by the variance of revision errors as in Lorenzoni (2009) . 
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Table 2 

Revision statistics - from initial to most recent data (quarterly data at annual rates). 

1965–2020 1965–1984 1984–2020 2001–2020 ∗ GM GR Recessions 20 01–20 07 

Inflation Variance 0.74 1.17 0.52 0.48 0.54 1.33 1.27 0.36 

MAR 0.66 0.85 0.56 0.53 0.59 1.04 0.90 0.57 

SNR 1.66 2.02 1.12 1.69 0.75 0.94 1.13 1.73 

NGDP Growth Variance 3.78 6.15 2.40 2.19 2.35 4.20 4.75 2.29 

MAR 1.51 2.01 1.26 1.17 1.28 2.02 1.66 1.15 

SNR 6.96 9.72 2.33 2.73 1.76 4.24 3.91 1.56 

RGDP Growth Variance 4.10 7.28 2.38 1.88 2.44 5.50 4.33 1.70 

MAR 1.55 2.16 1.24 1.10 1.28 1.84 1.68 1.07 

SNR 4.94 6.48 2.25 2.63 1.83 2.68 3.82 2.06 

GR: Great Recession, GM: Great Moderation (1984–2007), ∗: 2001–2020 excludes the GR. 

 

 

 

 

 

 

 

 

 

 

Counter to this long-run trend the empirical evidence suggests that data quality varies with economic activity. For exam- 

ple, the Great Recession saw a substantial increase in the variance of data revisions and the mean absolute revision (MAR).

Relative to the preceding period of 20 01–20 07 the Great Recession saw mean absolute revisions that were nearly twice as

large. Similar results hold for the variance of data revisions. It is worth noting that the countercyclicality of revision errors

has been documented even before the Great Recession ( Swanson and van Dijk, 2006 ). Heightened data uncertainty does

not appear to be unique to the experience of the Great Recession. That is further documented by comparing the variance

and MAR during all NBER Recessions and their full sample counterparts and noticing an increase in those two measures 

during economic downturns. More recently during the Covid crisis, concerns about the quality of real-time statistics have 

resurfaced highlighting that data quality shocks are not isolated to the experience of the Great Recession. 

These findings are in line with an existent literature documenting the countercyclicality of revision errors. Marini and 

Shrestha (2013) show that the above patterns are also robust across countries and discuss some factors for why data quality

might fall during recessions. First, statistics offices could derive their survey data from samples of businesses and households 

which may no longer be representative during times of rapid churn in the economy. Second, short-term indicators rely on 

projections based on assumptions and extrapolations derived from past data. During recessions statistics offices may need to 

depart from these established methods as economic conditions change drastically. Together these factors introduce greater 

uncertainty into real-time data during an economic downturn. Another theoretic mechanism for why data quality might be 

pro-cyclical is proposed in Fajgelbaum et al. (2017) and Van Nieuwerburgh and Veldkamp (2006) . Economic activity naturally 

generates information when, for example, firms undertake investments and the return on their projects is made public to 

other market participants. In absence of investment activity no such inference can be made and less information is being 

generated naturally. 

The combination of empirical evidence from the Real-Time Dataset for Macroeconomics, references from the literature 

and a discussion of possible theoretical mechanisms for the decline in data quality during economic downturns motivate 

the study of a macroeconomic application of a rational inattention model with time-varying irreducible noise. 

3.2. Model environment 

The Economy The economy is standard and I refer the reader to Afrouzi and Yang (2021) for a more detailed exposition.

In its reduced form the log-linearised Euler Equation for the representative household and the monetary policy rule are 

given by 

i t = ρ + E 

f 
t 	q t+1 (Euler Equation) 

i t = ρ + φ	q t − σu u t , u t 
iid ∼ N (0 , 1) (MP Rule) 

where q t := log Q t − log Q̄ denotes nominal aggregate demand as the log deviation from the steady state, u t the monetary 

policy shock, ρ the discount rate of the representative household and E 

f 
t the fully frictionless expectations of households. 

Let φ > 1 . Aggregate nominal demand is uniquely pinned down by the history of monetary policy shocks and follows the

following random walk process (see Lemma 3.1 in Afrouzi and Yang, 2021 ). 

q t = q t−1 + 

σu 

φ
u t 

The above policy rule has the property that the monetary authority directly controls nominal demand. It yields a stochas- 

tic process that is characterised by the primitives of the monetary policy rule. Notably, the volatility of nominal demand is

decreasing in the stabilising term φ and increasing in the variance of monetary policy shocks σ 2 
u . Following Afrouzi and 

Yang (2021) I interpret changes in the underlying variance of nominal aggregate demand as a change in the policy regime.

In particular, policy regimes can be classified as follows. 
9 
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Definition 2. A dovish (hawkish) monetary policy regime is characterised by a high (low) value 
σ 2 

u 

φ2 . 

Note that the results below are not exclusive to monetary policy shocks. In fact, the monetary policy shocks in the model

act more generally as a stand in for a wider class of demand shocks. It follows that while the discussion below focuses on

the implications of a shift in the monetary policy regime the same model (and its implied results) can be used more widely

to address the effects of a volatility shock to nominal demand and its interaction with the information quality regime of an

economy. 

Firms. There is a unit mass of price-setting firms i ∈ [0 , 1] , each producing a variety that is sold under monopolistic

competition. Prices are perfectly flexible but firms are rationally inattentive. Each firm i learns about nominal demand from 

a common public signal x t = q t + ε t , ε t 
iid ∼ N (0 , σ 2 

ε ) . Data sources that are informative about nominal demand directly are not

available. For instance, firms may choose how much attention to pay to the release of real-time data by national statistics

reports or how closely to read the reports produced by their respective central banks. As a straight forward adaptation of

Afrouzi and Yang (2021) the rational inattention problem of firm i is given by 

V 

(
s −1 

i 

)
= max 

{ p i,t ,s i,t ∈S t } ∞ t=0 

E 

[ 

∞ ∑ 

t=0 

βt 
[
E 

[
−( λ − 1 ) ( p i,t − q t ) 

2 
∣∣s t i ]− 2 ωI 

(
x t ; s t i 

∣∣s t−1 
i 

)]| s −1 
i 

] 

(5) 

where s t 
i 

:= { s i,τ } t τ=0 
∪ s −1 

i 
denotes the entire history of firm i ’s signals up to period t . Parameter λ−1 is a per worker subsidy

that corrects for the steady state distortions from monopolistic competition. Costs are specified to be proportional to the 

Shannon mutual information function I(x t ; s t 
i 
| s t−1 

i 
) . 

3.3. The full model 

Ma ́ckowiak et al. (2018a) and Afrouzi and Yang (2021) show that in the standard LGQ case with Gaussian state variables

we can without any loss of generality restrict our attention to Gaussian signals. Proposition 3 shows that these results carry

over to the dynamic rational inattention model with irreducible noise. 

Proposition 3. Given that q t → x t → s t forms a Markov chain and that q t and x t are jointly Gaussian then the optimal sequence

of signals s t ∈ S t solving (5) follows a Gaussian distribution. 

The solution to (5) is complicated by the fact that the flow utility of the firm depends on the entire covariance matrix of

past histories of public signals. 11 A priori it is not evident whether agents would find it optimal to learn about past values of

public signals. Intuitively, information about past states x t−1 may be used to ’average out’ the measurement error contained 

in the current public signal and increase knowledge about the fundamental. To thus render the problem tractable I restrict 

the learning technology to process information about a fixed, finite past. In particular, I make the assumption that firms 

only process information about current public signals. That is x t−1 ⊥ s t | s t−1 , x t . 

Note that this assumption captures the notion that agents only learn from the most accurate public signal about the 

fundamental. As past public signals contain additional noise about the Law of Motion of the fundamental firms following 

this heuristic will only attend to the current public signal. 12 Proposition 9 of Myatt and Wallace (2012) provides some

intuition for why we might expect this to be a good approximation. The authors prove that in the corresponding static

setting with independent public signals agents optimally choose to ignore all but the most accurate public signal. 

With the model preliminaries discussed we can now proceed to characterise the solution to the firm’s attention problem. 

As firms are identical in the model I drop the i subscript unless relevant. To further simplify notation, let X t := V ar(x t | s t−1 )

denote the prior uncertainty and Y t := V ar(x t | s t ) the posterior uncertainty of a firm. The problem simplifies as follows.

Producers choose a sequence of posterior variances Y = { Y τ } ∞ 

τ=0 
to maximise the discounted value of expected future profits

for a given level of initial uncertainty X 0 

J(X 0 , Y ) = 

∞ ∑ 

t=0 

βt 
[ 

− (λ − 1) V ar(q t | s t ) − ω log 

(
X t 

Y t 

)] 
(6) 

subject to 

X t+1 = V ar(q t | s t ) + 

σ 2 
u 

φ2 
+ σ 2 

ε (a) 

V ar(q t | s t ) = σ 2 
ε δ(X t ) + δ(X t ) 

2 Y t (b) 
11 To see this, note that the Markov chain property exploited in the proof of Proposition 3 allows us to rewrite V ar(q t | s t ) = V ar(q t | x t ) + ∑ 

i, j≥0 αi α j C ov (x t−i , x t− j | s t ) for some constants αi , α j . 
12 Some intricacies arise when data quality is time-varying as this allows for the possibility of past signals to be most accurate about the fundamental. 

But while I believe this endogenous adjustment margin of agents to be an interesting pursuit a treatment of this is left for future research. 
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0 ≤ Y t ≤ X t (c) 

for all t = 0 , 1 , . . . and where 

δ(X t ) := 1 − σ 2 
ε 

X t 
(7) 

Constraint (a) uses the Law of Motion for nominal demand and establishes the intertemporal link between periods. 

