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Abstract
The paper introduces an automatic procedure for the parametric transformation of

the response in regression models to approximate normality. We consider the Box–

Cox transformation and its generalization to the extended Yeo–Johnson transfor-

mation which allows for both positive and negative responses. A simulation study

illuminates the superior comparative properties of our automatic procedure for the

Box–Cox transformation. The usefulness of our procedure is demonstrated on four

sets of data, two including negative observations. An important theoretical devel-

opment is an extension of the Bayesian Information Criterion (BIC) to the com-

parison of models following the deletion of observations, the number deleted here

depending on the transformation parameter.

Keywords Bayesian information criterion (BIC) � Constructed variable � Extended

coefficient of determination ðR2Þ � Forward search � Negative observations �
Simultaneous test

1 Introduction

In the final sentence of Hinkley (1975), David Hinkley wrote ‘Data transformation

in the presence of outliers is a risky business’. The risk arises particularly in robust

fitting of transformations. If a symmetrical model is fitted to a skewed distribution,
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the observations in the longer tail may be spuriously treated as outliers and

downweighted. The need for a non-symmetric transformation of the data is then

obscured. In this paper we present an automatic method, including robustness, for

the Box–Cox transformation and also for the extended Yeo–Johnson transformation

which allows for both positive and negative observations. Atkinson et al. (2021)

give a review of these transformations and exemplify the lack of robustness of the

appealing non-parametric transformations ACE and AVAS (Breiman and Friedman

1985; Tibshirani 1988). Our inferences about transformations and outliers use a new

extension of the BIC (Schwarz 1978) in combination with the mean shift outlier

model. This allows the automatic comparison of fitted models in which, due to

outlier deletion, the number of observations differs. The emphasis in our paper is on

automatic determination of robust parametric response transformations in regres-

sion. We analyse four sets of data and describe the programs used to generate the

analyses.

The Box–Cox transformation is recalled in Sect. 2.1 as, in Sect. 2.2, is the

approximate score test for the transformation parameter k, which we call TA for the

Box–Cox transformation. This is found by Taylor series expansion of the expression

for the transformed response, leading to the inclusion of a constructed variable in

the regression model. Robustness is introduced in Sect. 2.3 where the forward

search (Atkinson et al. 2010), ordering the data by the use of residuals (Riani and

Atkinson 2000), leads to the fan plot for assessing transformations over a grid of

values of k. The aim of all transformations is to find a model for which the error

variance is constant, the distribution of residuals is approximately normal and the

linear model is simple and, ideally, additive.

The paper proceeds by direct use of the numerical information in the fan plot;

automatic assessment of this information replaces visual inspection of plots and

subsequent manual adjustment of parameter values leading to further calculations

and plots (Atkinson et al. 2020). Section 3 provides the necessary inferential tools.

The stages in choice of the transformation parameter are:

1. The forward search (FS) orders the data by closeness to the fitted model and

leads to the trimming of outliers in the transformation model (Sect. 2.3).

2. Use of the mean shift outlier model (Sect. 3.1) provides a likelihood adjusted

for the trimming of observations.

3. This likelihood is used in Sect. 3.1 to calculate the extended BIC, used for

comparing different transformations with varying numbers of trimmed obser-

vations. In Sect. 3.2 we adjust this BIC for consistent estimation of the error

variance.

The agreement index (AGI), a diagnostic tool supplementing the use of BIC, is

introduced in Sect. 3.3. A second diagnostic tool is the extension of the coefficient

of determination (R2) to allow for the deletion of outliers. These tools are used in

Sect. 4 to build the automatic procedure for the Box–Cox transformation, illustrated

in Sect. 5 by the automatic analysis of data on hospital stays and on loyalty cards. In

Sect. 6 we conclude our investigation of automatic procedures for the Box–Cox

transformation with a simulation study comparing our work with that of Marazzi
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et al. (2009). For simple regression, the procedures provide estimates with similar

bias, but the computation time for that of Marazzi et al. increases rapidly with the

sample size. For multiple regression our procedure has the lower bias.

Section 7 introduces the extended Yeo–Johnson transformation of Atkinson et al.

(2020) which develops the transformation of Yeo and Johnson (2000) to allow

differing values of the transformation parameter for positive and negative

observations. The subject of Sect. 8 is the adaptation of the automatic procedure

to the extended Yeo–Johnson transformation. Because there are two score statistics,

for the transformation parameters for positive and negative observations, a more

complicated form of the agreement index is required. Examples of the use of this

automatic procedure are in Sect. 9. In the larger example we analyse 1405

observations on the profitability of firms, 407 of which make a loss. In the

concluding Sect. 10 we discuss potential further extensions to the Yeo–Johnson

transformation and relate our results to the remark of Hinkley quoted at the

beginning of this paper.

The Appendix contains algebraic details of the normalized version of the

extended Yeo–Johnson transformation and of the constructed variables used in our

automatic procedure. Links to our programs for automatically determining

transformations are at the end of Sect. 10.

2 The Box–Cox transformation

2.1 Aggregate statistics

The Box–Cox transformation for non-negative responses is a function of the

parameter k. The transformed response is

yðkÞ ¼ ðyk � 1Þ=k ðk 6¼ 0Þ; log y ðk ¼ 0Þ; ð1Þ

where y is n� 1. In (1) k ¼ 1 corresponds to no transformation, k ¼ 1=2 to the

square root transformation, k ¼ 0 to the logarithmic transformation and k ¼ �1 to

the reciprocal transformation, thus avoiding a discontinuity at zero.

The development in Box and Cox (1964) is for the normal theory linear model

yðkÞ ¼ Xbþ �; ð2Þ

where X is n� p, b is a p� 1 vector of unknown parameters and the variance of the

independent errors �i ði ¼ 1; :::; nÞ is r2. For given k the parameters can be esti-

mated by least squares. To estimate k it is necessary to allow for the change of scale

of yðkÞ with k. The likelihood of the transformed observations relative to the

original observations y is

ð2pr2Þ�n=2
expf�SðkÞ=2r2gJnBC; ð3Þ

where SðkÞ ¼ fyðkÞ � XbgTfyðkÞ � Xbg and the Jacobian
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JnBC ¼
Yn

i¼1

oyiðkÞ=oyij j: ð4Þ

For the power transformation (1), oyiðkÞ=oyi ¼ yk�1
i ; so that

log JnBC ¼ ðk� 1Þ
X

log yi ¼ nðk� 1Þ log _y;

where _y is the geometric mean of the observations. Box and Cox (1964) show that a

simple form for the likelihood is found by working with the normalized

transformation

zðkÞ ¼ yðkÞ=J1=n
BC ¼ ðyk � 1Þ=k _yk�1: ð5Þ

If an additive constant is ignored, the profile loglikelihood, maximized over b and

r2, is

LmaxðkÞ ¼ �ðn=2Þ logfSðkÞ=ng þ log JnBC

¼ �ðn=2Þ logfRðkÞ=nÞg;
ð6Þ

with RðkÞ the residual sum of squares of zðkÞ. Thus k̂ minimizes RðkÞ.
For inference about plausible values of the transformation parameter k, Box and

