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Abstract
Genetic programming (GP), a widely used evolutionary computing technique, suffers
from bloat—the problem of excessive growth in individuals’ sizes. As a result, its
ability to efficiently explore complex search spaces reduces. The resulting solutions
are less robust and generalisable. Moreover, it is difficult to understand and explain
models which contain bloat. This phenomenon is well researched, primarily from the
angle of controlling bloat: instead, our focus in this paper is to review the literature
from an explainability point of view, by looking at how simplification can make GP
models more explainable by reducing their sizes. Simplification is a code editing
technique whose primary purpose is to make GP models more explainable. However,
it can offer bloat control as an additional benefit when implemented and applied with
caution. Researchers have proposed several simplification techniques and adopted
various strategies to implement them. We organise the literature along multiple axes
to identify the relative strengths and weaknesses of simplification techniques and
to identify emerging trends and areas for future exploration. We highlight design
and integration challenges and propose several avenues for research. One of them is
to consider simplification as a standalone operator, rather than an extension of the
standard crossover or mutation operators. Its role is then more clearly complementary
to other GP operators, and it can be integrated as an optional feature into an existing
GP setup. Another proposed avenue is to explore the lack of utilisation of complexity
measures in simplification. So far, size is the most discussed measure, with only
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two pieces of prior work pointing out the benefits of using time as a measure when
controlling bloat.

Keywords Simplification · Genetic programming · Bloat control · Explainability

1 Introduction

Machine learning has become increasingly popular, and almost ubiquitous, in many
diverse areas. Everyone wants high-performing machine learning models producing
accurate results, but not everyone is well-placed tomake sense of them. It is not simply
a question of explaining the results produced by these machine learning models, but
how and why these results were generated is often even more critical. What is the role
of input features? What are the benefits of using a particular knowledge representa-
tion? What parameter settings work well? These are all pertinent questions. So, the
demand for transparent and efficient machine-learning algorithms is increasing. These
two objectives can, unfortunately, be in conflict. The increase in predictive accuracy
often comes as a result of the increased complexity of the underlying algorithm and
model. This complexity makes explainability a challenging task. On the other side,
an increased focus on reducing complexity results in a compromise to accuracy. So,
there is usually a trade-off between accuracy and complexity, which researchers are
trying to balance.

The increasing, and unprecedented, rate at which new data are generated and their
volume motivate the need to use automated data-mining workflows to uncover new
knowledge. Although human involvement will always be required, automating part of
the knowledge-discovery process offers the potential to come up with better feature
selection, model selection, and hyper-parameter settings. One of the issues is deter-
mining what is meant by a “better” model. Usually, the objective of these automated
systems is to find highly efficient models in terms of accuracy, but, as discussed above,
sometimes “better” maymeanmore explainable. An interesting question is to decide if
these automated systems play their part in addressing the accuracy-complexity trade-
off (Freitas 2019).

We can observe two clear trends in artificial intelligence research. The first one is
automation and the second one is explainable artificial intelligence (XAI). Genetic
Programming (GP), being an inherently white-box approach, stands a clear chance
to deliver on both of these lines. It has been used to automate machine learning
pipelines (Olson and Moore 2016). Moreover, it has also been employed to gener-
ate explanations for machine learning models (Cavaliere et al. 2020; Hu 2020). One
can pose a simple question at this point: how explainable are GP-generated models
themselves? The question is a bit vague, as GP is an enabling technology that can
generate many kinds of models, ranging from decision trees to neural networks and
many others. However, it makes more sense if one thinks of it in terms of understand-
ing of solutions within a specific category. For example, while solving a classification
problem using decision trees, how much does GP prefer simpler decision trees over
complex ones?
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The question of generating explainablemodels is related to a well-known issuewith
GP called bloating, where continued evolution of a population leads to an excessive
increase in size in the generated programs without improving their overall fitness.
Bloated individuals require extra computational resources, such as memory. Also, the
unwanted code in a bloated program increases the computational time to evaluate
its fitness, thus making the whole evolutionary process slow. This unwanted growth
renders individuals less explainable. The good news is that this phenomenon has been
understood by the GP community from the very beginning and many techniques have
been proposed over the years to tackle the problem. All bloat control techniques at
least partially address the issue of explainability because of their focus on controlling
the size of individual programs. One particular kind of bloat control technique, called
simplification, involves editing the program. It works by converting an individual
program to a smaller-sized variant with, usually, identical behaviour. This technique
relies on a set of rules or methods for editing a program and thus can help understand
the composition of the individual. It does not differentiate individuals on the basis
of size and so individuals both large and small can be modified to make them (even)
smaller. In this way, simplification not only controls the bloat of large programs, but
alsoworks to reduce the size of all candidate solutions, and in general, smaller solutions
are easier to understand.

In this paper we review the literature of simplification of GP models with the
following objectives:

1. To differentiate simplification from other bloat control techniques in terms of its
potential for explainability;

2. To categorise the literature in terms of the major simplification techniques;
3. To identify the important design and integration constraints and organise the exist-

ing approaches in terms of these design considerations.

The next section introducesGP and highlights its usage for datamining and knowledge
discovery. Section 3 discusses complexity and simplification. Section 4 deals with the
first objective, by highlighting the major differences between simplification and other
bloat control techniques. Section 5 reviews the techniques proposed by researchers.
Section 6 presents certain considerations to properly design and integrate simplifica-
tion into the genetic process and organises the literature in terms of these decisions.
Section 7 discusses several opportunities and challenges for simplification. In the final
section, we conclude and present some future directions for research.