Constraint (b) is an application of the Total Law of Variance and (c) incorporates both the no-forgetting constraint that the

posterior variance can be no larger than the prior belief’s variance as well as the non-negativity property of variances. 

Role of δ(X t ) . Eq. (7) captures the informativeness of the public signal and formally denotes C or r 2 (q t , x t | s t−1 ) . The weight

δ(X t ) ≤ 1 plays a central role in the firm’s attention problem as it modulates the rate with which 

(i) a given posterior uncertainty about the public signal maps into the posterior uncertainty about the fundamental via the 

Law of Total Variance 

ii) the posterior uncertainty translates into next period’s prior uncertainty via the Law of Motion 

The difference in the dynamics of the standard model without and the extended model with noisy data follow precisely 

from the interplay between the underlying variances and the quality of information δ(X t ) . 

Recursive Formulation. Firms enter each period with prior uncertainty X t about the public signal. Due to the LQG nature of

the problem choosing the optimal pricing strategy is identical to choosing the optimal posterior variance of the observable 

and, as a corollary, from the viewpoint of firms the state is fully captured by the prior variance. The recursive structure can

be expressed as the dynamic program 

13 

V (X ) = max 
Y 

−(λ − 1) 
(
σ 2 

ε δ(X ) + δ(X ) 2 Y 
)

− ω log 

(
X 

Y 

)
+ βV 

( = X ′ ︷ ︸︸ ︷ 
δ(X ) 2 Y + �(X ) 

)
(8) 

subject to 0 ≤ Y ≤ X 

where 

�(X ) := σ 2 
ε δ(X ) + 

σ 2 
u 

φ2 
+ σ 2 

ε 

Combining the first order condition with an application of the Benveniste-Scheinkman condition yields optimality rela- 

tion (9) for the sequence of reservation uncertainties { ̄Y τ } ∞ 

τ=0 
. Due to the presence of the no-forgetting constraint the optimal

posterior variance is given by Y ∗t ≡ min 

{
Ȳ t , X t 

}
. That is the firm’s prior uncertainty must exceed a reservation uncertainty of

¯
 t for them to process information. 

0 = −(λ − 1) δ(X t ) 
2 ︸ ︷︷ ︸ 

(1) 

+ ω 

1 

Ȳ t ︸ ︷︷ ︸ 
(2) 

−βωδ(X t ) 
2 
[ 

1 

X t+1 

+ 

1 

δ(X t+1 ) 2 Y 
∗

t+1 

∂V ar(q t+1 | s t+1 ) 

∂X t+1 

] 
︸ ︷︷ ︸ 

(3) = βδ(X t ) 2 V ′ (X t+1 ) 

(9) 

where 

∂V ar(q t+1 | s t+1 ) 

∂X t+1 

= 

σ 2 
ε 

X 

2 
t+1 

[ 
σ 2 

ε + 2 δ(X t+1 ) Y 
∗

t+1 

] 
The optimality condition can be decomposed into three terms 

1) The first term represents how an additional decrease in the variance about the public signal translates into a reduction 

in expected contemporaneous losses. 

2) This denotes the direct contemporaneous marginal cost of a reduction in the uncertainty about the public signal. 

3) The last term denotes the firm’s intertemporal considerations. The continuation value is discounted by (i) the standard 

discount factor for time preferences β and (ii) δ(X t ) 
2 to account for the fact that a marginal change in the posterior

variance does not translate one to one into a reduction in the prior uncertainty the next period. 

I define (1) as the marginal benefit of reducing the posterior variance about the public signal and the sum of (2)

and (3) as the corresponding net marginal cost. This interpretation follows from the fact that the intertemporal incentives 

βδ(X t ) 
2 V ′ (X t+1 ) are proportional to the information processing cost parameter ω. This implies that the marginal value of

entering a period with lower prior uncertainty is derived from the cost savings as less new information needs to be ac-

quired. As a corollary, by regulating the cost parameter ω one can modulate the importance of intertemporal effects in the 

firm’s decision making, all else equal. 
13 Details on the properties of the solution to the functional equation are provided in Appendix F . 
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Policy function The solution defines the optimal reservation uncertainty Ȳ t as a function of the firm’s prior variance X t .

The policy function exhibits the following properties 

.1 The reservation uncertainty is decreasing in the prior variance – i.e. d ̄Y t 
dX t 

< 0 . 

.2 For a given prior variance X t , larger underlying volatilities σ 2 
u /φ

2 and σ 2 
ε imply a larger reservation uncertainty. 

The policy function differs in important ways from the case of perfect data quality. In the latter the optimal posterior

variance is in fact independent of the prior and hence property P.1 does not hold. This fact is central to understanding how

data imperfections impact the response of the economy to volatility shocks. For example, in a model with irreducible noise 

a higher monetary policy shock variance will induce both a shift in the policy function by P.2 and, countervailing that effect,

a movement along the policy function by P.1 as the prior variance X t increases due to the higher volatility regime. Whether

the overall effect will be positive or negative depends on the relative magnitude of the shift in the function relative to the

movement along it. Further, since P.1 does not hold in the case of perfect data quality the latter effect will not be present

in such a scenario and the posterior uncertainty will unambiguously rise in response to a volatility shock. 

Dynamic vs. static model As β → 0 the FOC (9) converges to that of the static model. For β > 0 the presence of intertem-

poral incentives increases attention as more precise signals today carry additional informational value for the following 

period. These effects operate through two channels. First, a lower prior variance in the next period implies that a given

posterior uncertainty about the public signal is mapped into a lower posterior uncertainty about the fundamental. Further, 

a lower prior variance reduces the cost of attaining a given target posterior uncertainty. The relative optimal posterior vari- 

ances when the solution to the dynamic problem is interior is 14 

Ȳ stat 
t 

Ȳ dyn 
t 

= 

(
1 + 

−βV 

′ (X t+1 ) 

λ − 1 

)
min 

{
1 , 

δ(X t ) 2 (λ − 1) 

ω 

X t 

}
≥ 1 (10) 

Most notably the presence of intertemporal incentives implies that firms find it optimal to process new information in 

situations in which a static model would predict them to ignore all new data. That follows from the fact that the slope of

the value function can be steep even at the steady state, especially when the marginal cost ω is high, the signal to noise

ratio low or total volatility low. The intuition is straightforward. The larger the marginal cost to process information the 

larger the potential cost savings from entering the next period with a more precise prior. Second, the worse data quality the

less informative current signals are about the fundamental and the greater the relative importance of optimising the prior. 

At the same time a high irreducible noise variance exposes the agent to greater future risk and thereby further increases

the value of a more precise prior relative to the static counterpart. 15 

Optimal pricing Given the quadratic loss function firm i optimally sets its price equal to the posterior expectation of 

current nominal demand. By Proposition 3 and since agents process information about current public signals only we can 

restrict our attention to signals of the form s i,t = x t + ζi,t , ζi,t ∼ N (0 , σ 2 
ζ ,t 

(i )) . 16 Hence, 

p i,t = p i,t−1 + κt (q t + ε t + ζi,t − p i,t−1 ) 

and the Kalman gain in the economy is given by 

κt = max 

{
δ(X t ) 

(
1 − Ȳ t 

X t 

)
, 0 

}

Aggregation Suppose all firms start with the same prior uncertainty X 0 = V ar(x 0 | s −1 ) . We can distinguish between two

cases: when the no-forgetting constraint is binding and when the solution is interior. The dynamic structure of inflation and 

output is given by the following set of equations respectively. 

1. Suppose there exists a period T such that Ȳ t ≥ X t for all t ≤ T , then for all t ≤ T 

πt = 0 

y t = y t−1 + 

σu 

φ
u t 

2. Suppose Ȳ T < X T , then for all t ≥ T + 1 

πt = 

κt 

κt−1 
( 1 − κt−1 ) πt−1 + κt 

(
σu 

φ
u t + 	ε t 

)
y t = ( 1 − κt ) y t−1 + ( 1 − κt ) 

σu 

φ
u t − κt ε t 

where 	ε t ≡ ε t − ε t−1 . 
14 Note that the difference in the amount of information processed is the log transform of this ratio, i.e. I dyn − I 
stat = 

1 
2 

log (X t / ̄Y 
dyn 

t ) − 1 
2 

log (X t / ̄Y 
stat 

t ) = 

1 
2 

log 
Ȳ stat 

t 

Ȳ dyn 
t 

≥ 0 . 

15 Further details are provided in Appendix C . 
16 Note that any other Gaussian signal ˜ s i,t = αt x t + 

˜ ζi,t yields the same posterior distribution as s i,t = x t + ζi,t for ζi,t ≡ ˜ ζi,t /αt . 
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3. The Phillips curve is given by 

πt = 

κt 

1 − κt 
(y t + ε t ) 

Dynamics and transmission of shocks Short-run and long-run dynamics differ in two important ways. First, the no- 

forgetting constraint gives rise to the possibility of a corner solution in which macroeconomic variables are perfectly per- 

sistent and the slope of the Phillips curve zero. Yet, even when the solution is interior the dynamics for inflation depend

non-trivially on current and past levels of attention. Whereas in the steady state the persistence of inflation is decreasing 

in the Kalman gain in the short-run a rise in today’s attention levels may even render inflation more persistent. This fact

has material implications for the shape of the impulse response of inflation to a monetary policy shock when the under-

lying volatility is time-varying as we will discuss in Section 4.3 . This highlights the importance of taking seriously the full

dynamics of the Kalman gain and not reduce them to their steady state behaviour as it is commonly done in the literature. 