Cox suggest the likelihood ratio test that k ¼ k0 using (6), that is the statistic

TLR ¼ 2fLmaxðk̂Þ � Lmaxðk0Þg ¼ n logfRðk0Þ=Rðk̂Þg: ð7Þ

Although Box and Cox (1964) find the estimate k̂ that maximizes the profile log-

likelihood, they select the estimate from those values of k from the grid G that lie

within the confidence interval generated by (7). In their examples where n ¼ 27 and

48, G ¼ ½�1;�0:5; 0; 0:5; 1�: Carroll (1982) argues that the grid needs to become

denser as n increases. An example is in Sect. 5.2.

This formulation has led to some controversy in the statistical literature. Bickel

and Doksum (1981) and Chen et al. (2002) ignore the suggested procedure. The

variability of the estimated parameters in the linear model can be greatly increased

when k is estimated by k̂, particularly for regression models with response yðkÞ.
McCullagh (2002) is very clear that the Box–Cox procedure does not lead to k̂.

Box and Cox (1982), Hinkley and Runger (1984), Cox and Reid (1987) and Proietti

and Riani (2009) provide further discussion.

The practical procedure indicated by Box and Cox is analysis in terms of zðkÞ
leading to k̂ with an associated confidence interval and hence to a, hopefully,

physically interpretable estimate k̂G. To avoid dependence on _y in comparisons

across sets of data, parameter estimates need to be calculated using yðk̂GÞ rather than

zðk̂GÞ.
In the later sections of this paper we are concerned with power transformations of

responses that may be both positive and negative. One procedure, analysed by

Box and Cox, is the shifted power transformation in which the transformation is of

ðyþ lÞk, with the value l greater than the minimum value of y. If l is a known
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offset, such as 273.15 in converting from Celsius temperatures to Kelvin, the

transformation is unproblematic. But if l is a parameter to be estimated from the

data, inferential difficulties arise because the range of the observations depends on l
(Atkinson et al. 1991). In addition the shifted power transformation is not

sufficiently flexible to model data such as the examples presented in Sect. 9.

2.2 Constructed variables

The robust transformation of regression data is complicated by the inter-relationship

of outliers and the value of k. Examples are in Atkinson and Riani (2000, Chap-

ter 4). To determine the effect of individual observations on the estimate of k we use

the approximate score statistic TAðkÞ, (Atkinson 1973) derived by Taylor series

expansion of zðkÞ (5) about k0. For a general one-parameter transformation this

leads to the approximate regression model

zðk0Þ ¼ xTb� ðk� k0Þwðk0Þ þ �

¼ xTbþ c wðk0Þ þ �;
ð8Þ

where c ¼ �ðk� k0Þ and the constructed variable wðk0Þ ¼ ozðkÞ=okjk¼k0
, which

only requires calculations at the hypothesized value k0.

The approximate score statistic for testing the transformation is the t statistic for

regression on �wðk0Þ , that is the test for c ¼ 0 in the presence of all components of

b. Because TAðk0Þ is the t test for regression on �wðk0Þ, large positive values of the

statistic mean that k0 is too low and that a higher value should be considered.

2.3 The fan plot

We use the forward search to provide a robust plot of the approximate score statistic

TAðkÞ over a grid G of values of k. For each k we start with a fit to m0 ¼ pþ 1

observations. These are robustly chosen to be the subset providing the Least Median

of Squares estimates of the parameters of the linear regression model, allowing for

the additional presence of the parameter k (Atkinson and Riani 2000, p. 31). We

then successively fit to larger subsets. For the subset of size m we order all

observations by closeness to the fitted model; the residuals determine closeness. The

subset size is increased by one to consist of the subset with the mþ 1 smallest

squared residuals and the model is refitted to this new subset. Observations may

both leave and join the subset in going from size m to size mþ 1. The process

continues with increasing subset sizes until, finally, all the data are fitted. The

process moves from a very robust fit to non-robust least squares. Any outliers will

enter the subset towards the end of the search. We thus obtain a series of fits of the

model to subsets of the data of size m;m0 �m� n for each of which we refit the

model and calculate the value of the score statistics for selected values of k0 2 G.

These are then plotted against the number of observations m used for estimation to

give the ‘‘fan plot‘‘. The ordering of the observations in a fan plot, which reflects the

presence of outliers, may depend on the value of k0. Because we are calculating
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score statistics we avoid the estimation of k and its confidence interval which is

required in the original Box–Cox procedure.

2.4 Hospital data 1

Neter et al. (1996, pp. 334, 438) analyse 108 observations on the times of survival

of patients who had a particular kind of liver surgery. There are four explanatory

variables, with response taken as the logarithm of survival time. To check whether

this is the best transformation in the Box–Cox family requires the constructed

variables

wAðkÞ ¼
½ykflogðy= _yÞ � 1=kg�=ðk _yk�1Þ k 6¼ 0

_y log yð0:5 log y� log _yÞ k ¼ 0;

(
ð9Þ

regression on which for the null value k0 of k gives the statistic TAðk0Þ. The fan plot

of Fig. 1 for the five most commonly used values of k0 ð�1;�0:5; 0; 0:5; 1Þ con-

firms that the logarithmic transformation is suitable for these survival data, as it is

for the survival times in the poison data analysed by Box and Cox (1964). The

trajectory of the score statistic for k0 ¼ 0 lies within the central pointwise 99% band

throughout, whereas those for the other four values of k0 are outside the bands by

the end of the search.

Since the constructed variables are functions of the response, the statistics cannot

exactly follow the t distribution. Atkinson and Riani (2002) provide some numerical

results on the distribution in the fan plot of the score statistic for the Box–Cox
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Fig. 1 Hospital data. Fan plot for five commonly used values of k. The horizontal bands are the 99% and
99.99% pointwise intervals for normal random variables. The vertical line at m ¼ 65, the rounded value
of 0.6n, indicates the point at which automatic monitoring starts
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transformation; increasingly strong regression relationships lead to null distributions

that are closer to t.