2 Genetic programming and knowledge discovery

Genetic programming (Koza 1992) (GP) is a widely used form of Evolutionary Com-
putation (EC). Like other EC methods, it is inspired by the Darwinian process of
natural selection in which individuals with a better fit to the environment have more
survival chances. Its originality is to evolve entire programs. Programs are represented
as combinations of user-defined operators. Each program is a candidate solution and
new solutions are generated by gradually evolving a population of programs. Each
program is evaluated against a user-defined fitness criterion and those with higher
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fitness are used to create the next generation using a crossover operator, which splits
and recombines two programs into two new children. Mutation is applied to some of
the individuals, usually with a very low probability, in order to generate variation. This
process is repeated for a number of generations until a predefined stopping criterion
is met. There are a number of varieties of GP, including tree-based, linear (Brameier
and Banzhaf 2010) and graph-based GP (Banzhaf et al. 1998). In this paper, we cover
only tree-based GP as it is one of the most widely used representations. Moreover, the
identification and removal of non-effective code in linear GP are quite straightforward.

Since its inception, people from different domains responded well to GP and devel-
oped various applications. Koza, the founder of GP, tracked the growth of GP and
compiled a list of GP applications producing human-competitive results (Koza 2010).
He noted that the solutions proposed by GP, although belonging to different domains,
share some common characteristics. Moreover, he correlated the increase in usage
and efficacy of GP with the growth in computational power. Based on this corre-
lation, he predicted an increased flow of human-competitive results in the future.
True to his prediction, we can witness GP venturing in diverse areas and produc-
ing impressive results (Krawiec 2015; Acharya et al. 2020; Azzali et al. 2020; Bi
et al. 2020). This effectiveness is not just limited to single-objective problems. Many
researchers reported supportive evidence for solving multi-objective optimisation
problems (Zhang and Rockett 2006; Coelho et al. 2011; Zupančič et al. 2020).

Being a white-box technique, GP can deliver on the promise of XAI (Howard and
Edwards 2018). It can not only create interpretable models but can also unlock the
behaviour of black-box models. Several researchers have applied GP for this purpose.
Genetic programming explainer (GPX) creates local explanationmodels to fit the data.
The data here represents the sample set containing the point of interest plus the newly
created noise set in the neighbourhood (Ferreira et al. 2020). Virgolin et al. created
a meta-learning system (Virgolin et al. 2020). They first developed an ML model of
proxies of human interpretability (PHI) using the data gathered as human feedback.
The feedback was about the relationship between mathematical formulas and two
forms of interpretability. These two forms were simulatability and decomposability.
The model is then plugged into GP with one of the objectives representing human
interpretability. The other was the mean square error representing the performance
for symbolic regression problems. In another approach (Evans et al. 2019), a group of
researchers used multi-objective genetic programming to mimic the working of black-
box ML models. They created a decision tree to guess the predictions of the black-
box while keeping it as simple as possible. This creates a model-agnostic approach
independent of the type of the black-box.

Data mining refers to the extraction of knowledge from data. The two essential
requirements of a data mining system are its predictive accuracy and how easy its
output is to interpret. These are critical requirements for many data mining algorithms.
Satisfying these requirements may increase the utility of the algorithm, especially for
the domains where transparency and interpretability are of utmost importance. The
requirement of transparency is not only restricted to the early phases of the knowledge
discovery process. It is also needed for the post-processing of the discovered models.
However, at times it becomes difficult to satisfy both these requirements at the same
time.Maximising onemay result in the loss of the other. In these situations, datamining
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lends itself as amulti-objective optimisationproblem.GP, being aviable option to solve
such optimisation problems, has been used to solve and automate different parts of
the data mining system (Pappa and Freitas 2009). Freitas (2003) conducted a detailed
survey and noted the use of GP for comprehensible rules discovery and attribute
selection. Krawiec (2002) employed GP to construct a new set of features based
on the original attributes to improve the classification performance. GP represents
these features as Lisp-like expressions, thus exposing the algorithmic transformation
of input attributes to new features. In a recent paper (Lensen et al. 2020), authors
used multi-objective genetic programming for dimensionality reduction of a dataset.
Since there is a possibility of a decline in quality while reducing dimensions, the use
of multi-objective GP offers different trade-offs between quality and dimensionality.
Moreover, the generatedmappings are transparent and interpretable. Thus, aGP-driven
data mining system, offering a nice trade-off between accuracy and transparency, can
solve classification problems, the discovery of if-else rules, the discovery of association
rules, and many other problems (Collet and Wong 2012).

3 Complexity and simplification

Before beginning a review of the simplification literature and related issues, we first
provide a definition. However, to define simplification, we must understand complex-
ity. In GP, complexity usually refers to the complexity of an individual. There exist
multiple ways in which an individual in GP can be represented. Tree-based GP opts
for the tree representation of the individual while linear-GP operates on a sequence of
instructions. Graph-based GP uses graphs to represent the individual while grammar-
based GP separates the genotype from phenotype and defines a mapping process from
genotype to phenotype. In this paper, we are restricting ourselves to tree-based GP
because it is one of the most widely used representations and is prone to the phe-
nomenon of bloat, for which simplification is often proposed as a remedy.