Impulse responses to the monetary policy shock inherit the standard properties from demand shocks. The non- 

fundamental shock is isomorphic to a standard cost-push shock contemporaneously, which pushes up inflation while de- 

pressing real output. But it differs qualitatively over longer horizons as what is important for inflation dynamics is not the

realisation of the shock itself but rather its first difference 	ε t . 

3.4. Long-run dynamics 

It can be shown that under suitable regularity conditions the dynamic system is well-behaved and converges to a unique 

steady state. Lemma 1 formalises this result. 

Lemma 1. Steady state properties are as follows 

1. Let the optimal next period’s prior variance be denoted by g(X ) and the optimal policy function for the posterior variance by

h (X ) . Suppose that βV ′′ (g(X )) ≤ ω(1 −(σ 2 
ε /X ) 2 ) 

[ δ(X ) 2 h (X ) ] 
2 . There exists global convergence to the unique fixed point of the Law of Motion 

of the prior variance. 

2. The Kalman gain remains at zero and the economy perfectly persistent at most for a finite number of periods. In the long-run,

steady state information processing is positive and given by 

κ∞ 

= 

σ 2 
u /φ

2 

X ∞ 

− σ 2 
ε 

> 0 

The condition on the convexity of value function in Lemma 1 differs from the second order condition for a local maxi-

mum only by a factor 1 −
(
σ 2 

ε /X 
)2 

. The condition itself is non-trivial as it is endogenous through the policy functions but

numerical simulations confirm that it is satisfied. 

3.5. Comparative statics 

Comparative statics carry over straight forwardly from the static model. It can be numerically verified that the steady 

state Kalman gain is increasing in σ 2 
u /φ

2 and decreasing in σ 2 
ε and ω. I further establish an analogue to the isomorphism

result in Section 2.2 . Panel A in Fig. 4 shows the contour plot for the steady state Kalman gain for a range of different data

quality and information cost regimes. For any (σ 2 
ε , ω) pair there exists a corresponding (0 , ˜ ω ) pair with ˜ ω > ω that attains

the same Kalman gain. Hence, in the long-run the cost parameter can fully capture imperfect data quality. However, as in

the static case, this tight correspondence may not hold in the short-run if the economy is subject to volatility shocks. 

Panels B. and C. respectively plot the impulse responses of inflation and output to a one standard deviation MIT shock

to monetary policy. As is intuitive from the above comparative statics poorer data quality or greater information process- 

ing costs imply larger and more persistent output deviations. These have important implications for the transmission of 

monetary policy. 

Implications Over the past decades statistics offices and central banks have spent considerable effort to improve data 

quality and the way they communicate their views on the economic outlook to the public. These effort s can be seen as

improving data quality by lowering the irreducible noise in real-time statistics. Those forces raise attention levels, induce a 

steeper Phillips curve and insofar as monetary policy shocks are a good proxy for monetary policy transmission imply that 

central banks have a more powerful policy instrument to control inflation. 

What is more, a trend increase in data quality can be found to reduce the unconditional variances of inflation and

output as given by Corollary 2 . With better data quality firms coordinate less on non-fundamental variation even as they

pay more attention to these shocks. As a consequence, macroeconomic fluctuations are more muted. A high data quality 

regime therefore allows the central bank to keep inflation and output closer to target, highlighting a key mechanism in 

which providing more precise information to the public can help the central bank better meet their mandate. 
13 
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Fig. 4. Data quality and the transmission of monetary policy. Panel A (Left): Contour plot of the steady state Kalman gain. Panel B (Centre): Impulse response 

of inflation to monetary policy shock. Panel C (Right): Corresponding impulse response of the output gap. 

 

 

 

 

 

 

 

 

 

 

 

Corollary 2. The long-run variance of inflation and output are respectively given by 

V ar(π ) = 

κ

2 − κ

(
σ 2 

u 

φ
+ 2 κσ 2 

ε 

)

V ar(y ) = 

(1 − κ) 2 

κ( 2 − κ) 

σ 2 
u 

φ
+ 

κ

2 − κ
σ 2 

ε 

4. Volatility shocks 

In the comparative statics exercises below I initialise the economy to start off at its steady state. To reduce the notational

burden I set λ = 2 without any loss of generality. 

4.1. More dovish monetary policy 

Recall that a switch to a more dovish monetary policy is characterised by an increase in σ 2 
u /φ

2 . 

Mechanism. Initially a rise in the volatility of the monetary policy shock raises the firm’s prior uncertainty X t . This im-

proves the informativeness of public signals δ(X t ) and increases the marginal benefit of learning. At the same time, all else

equal, a higher volatility reduces the firm’s incentive to learn as today’s information is less informative about the next pe-

riod. This force counteracts the higher contemporaneous marginal benefits by shifting the intertemporal net marginal cost 

schedule outwards. The direction of the total change depends on the initial level of data quality and the cost parameter ω.

The following Lemma summarises. 

Lemma 2. Suppose the economy is at its steady state initially and σ 2 
u /φ

2 increases. Both the contemporaneous marginal benefit 

and the intertemporal net marginal cost of reducing Y t increase. 

Lemma 2 shows that the response of the posterior variance to an increase in the monetary policy shock variance is

ambiguous. For the posterior variance to fall, i.e. dY ∗t < 0 , a positive σ 2 
ε > 0 and ω not too large are jointly necessary while

neither is sufficient. 

The sources of time-variability in the Kalman gain are two-fold. First, there is a mechanical effect in that a firm which

arrives at the same posterior uncertainty from a higher prior uncertainty must necessarily process more information as the 

signal to noise ratio improves. Second, there is an additional endogenous effect as firms adjust their posterior uncertainty 

optimally. In the presence of perfect data quality the latter unambiguously dampens the response of the Kalman gain to the

volatility shock. In contrast, if data were imperfect the endogenous adjustment channel may even be a source of amplifica- 

tion. To see this note that the total change in the level of attention is given by 

dκt 

dσ 2 
u /φ2 

= 

∂κt 

∂X t ︸︷︷︸ 
> 0 

dX t 

dσ 2 
u /φ2 ︸ ︷︷ ︸ 
=1 

+ 

∂κt 

∂Y t ︸︷︷︸ 
< 0 

dY t 

dσ 2 
u /φ2 ︸ ︷︷ ︸ 
≶ 0 

(11) 

The decomposition highlights that a rise in the posterior variance does not necessarily imply a fall in attention. Only if

the rise in the posterior variance is sufficiently large relative to the rise in the prior variance does the Kalman gain fall. That

is, the effects operating through the intertemporal net marginal cost channel must be sufficiently strong. 
14 
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Fig. 5. Effect of fundamental volatility shock on attention. Panel A. – (σ 2 
u /φ

2 ) t=0 = 0 . 25 , (σ 2 
u /φ

2 ) t≥1 = 0 . 25 , σ 2 
ε = 0 . 5 . Panel B. – ω = 0 . 1 . Panel C. – ω = 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Impulse responses I consider a 100% increase in the variance of the monetary policy shock and compute the impulse 

responses for the Kalman gain for varying cost parameters and signal to noise ratios. Fig. 5 plots the respective impulse

responses as percentage deviations from initial steady state values. As discussed in Section 3.5 in the long run steady state

attention rises. In the short run the dynamic behaviour crucially depends on the cost parameter ω. Varying signal to noise

ratios impact the magnitude of the shifts in attention, but do not qualitatively alter the results. 

This result can be reconciled with our earlier finding that information quality affects the firm’s optimal attention allo- 

cation. The signal to noise ratio can determine whether the posterior uncertainty about the public signal falls or rises in

response to an increase in the monetary policy shock variance. However, those effects are quantitatively too small relative 

to the change in the prior uncertainty to have qualitative implications for the Kalman gain, though they can act to amplify

impulse responses. 

4.2. Comparison between models 

In this section I compare the instantaneous response of the Kalman gain to an increase in the monetary policy shock

variance under two alternative models: i) traditional dynamic rational inattention and ii) dynamic rational inattention with 

imperfect data. In particular, I show that when data sources are noisy (model ii) the observed flattening of the Phillips

curve is not likely due to a more dovish monetary policy as traditional dynamic RI (model i) may suggest, underscoring the

importance of the interaction effects between volatilities. 

Information Cost Adjustment Since the presence of irreducible noise mechanically increases the utility cost of information 

processing care must be taken when comparing models. I thus adjust the cost parameter in the standard model as to equate

the steady state Kalman gains prior to the realisation of the volatility shock. Effectively this implies a larger cost parameter

in the standard model. This ensures that the structural features of the initial steady state economies are identical between 

models. An alternative specification in which I account for total volatility yields identical qualitative implications. 

Results The response of attention to a rise in the monetary policy shock variance is non-monotonic. This holds for both

the traditional model and the extended model with noisy data. In particular, the size of the cost parameter ω determines

whether the Kalman gain rises or falls on impact. Numerical simulations show that for each ( σ 2 
u /φ

2 , σ 2 
ε ) pair there exists a

ω̄ such that for all ω ≥ ω̄ the Kalman gain falls temporarily (possibly to zero) before it gradually converges to a new and

higher steady state value. 

The threshold ω̄ is plotted in Fig. 6 as a function of σ 2 
u /φ

2 for three signal to noise ratios: High, Medium and Low with

signal to noise ratios of 4 , 1 , 1 / 4 , respectively. 17 There is a corresponding threshold for each of the models. For the dynamic

model with noisy data ω̄ is denoted by the border between the red and the white shaded region. For the dynamic model

with perfect data ω̄ is denoted by the border between the white and the blue shaded region. In the simulation I consider a

100% increase in the monetary policy shock variance. 