3 Inference and outlier deletion

This section introduces the novel extension of BIC for choice of transformation

parameters and supplements it with two further diagnostic tools, the Agreement

Index AGI, and an extended form of R2. Section 4 describes the combination of

these tools to provide the automatic procedure for the Box–Cox transformation.

3.1 BIC and the mean shift outlier model

As our main tool in assessing numerical information from score statistics calculated

during the FS, we use the extended Bayesian Information Criterion (BIC). The

original version (Schwarz 1978) can be used to choose the value of k for complete

data with n observations. Then, from (6)

BICðkÞ ¼ �n logfSðkÞ=ng þ 2 log JnBC � ðpþ nkÞ logðnÞ; ð10Þ

where there are p parameters in the linear model and, for the Box–Cox transfor-

mation, the single transformation parameter k, so that nk ¼ 1: Written in this form,

large values of the index are to be preferred, corresponding to small values of RðkÞ,
that is to maximizing the likelihood.

Use of the forward search to provide robustness against outliers and incorrect

transformations leads to the comparison of fitted models with different numbers of

observations. We render outlier deletion compatible with BIC through use of the

mean shift outlier model in which deleted observations are each fitted with an

individual parameter, so having a zero residual.

Let the forward search terminate with h observations. Then n� h observations

will have been deleted. This can be expressed by writing the regression model as

zðkÞ ¼ Xbþ D/þ �; ð11Þ

where D is an n� ðn� hÞ matrix with a single one in each of its columns and n� h
rows, all other entries being zero. These entries specify the observations that are to

have individual parameters or, equivalently, are to be deleted (Cook and Weisberg

1982, p. 21).

To incorporate deletion of observations in BIC (10) for values of k 2 G, let the

value of SðkÞ when n� hðkÞ observations are deleted be Sðk; hÞ. Then BICðkÞ is

replaced by

BICðk; hÞ ¼ �n logfSðk; hÞ=hg þ 2 log JnBC � fpþ nk þ n� hðkÞg logðnÞ; ð12Þ

in which Sðk; hÞ is divided by h. A full treatment is in Riani et al. (2022).
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3.2 The Tallis correction

To find the n� h outlying observations we have used the FS which orders the

observations from those closest to the fitted model to those most remote. If there are

no outliers and the value of k is correct, the value of SðkÞ at the end of the search

will lead to an unbiased estimate of r2. The deletion of the n� h most remote

observations yields the residual sum of squares Sðk; hÞ and to a too small estimate of

r2 based on the central h observations. The variance of the truncated normal

distribution containing the central h/n portion of the full distribution is

r2ðhÞ ¼ 1 � 2n

h
U�1 nþ h

2n

� �
/ U�1 nþ h

2n

� �� �
; ð13Þ

where /ð�Þ and Uð�Þ are respectively the standard normal density and c.d.f. See, for

example, Johnson et al. (1994, pp. 156–162). We scale up the value of Sðk; hÞ in

(12) to obtain the extended BIC

BICEXTðk; hÞ ¼ �n log½Sðk; hÞ=fhr2ðhÞg� þ 2 log JnBC � fpþ nk þ n� hðkÞg logðnÞ:
ð14Þ

This consistency correction is standard in robust regression (Rousseeuw and Leroy

1987, p. 130). The correction r2ðhÞ in (13) is the one-dimensional case of the

general result in Tallis (1963) on elliptical truncation in the multivariate normal

distribution. This result is useful in determining correction factors for variance

estimation in robust methods for multivariate normal data. An example is Riani and

Atkinson (2007).

Neykov et al. (2007) use a related form of extended BIC for model choice in

clustering when estimation is by trimmed likelihood.Their procedure differs from

ours in two important ways:

i Because they do not have a regression model they do not use the mean shift

outlier model to add parameters as observations are trimmed. In consequence,

their procedure differs from ours in the penalty function applied to the trimmed

likelihood. In our notation their penalty term is �p log h whereas, if we ignore

the effect of varying k, our penalty term is �ðpþ n� hÞ log n, a stronger

penalty;

ii We do not directly use the likelihood estimate of r2 based on the trimmed

residual sum of squares SðkÞ, but apply the consistency factor (13) in the

estimation.

Similar comments apply to the extended BIC used by Greco and Agostinelli (2020)

for weighted likelihood estimation, again in clustering.

3.3 The agreement index AGI

The value of BICEXTðk; hÞ presents the information on the transformation for the

subset of size hðkÞ. It can be helpful also to consider the history of the evidence for
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the transformation as a function of the subset size m. A correct transformation leads

to identification of the outliers and to a normalizing transformation of the genuine

data. The most satisfactory transformation will be one which is stable over the range

of m for which no outliers are detected and will lead to small values of TAðk0;mÞ,
indicating that the value of k̂ is consistent with k0 over a set of subset sizes. The

trajectory of TAð0;mÞ in Fig. 1 is an example.

We introduce an empirical diagnostic quantity, the agreement index, AGI, which

leads to a graphical representation of this idea. The forward search procedure for

testing the transformation monitors absolute values of the statistic from M to

m ¼ hðkÞ. The default is to take the integer part of M ¼ 0:6n. For ease of

comparison with BICEXTðk; hÞ we take the reciprocal of the mean of the absolute

values of TAðk0;mÞ so that large values are again desired. In order to give more

weight to searches with a larger value of hðkÞ, we rescale the value of the index by

the variance of the truncated normal distribution. Let M ¼ m 2 ½M; hðkÞ�: Then the

agreement index

AGI ¼ fhðkÞ �M þ 1g= r2ðhÞ
X

m2M
jTAðk;mÞj

( )
; ð15Þ

calculated for k 2 G.

3.4 The coefficient of determination R2

The main tools for determining the correct transformation are plots of hðkÞ and

BICEXT with the agreement index as a further diagnostic. In addition, we calculate

values of a form of R2, extended to allow for the value of the size hðkÞ of the final

cleaned sample:

R2
EXT ¼ R2=fr2hðkÞg: ð16Þ

4 The automatic procedure for the Box–Cox transformation

The automatic procedure for robust selection of the transformation parameter and

the identification of outliers requires the use of two functions. Section 5 provides

data analyses for the Box–Cox transformation computed with these functions. Links

to the functions and to full documentation are at the end of Sect. 10.

1. Fan Plot. Subroutine FSRfan. This Forward Search Regression function takes

as input the data and the grid G of k values to be evaluated as transformation

parameters.