There are several ways to calculate the complexity of an individual when it is
represented as a tree. Structural complexity refers to the size of the tree, which can
mean one of several things: the number of nodes in a tree, the depth of a tree (the
number of levels it contains), or the sum of the nodes of all the subtrees of a tree.
In most of the simplification schemes reviewed in this paper, the number of nodes
in a tree is considered as the measure of the complexity. Only two articles proposed
execution time as a measure of complexity. Since one of the objectives of our work
is to classify the simplification literature, we consider the tree size as the proxy of
complexity. We shall get back to other definitions of complexity later in the discussion
section.

Given the above-mentioned definition of complexity, simplification can now be
defined as a process of reducing tree size. This reduction may be in the form of
deleting some nodes or replacing a subtree with a smaller subtree. So, simplification
aims to reduce the complexity of the individual by reducing its size and hencemaking it
more understandable. Since the process involves structural changes, the impact of these
modifications may or may not alter the semantics as well. So, for the sake of clarity, we
propose the following two types of simplification: Exact simplification: It preserves
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the semantics of the individual while removing the unwanted parts. Approximate
simplification: It is more flexible than the exact simplification, hence compromises
the semantics while modifying the structure of the individual.

4 Simplification and bloat control

As mentioned earlier, bloat is one of the biggest challenges to the successful use of
GP. The problems caused by bloat manifest themselves in various forms, including
a poor exploration of search space due to lack of diversity, lack of robustness, lack
of generalisation-ability and lack of understandability. Researchers of GP have been
well aware of these problems from the very start and have proposed several bloat-
control techniques. We refer to the survey papers (Silva et al. 2012; Alfaro-Cid et al.
2010) for a detailed discussion of bloat and its control techniques. Our objective in
this section is twofold: the first is to highlight the fundamental difference between
simplification and other bloat-control techniques; and the second is to justify the
existence of simplification as more than merely a bloat-control technique.

The easiest to implement and most widely used bloat-control technique puts a
limit on the maximum depth of the individual (Koza 1992). The problems with this
technique are how to identify the boundary threshold and what to do if good solutions
lie on the other side. To address this, researchers have developed alternative ways
of controlling the size. One way assigns poor fitness to relatively big individuals,
thus limiting their chances of survival in later generations. An alternative way to
achieve the same goal uses a waiting room, where newly created individuals have
to wait before becoming part of the population. The waiting time is proportional to
the individuals’ size. Yet another way is to penalise big individuals by reducing their
chance of appearing in the next generation. Rather than forcing direct or indirect
limits, another way to control bloat is by designing size-aware genetic operators of
crossover, mutation, selection and evaluation. These intelligently crafted operators are
biased towards smaller sized individuals, thus limiting the number of big individuals
and hence limiting their chances of survival.

Dignum and Poli (2008) proposed a population-based technique, operator equali-
sation, to control bloat, and Silva et al. (2012) added some of its variants. The focus is
shifted from dealing with a single individual to dealing with the distribution of individ-
uals. Individuals are grouped on the basis of sizes in different buckets. The capacities
of these buckets create the distribution of the population and every newly generated
population is supposed to maintain this distribution. Several variants of this technique
have been proposed, from fixed-bucket capacities to adaptable ones. The idea is to
keep checks on the count of individuals of certain sizes. Hence, instead of defining
a threshold limiting size, this technique creates various thresholds and maintains the
counts within those boundaries.

The common theme in all of the techniques listed so far is the idea of restraining the
growth of individuals while respecting their structural integrity. Code editing or sim-
plification differs fundamentally from the other bloat control techniques by violating
this principle, thus making changes to the syntactic structures of the individuals by
removing or replacing certain parts. In this regard, it resembles the optimisation phase
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of a compiler. Compilers make multiple passes over the intermediate code to optimise
its behaviour by converting the existing form to a reduced and more resource-efficient
form (Aho et al. 1986). In this way, simplification can be viewed as an optimisa-
tion technique, transforming an individual to its optimised variant. However, this
transformation is usually destructive and the resultant individual may be significantly
different from the original one, particularly at a syntactic level. Unlike in a compiler,
the semantics usually undergoes some change, and the simplified code will only be an
approximation to the original.

By following the principle of Occam’s Razor, simplification tends to generate
smaller-sized variants of complex individuals. This inherent property enables it to
tackle the issue of interpretability and understandability in machine learning. Simpli-
fied models, being smaller in size, are (usually) more explainable as compared to their
larger-sized counterparts. This issue of explainability is now receiving considerable
attention from AI researchers. One of the main reasons is that some fields of study,
such as psychology and neuroscience, are reluctant to trust black-box solutions. AI
has to offer white-box and transparent solutions to win their trust.

An added advantage offered by simplification is increasing the possibility of gener-
ating robust and generalisable individuals (Helmuth et al. 2017). It does so by pruning
the unnecessary parts of the individuals. How these excess genes appear in the first
place can be explained by ‘the fitness causes bloat’ theory (Langdon 1998). According
to this theory, the size of the individuals gradually increases to fit the corner cases of
the training data. This fine-tuning leads to overfitting the training data, which results
in the loss of generalisability and robustness. Hence, simplification by pruning the
unwanted parts of the code keeps overfitting under check, thus boosting the chances
of robustness and generalisability. On a side note, pruning is not specific to GP. It is
frequently used in other tree-based approaches, such as decision trees, random forests,
and boosted trees.