The white shaded area in Fig. 6 denotes the region for which the Kalman gain is falling in a model without irreducible

noise but rising in a model that includes such concerns for imperfect information quality. This parameter space is larger 

the lower the signal to noise ratio. If noisy data is prevalent, then the choice between the two models matters for the

qualitative behaviour of the economy in response to a change in the monetary policy regime. Conversely, for high signal to
17 This range seems empirically plausible. Lorenzoni (2009) finds an estimate of 0.5 for PCE inflation data. Evidence presented in Section 3.1 finds signal 

to noise ratios approximately ranging between below 1 to 3. 

15 
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Fig. 6. Relative impulse responses of attention to fundamental variance shock. Notes: Adjusted Cost-Structure. 100% increase in initial monetary policy 

shock variance. 100 × 100 grid for ω ∈ [0 . 1 , 3] and 
σ 2 

u 

φ2 ∈ [0 . 01 , 1] . SNR defined as 
σ 2 

u /φ
2 

σ 2 
ε 

. High SNR = 4 , Medium SNR = 1 , Low SNR = 0 . 25 . 

Fig. 7. Amplification of attention response. Notes: Limited to region where Kalman gain is rising under both models – i.e. to be read as the change in the 

Kalman gain is 50% to 100% greater in a model with irreducible noise relative to a model with perfect data. Specifications as in Fig. 6 . 

 

 

 

 

 

 

 

 

 

noise ratios the difference in the choice between models seems to be largely immaterial for the qualitative results for most

of the parameter space. 

Amplification More generally the introduction of irreducible noise has large quantitative effects as it acts to amplify instan- 

taneous responses in the attention level of firms. Fig. 7 shows that the amplification is substantial, mostly ranging between

20% to 100% . 

Taking stock The above discussion highlights that the composition of information processing costs has material dynamic 

implications over and above total effective costs. A fixed cost parameter ˜ ω set to normalise the Kalman gain to the value

implied by a model with irreducible noise cannot generate the same dynamic behaviour. When costs from imperfect in- 

formation quality are substantial the two dynamic rational inattention models are qualitatively different. This conclusion 

extends to the whole parameter space denoted by the white shaded region in Fig. 6 . The above discussion indicates that the

mechanism in Afrouzi and Yang (2021) – where the flattening of the Phillips curve is driven by a more dovish monetary

policy in the wake of the Great Recession – is weaker in a setting with non-negligible noise in the data. What is more,

it may be precisely such periods of stark economic contraction during which we would expect the noisiness of observable 

data to be more pronounced. 

4.3. A fall In data quality 

The two-layered ‘signal of a signal’ structure provides a framework to examine the impact of information quality shocks 

on the real economy. I propose that fluctuations in the information content of public signals shed light on an alternative

mechanism for why the slope of the Phillips curve can flatten during recessions. 

Mechanism As greater irreducible noise in the data lowers the quality of information δ(X t ) the firm’s marginal benefit of

learning falls. At the same time net marginal costs increase. The latter is not straightforward as there are two competing
16 
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Fig. 8. Effect of fall in data quality on attention and transmission of monetary policy. Notes: σ 2 
u /φ

2 = 0 . 25 , σ 2 
ε,t=0 = 0 . 25 , σ 2 

ε,t≥1 = 0 . 5 . Panel A (Left): Re- 

sponse to the Kalman gain. Panel B (Centre): Response to inflation Panel C (Right): Response to the output gap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

effects. On the one hand, greater irreducible noise for a given prior uncertainty exposes the firm to larger losses in the

future which they would want to guard against. On the other hand, since today’s information contains greater noise it is

less useful to predict future states, thus lowering the firm’s incentive to process information. Simulations find that the latter 

effect dominates, net marginal costs rise and attention falls. 

Impulse responses Panel A. of Fig. 8 shows the impulse responses of attention to a 100% increase in the variance of the

irreducible noise for varying cost parameters and signal to noise ratios. Responses are denoted as percentage deviations 

from initial attention values. The response is monotonic. A rise in the volatility of the irreducible noise raises the optimal

posterior variance and lowers the Kalman gain across all specifications. Attention levels partially recover from their initial 

precipitous drop but remain at perpetually lower levels. The effect on attention levels is persistent and does not dissipate 

over time. 

This stresses the importance of understanding the source of the flattening of the Phillips curve. A fall in attention due

to a more dovish monetary policy stance has starkly different long-run implications relative to a situation when lower 

information processing is driven by an increase in the volatility of the irreducible noise. In the former case, the Kalman

gain eventually recovers to a level higher than initially. In the latter, attention and the slope of the Phillips curve remain

depressed over all time horizons. 

The transition to a lower data quality regime has substantive implications for the transmission of monetary policy. Panel 

B. and C. respectively plot the impulse responses of inflation and output to a one standard deviation MIT shock to monetary

policy as the economy is transiting to the low data quality steady state. Compared to the impulse responses for the steady

state Kalman gain in Fig. 4 the deviations in output are larger and the impulse response of inflation follows a hump-shape.

This implies that the monetary policy shock is more persistent with larger deviations from the optimum along the transition 

path than in steady state. 

The hump-shape of the impulse response of inflation is an implication of the fact that the dynamics for inflation depend

on the current and the last period’s Kalman gain. A model based on steady state values of Kalman gains as is common

in the literature ( Ma ́ckowiak and Wiederholt, 2009; 2015 ) misses this dynamic and would underestimate the deviation in

output and their persistence. 

Endogeneity of cost parameter Analogously to the isomorphism result of Section 3.5 there exists a mapping be- 

tween shocks to data quality and shocks to the information processing cost ω. In numerical simulations detailed in the 

Appendix E reducing the signal to noise ratio by a half generates approximately the same impulse response of the Kalman

gain as a 20 − 50% increase in the cost parameter. Important differences remain however. For example, the shock to the

variance of the irreducible noise is once and permanent. In contrast, the path for the cost shock is increasing and converges

to its permanently higher value after a few periods. Overall, the correspondence between shocks stresses the intuitive notion 

that a reduction in the signal to noise ratio increases the effective costs of information processing. 

This tight relationship further motivates the interpretation of imperfect data quality as semi-endogenising the marginal 

cost of attention which is typically treated as a free parameter and difficult to empirically discipline. Relating it to data

quality may therefore make some progress in this regard. Further, the empirical evidence on the time-varying nature of 

data quality presented in Section 3.1 implies that assuming the information processing cost to be constant may not be an

appropriate assumption for some applications. 
17
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Fig. 9. Transition Path of Kalman Gain from a low to a high volatility regime. Notes: σ 2 
u /φ

2 = σ 2 
ε = 0 . 25 at t = 0 and σ 2 

u /φ
2 = σ 2 

ε = 0 . 5 for t ≥ 1 . Left: 

Response to the Kalman gain. Centre: Response to inflation Right: Response to the output gap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Volatility regime shift 

The empirical evidence above suggests that in times of an economic downturn both fundamental volatility rises and data 

quality falls. This concurrent rise in the two underlying variances is the subject of this section. I consider impulse responses

of the economy along the transition path from a low to a high volatility regime in which volatilities rise by 100% while

holding the signal to noise ratio constant. 

The main result shows that there is a tendency for attention to fall in response to higher overall volatility in the short-

run and rise over the long-run. In the absence of a rise in the signal to noise ratio current public signals are not more

informative about the current fundamental and due to the increase in volatility less informative about the future. In fact, it

can be shown that the measure of informativeness of the current public signal δ(X t ) falls even in the absence of a change in

the signal to noise ratio. 18 Hence, a higher volatility regime raises the firms’ reservation uncertainty and along the transition 

path they temporarily process less information until they reach the new steady state in which attentiveness is higher than 

initially. 

Impulse responses shown in Fig. 9 highlight the complications arising from deteriorating data quality for the transmission 

of monetary policy. Even when the fundamental variance rises the concurrent deterioration in data quality flattens the 

Phillips curve, renders inflation and output fluctuations more persistent and reduces the on impact effect of monetary policy 

shocks. 

It needs to be cautioned that the above results are sensitive to whether the signal to noise ratio rises and to the initial

signal to noise ratio. The greater the improvement in the informativeness of public signals and the higher the initial signal

to noise ratio the more likely it is for attention to rise in response to a volatility regime change. Naturally, as the role of the

irreducible noise diminishes in the model impulse responses will converge to those of the standard model. Nonetheless, the 

exercise shows that the empirically observed increase in the variance of the unlearnable error acts to dampen the response 

in the Kalman gain and disrupt the transmission of monetary policy relative to the standard dynamic rational inattention 

model. 

4.5. Anticipated shocks 

In this Section, I consider the effect of releasing news about persistently lower volatilities of the underlying shocks from 

period t + J onwards. The motivation to study the implications of anticipated volatility shocks is two-fold. 

Central banks might announce the return to a hawkish monetary policy regime in the future as part of a forward guid-

ance policy. In the model this is equivalent to an anticipated fall in the variance of the monetary policy shock. This exercise

examines the importance of the timing of policy announcements and follows Reis (2011) in nature. 

Likewise, the historical experience detailed in Section 3.1 indicates that a fall in data quality due to cyclical fluctuations 

will be transitory. It is thus important to study the case in which firms upon a deterioration in data quality anticipate to

return to a good data regime in the future. Note that I am not imposing a deterministic process on the volatility but rather

that firms form some concrete expectation of when data quality will improve. As a case in point, during the Covid crisis
18 To see this note that we can write δ(X t ) = 1 −
(

�(X t−1 ) 

σ 2 
ε 

+ 1 + 

σ 2 
u /φ

2 

σ 2 
ε 

)−1 

for some function �(X t−1 ) . As �(X t−1 ) is pre-determined with respect to period 

t and thus exogenous with respect to a change in the irreducible noise variance a rise in total volatility for a given (σ 2 
u /φ

2 ) /σ 2 
ε lowers δ(X t ) . 