(a) There are two automatic choices of G. When n\200; k0 ¼ �1:�
0:5; 0; 0:5 and 1. For n� 200 the default grid is G ¼ �1;�0:9; . . .; 1.

Alternatively, specific grids of k values can be provided.
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(b) Each value of k has a separate forward search. Output structure outFSR
contains numerical information to build fan plots such as Fig. 1.

Optionally, the fan plot can be produced.

2. Outlier Detection, BIC and Model Selection. Subroutine fanBIC(outFSR).

(a) Outlier detection. The forward search uses residuals to order the

observations in such away that outliers, if any, enter the subset used in

fitting towards the end of the search. In fan plots, such as that of Fig. 1,

we use this ordering, but monitor the value of score statistics. In the

automatic procedure, for each k 2 G, the values during the forward search

of the score statistic TAðkÞ of Sect. 2.2 are assessed against the standard

normal distribution to estimate the maximum number m�ðkÞ of observa-

tions in agreement with that transformation. This procedure for testing the

transformation monitors absolute values of the statistic from M to

m ¼ hðkÞ. The default is M ¼ 0:6n.

Simulations not reported here show that the size of this simultaneous

procedure when testing at 1% is close to the nominal value. For a

regression model with two variables the size is 0.75% when n ¼ 100,

0.95% when n ¼ 1000 and 1.11% when n ¼ 10;000, a sample size well in

excess of that of the largest example we analyse.

(b) The presence of any remaining outliers in the m�ðkÞ transformed

observations is checked using the forward search procedure now

monitoring deletion residuals. If any outliers are found in the transformed

data the sample size of the cleaned data is hðkÞ\m�ðkÞ. Otherwise

hðkÞ ¼ m�ðkÞ.
(c) The extended BIC (14) allows comparisons of results from models with

differing numbers of non-deleted observations hðkÞ. The maximal value

determines the preferred parameter value ~k. The agreement index (15) is

also calculated over G.

(d) The results are summarised in a single plot with three panels, for example,

Fig. 2. The main panel is that of BIC. Also included are a diagnostic plot

of the agreement index and a combined plot of hðkÞ and m�ðkÞ.
(e) The procedure suggests the value of k for further data analysis and

indicates a set of outliers in that scale. Further analyses using robust

techniques, including model selection, could follow these suggestions and

are certainly indicated if the three panels of plots like Fig. 2 disagree on

the best transformation. Figures 2 and 4 show analyses in which all three

panels agree.
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5 Two examples of the automatic Box–Cox transformation

5.1 Hospital data 2

The conclusion from the analysis of the hospital data following from the fan plot of

Fig. 1 was that the logarithmic transformation was appropriate; for other values of k
several observations appeared outlying. The results from the automatic method of

Sect. 4 for finding the cleaned sample size hðkÞ, when k ¼ �1;�0:5; 0; 0:5 and 1,

are given in Table 1. There are no deletions of outliers in the searches on residuals,

so hðkÞ ¼ m�ðkÞ for all k. No observations are deleted when k ¼ 0 so, in line with

the earlier results, hð0Þ ¼ n.

The results from the automatic analysis are summarised in the single plot with

three panels of Fig. 2. The automatic analysis has faithfully extracted all features of

Fig. 1 in which the trajectory of TAð0Þ oscillates around zero, without large

divergences and remains inside the 99% bounds over the whole search. This

figure is a typical example of the results of a seemingly straightforward analysis.
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Fig. 2 Hospital data. Output from automatic analysis with G ¼ �1;�0:5; 0; 0:5 and 1. Upper left panel,
extended BIC; upper right panel agrement index AGI; lower panel, proportions hðkÞ=n

Table 1 Hospital data ðn ¼ 108Þ. Size of cleaned samples, hðkÞ; as a function of k when G ¼
�1;�0:5; 0; 0:5 and 1. For all k 2 G; hðkÞ ¼ m�ðkÞ

k - 1 - 0.5 0 0.5 1

hðkÞ 71 107 108 104 99
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The upper left panel of the figure shows the plot of extended BIC for the five values

of k. There is a clear peak at k ¼ 0 and the log transformation is indicated. The

upper right-hand panel shows the plot for the agreement index, again with a peak at

zero, and the lower panel shows the proportion of observations included in the final

transformed analyses.

5.2 Loyalty cards data

We now analyse data from Atkinson and Riani (2006) on the behaviour of

customers with loyalty cards from a supermarket chain in Northern Italy. The data

are a random sample from a larger database. There are 509 observations: the

response is the amount, in euros, spent at the shop over 6 months and the

explanatory variables are: the number of visits to the supermarket in the 6 month

period; the age of the customer and the number of members of the customer’s

family.

The upper top panel of Fig. 3 is a fan plot for 11 values of k ð0; 0:1; . . .; 1Þ with

k ¼ 1 at the bottom and k ¼ 0 providing the top trajectory. It is clear that the

trajectories for two of the five standard values of k (0 and 0.5) steadily leave the

central band in opposite directions. For the best of the five values, k ¼ 0:5, the

automatic procedure (mid and bottom panels of Fig. 3) deletes 37 observations as

not agreeing with the transformation. The indication is that a finer grid of values of k
is required, in line with the argument of Carroll (1982).

We now consider analysis with the finer grid G ¼ �1;�0:9; . . .; 1: Trajectories

of the values of TAðkÞ for positive values of k are given in the upper top panel of

Fig. 3. The upper left-hand panel of Fig. 4 shows the extended BIC plot which is

complemented by the plot in the lower panel of the proportion of clean observations

hðkÞ=n. For k in the range �1 to 0.2, hðkÞ ¼ 0:6n, the point at which monitoring

starts. The plot of the extended BIC shows that k̂G ¼ 0:4 with 0.3 and 0.5 giving

slightly smaller values. An important feature in the lower panel is that, when

k ¼ 0:4, checking residuals for the presence of outliers, leads to the deletion of 16

observations from the m�ðkÞ found by checking the score statistic. These deleted

observations are shown as the unfilled part of the bar in the plot. The plot of the

agreement index in the right-hand panel also indicates a value of 0.4 for the

transformation, a value which Perrotta et al. (2009) show provides a significantly

better fit to the data than the value of 1/3 suggested by Atkinson and Riani (2006).

Figure 6 of Perrotta et al. (2009) reveals that the outlying observations form a group

lying on a distinct regression line with consumers of varying age and family size

spending much less than would be expected given their high number of visits to the

supermarket.

6 Comparison with the procedure of Yohai and Marazzi

The purpose of our paper is to provide a practical method of automatic

transformation of data in the presence of outliers; robust methods are necessary.