Controlling bloat is one of the advantages of simplification when it runs throughout
the evolutionary process. Simplification justifies its existence even without being used
as a bloat-control technique. It canwork in offlinemode onone or severalGP-generated
solutions. When applied in this way, it exhibits itself purely to achieve the objective of
explainability. So, in light of these fundamental differences between bloat control and
the potential to generate robust and interpretable solutions, we propose to consider
simplification separately from bloat-control mechanisms.

5 Review of simplification techniques

In the following paragraphs, we review various simplification techniques and group
them under different categories. Some of these techniques fall under the category of
exact simplification as they do not change the semantics, whereas others do interfere
with the semantics and hence lie under the umbrella of approximate simplification.
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5.1 Removal of Dormant nodes

The simplest form of simplification is the identification and removal of dormant code.
By dormant code, we mean the code that is unreachable while executing an individ-
ual. Another form of unreachability is where code is executed but has no contribution
to the generation of the final output. One example of unreachable code is any state-
ment written after the return statement in C++, Java, and many other programming
languages. Song et al. (2010) calculated the contribution of nodes at the time of eval-
uating fitness. They identify nodes as non-contributing nodes if they make no impact
on the state of execution. They remove these nodes before selecting the individual as
a parent. Jackson (2010) identified dormant nodes by creating an identical tree and
marking all nodes as non-visited. While evaluating the fitness cases, the status of these
nodes is changed from non-visited to visited when they are executed. Those having
non-visited status at the end of evaluation are considered as dormant nodes. A dor-
mant node implies that the subtree rooted at that node is also dormant. So, all these
dormant nodes can be removed without any performance loss. All of these techniques
are semantic preserving, and hence belong to the category of exact simplification.

5.2 Rule-based simplification

This category refers to approaches inspired by the algebraic simplification of expres-
sions. For instance, an expression like A ∗ 0 can be simplified by replacing it with 0.
Similarly, consider the following if statement:

(if (> a 0) b b)

In the lisp code above, no matter what the value of a is the result will be b. So,
the whole i f expression can be replaced by b. It is highly unlikely that a human
would write such code, but in genetic programming, where the operators are selected
randomly for growing individuals, or as a result of crossover or mutation, such a
situation may arise. Rule-based simplification works by defining a rule set, where a
rule can be replaced by a smaller variant with the same semantics. Wong and Zhang
(2006) present a bottom-up greedy approach to replace a subexpression with a smaller
expression that is algebraically equivalent. The authors used hashing to find whether
two different-looking expressions are similar or not. Their idea is to extend the appli-
cation of simplification to dissimilar-looking individuals. They applied simplification
to every individual. However, it is recommended to use simplification every two gener-
ations, otherwise it will be too slow. The authors performed a building-block analysis
using numerical nodes as the building blocks. While simplification disrupts the build-
ing blocks generated in non-simplified GP, it has the potential to generate new building
blocks (Wong and Zhang 2007). Murano et al. (2018) applied algebraic simplifica-
tion to multimodal genetic programming and reports an improvement in search-ability
without compromising performance. Burlacu et al. (2019) used hashing to identify tree
isomorphisms and hence create new opportunities to apply algebraic simplification.
Borcheninov and Okulovsky (2012) suggested internalising the application of alge-
braic rules by making it part of the evolutionary operators. Rule-based simplification
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works by matching the rules, and since these rules are pre-defined by domain experts,
it belongs to the category of exact simplification.

5.3 Numerical simplification

Rule-based simplification suffers from various limitations. One of them is the defini-
tion of a rule set, which requires domain experts with an excellent knowledge of the
application area. Another limitation is the application order of the rules. In case more
than one rule matches the precondition and can be fired, which one will be preferred?
This choice may lead to two completely different outputs. Yet another limitation is
the reliance on a hash function to generate the same hashes for different-looking
expressions. Chances are high that many simplification opportunities can be missed.
To overcome these limitations, researchers propose calculating the contribution of a
node while generating the output of its parent node. If the contribution is negligible,
the tree rooted at that child node can be completely removed, thus shrinking the size
of the individual.

c = a + b where a = 3 * 10ˆ8 and b = 0.000001

In the example above, the contribution of b in the value of c is extremely small and
can be ignored, at least in the majority of cases. To further complicate the situation,
imagine b is not just a single node but a complex calculation rooted in a big sub-
tree. Now, with numerical simplification, you can safely remove this subtree without
impacting the final result. Algebraic simplification can never find this kind of opportu-
nity. Kinzett et al. (2008) use an algorithmwhich calculates the numerical contribution
of a node on its parents based on the evaluation of training examples. If the impact is
less than a threshold, the subtree rooted at the child node can be deleted. A node can
also be replaced by a constant if the difference between its maximum and minimum
values is below a threshold. The authors conducted several other studies to analyse
the building blocks and propose several minor variants of the approach (Kinzett et al.
2009b, a, 2010). The same set of authors, in another approach, proposed to split the
simplification process into two phases: proposers and evaluators. Proposers propose
a simplified tree by extending the option of applying algebraic rules. Algebraic rules
are approximated by calculating the possibility of predicting a parent node through
its child node using linear regression. Evaluators calculate the mean squared error
between the simplified and the original tree and accept the proposal if the value is
below a certain threshold (Johnston et al. 2009, 2010). Rockett (2020) proposed a
pruning technique based on statistical permutation tests. A pruning is proposed based
on the contribution of a subtree. The proposal is evaluated using a permutation test to
study the effect of pruning at the parental level. A validation set is used to corroborate
the proposal.