18 



S. Hobler Journal of Economic Dynamics & Control 138 (2022) 104372 

Fig. 10. Attention in response to anticipated volatility shock. Panel A (Left): 
σ 2 

u 

φ2 = 0 . 5 for j ≤ J − 1 and 
σ 2 

u 

φ2 = 0 . 25 for j ≥ J. Panel B (Right): σ 2 
ε = 0 . 5 for 

j ≤ J − 1 and σ 2 
ε = 0 . 25 for j ≥ J. Orange band indicates time when volatility shock realises. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lockdowns halted a large fraction of economic activity and induced substantial difficulties for data collection, which most 

probably depressed data quality. However, as most lockdowns were announced together with an end date there was the 

expectation that data quality would improve at a (known) future date. 

Faced with an anticipated change in future volatility from (σ 2 
u /φ

2 , σ 2 
ε ) to ( ̃  σ

2 
u / ̃

 φ2 , ˜ σ 2 
ε ) the firm the solves the following

modified problem 

˜ V (X t ) = max 
{ Y t+ j ,X t+ j+1 } J−1 

j=0 

−
J−1 ∑ 

j=0 

β j 

(
σ 2 

ε δ(X t+ j ) + δ(X t+ j ) 2 Y t+ j + ω log 

(
X t+ j 
Y t+ j 

))
+ β J V (X t+ J ; ˜ σ 2 

u / ̃
 φ2 , ˜ σ 2 

ε ) 

subject to 

X t+ j+1 = 

{ 

σ 2 
ε δ(X t+ j ) + δ(X t+ j ) 2 Y t+ j + 

σ 2 
u 

φ2 + σ 2 
ε if j < J − 1 

σ 2 
ε δ(X t+ j ) + δ(X t+ j ) 2 Y t+ j + 

˜ σ 2 
u 

˜ φ2 
+ ˜ σ 2 

ε if j = J − 1 

and the sequence of corresponding no forgetting constraints. 

The problem is solved in two steps. First, the firm computes their value function V (X ′ ; ˜ σ 2 
u / ̃

 φ2 , ˜ σ 2 
ε ) for any future X ′ and

volatility pair ( ̃  σ 2 
u / ̃

 φ2 , ˜ σ 2 
ε ) . Given their initial prior uncertainty X t the firm chooses the optimal sequence of { Y t+ j , X t+ j+1 } J−1 

j=0 

as to maximise today’s flow payoff and its associated continuation value at a possibly higher or lower level of volatility. 

I consider the following simulations in Fig. 10 . Let J = 5 . Panel A. plots the impulse response for the Kalman gain when

the fundamental variance decreases by 50% whilst Panel B. plots the impulse response for the Kalman gain when the vari-

ance of the unlearnable noise falls by 50% . The shifts in variances are assumed to be made known to firms in period t , that

is J periods prior to their realisation. 

4.5.1. Forward guidance about return to Hawkish monetary regime 

Forward guidance about a hawkish monetary policy has three main effects as shown in Panel A. of Fig. 10 . First, the

response in attention is concentrated on the short period directly prior to the realisation of the policy change. Hence, the

timing of the announcement is not of substantive importance as long as it occurs in advance of the regime switch. However,

model implications are materially different for an anticipated compared to an unanticipated volatility shock. In the former 

firms increase their information processing temporarily to pre-empt the anticipated fall in the informativeness of data. In 

the latter this pre-emption effect is absent and firms to tend to lower their attention levels immediately. In the long-run

attention levels converge to the same steady state regardless of whether the policy change is anticipated or unannounced. 

The mechanism at work is the converse of the argument outlined in Lemma 2 that intertemporal effects act to increase

the firm’s posterior uncertainty in response to a rise in the monetary policy shock variance. As volatilities are fixed for J

periods until the volatility shock materialises the contemporaneous channel of the fall in the signal to noise ratio is shut

off. At the same time, the reduction in future volatility implies that agents anticipate their prior knowledge to be more

informative about the future. Hence, firms utilise the high signal to noise ratio prior to the realisation of the policy shift

and acquire more information to attain a more precise prior. Once the policy regime change is completed the fall in the

signal to noise ratio dominates and agents reduce their attention. 
19 
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Combining the results from Section 4.1 and Panel A. highlights that a temporary switch to a dovish monetary policy 

regime when accompanied by a clear communication strategy can in fact increase attention by firms in the short-run, 

temporarily steepen the Phillips curve and enhance the transmission of monetary policy. 

4.5.2. News about a rise in data quality 

News about greater data quality in the future induces the opposite effect. Firms find it optimal to take a wait-and-see 

approach in which they reduce their attention until the improvement in data quality materialises. Intuitively, anticipating an 

increase in the signal to noise ratio agents optimally substitute attention from the low data quality periods to the high data

quality period. Hence, when a rise in the irreducible noise variance as in Section 4.3 is accompanied by the anticipation

of a future improvement in data quality the effects of a fall in attention are amplified. As a result, a transitory fall in data

quality magnifies the disruptions to the transmission of monetary policy as it depresses attention levels by firms through 

two compounding channels. 

5. Conclusion 

I characterise and solve a variant of the traditional Linear Quadratic Gaussian rational inattention model that captures 

imperfect data quality. I show that a careful distinction between fundamental uncertainty and data uncertainty is of sub- 

stantive importance when studying the dynamics of attention in a world of time-varying volatility. The presence of noisy 

data interacts with the fundamental’s variance in non-trivial ways. In the dynamic extension of the model these interac- 

tion effects have important qualitative implications. They determine whether attention rises or falls in response to a more 

volatile fundamental. Volatility shocks thus cannot in general be considered in isolation of the initial information quality 

regime in the economy. 

I show how higher data quality, be it from improvements in data collection or from more advanced central bank com-

munication, raises the economy’s attention levels, strengthens the transmission of monetary policy and reduces fluctuations 

in the macroeconomy. 

On the issue of time-varying Phillips curves I propose an alternative mechanism that can disrupt the relationship between 

output and inflation during recessions. A deterioration in information processing by firms could render macroeconomic 

variables more persistent and the recovery sluggish, relative to the predictions of a standard rational inattention model. 

What is more, insofar as information quality correlates with economic activity those dynamics may be a general feature of 

the business cycle. 

Appendix A. Model derivations 

Ad Section 2: Solution to The Static Attention Problem 

The maximisation problem for the RI problem with irreducible noise reads 

max 
V ar(x | s ) 

−V ar(θ | x ) −
[ 

V ar(θ ) 

V ar(x ) 

] 
2 
V ar(x | s ) − ω log 

(
V ar(x ) 

V ar(x | s ) 
)

(A.1) 

with the first order condition for an interior solution [ 
V ar(θ ) 

V ar(x ) 

] 
2 = ω 

1 

V ar(x | s ) (A.2) 

Given that κ = max 

{ 
V ar(θ ) 
V ar(x ) 

(
1 − V ar(x | s ) 

V ar(x ) 

)
, 0 

} 
, 19 we arrive at the solution stated in the main text. 

From the solution to the first order condition and the property of Gaussian variables it follows that 

V ar(x | s ) = 

(σ 2 
θ

+ σ 2 
ε ) σ

2 
ζ

σ 2 
θ

+ σ 2 
ε + σ 2 

ζ

= ω 

(σ 2 
θ

+ σ 2 
ε ) 

2 

σ 4 
θ

(A.3) 

and thus 

σ 2 
ζ = max 

{ ω(σ 2 
θ

+ σ 2 
ε ) 

2 

σ 4 
θ

− ω(σ 2 
θ

+ σ 2 
ε ) 

, 0 

} 
(A.4) 

Comparative statics are given by 

dσ 2 
ζ

dσ 2 
θ

= − ω(σ 2 
θ

+ σ 2 
ε ) 

2 

[ σ 4 
θ

− ω(σ 2 
θ

+ σ 2 
ε )] 2 

(
2 

σ 2 
θ
σ 2 

ε 

σ 2 
θ

+ σ 2 
ε 

+ ω 

)
< 0 (A.5) 
19 Note that the Kalman gain is given by κ = 

V ar(θ ) 
V ar(s ) 

and V ar(s ) = 

V ar 2 (x ) 
V ar (x ) −V ar (x | s ) . 

20 
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dσ 2 
ζ

dσ 2 
ε 

= 

ω(σ 2 
θ

+ σ 2 
ε ) 

[ σ 4 
θ

− ω(σ 2 
θ

+ σ 2 
ε )] 2 

[
2 σ 4 

θ − ω(σ 2 
θ + σ 2 

ε ) 
]

≥ 0 (A.6) 

where the non-negativity of the latter derivative is given by the condition for an interior solution. 