It is instructive to compare our approach to that of Marazzi et al. (2009) who have
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the same goal. They however chose MM estimation (Yohai 1987) and only

considered the Box–Cox transformation. Different values of k are compared using a

robust prediction error.

We start our comparisons with simulations. To enhance comparability, we based

the structure of the simulations on those in §5 of Marazzi et al., initially for simple
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Fig. 3 Loyalty cards data. Top panel: fan plot for 11 values of k; ð0; 0:1; . . .; 1Þ. Lower 3 panels: output
from automatic analysis with G ¼ �1;�0:5; 0; 0:5 and 1. Left mid-panel, extended BIC; right mid-panel
agrement index AGI; Bottom panel, proportions hðkÞ=n
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regression with homoscedastic errors. The comparisons were over the series of,

mostly long-tailed, error distributions used by Marazzi et al. In the list below we

give, in italics, the names of the distributions used in the tables of this section.

Unif. Uniform: Uð�0:5; 0:5Þ
Gauss. Normal: N ð0; 1Þ
t6, t3. Student’s t on 6 and 3 degrees of freedom

CntG. Contaminated Gaussian: 0:9N ð0; 1Þ þ 0:1N ð0; 52Þ
MxtG. Symmetric bimodal normal mixture: 0:5N ð�1:5; 1Þ þ 0:5N ð1:5; 1Þ
Exp. Exponential, mean 1.

Let the unscaled simulated errors from the listed distributions be eui . These do not

have the same variance. To remove this effect from the comparisons, Marazzi et al.

used a robust estimator of standard deviation to standardize the additive errors for

the homoscedastic simulations as ei ¼ eui =MADðeui Þ, where MAD is the median

absolute deviation. The ei therefore have MAD one.

All simulations were for n ¼ 100 observations with k0 ¼ 0:5. The simulated

responses are yk0

i ¼ gi þ ei ¼ xTi bþ ei. The results in Table 2 are for simple

regression, that is gi ¼ b0 þ b1xi: The parameter values were chosen to avoid

negative responses (intercept b0 ¼ 10 and slope b1 ¼ 2Þ: The 100 values of the
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Fig. 4 Loyalty cards data. Output from automatic analysis with finer grid; G ¼ �1; ð0:1Þ; 1: Upper left
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explanatory variable are given by the uniform grid xi ¼ 0:2i; i ¼ 1; . . .; 100: There

were 1000 replicates of each simulation, interest being in the estimated value of k.

In order to provide easily readable values of the results, Marazzi et al. multiplied the

values of bias and, in their case, root mean squared error, by 1000, a procedure we

follow in our tables for the bias and standard error of k̂. The average bias of the

simulated estimates given in the tables is therefore calculated as BIAS =

1000 meanðk̂� k0Þ with the standard deviation of the estimate similarly scaled.

The results of Table 2 suggest that there is little difference between the bias of

the two methods; our method had the smaller bias for four of the seven error

distributions. However, the method of our paper performed better for six out of the

seven error distributions when the comparison was based on the estimated standard

deviation of k̂. Although some of the differences in performance are not large, that

for uniform errors is appreciable. In interpreting these results we recall the reference

to McCullagh (2002). The purpose of the transformation method is to find a

transformation which, hopefully, has a physical interpretation, rather than estab-

lishing a precise value of k̂ for use in data analysis. Here k ¼ 0:5 is the often easily

interpreted square root transformation.

We now extend our comparison to multiple regression with outliers at leverage

points. We remain with homoscedastic regression, but now p ¼ 5. The 100 values of

the four explanatory variables were drawn independently from uniform distributions

on [0.2, 20], one set of values beng used for all simulations. We considered only two

error distributions: Gauss and CntG. In this we again follow Marazzi et al. The

parameters of the linear model were (20, 1, 1, 1, 1). We performed two simulations.

In the first, ‘‘without leverage points’’, all simulations were drawn from this model.

In the second, ‘‘with leverage points’’, 90 of the simulated observations followed the

preceding model. There were, in addition, 10 outliers at xTi ¼ ð1; 40; 40; 40; 40Þ with

150 subtracted from each response value. The results are in Table 3. They show

that, for all combinations studied, our automatic procedure produces estimates with

lower biases than those for Marazzi et al.; the difference is largest for Gauss without

Table 2 Properties of estimated

values of k for homoscedastic

simple regression

BIAS STD

MY RAC MY RAC

Unif - 0.9 - 0.6 18.88 8.88

Gauss - 1.7 - 0.6 23.84 19.49

t6 0.3 - 0.4 26.10 25.70

t3 0.4 0.1 27.30 28.80

CntG - 0.9 - 1.4 31.79 30.30

MxtG 0.9 - 0.3 22.97 15.38

Exp - 2.5 - 3.6 27.49 23.83

Bias (BIAS) and standard deviation (STD) of k̂ for the methods of

Marazzi et al. (2009) (MY) and of the present paper (RAC). All

entries multiplied by 1000
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leverage points. However, this is the only combination for which our method had

the smaller standard deviation. The differences are not great, with the root mean

squared errors (not given in the table) for all comparisons being smaller for RAC

than those for MY.

The simulations for our method were performed using a Matlab program. For the

method of Marazzi et al. we used their R package strfmce embedded in Matlab.

That is the data, simulated in Matlab, were passed to the R package for estimation of

k̂, the resulting estimate beng returned to Matlab for the analyses of bias.

We now compare timings of the two methods, calculated just for the time each

program took to find the best estimate of k; thus the relevant part of our Matlab

procedure is compared directly with the times for the R code. The results in Table 4

are for homoscedastic simple regression with uniform and normal error distributions

Table 3 Properties of estimated

values of k for homoscedastic

multiple regression (p ¼ 5)

without and with outliers at

leverage points

BIAS STD

MY RAC MY RAC

Without leverage points

Gauss 81.5 65.1 64.44 61.71

CntG 105.3 100.0 80.09 85.24

With leverage points

Gauss 306.8 286.1 35.09 47.40

CntG 307.1 285.0 35.11 46.70

Bias (BIAS) and standard deviation (STD) of k̂ for the methods of

Marazzi et al. (2009) (MY) and of the present paper (RAC). All

entries multiplied by 1000

Table 4 Comparison of number

of seconds to compute estimated

values of k for homoscedastic

simple regression with uniform

and normal distributions for the

errors as a function of sample

size n

Mean time, seconds Standard Deviation

MY RAC MY RAC

n ¼ 100

Unif 0.55 0.65 0.09 0.13

Gauss 0.55 1.31 0.05 0.15

n ¼ 200

Unif 3.35 0.96 0.28 0.19

Gauss 3.34 2.05 0.17 0.20

n ¼ 500

Unif 45.11 2.14 4.83 0.40

Gauss 43.89 4.28 1.95 0.36

n ¼ 1000

Unif 351.12 5.99 11.57 0.52

Gauss 350.49 12.32 6.12 0.51
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as the number of observations n increases from 100 to 1000. The results are very

clear. For a sample size of 100 MY is faster than RAC, although only statistically

significantly so for the normal distribution. But for n ¼ 200 or more RAC is faster,

becoming increasingly so as n increases. For MY the timings as n increases seem

not to depend on the error distribution, whereas for RAC, the times for the normal

distribution are close to twice those for the uniform distribution. When n ¼ 1000

MY takes almost 6 min for either error distribution, whereas RAC takes 6 or 12 s.