5.4 Fitness-based simplification

This category refers to approaches where a portion of an individual’s tree is removed
or replaced with a constant. The fitnesses of the original tree and the modified tree
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are then compared and the best one is retained and undergoes further simplification
if required. These fitness-based approaches are very similar to the application of a
destructive mutation operator. However, they have to make sure that the individual
remains syntactically valid after the removal of one or more branches. This destructive
simplification often comes at the cost of changes in semantics, so we categorise it
under approximate simplification. Alfaro-Cid et al. (2010) proposed a random pruning
approach in which some branches of a tree are pruned and replaced by a terminal.
The pruned branches are then planted as separate trees. They reported a significant
reduction in mean tree sizes while maintaining the quality of fitness. In a similar study,
Spector and Helmuth (2014) define pruning as an iterative process which removes one
or more instructions from the Push program and then compares the fitness of the
pruned program with the fitness of the original program. Nguyen et al. (2016) applied
simplification to surrogate-assisted GP in a top-downway. If the subtree has more than
one node, replace it with one; otherwise, if it is a constant, replace it with zero. If the
modified tree has better fitness, retain it; otherwise, carry on the simplification process
to the next levels of the tree. Helmuth et al. (2017) adopted a similar approach and
defined various simplification mechanisms in PushGP, but at the genotype level. One
of their simplification operators silences a gene, which hence will not be expressed in
the phenotype. Another option is to “NOOP” a gene, that is to replace it with a NOOP
instruction which, upon execution, will do nothing. The authors of the paper proposed
pruning as an operator (Javed and Gobet 2021). The idea was to split a parent into its
children and replace it with the child having the highest fitness.

5.5 Semantics-based simplification

Semantics-based approaches extend the fitness-based approaches by trying to keep
the semantics of the original tree and the modified tree the same. They achieve this by
approximating the semantics of the pruned subtree with the replacement subtree. This
process is computationally costly, and hence these approaches are usually slow. Naoki
et al. (2009) proposed a semantics-based approachwhich consists of replacing subtrees
with an equivalent but shorter tree picked from a simple set. The semantics equivalence
is calculated based on the similarity in the output vector on certain regression points.
Chu andNguyen (2017) propose to replace a randomly selected subtreewith a terminal
of approximate semantics. They did that by growing a tree, using the selection terminal,
of approximate semantics. The idea is that the newly grown tree will be shorter in size
than the original one. They extended this technique by using an approximate subtree
rather than a terminal. That approximate subtree is picked from a library of trees and
then a population is grown to match the approximate semantics (Chu et al. 2018). The
same authors, Nguyen and Chu (2020), propose another technique in which a subtree
is replaced by a tree of desired semantics rather than the approximate semantics of the
original tree.
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5.6 Population-level simplification

Population-wide simplification is inherently different from all the other simplification
approaches. Rather than working on single individuals, it tries to simplify the whole
population at once. The authors of this paper proposed generation-wide simplification
(Gws) (Javed and Gobet 2021). InGws, after every kth generation, the new population
is created by rupturing the individuals rather than by using the routine genetic operators
of crossover andmutation. Rupturing of an individual produces many offspring, where
every child is a member of the power set of the parent individual. Every child is stored
only once to maintain uniqueness in the population and keep the redundancy under
check. Although different individuals may produce children with the same genetic
makeup, the uniqueness constraint ensures that no two individuals are genetically
identical in the new generation. The resulting population may exceed the population
size, in which case, only the fittest individuals are retained. If the number of offspring
produced is less than the population size, newmembers are added following the routine
genetic operations of crossover and mutation. Population-wide simplification replaces
a parent with one of the fittest children formed by rupturing the parent generation. The
semantics of these children may differ from that of the parents: as it does not guarantee
to preserve the semantics, it belongs to the category of approximate simplification.

6 Considerations for the design and integration of GP simplification

The previous section presented a review of various simplification algorithms proposed
by GP researchers. The reader will have noticed the subtle variations in these algo-
rithms. These variations raise several questions that researchers need to consider while
implementing and integrating simplification into the evolutionary process. These ques-
tions are critical design decisions that a researcher needs to make. For example, using
simplification as a part of the evolutionary process or using it in an offline mode is
a critical consideration. It has significant consequences that we shall discuss later in
the relevant subsection. Similarly, the choice of syntax versus semantics-based sim-
plification may alter the course of the evolutionary process if used in an online mode.
There are several other decisions that we shall cover in the subsequent subsections.

The choice of simplification technique is also crucial for a user of genetic program-
ming. It has consequences beyond the cost in terms of time and resources. Different
simplification schemes may lead to a different set of evolved solutions. These differ-
ences originate because the simplification algorithm may change the search process
and leads to exploration in distinct areas of the search space. So, this section serves
an additional purpose of facilitating the end-user to make better-informed decisions.

The following subsections present an organisation of the literature in terms of the
design choices and their associated consequences.