Ad Section 3.3: Dynamic Model 

Objective Function Derivation. Since q t → x t → s t forms a Markov chain f (q t | x t , s t−1 , s t ) = f (q t | x t , s t−1 ) (see proof of

Proposition 1 ). We can use that fact, the Total Law of Variance and the definition x t = q t + ε t to write 

V ar(q t | s t ) = E 

[
V ar(q t | x t , s t ) | s t 

]
+ V ar 

[
E [ q t | x t , s t ] | s t 

]
(A.7) 

= E 

[
V ar(ε t | x t , s t−1 ) | s t ]+ V ar 

(
x t − E [ ε t | x t , s t−1 ] | s t ) (A.8) 

Further, the Gaussianity assumption implies that the joint, marginal and conditional distributions of { q t , x t , s t } are Gaus-

sian as well. Then by the properties of the Gaussian distribution and re-expressing the result in neater notation used in the

main text yields 

V ar(q t | s t ) = V ar(ε t | x t , s t−1 ) + 

[
1 − V ar(ε t ) 

V ar(x t | s t−1 ) 

]2 

V ar 
(
x t | s t 

)
(A.9) 

= V ar (ε t ) 

[
1 − V ar (ε t ) 

V ar (x t | s t−1 ) 

]
+ 

[
1 − V ar (ε t ) 

V ar (x t | s t−1 ) 

]2 

V ar 
(
x t | s t 

)
(A.10) 

= δ(X t ) σ
2 
ε + δ(X t ) 

2 Y t (A.11) 

First Order Conditions The first order conditions of the dynamic programming problem of (8) yields 

0 = −(λ − 1) δ(X ) 2 + ω 

1 

Y 
+ βδ(X ) 2 V 

′ (X 

′ ) − μ (A.12) 

where μ denotes the Lagrange multiplier on the no-forgetting constraint Y ≤ X . Note that the non-negativity constraint will 

never bind since lim Y → 0 RHS = ∞ . 

By the Benveniste-Scheinkman condition, 

V 

′ (X ) = −(λ − 1) 
∂ 
(
σ 2 

ε δ(X ) + δ(X ) 2 Y 
)

∂X 

− ω 

1 

X 

+ βV 

′ (X 

′ ) 
∂ 
(
σ 2 

ε δ(X ) + δ(X ) 2 Y 
)

∂X 

(A.13) 

= −(λ − 1) 
∂ 
(
σ 2 

ε δ(X ) + δ(X ) 2 Y 
)

∂X 

− ω 

1 

X 

+ 

[ 
(λ − 1) − ω 

1 

δ(X ) 2 Y 
+ 

μ

δ(X ) 2 

] ∂ (σ 2 
ε δ(X ) + δ(X ) 2 Y 

)
∂X 

+ μ (A.14) 

= −ω 

1 

X 

− ω 

1 

δ(X ) 2 Y 

∂ 
(
σ 2 

ε δ(X ) + δ(X ) 2 Y 
)

∂X 

+ 

μ

δ(X ) 2 
(A.15) 

which at an interior solution μ = 0 reduces to 20 

V 

′ (X ) = −ω 

( 

1 

X 

+ 

1 

δ(X ) 2 Y 

∂ 
(
σ 2 

ε δ(X ) + δ(X ) 2 Y 
)

∂X 

) 

(A.16) 

where the partial derivative expressed at time t is equivalent to ∂V ar(q t | s t ) 
∂X t 

, holding constant Y t . Iterating the last expression

forward and substituting into the FOC yields the expression for an interior solution in the main text. 21 

The explicit expression for the partial derivative follows straightforward from noting that by the Envelope Theorem the 

derivative is taken, holding Y t fixed. It is easy to verify that the incremental change in the continuation value at an interior

solution is parametrised by ω. 
20 The last line follows from the fact that any function multiplied by μ will only enter evaluated at the constrained value Y = X and 1 + 

1 
δ(X ) 2 

∂ ( σ 2 
ε δ(X )+ δ(X ) 2 Y ) 

∂X | Y= X = 

1 
δ(X ) 2 

21 
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Limiting Cases Let β → 0 , then the interior solution to the first order condition is given by 

Y t = 

ω 

(λ − 1) δ(X t ) 2 
(A.17) 

as in the static case. 

Let σ 2 
ε → 0 , then the first order condition converges to the problem in Afrouzi and Yang (2021) 

0 = −(λ − 1) + ω 

1 

Y t 
− βω 

1 

X t+1 

(A.18) 

Solution to Kalman Gain The Kalman gain for an interior solution is 

κt = 1 − V ar(q t | s t ) 
V ar(q t | s t−1 ) 

(A.19) 

= 1 − δ(X t ) 
2 Y t + δ(X t ) σ 2 

ε 

X t − σ 2 
ε 

(A.20) 

= 1 − δ(X t ) Y t + σ 2 
ε 

X t 
= δ(X t ) 

(
1 − Y t 

X t 

)
(A.21) 

where I have used the Law of Total Variance and the fact that δ(X t ) ≡ X t −σ 2 
ε 

X t 
. 

Aggregation Aggregation is adapted from Afrouzi and Yang (2021) . Suppose the solution is interior and information pro- 

cessing positive. Then, we can aggregate prices as 

p t = 

∫ 1 

0 

p i,t−1 + κt (q t + ε t + ζi,t − p i,t−1 ) di (A.22) 

= p t−1 + κt (q t + ε t − p t−1 ) (A.23) 

Using the identity that q t = y t + p t and rearranging yields the Phillips curve 

πt = 

κt 

1 − κt 

(
y t + ε t 

)
(A.24) 

for an interior solution. 

To get the relation for the persistence in the economy note that using the Phillips curve relation 

	y t = 	
[
(κ−1 

t − 1) πt − ε t 
]

(A.25) 

= (κ−1 
t − 1) πt − (κ−1 

t−1 − 1) πt−1 − 	ε t (A.26) 

Then given 	q t = 

σu 
φ

u t = 	y t + πt , 

κ−1 
t πt − (κ−1 

t−1 − 1) πt−1 − 	ε t = 

σu 

φ
u t (A.27) 

Rearranging yields the result in the text. 

To get the dynamic relation for the output gap note that 

y t = 

(
κ−1 

t − 1 

)
πt − ε t (A.28) 
21 Since the constraint is occasionally binding for low realisations of the state variable it is instructive to consider the cases in which μ > 0 and/or μ′ > 0 . 

The FOC is then given by 

0 = −(λ − 1) δ(X ) 2 + ω 

1 

Y 
− βωδ(X ) 2 

( 

1 

X ′ + 

1 

δ(X ′ ) 2 Y ′ 
∂ 
(
σ 2 

ε δ(X ′ ) + δ(X ′ ) 2 Y ′ 
)

∂X ′ 

) 

+ β
δ(X ) 2 

δ(X ′ ) 2 μ
′ − μ

It can be shown that given that the system will eventually have an interior solution after a finite number of periods it holds that μ
δ(X ) 2 

− β μ′ 
δ(X ′ ) 2 ≥ 0 , 

which holds trivially if μ′ = 0 . Hence, the optimality condition can be expressed more succinctly as 

−(λ − 1) δ(X ) 2 + ω 

1 

Y 
− βωδ(X ) 2 

( 

1 

X ′ + 

1 

δ(X ′ ) 2 Y ′ 
∂ 
(
σ 2 

ε δ(X ′ ) + δ(X ′ ) 2 Y ′ 
)

∂X ′ 

) 

≥ 0 

22 
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= 

(
κ−1 

t − 1 

)
( 
σu 

φ
u t − 	y t ) − ε t (A.29) 

Rearranging yields the result in the main text. 

Appendix B. Omitted proofs 

Proof of Proposition 1 

Proof. As the variables are defined, we can form the following Markov Chain θ → x → s . In particular, f (s | x, θ ) = f (s | x ) .
Thus, 

f (θ | x, s ) = 

f (s | x, θ ) f (x | θ ) f (θ ) 

f (s | x ) f (x ) 
(B.1) 

= 

f (s | x ) f (x | θ ) f (θ ) 

f (s | x ) f (x ) 
= f (θ | x ) (B.2) 

By the Law of Total Variances and since f (θ | x, s ) = f (θ | x ) 
V ar(θ | s ) = E [ V ar(θ | x, s ) | s ] + V ar(E [ θ | x, s ] | s ) (B.3) 

= V ar(θ | x ) + 

[ 
V ar(θ ) 

V ar(x ) 

] 
2 
V ar(x | s ) (B.4) 

where the final line follows from the Gaussian assumption. Thus, the loss function can be re-expressed isomorphic to the 

traditional RI problem. Standard results apply and Gaussianity is optimal in this setting. To see this, 

f ∗( x, s ) = arg max 
f ( x,s ) 

− V ar ( θ | x ) −
[

V ar ( θ ) 

V ar ( x ) 

]2 

V ar ( x | s ) − 2 ωI ( x ; s ) (B.5) 

= arg max 
f (x,s ) 

−V ar(x | s ) − 2 ω 

[ 
V ar(θ ) 

V ar(x ) 

] 
−2 
(
H(x ) − H(x | s ) ) (B.6) 

where the second line follows from the fact that V ar(θ | x ) is exogenous from the point of view of the agent and the defi-

nition of mutual information as the difference of the entropy of the prior and the posterior distribution. The optimality of

the Gaussian distribution follows from the property of maximum entropy for the Gaussian distribution for a given variance 

V ar(x | s ) (see Cover and Thomas 2012 , Chapter 12). By duality minimising a variance subject to an entropy constraint is

equivalent to maximising entropy subject to a variance (and mean) constraint. �

Proof of Proposition 2. 

Proof. It is straightforward to show that 

dκ

dσ 2 
θ

= 

σ 2 
ε 

(σ 2 
θ

+ σ 2 
ε ) 

2 
+ ω 

1 

σ 4 
θ

> 0 (B.7) 

and 

dκ

dσ 2 
ε 

= − σ 2 
θ

(σ 2 
θ

+ σ 2 
ε ) 

2 
< 0 (B.8) 

�

Proof of Proposition 3 

Proof. This proof closely follows the proof of Lemma 3 in Afrouzi and Yang (2021) . To obtain a contradiction, suppose that

the optimal sequence of signals s t is not Gaussian. Then we can construct a Gaussian process that yields the same sequence

of payoffs but costs less in terms of the entropy cost. To see this, let us first rewrite the payoff function. 