This difference would become of greater practical significance if model building

required the fitting of several models, or if simulation were needed to determine the

properties of the procedures for a specific application.

We now turn to the comparative analysis of data. We first analysed the data on 78

patients given by Marazzi et al. and recovered their solution with our version of

MY. We then used their algorithm to analyse our two examples of the Box–Cox

transformation. For the hospital data we obtained a value of 0.134 for k̂ which is in

agreement with the log transformation indicated by our robust analysis. However,

the hospital data do not contain any outliers and the data are small. We next

analysed the 509 observations on loyalty cards in Sect. 5.2. The R-code returned

three possible values for the estimate of k : 0.534, 0.699 and 0.777. None is close to

the value of 0.4 that we recommend. However, the fan plot in the top panel of Fig. 3

gives some explanation. Particularly for the trajectory for k ¼ 0:7; there is a local

maximum in the trajectory around m ¼ 450. This suggests that a local minimum of

the robust prediction error used in estimation of k has been identified. The trajectory

for k ¼ 0:4, on the other hand, has the desired shape of being reasonably stable until

the end of the search when outliers enter and a different transformation starts to be

indicated.

The conclusions from these comparisons are that our automatic procedure is to be

preferred, both in terms of performance and, especially, for time. We also would

like to stress that the procedure of Marazzi et al. has so far only been implemented

for the Box–Cox transformation, whereas our automatic procedure is also available

for the transformation of responses that can be both positive and negative, a topic

covered in the remainder of our paper.

7 The extended Yeo–Johnson transformation

Yeo and Johnson (2000) generalised the Box–Cox transformation to observations

that can be positive or negative. Their extension used the same value of the

transformation parameter k for positive and negative responses. Examples in

Atkinson et al. (2020) show that the two classes of response may require

transformation with different values of k. The Box–Cox transformation (1) has

two regimes, that for k 6¼ 0 and the other for k ¼ 0. Both the Yeo–Johnson

transformation and its extended version require four regimes. The two unnormalised

transformations for these regions are in Table 5.

For y� 0 the Yeo–Johnson transformation is the generalized Box–Cox transfor-

mation of yþ 1. For negative y the transformation is of �yþ 1 to the power 2 � k.
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For the extended Yeo–Johnson transformation the transformation parameter for

positive y is kP, with that for negative y being 2 � kN .

Inference about the values of the transformation parameters needs to take account

of the Jacobians of these transformations. As in Sect. 2.1, the maximum likelihood

estimates can be found either through minimization of the sum of squares SðkÞJ or

of the sum of squares RðkÞ of the normalized transformed variables z. Score tests for

the parameters use constructed variables that are derivatives of z. We denote the

score test for the overall parameter k in the Yeo–Johnson transformation as TO. In

the extended Yeo–Johnson transformation there are in addition approximate score

tests TP for kP and TN for kN . These include separate Jacobians for the positive and

negative observations. Full details of the constructed variables for these models are

in the Appendix.

8 The automatic procedure for the extended Yeo–Johnson
transformation

The procedure introduced by Atkinson et al. (2020) for the analysis of data with the

extended Yeo–Johnson transformation again depends heavily on the numerical

identification of patterns in a series of trajectories of score tests. The analysis starts

with the Yeo–Johnson transformation of Sect. 7 in which negative and positive

observations are subject to transformation with the same value of k. The next stage

is to determine whether this transformation parameter should be used for both

positive and negative observations.

The general procedure is to test whether k0 ¼ ðkP0; kN0Þ is the appropriate

transformation by transforming the data using k0 and then checking an ‘‘extended‘‘

fan plot to test the hypotheses for the transformed data that no further transformation

is required. The three score tests in the extended fan plot are listed in (25) in the

Appendix. They check the individual values of kP0 and kN0 as well as of the overall

transformation k0. This information is incorporated in the extended agreement index

defined in Point 3(d) below.

Table 5 Yeo–Johnson transformation and its extension. Form and range of unnormalised transformations

Observation Yeo–Johnson k Extended Yeo–Johnson kP; kN

y� 0 ðyþ 1Þk � 1

k

k 6¼ 0 ðyþ 1ÞkP � 1

kP

kP 6¼ 0

y� 0 logðyþ 1Þ k ¼ 0 logðyþ 1Þ kP ¼ 0

y\0
�fð�yþ 1Þ2�k � 1g

2 � k

k 6¼ 2
�fð�yþ 1Þ2�kN � 1g

2 � kN

kN 6¼ 2

y\0 logð�yþ 1Þ k ¼ 2 logð�yþ 1Þ kN ¼ 2
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The automatic numerical procedure can be divided into three parts. The first

provides information from the fan plots for the one-parameter Yeo–Johnson

transformation which is used by the BIC in the second part to determine ~k, the best

overall parameter for this transformation. The third uses the value of ~k to calculate

an appropriate grid of parameter values for the extended transformation, which is

used, in conjunction with the BIC, to find the best parameters for the extended

transformation. Developments in output conclude the section.

1. Fan Plot. Function FSRfan(‘family’,‘YJ’)

(a) Since k is a scalar, this problem has the same structure as that of the Box–

Cox transformation in Sect. 4. Choice of the family YJ fits the one-

parameter Yeo–Johnson transformation of Table 5 using the FS over a

grid of values of k.

(b) The output structure outFSRfan contains numerical information to select

the best transformation value. Optionally the fan plot can be generated.

2. Estimation of parameter ~k for the YJ transformation. Function
fanBIC(‘family’,‘YJ’)

(a) Function fanBIC inputs outFSRfan to calculate provisional clean subsets

m�ðkÞ, followed by a forward search on residuals to detect outliers. The

final outlier-free subsets are hðkÞ.
(b) Once hðkÞ is established for k 2 G; the BIC (14) is used to select ~k, the

estimate of the best transformation for the Yeo–Johnson family.