123



N. Javed et al.

Table 1 Offline versus online Paper Offline Online

Naoki et al. (2009) �
Spector and Helmuth (2014) �
Nguyen et al. (2016) �
Helmuth et al. (2017) �
Howard and Edwards (2018) �
Wong and Zhang (2006) �
Wong and Zhang (2007) �
Kinzett et al. (2008) �
Johnston et al. (2009) �
Kinzett et al. (2009a) �
Johnston et al. (2010) �
Kinzett et al. (2010) �
Song et al. (2010) �
Jackson (2010) �
Alfaro-Cid et al. (2010) �
Silva et al. (2012) �
Chu and Nguyen (2017) �
Murano et al. (2018) �
Chu et al. (2018) �
Burlacu et al. (2019) �
Nguyen and Chu (2020) �

6.1 Offline versus online simplification

Koza used to edit individuals after a successful run. Later on, researchers started devel-
oping simplification algorithms to simplify automatically at the end of an evolutionary
run. This type of simplification is called offline simplification. It refers to the process
of selecting a few best individuals at the end of a run and simplifies them to generate
equally performing but shorter individuals. This type of simplification was common in
the early days of GP. But gradually, researchers started using simplification as part of
the evolutionary run to tackle the bloat phenomenon. So, the idea is to keep in check
the growth of the individuals as the evolution progresses. It was primarily because
of this bias towards bloat control that the focus of simplification has shifted from its
original purpose, which was making individuals more understandable. Thus, most of
the studies present the idea of online simplification, except the earlier works of Koza
and the ones listed in Table 1.

The choice between offline and online becomes the first decision for an end-user
or researcher. Now, this decision depends on the objective for which one wants to
employ simplification. If the aim is to make final solutions more understandable with-
out worrying about bloat, then one should go for the offline mode. However, if bloat
is a concern, and one wants to use simplification to keep it in check, online simplifi-
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Table 2 Individual selection

Simplification All generations After k generations

Probabilistic Alfaro-Cid et al. (2010)

Borcheninov and Okulovsky (2012)

Whole population Wong and Zhang (2006)

Wong and Zhang (2007)

Silva et al. (2012) Kinzett et al. (2008)

Johnston et al. (2009)

Kinzett et al. (2009a)

Burlacu et al. (2019) Johnston et al. (2010)

Kinzett et al. (2010)

Howard and Edwards (2018)

Top k% Chu and Nguyen (2017)

Chu et al. (2018)

Nguyen and Chu (2020)

cation can be of rescue. But one has to pay some extra price in terms of the increase
in execution time and computational resources.

6.2 Criteria of individual selection for simplification

Simplification is a costly process and needs time and extra computational resources
such as memory and processing cycles. However, it is not much of a concern when
used offline as it has to deal with few final solutions only. However, the online mode
requires careful considerations to make the process more feasible. For example, it
makes sense to simplify only a part of the population rather than all individuals of
every generation.

One needs to ask two questions: First, whether to use simplification in every genera-
tion; second, howmany individuals to simplify in a generation, and how to select those
individuals. To answer the latter question, we arrange the simplification literature into
three categories:

• Probabilistic: A certain number of individuals, selected randomly, will undergo
simplification.

• All individuals: The whole population will experience simplification
• Top k% individuals: Only the k% individuals with the highest fitness values will
be selected for simplification

Table 2 presents this taxonomy. To save cost, very few researchers use simplifica-
tion in every generation. The issue with probabilistic selection is that it may choose
individuals that do not need to be simplified. The same goes for the top k%selection, as
being fittest does not necessarily mean that simplification is needed. Another problem
with top k% is the choice of appropriate value of k. A more balanced approach is to
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use simplification after every few generations, and select individuals not just based on
fitness but also based on their sizes.

6.3 Syntactic, numerical and semantic simplification

Another decision to make is the selection of the type of simplification. By type, we
mean simplification based on syntax or semantics. Syntax-based simplification, as the
name suggests, selects part of an individual for replacement or removal by matching
it against a pre-specified set of rules as explained in Sect. 5.2. Since domain experts
design these rules, they guarantee to preserve the semantics of the expression. So,
it belongs to the category of exact simplification. The problem with syntax-based
simplification is that it fails to capture the cases where individuals with two different
genetic makeup yield the same output. It is also not possible to prune the parts of an
individual that are not contributing to the final result.

To overcome the problems of algebraic simplification, researchers came up with
the idea of numerical simplification. This identifies the contribution of children in
the parent and prunes the non-contributing parts. Because of its nature, there is no
need to involve domain experts in creating algebraic rules. However, defining the
nodes’ contribution thresholds is not straightforward and depends on the nature of
the application. But once it is set, the removal of the subtrees does not impact the
semantics of the individual. So, numerical simplification also belongs to the Exact
simplification category.

Both syntactic and numerical simplifications fail to consider the possibility that two
syntactically different individuals may yield the same output. Semantic simplification,
as explained in Sect. 3, creates further opportunities for simplifying individuals. It does
so at the cost of compromising on the semantics and thus belongs to the category of
approximate simplification. The limitation of semantic approaches is that the semantics
are also problem-dependent. Moreover, finding the semantic equivalent subtree of a
smaller size is a time-consuming task.

It is evident from the above discussion that choosing between one of these options
is not an easy choice. It often depends on the application and requires the involvement
of the domain expert. Table 3 categorises different papers as syntactic, numerical and
semantic-based simplification.

6.4 Generalisation-ability of simplification

We define generalisation-ability as the possibility of applying the same simplification
techniques to a variety of problems belonging to different domains. Although many
simplification schemes exist in the literature, most of them are implemented and tested
on only a specific category of applications. Some of them are designed to work on
regression problems, while others can simplify the individuals solving classification
problems. Without tweaking, it is not possible to scale them and use them on another
category of problems.