Since the random vectors of histories q t → x t → s t form a Markov chain p(q t | x t , s t ) = p(q t | x t ) . Then, by the Total Law of

Variance, 

V ar(q t | s t ) = E 

[
V ar(q t | x t , s t ) | s t ]+ V ar 

(
E [ q t | x t , s t ] | s t ) (B.9) 

= E 

[
V ar(q t | x t ) | s t ]+ V ar 

(
E [ q t | x t ] | s t ) (B.10) 
23 



S. Hobler Journal of Economic Dynamics & Control 138 (2022) 104372 

 

 

 

 

 

 

 

 

 

 

 

 

Given that q t and x t are jointly Gaussian, then 

V ar(q t | s t ) = V ar(q t | x t ) + V ar 
(
C ov (q t , x t ) V ar(x t ) −1 x t | s t ) (B.11) 

= V ar(q t | x t ) + C ov (q t , x t ) V ar(x t ) −1 
V ar 

(
x t | s t )(C ov (q t , x t ) V ar(x t ) −1 

)′ 
(B.12) 

Let us now define a sequence of Gaussian variables { ̂ s t } t≥0 such that 

V ar(x t | ̂  s t ) = E [ V ar(x t | s t ) | s −1 ] 

Using the result in Eq. (B.12) and the fact that the covariance matrix of jointly Gaussian variables is non-stochastic we

see that both sequences of signals induce the same payoff stream by construction. The rest of the proof is a straight forward

adaptation of the proof in Afrouzi and Yang (2021) and relies on the maximum entropy property of the Gaussian distribution

among the random variables with the same expected covariance matrix. �

Proof Lemma 1 

Proof. 

1. Note that eventually the solution to the system will be interior and once interior the dynamics will be such that all

future solutions remain interior. It thus suffices to investigate the dynamics for an interior solution. Denote by g(X t ) next

period’s prior variance at the optimal policy and by h (X t ) the optimal policy function for the posterior variance. Then,

by the Law of Motion 

g(X t ) = δ(X t ) 
2 h (X t ) + δ(X t ) σ

2 
ε + σ 2 

ε + 

σ 2 
u 

φ2 
(B.13) 

By the First Order Condition 

ω 

g(X t ) − [ δ(X t ) σ 2 
ε + σ 2 

ε + 

σ 2 
u 

φ2 ] 
= 1 − βV 

′ (g(X t )) (B.14) 

By the Implicit Function Theorem 

ω 

[ g(X t ) − [ δ(X t ) σ 2 
ε + σ 2 

ε + 

σ 2 
u 

φ2 ]] 2 

(
g ′ (X t ) + δ′ (X t ) σ

2 
ε 

)
= βV 

′′ (g(X t )) g 
′ (X t ) (B.15) 

and rearrange and denote g(X t ) − [ δ(X t ) σ 2 
ε + σ 2 

ε + 

σ 2 
u 

φ2 ] = A (X t ) (
ω 

[ A (X t )] 2 
− βV 

′′ (g(X t )) 
)

g ′ (X t ) = 

ω 

[ A (X t )] 2 
δ′ (X t ) σ

2 
ε (B.16) 

As is shown in Appendix F at any local maximum 

ω 
[ A (X t )] 2 

> βV ′′ (g(X t )) . Hence, g ′ (X t ) > 0 . Further, suppos-

ing βV ′′ (g(X t )) < 

[
1 −

(
σ 2 
ε 

X t 

)2 
]

ω 
[ A (X t )] 2 

we can verify that g ′ (X t ) < 1 . It follows that | X t+1 − X ∞ 

| = | g(X t ) − g(X ∞ 

) | =
| ∫ X t 

X ∞ 

g ′ (t ) dt | < | X t − X ∞ 

| since the derivative is bounded between zero and one. The Law of Motion is thus a contrac-

tion and the system converges to a unique steady state. 

2. The last point follows from the properties of the stochastic process of nominal aggregate demand as a random walk. As

its variance grows linearly with time, the state variable would increase without bounds with a Kalman gain perpetually 

at zero; i.e. lim τ→∞ 

X τ = ∞ . From (9) it is clear that as the state variable approaches infinity the reservation utility

cannot. To see this, suppose that Ȳ τ > X τ for all τ ≥ t while lim τ→∞ 

X τ = ∞ . Then the RHS approaches −(λ − 1) < 0 and

the firm would reduce their posterior uncertainty. A contradiction. To derive the expression for the steady state Kalman 

gain note that by the law of motion for X t = X t+1 = X ∞ 

X ∞ 

= δ(X ∞ 

) 2 Y ∞ 

+ δ(X ∞ 

) σ 2 
ε + σ 2 

ε + 

σ 2 
u 

φ2 
(B.17) 

which gives, noting that X ∞ 

− δ(X ∞ 

) σ 2 
ε − σ 2 

ε = 

X 2 ∞ 

−2 X ∞ 

σ 2 
ε + σ 4 

ε 
X ∞ 

= δ(X ∞ 

) 2 X ∞ 

, 

Y ∞ 

= X ∞ 

− 1 

δ(X ∞ 

) 2 
σ 2 

u 

φ2 
> 0 (B.18) 
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Then, 

κ∞ 

= δ(X ) 

( 

1 −
X ∞ 

− 1 
δ(X ∞ ) 2 

σ 2 
u 

φ2 

X ∞ 

) 

= 

σ 2 
u /φ

2 

X ∞ 

− σ 2 
ε 

as was to be shown. 

�

Proof Corollary 2 

Proof. The unconditional variance can be derived using the law of motion for inflation and output at the steady state

Kalman gain. 

V ar(πt ) = (1 − κ) 2 V ar(πt−1 ) + κ2 

(
σ 2 

u 

φ2 
+ 2 σ 2 

ε 

)
+ 2 C ov 

(
(1 − κ) πt−1 , κ

(
σu 

φ
u t + 	ε t 

))
= (1 − κ) 2 V ar(πt−1 ) + κ2 

(
σ 2 

u 

φ2 
+ 2 σ 2 

ε 

)
− 2(1 − κ) κ2 σ 2 

ε 

= 

κ

2 − κ

(
σ 2 

u 

φ2 
+ 2 κσ 2 

ε 

)
and for output 

V ar(y t ) = (1 − κ) 2 V ar(y t−1 ) + (1 − κ) 2 
σ 2 

u 

φ2 
+ κ2 σ 2 

ε 

= 

(1 − κ) 2 

1 − (1 − κ) 2 
σ 2 

u 

φ2 
+ 

κ

2 − κ
σ 2 

ε 

�

Proof Lemma 2 

Proof. Rewrite the optimality relation in (9) as 

0 = −(λ − 1) + ω 

1 

δ(X t ) 2 Ȳ t 
+ βV 

′ (X t+1 ) (B.19) 

The contemporaneous effect of an increase in the monetary policy shock variance operates through increasing the prior 

variance X t in δ(X t ) . In particular, d 

dσ 2 
u /φ

2 
= 

dδ(X t ) 
dX t 

dX t 
dσ 2 

u /φ
2 

= 

σ 2 
ε 

X 2 t 

> 0 . All else equal it is straightforward to see that this lowers

the posterior variance Ȳ t . 

To compute the intertemporal effect of an increase in the monetary policy shock variance we need to compute how 

 

′ (X t+1 ) changes with σ 2 
u /φ

2 . To this effect, let us expand the state space to include the monetary policy shock variance.

Note that since we assume that the agent treats the underlying variances as fixed over time we obtain a deterministic law

of motion for the state variable where z t+1 = z t where z ≡ σ 2 
u /φ

2 . Hence, the Bellman equation is given by 

V 

(
X ;σ 2 

u /φ
2 
)

= max 
Y 

− ( λ − 1 ) 
(
σ 2 

ε δ( X ) + δ( X ) 
2 Y 
)

− ω log 
(

X 
Y 

)
+ βV 

(
δ( X ) 

2 Y + σ 2 
ε δ( X ) + 

σ 2 
u 

φ2 + σ 2 
ε ;σ 2 

u /φ
2 

)
subject to 0 ≤ Y ≤ X 

(B.20) 

We will next compute the cross-derivative d 

dσ 2 
u /φ

2 

(
∂ 
∂X 

V (X ′ , σ 2 
u /φ

2 ) 
)

evaluated at the steady state. To be precise we will 

compute the total derivative with respect to σ 2 
u /φ

2 of the partial derivative with respect to the first argument of the value

function evaluated at X ′ . It is important to note that X ′ = δ(X ) 2 Y + σ 2 
ε δ(X ) + 

σ 2 
u 

φ2 + σ 2 
ε such that ∂X ′ 

∂σ 2 
u /φ

2 
= 1 for a fixed Y and

X . Likewise, ∂X 

∂σ 2 
u /φ

2 
= 1 . Then, 

d 

dσ 2 
u /φ2 

(
∂ 

∂X 

V (X 

′ , σ 2 
u /φ

2 ) 

)
= 

∂ 2 

∂ X ∂ σ 2 
u /φ2 

V (X 

′ ;σ 2 
u /φ

2 ) + 

∂ 2 

∂X 

2 
V (X 

′ ;σ 2 
u /φ

2 ) 
dX 

′ 

dσ 2 
u /φ2 

(B.21) 

where we note that the second term is positive since the value function is convex and 

dX ′ 
dσ 2 

u /φ
2 

> 0 . To make progress at

computing the first term, we apply the Envelope condition 

∂ 

∂σ 2 /φ2 
V (X ;σ 2 

u /φ
2 ) = β

∂ 

∂X 

V (X 

′ ;σ 2 
u /φ

2 ) 
∂X 

′ 

∂σ 2 /φ2 
+ β

∂ 

∂σ 2 /φ2 
V (X 

′ ;σ 2 
u /φ

2 ) (B.22) 

u u u 
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C  

 

= β
∂ 

∂X 

V (X 

′ ;σ 2 
u /φ

2 ) + β
∂ 

∂σ 2 
u /φ2 

V (X 

′ ;σ 2 
u /φ

2 ) (B.23) 

Then, 

∂ 2 

∂ X ∂ σ 2 
u /φ2 

V (X ;σ 2 
u /φ

2 ) = β
∂ 2 

∂X 

2 
V (X 

′ ;σ 2 
u /φ

2 ) 
dX 

′ 
dX 

+ β
∂ 2 

∂ X ∂ σ 2 
u /φ2 

V (X 

′ ;σ 2 
u /φ

2 ) 
dX 

′ 
dX ︸︷︷︸ 

> 0 ;< 1 

(B.24) 

where 0 < 

dX ′ 
dX 

< 1 by Lemma 1 . 