(c) Optionally a plot like Fig. 4 can be produced.

3. The Extended Yeo–Johnson Transformation. A call is made to function

FSRfan(‘family’, ‘YJpn’), followed by one to function fanBICpn to first

establish the grid G of pairs of ðkP; kNÞ to be searched and then to choose the

best pair.

(a) FSRfan calculates the three score statistics from the extended fan plot at
~k. The output is outFSRfanpn.

(b) Function fanBICpn(outFSRfanpn) calculates the grid G for pairs of

parameter values, which depends on both the values of ~k and on the

values of the score statistics TPð~kÞ and TNð~kÞ at hð~kÞ. The procedure

calculates the grid G which is part of the grid of values of kP and kN
bounded by �1 and 1.5 in steps of 0.25. For example, if ~k is 0.25 and

TP � TN ; one possibility is kP ¼ 0:25; 0:5; . . .; 1:5 and kN ¼
�1;�0:75. . .; 0:25: User provided grids are another possibility.

(c) The numerical values of the three score statistics are calculated over G.

(d) The BIC, now with nk ¼ 2, is calculated for the cleaned samples of

observations for each combination of values of kP and kN . This

information is supplemented by the diagnostic use of an extended
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agreement index, which measures agreement between the values of TP
and TN and checks that no further overall transformation is needed.

Agreement between the values of TP and TN is measured by the absolute

value of the difference. We also require a small value of TO. Then the

index depends on the sums

SO ¼
Xh

m¼M

jTOðk0;mÞj=ðh�M þ 1Þ ð17Þ

SPN ¼
Xh

m¼M

jTPðk0;mÞ � TNðk0;mÞj=ðh�M þ 1Þ: ð18Þ

As in (15) the sums are adjusted to give weight to searches with a larger

value of h. Then

Agreement Index ¼ fðr2
TÞ

2SOSPNg�1: ð19Þ

As before, larger values are desired.

4. Output

(a) The extended BIC (23) in the Appendix, calculated using the Jacobian

JnEYJ, the agreement index AGI and the values of hðkP; kNÞ are presented

as heat maps over the grid of values of kP and kN . These three plots

summarize the properties of the best transformation and those close to it.

(b) We also produce a heat map of the extended coefficient of determination,

R2
EXT, defined in (16), where the extension allows for the number of

observations hðkP; kNÞ.

9 Two examples of the automatic extended Yeo–Johnson
transformation

This section presents the results of the automatic analysis of two sets of data, both of

which include negative responses, so that the extended Yeo–Johnson transforma-

tion, Sect. 7, may be appropriate. We follow the procedure of Sect. 8.

9.1 Investment funds

We start with a straightforward example, without outliers once the correct

transformation has been determined. The regression data concern the relationship of

the medium term performance of 309 investment funds to two indicators. The data

come from the Italian financial newspaper Il Sole - 24 Ore. An analysis of the data

based on conclusions from fan plots is presented by Atkinson et al. (2020).
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Of the funds, 99 have negative performance. Scatterplots of y against the two

explanatory variables show a strong, roughly linear, relationship between the

response and both explanatory variables. It is also clear that the negative responses

have a different behaviour from the positive ones: the variance is less and the slope

of the relationship with both explanatory variables appears to be smaller. The

purpose of using the extended Yeo–Johnson transformation is to find a transfor-

mation in which the transformed response, as for the Box–Cox transformation,

satisfies the three requirements of homogeneity, additivity and approximate

normality of errors.

The automatic analysis of Sect. 8 starts with the Yeo–Johnson transformation in

which positive and negative observations are subject to transformation with the

same value of k. Use of the standard five values of k leads to searches all of which

immediately terminate at m�ðkÞ ¼ 0:6n. A series of searches over a finer grid of

values suggests ~k ¼ 0:75. The three-panel plot summarising the results is shown as

Fig. 5. The values of k belong to the large grid G ¼ ½�1;�0:9; . . .; 1�: The lower

plot of values of hðkÞ shows that when k is less than 0.2, m�ðkÞ ¼ 0:6n and that hðkÞ
is mostly appreciably less. The interpretation is that inappropriate values of the

transformation parameter are indicating a large number of spurious outliers; the

values of statistics in the upper plots are then based on an unrepresentative subset of

the data, so that we exclude them from consideration. The two upper plots,
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excluding values of k\0:2; show that both the extended BIC and the agreement

index indicate a value of 0.8 for ~k. In calculating the extended BIC we have replaced

JnBC by the Jacobian JnYJ given in (20).

The next stage is to determine whether this transformation parameter should be

used for both positive and negative observations. The general procedure is to test

whether k0 ¼ ðkP0; kN0Þ is the appropriate transformation by transforming the data

using k0 and then testing the hypotheses for the transformed data that no further

transformation is required.

The left-hand panel of Fig. 6 shows the heat map for the values of hðkÞ. For

kP ¼ 1 and kN ¼ 0 this is 309, that is, all the data are in agreement with this

transformation model. For any other pair of parameter values, at least two

observations are deleted and, in some cases, many more. The right-hand panel of the

figure shows the heat map for the extended BIC, which has a sharp maximum at the

same parameter value. In both panels the performance of ~k is so poor that the values

for (0.75, 0.75) are not plotted.

Two further heat maps are in Fig. 7. That in the left-hand panel, for AGI, has a

much sharper peak than that for R2
EXT in the right-hand panel, but both again support

the transformation indicated in Fig. 6. The automatic method for this example has

used numerical information to provide a firm decision on the best transformation

within the extended Yeo–Johnson family.

9.2 Balance sheet data

The data come from balance sheet information on limited liability companies. The

response is profitability of individual firms in Italy. There are 998 observations with

positive response and 407 with negative response, making 1,405 observations in all.

Details of the response and the five explanatory variables are in Atkinson et al.

(2020, §9), together with the results of a series of data analyses involving visual

inspection of fan plots.