By contrast, there exist some simplification techniques that can work on a vari-
ety of problems. These approaches are domain and problem-independent. So, is

123



Simplification of genetic programs: a literature survey

Table 3 Syntactic, numerical and semantic simplification

Paper Syntactic Numerical Semantic

Wong and Zhang (2006) �
Wong and Zhang (2007) �
Borcheninov and Okulovsky (2012) �
Murano et al. (2018) �
Burlacu et al. (2019) �
Kinzett et al. (2008) �
Johnston et al. (2009) �
Kinzett et al. (2009a) �
Johnston et al. (2010) �
Kinzett et al. (2010) �
Naoki et al. (2009) �
Helmuth et al. (2017) �
Chu and Nguyen (2017) �
Howard and Edwards (2018) �
Chu et al. (2018) �
Nguyen and Chu (2020) �
Rockett (2020) �

generalisation-ability a desirable trait for a simplification algorithm? The performance
of problem-specific approaches is usually better than the generic ones. They can create
more opportunities for simplification. However, if the goal is to provide a technique
that can work on multiple categories of problems without any need for intervention
from the domain experts, researchers can prefer more generic approaches.

Table 4 organises the papers in terms of domain specific and domain independent
approaches.

7 Discussion

Genetic Programming equipped with simplification offers several opportunities. GP-
generated solutions are inherently understandable as they are generated using a
combination of user-defined operators. Since these operators are implemented by
programmers and are known to domain experts, it is easier to make sense of their
combinations. The generated solutions are like programs and the problem of under-
standing them is similar to understanding what a program is doing. However, without
simplificationmechanisms in place, this understanding can still be challenging because
of the presence of unwanted code. After reviewing the literature and organising it in
terms of the design and integration constraints, we observed the potential of simpli-
fication and the advantages it can bring to GP. We also observed the adverse effects
of simplification on the evolutionary search. Several of the approaches listed in previ-
ous sections may lead towards a local optimum and loss in diversity. For this reason,
several researchers have opted to apply simplification after a few generations or only
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Table 4 Generalisation-ability

Paper Domain specific Domain independent

Wong and Zhang (2006) �
Wong and Zhang (2007) �
Kinzett et al. (2008) �
Kinzett et al. (2009b) �
Johnston et al. (2009) �
Kinzett et al. (2009a) �
Naoki et al. (2009) �
Johnston et al. (2010) �
Kinzett et al. (2010) �
Song et al. (2010) �
Borcheninov and Okulovsky (2012) �
Chu and Nguyen (2017) �
Chu et al. (2018) �
Howard and Edwards (2018) �
Murano et al. (2018) �
Burlacu et al. (2019) �
Nguyen and Chu (2020) �
Rockett (2020) �
Jackson (2010) �
Alfaro-Cid et al. (2010) �
Silva et al. (2012) �
Spector and Helmuth (2014) �
Nguyen et al. (2016) �
Helmuth et al. (2017) �

on a portion of the population. The following subsections present the potential of GP
simplification and our observations on what further research should focus on.

7.1 Mutation/control operators versus simplification operators

The evolutionary algorithm contains and supports a variety of operators. The core
of the algorithm uses mutation and crossover operators to construct new individuals.
In this section, we consider how simplification can be incorporated both into these
existing operators and as a separate operator: our contention is that simplification can
usefully be considered as a separate, standalone operator.

In the early days, when researchers started using simplification as a bloat con-
trol technique, evolutionary operators were defined and implemented to incorporate
aspects of simplification. Ekart (1999) proposed a mutation operator to identify non-
functional bits of code—the introns—and remove them. She achieved this by defining
algebraic simplification rules and applying them to expressions that can be replaced
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by a simpler one. This operator guarantees to preserve the semantics and fitness of
the original expression. Araujo (2004) proposed a cut operator that randomly cuts a
subtree, using a higher probability for individuals larger in length. Although she did
not label it as a mutation operator, the cut operator can be thought of as such because
of its random application—the percentage of occurrence can be controlled by the user.
Belle and Ackley (2002) introduced a Uniform Subtree Mutation with the idea that a
tree will undergo mutations proportional to its size, following a binomial distribution.
Size-fair mutation works like a normal mutation but ensures that the distribution of
sizes before and after the mutation is maintained. Thus, in general, the average sizes
of the individuals will remain the same after the mutation.

Mutation was not the only way researchers have tried to implement simplification.
Kinnear (1993) proposed hoist—a modified version of single crossover—in which
a copy of a randomly selected subtree is obtained from an individual. Following the
philosophy of size-fairmutation, size-fair crossover randomly selects a crossover point
in thefirst parent and then calculates the size of the subtree rooted at that point (Langdon
2000). The crossover point in the second parent is then chosen so that the size of the
subtree rooted at this point is the same as the size of the first parent’s subtree. In this
way, it ensures that the size of children will not increase after applying the crossover
operator.

Simplification can be implemented using other genetic operators, as some of the
cases listed above illustrate. However, there are several drawbacks associated with this
approach:

• Mutation and crossover are inherently random in nature and must preserve this
randomness as it is a fundamental property of GP stochastic search. By contrast,
simplification is akin to tuning rather than random modification.

• The primary purpose of mutation and crossover is to produce new individuals.
By contrast, the purpose of simplification is to optimise an individual: these two
operator types can be considered as complementary, where the primary role of
mutation and crossover is the random exploration and exploitation of the search
space, and the role of simplification is more similar to a local search.

• These operators have no say after the end of an evolutionary run. By contrast, this
is the most important time to analyse the individuals for simplification to a shorter,
but equally performant, variant.