Evaluating this expression at the steady state X ′ = X = X ∗ and rearranging yields 

∂ 2 

∂ X ∂ σ 2 
u /φ2 

V (X 

∗;σ 2 
u /φ

2 ) = 

β dX ′ 
dX | X ′ = X ∗

1 − β dX ′ 
dX | X ′ = X ∗

∂ 2 

∂X 

2 
V (X 

∗;σ 2 
u /φ

2 ) > 0 (B.25) 

which is positive since the value function has been found to be convex in X and Lemma (1) showed that 0 < 

dX ′ 
dX 

< 1 . Hence,

we see from (B.19) that all else equal an increase in the monetary policy shock variance increases the posterior variance Ȳ t 
in a neighbourhood around the steady state. 

In the special case in which σ 2 
ε → 0 the contemporaneous effect is zero and thus the intertemporal effect dominates, 

inducing an instantaneous increase in the posterior variance. It can be shown that as σ 2 
ε → 0 

dY t 

dσ 2 
u /φ2 

= β
Y 2 t 

X 

2 
t+1 

− βY 2 t 

> 0 (B.26) 

It follows that the presence of irreducible noise is a necessary condition for the posterior variance to fall when the monetary

policy shock variance rises. Further, as ω → ∞ the relative weighting of the increase in the contemporaneous marginal

benefit in the firm’s decision making goes to zero, all else equal. Thus, if the posterior variance falls it must be in a setting

where σ 2 
ε is sufficiently large and ω sufficiently small. These identify necessary but not sufficient conditions. �

Appendix C. Dynamic vs static model 

Fig. C.1 plots the absolute value of the slope of the value function at the respective steady states for various levels of

σ 2 
u /φ

2 , σ 2 
ε and ω. The top panel plots

Ȳ stat 
t 

Ȳ 
dyn 
t 

. The bottom panel plots | V ′ (X ) | . In the simulations the posterior variance in the 

static model is up to twice as large as in the dynamic model. The bottom panels show that the intertemporal forces are

even stronger in fact, implying that the biggest difference between models is the fact that agents process information in the

dynamic model in circumstances under which they would ignore all new data in the static counterpart. 

Appendix D. Implications for macroeconomic fluctuations 

Fig. D.1 plots the countour plots for the unconditional variances of inflation and output for different signal to noise ratios

and marginal costs of attention. They show the main result from Section 3.5 that the unconditional variances are increasing

in σ 2 
ε indicating that poorer data quality implies larger macroeconomic fluctuations. 

Appendix E. Equivalent cost shock series 

Fig. E.1 shows the series of shocks to the marginal cost of attention ω that replicates the impulse response of the Kalman

gain to a 100% increase in the variance of the irreducible noise σ 2 
ε as computed in Fig. 8 . 

Appendix F. Value function 

Note that J(X 0 , Y ) as defined in Equation 6 is well defined and continuous and is bounded above by zero. The constraint

set and the law of motion for the prior variance is clearly non-empty. Assumptions 4.1 and 4.2 in Stokey et al. (1989) are

therefore satisfied. Bellman’s principle of optimality then shows that V (X ) = sup Y J (X, Y ) . Since J (X 0 , Y ) is continuous and

the constraint set well-defined the Theorem of the Maximum states that V (X ) will be continuous also. The fact that V (X )

exists and is unique follows from the fact that V (X ) is the fixed point of a contraction mapping of T : C(X ) → C(X ) where

(X ) denotes the space of bounded continuous functions f : X → R 

−, for β ∈ (0 , 1) . The proof that Blackwell’s sufficiency

conditions are satisfied is standard. 

Without further assumptions it is, however, not possible to characterise the policy function more sharply. In particular, 

the usual assumptions of the flow utility as strictly concave and strictly increasing is not satisfied. In fact, V (X ) is convex for

most of the parameter space and decreasing. This follows naturally from the specification of the cost function as entropy- 

based but complicates the problem as monotonicity and uniqueness of the maximising policy correspondence may no longer 
26 
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Fig. C.1. 2 × 2 grid. Top panels show relative posterior variances at the steady state. Bottom panels shows the slope of the value function at the steady 

state. σ 2 
u /φ

2 on the x-axis. σ 2 
ε on the y-axis. Left panels ω = 0 . 5 . Right panels ω = 5 . 

Fig. D.1. Unconditional variances of inflation and output. 
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Fig. E.1. Equivalent shock series to ω. 

 

 

 

 

 

be guaranteed. Below I derive conditions for which the problem is well-defined when the value function is continuously 

differentiable and find that those are easily satisfied for the examples considered in the main text. 

Limiting Case σ 2 
ε → 0 . 

It can be shown that as the irreducible noise vanishes the problem is well-defined. The FOC for an interior solution

simplifies to 

0 = −(λ − 1) + ω 

1 

Y 
− βω 

1 

X 

′ (F.27) 

with a second order condition for a maximum of 

−ω 

1 

Y 2 
+ βω 

1 

X 

′ 2 ≤ 0 (F.28) 

which is satisfied since Y ≤ X and β ∈ (0 , 1) . 

General Case Let us restrict our attention to the interior solution. Recall that the First Order Condition is in general given

by 

0 = −(λ − 1) + ω 

1 

δ(X ) 2 Y 
+ βV 

′ 
(
δ(X ) 2 Y + δ(X ) σ 2 

ε + σ 2 
ε + 

σ 2 
u 

φ2 

)
(F.29) 

while the sufficient condition for a maximum reads 

−ω 

δ(X ) 2 

[ δ(X ) 2 Y ] 2 
+ βV 

′′ 
(

X 

′ 
)
δ(X ) 2 ≤ 0 (F.30) 

which shows that the problem is well-defined as long as the value function is not ”too convex”. That is, 

βV 

′′ 
(

X 

′ 
)

≤ ω 

1 

[ δ(X ) 2 Y ] 2 
(F.31) 

To assess how reasonable this condition is I plot the function 

−
(
σ 2 

ε δ(X ) + δ(X ) 2 Y 
)

− ω log 

(
X 

Y 

)
+ βV (X 

′ ) (F.32) 

for plausible values of prior variances X and X ′ around the steady state. Fig. F.1 verifies numerically that for plausible prior

variances (i.e. not too far from steady state) the problem is concave and has a unique maximum. 

Negative Slope of Policy Function The policy function has two parts. An upward-sloping region for low realisations of 

the state in which Y takes their corner solution of Y = X and a downward-sloping portion. The condition for a downward-

sloping policy function is slightly stricter than the condition for concavity. Below I will derive such condition which I find

to be satisfied in all specifications considered in the main text. 
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Fig. F.1. Four 2 × 2 grids for each ω ∈ { 1 , 5 , 0 . 5 , 0 . 1 } respectively. Within each grid the different signal to noise ratios are low, medium, medium, high from 

left to right respectively. 

 

 

Let us denote the optimal policy function for current period’s posterior variance by h (X ) and for next period’s prior vari-

ance by g(X ) = δ(X ) 2 h (X ) + δ(X ) σ 2 
ε + ε + 

σ 2 
u 

φ2 . By the Implicit Function Theorem on the First Order Condition and denoting

A (X ) := δ(X ) 2 h (X ) (
ω 

[ A (X )] 2 
− βV 

′′ (g(X )) 
)[

2 δ(X ) δ′ (X ) h (X ) + δ(X ) 2 h 

′ (X ) 
]

= βV 

′′ (g(X )) δ′ (X ) σ 2 
ε (F.33) 

such that 

h 

′ (X ) = 

δ′ (X ) 

δ(X ) 

[
−2 h (X ) + 

βV 

′′ (g(X )) 
ω 

[ A (X )] 2 
− βV 

′′ (g(X )) 

σ 2 
ε 

δ(X ) 

]
(F.34) 

and hence h ′ (X ) ≤ 0 iff

βV 

′′ (g(X )) ≤
[

σ 2 
ε 

2 δ(X ) h (X ) 
+ 1 

]−1 
ω 

[ A (X )] 2 
≤ ω 

[ A (X )] 2 
(F.35) 
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It follows that the second order condition for h (X ) as the maximiser is necessary but not sufficient for a downward-

sloping policy function. Also note that as σ 2 
ε → 0 , δ′ (X ) → 0 and h ′ (X ) → 0 . That is, the optimal posterior variance is inde-

pendent of its prior variance. 
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