The automatic procedure starts with the Yeo–Johnson transformation of the data

leading to the parameter estimate ~k (Point 2 of Sect. 8). The three resulting plots
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form Fig. 8. The plot of extended BIC indicates a value of 0.75 for ~k, whereas the

agreement index suggest a value of 1. The lower panel of the number of cleaned

observations shows that hðkÞ is greatest for ~k and is equal to 1,279. The forward

search on values of TOðkÞ finds more observations that are in agreement with the

transformation when k ¼ 1. But 169 of these are rejected as outliers by the outlier

detection procedure, ending up with a final value of hð1Þ ¼ 1; 206:
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The analysis then moves to the extended Yeo–Johnson transformation. The left-

hand panel of Fig. 9 shows the heat map of hðkÞ, the number of cleaned

observations (Point 4 of Sect. 8). The values of the extended BIC (Point 3 of

Sect. 8) are in the right-hand panel. Both support the transformation kP ¼ 0:5 and

kN ¼ 1:5. Figure 10 shows further support for this transformation from the plots of

Point 4 of Sect. 8); the left-hand panel is of the agreement index AGI (19) and the

right-hand panel is of the values of R2
EXT (16). In ambiguous cases the heat maps

could be extended so that the highest values of the properties are not at an edge of

the display.

The automatic procedure leads to the same result as the analysis based on the

adjustment of fan plots presented by Atkinson et al. (2020, §9) who also discuss the

economic interpretation of the regression model fitted to the transformed responses.
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10 Comparison and developments

The purpose of our paper is to provide a practical method of automatic

transformation of data in the presence of outliers, robust methods being necessary.

Here we consider a few further points.

The assumption in the Yeo–Johnson transformation and its extension is that there

is something special about zero. In some examples it may however be that the

change from one transformation to the other occurs at some other threshold, which

may perhaps need to be estimated. Atkinson et al. (2020) and Atkinson et al. (2021)

compare the extended Yeo–Johnson transformation with the nonparametric methods

ACE (Breiman and Friedman 1985) and AVAS (Tibshirani 1988) which do not

divide the transformation into regions. The results from ACE for the investment

funds data show a slight increase in the value of R2 compared with the extended

Yeo–Johnson transformation and a change in the transformation at y ¼ 4 rather than

zero. Since the non-parametric transformations are not robust, our recommendation

is to use them on cleaned data to check on the assumptions in the parametric

transformation.

The largest timings of Sect. 6 for the Box and Cox method of Marazzi et al. are

for simple regression and 1000 observations. We have not explored timings for

multiple regression with samples of this size. However, it is clear that the use of

simulation to obtain results about the behaviour of this method will be problematic.

The results of Table 2 were for 1000 replications of the simulation. For simple

regression with n ¼ 1000, the results of Table 4 suggest a time of about 100 h.

Our data analytical results show that we have developed a useful new tool for the

automatic determination of power transformations of data contaminated by outliers.

We have based this on the development of an extended BIC, the theory behind

which incorporates inferences about the effect of the trimming of observations into

the more customary use of BIC for model choice for data with a fixed number of

observations.

The calculations in this paper used Matlab routines from the FSDA toolbox,

available as a Matlab add-on from the Mathworks file exchange https://www.

mathworks.com/matlabcentral/fileexchange/ or from github at the web address

https://github.com/UniprJRC/FSDA.

The data, the code used to reproduce all results including plots, and links to

FSDA routines are available at http://www.riani.it/RAC2021.

Appendix: Constructed variables and the extended Yeo–Johnson
transformation

The normalized form of the Yeo–Johnson transformation is given in Table 5. The

Jacobian for this transformation (Yeo and Johnson 2000) is

log JnYJ ¼ ðk� 1Þ
X

sgn ðyiÞ logðjyij þ 1Þ: ð20Þ

The four unnormalised forms of the extended Yeo–Johnson transformation, corre-

sponding to different regions of values of kP and kN are also given in Table 5. Two
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Jacobians are required for the normalised transformation; one for positive obser-

vations and the other for the negative ones. For y� 0 let vP ¼ yþ 1 with vN ¼
�yþ 1 when y\0. For the negative observations

SN ¼
X

yi\0

� logð�yi þ 1Þ ¼
X

yi\0

� log vi;N and _yN ¼ expðSN=nÞ: ð21Þ

Division is by n, not nN (the number of negative yi), as the Jacobian is spread over

all observations.

Similarly, for the non-negative observations

SP ¼
X

yi � 0

logðyi þ 1Þ ¼
X

yi � 0

log vi;P and _yP ¼ expðSP=nÞ: ð22Þ

The Jacobian of the sample is then

log JnEYJ ¼ ðkN � 1ÞSN þ ðkP � 1ÞSP ¼ nfðkN � 1Þ log _yN þ ðkP � 1Þ log _yPg:
ð23Þ

The normalised form of the extended Yeo–Johnson transformation is

zEYJðkN ; kPÞ ¼

vkPp � 1

kP _yN
kN�1 _ykP�1

P

y� 0 kP 6¼ 0

ð _yP= _ykN�1
N Þ log vP y� 0 kP ¼ 0

� v2�kN
N � 1

ð2 � kNÞ _yNkN�1 _ykP�1
P

y\0 kN 6¼ 2

� log vN= _yN _ykP�1
P y\0 kN ¼ 2:

8
>>>>>>>>><

>>>>>>>>>:

ð24Þ

This extended transformation reduces to the standard Yeo–Johnson transformation

when kN ¼ kP.

The three score tests test three different departures from k ¼ ðkP; kN). The

alternatives are

TO : kP þ a; kN þ a; TP : kP þ a; kN ; TN : kP; kN þ a; ð25Þ

tested as a ! 0. General expressions for the constructed variables used to calculate

these test statistics are in Atkinson et al. (2020).

In the automatic procedure of this paper we first transform the data using the null

values of kP and kN and then test the hypothesis that no further transformation is

needed, that is that, for the transformed data, one or both of kP and kN ¼ 1. There is

then a simplification of the constructed variables.

For the overall test TO:

wOð1; 1Þ ¼
vPðlog vP � kPÞ þ kP; y� 0

vNðlog vN þ kNÞ � kN y\0

�
ð26Þ

In (26) kP ¼ 1 þ log _yO and kN ¼ log _yO � 1 and, from (21) and (22)

_yO ¼ expfðSP þ SNÞ=ng.
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For TP, the test of the value of kP:

wPð1; 1Þ ¼
vPðlog vP � k�PÞ þ k�P y� 0

�y log _yP y\0;

�
ð27Þ

where k�P ¼ 1 þ log _yP. The structure is similar to that of the constructed variables

wO in (26). The result for y\0 arises because the transformation for y\0 only

depends on kP through the Jacobian.

Similarly for TN , the test of the value of kN :

wNð1; 1Þ ¼
�y log _yN y� 0

vNðlog vN þ k�NÞ � k�N y\0

�
ð28Þ

where k�N ¼ log _yN � 1.
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