Although crossover andmutation operators canbe tweaked to act like simplification,
this approach does not produce a neat and modular design or implementation. Hence,
because of these fundamental differences between simplification and other genetic
operators, we argue that simplification should be implemented as a standalone operator
and not interferewith the natural flowofGP. In this regard, it will act as a plug-and-play
feature of GP working in tandem with other operators.

7.2 Potential for creative AI

Creative Artificial Intelligence (CAI) attempts to develop human-like solutions for
areas in which good solutions are lacking. CAI poses two main challenges: first,
the complexity of the search space and, second, the requirement for explainable
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solutions. GP, unlike manymachine learning approaches, generates interpretable solu-
tions. These solutions can often be trimmed to simpler versions; these simplification
procedures usuallymake the solutions easier to understand. So, GP equippedwith sim-
plification can soften the challenge of explainability. The first challenge of complexity
stems from the fact that CAI’s search space is enormous and high dimensional, with
many local optima (Miikkulainen 2021). GP can handle this because of its population-
based nature, in which multiple searches are launched at the same time rather than
focusing on just one. GP starts these searches from different random starting points
and allows them to progress in parallel, which offers better opportunities to avoid local
minima. These challenges posed by CAI are also prevalent in the process of creating
automated data mining and knowledge discovery systems.

7.3 Consideration of other measures of complexity

To be a feasible approach, simplification-equipped GP needs to address several chal-
lenges. One such challenge is the appropriate definition of complexity. The issue of
complexity has already been addressed in several studies, but often in the context of
model selection and the generalisation of performance on unseen data. These studies
defined several types of complexities ranging from genotypic complexity to pheno-
typic complexity and statistical-based measures. A number of complexity measures
could be used when simplifying GP programs, such as Minimum Description Length
(MDL), Kolmogorov Complexity, Akaike Information Criterion (AIC), and Bayesian
Information Criterion (BIC), to mention just a few. Le et al. (2016) provide a useful
review of complexity measures in the framework of GP.

Beyond the complexity of GP programs in a formal sense, one must also consider
complexity as experienced by humans when trying to understand GP programs. A
substantial amount of literature in psychology and cognitive science indicates that at
least three factors affect complexity: (a) cognitive factors (e.g., short-term memory
capacity, learning rate, speed of processing information) (Simon 1989; Gobet et al.
2011; Hunt 2011); (b) the level of expertise and domain knowledge (Gobet 2016;
Shadbolt and O’Hara 1997), which in our case also includes knowledge of the GP
operators used and the type of programsgenerated; and (c) extrinsic factors (e.g., length
of programs, presence of recursion, and type of representations used) (Kotovsky and
Simon 1990;Weinberg 1998). Ai et al. (2021) explore such ideaswith respect to simple
two-person games. Their empirical results suggest that machine-learning explanations
are helpful only when their level of complexity is appropriate: explanations should not
provide too much information and in particular not more information than the explicit
description of the solution to a problem. A suitable level of abstraction is needed to
satisfy these desiderata. Whether their conclusions hold with GP programs is an open
and important question.

123



Simplification of genetic programs: a literature survey

8 Conclusion and future work

This paper has reviewed the literature on the simplification of genetic programs from
several perspectives and has identified various trends. One such trend is the shift in the
primary objective of simplification. The work on simplification initially started with
the focus on understanding the GP-generated models. Gradually, this focus drifted
towards controlling bloat. There is now a need for reverting this drift because of the
emerging requirement for explainable solutions. Another prominent trend is the shift
from syntax-based approaches to semantic ones. Semantic-based techniques offer the
advantage of identifying syntactically different individuals with similar semantics.
Hence, they can outperform syntactic ones by identifying more simplification possi-
bilities. However, the challenge is on the implementation side of these semantic-based
approaches because they can be computationally demanding.

Integrating simplification into an existing GP setup can be challenging. It can
adversely affect evolutionary progress. We found that several of these challenges
revolve around making simplification a computationally viable option. Some of the
points that need careful consideration are the criteria for the selection of individuals
for simplification, the scale of application of the simplification algorithm, and the
parallelization of this algorithm. The first one deals with how to choose individuals
to undergo simplification. Not all individuals are complex enough to be simplified,
and including too many individuals increases the cost of simplification. The second
consideration is the scale of applicability, which includes questions such as whether
simplification should be a part of the evolutionary run, or whether it should be applied
only after a run. Another question with online simplification is finding the threshold
beyond which simplification hurts the process of evolution. The last consideration is
the development of parallel versions of simplification algorithms to make them more
efficient.

While organising the literature on simplification, we identified several potential
avenues of research that deserve further attention. Most of the simplification literature
assumes size as a measure of an individual’s complexity. Only two of the studies used
execution time as a measure and developed time-based simplification. Their experi-
ments revealed the potential of time-based simplification and its potential to deal with
bloat. Several other complexity measures exist and are used in genetic programming
but have not been used to date in simplification algorithms. Thus, exploring other
measures of complexity and measuring the impact on bloat and the explainability of
solutions is an area to explore further. Another less explored area is the development
of domain-independent simplification techniques. In most cases either the proposed
solutions are problem-specific, or no evidence is furnished of their applicability to
other domains. We suggest exploring further the generalisation-ability of simplifica-
tion algorithms. Furthermore, there is a rich relationship between simplification and
compiler optimisationwhichwe have highlighted here and plan to investigate in future.
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