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Abstract
In recent publications we have drawn attention to the fact that if the dynamics of a model
is structurally unstable, then the presence of structural model error places in-principle
limits on the model’s ability to generate decision-relevant probability forecasts. Writing
with a varying array of co-authors, Eric Winsberg has now produced at least four
publications in which he dismisses our points as unfounded; the most recent of these
appeared in this journal. In this paper we respond to the arguments of Winsberg and his
co-workers, and we point out that their criticisms fail. We take this as an opportunity to
restate and explain our arguments, and to point to fruitful directions for future research.
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1 Introduction

In the sciences, mathematical models are frequently used to predict the future. In
geophysics, computations are often too complicated to do by hand and computers are
employed. These mathematical models target the dynamics of physical systems of
interest. If one is willing to assume that physical systems themselves are governed by
mathematical equations,1 then structural model error corresponds to a difference in the
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1That a system – a part of the physical world – is itself governed by a mathematical structure is not an
unproblematic assumption. It remains useful, however, to speak as if a governing structure with well-defined
parameter values existed and we do so in what follows. Even if no such governing equations exist, the issues
of model error discussed below are no less serious.
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mathematical structure of the model and the mathematical structure of the system. In
the absence of structural model error, uncertainties in the values of parameters and the
precise state of the system can be approached successfully with a number of methods
(Judd & Smith, 2001). These methods can quantify this imprecision with a probability
distribution because parameters, states and the like are well-defined; they are merely
imprecisely known. The status of these entities is not similarly well-defined in nonlin-
ear models with structural model error (Smith, 2001; Du & Smith, 2012; Berger &
Smith, 2019). These considerations should inevitably lead to the question “what
confidence can we have that the future will look anything like the model predictions?”.
This is an important question because in scientific practice models always have some
structural model error, and, indeed, both imprecision and structural error are
longstanding concerns in the prediction of both weather and climate.

In recent publications we have drawn attention to the fact that if the dynamics of a
model is structurally unstable, then the presence of structural model error places in-
principle limits on the model’s ability to generate decision-relevant probability fore-
casts. The IPCC shares these concerns explicitly.2 We have argued that both in-practice
issues (imprecision) and in-principle issues (structural model error) pose problems for
probabilistic modelling projects like UKCP09, which produces high-resolution climate
projections up to the end of the century. Writing with a varying array of co-authors,
Eric Winsberg has now produced at least four publication in which he dismisses our
points as unfounded, or, as the title of one of the papers puts it, as “[t]he adventures of
climate science in the sweet land of idle arguments” (Winsberg & Goodwin, 2016, 9).3

In the most recent of these publications, which came out in this journal, he and his co-
authors claim to present “[a]n antidote for hawkmoths”. In this paper we respond to the
arguments of Winsberg and his co-workers in all four publications. We take this as an
opportunity to restate and explain our argument, and to point to fruitful directions for
future research.

The paper is organised as follows. In Section 2 we explain the problem of structural
model error and restate our position. In Section 3 we discuss, and reject, the claim that
our argument is based on an analogy between the logistic map and climate models. In
Section 4 we show that a number of mathematical objections that have been levelled
against us are mistaken. In Section 5 we discuss arguments to the effect that the
manifestations of the hawkmoth effect are less dramatic than we suggest they may
be, and we argue that Winsberg and his collaborators oversell their case. Section 6
concludes.

2 The problem of structural model error

In this section we discuss structural model error. We first introduce the notions of
structural model error and structural instability, and then describe their consequences
(Subsection 2.1). We then turn to the question of when, and under what circumstances,
we should expect to encounter structural instability (Subsection 2.2).

2 This is documented in Section 5 below.
3 Throughout the paper we use the following abbreviations: “WG” for (Winsberg & Goodwin, 2016), “GW”
for (Goodwin & Winsberg, 2016), “W” for (Winsberg, 2018), and “NNW” for (Nabergall et al., 2019).
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2.1 Structural model error and its consequences

Consider a system that is defined by a flow in a Euclidean state space with n
dimensions (where n > 2). The flow is generated by the differential equation

ẋ ¼ V xð Þ; ð1Þ

where x is an n dimensional state vector containing the variables that specify the state of

the system, ẋ is the first time derivative of that vector (where time is taken to be
continuous and to range over the real numbers), and V is the vector field that drives the
change of x.4 As an example consider a pendulum that can move in two spatial
dimensions. The x then consists of four components – the position and momentum
variables for both directions in which the pendulum can move – and V encodes the
forces acting on the pendulum bob. A trajectory is the motion of a point through the
state space over time, and a flow is the totality of all such trajectories. Further examples
include electric circuits, the planets of the solar system, convection between two plates
each at a constant temperature, a rotating and thermally driven rotating annulus, and a
global climate system.5

For simplicity, assume that such a system is represented by a model that has the
mathematical structure of a flow in the same state space.6 That is, the model that traces
the time evolution of the system’s variables is assumed to have the same variables as
the system itself. It is a sufficient condition for a model to be perfect that the model flow
and the target flow be identical (arguably they need only be identical in the regions of
the state space that are relevant to a particular situation). If the two flows are not
identical, they can nevertheless be topologically equivalent.7 Consider a second differ-
ential equation

ẋ ¼ W xð Þ; ð2Þ

where W is vector field and x is a state as above. A homeomorphism is a continuous
mapping between two topological spaces that also has a continuous inverse. Now
consider a homeomorphism h mapping the Euclidean state space onto itself. Such a
homeomorphism is called a topological equivalence of the two flows (generated by V
and W respectively) iff it maps trajectories of one flow onto trajectories of the other
flow. The existence of such a mapping imposes stringent conditions. For instance, a
topological equivalence cannot map a flow with three fixed points onto a flow with two

4 A rigorous discussion of the definitions and results that we present in this section can be found in Chapter 2
of Pilyugin’s (1991). The main points are also stated in Section 4 of our (2014). See Lam (2021) for a further
discussion of some of the core concepts.
5 Climate models are built up from deterministic equations. They are then run on digital computers, which are
deterministic. The IPCC requires that all model outputs are completely reproducible, and so these models
cannot have a truly stochastic element.
6 In some cases we may not know what a system’s variables are, if such things exists at all. For the sake of
argument, we set such worries aside.
7 Topologically equivalent flows are sometimes also called topologically conjugate.
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fixed points, or map a flow with only periodic orbits onto a flow with only non-periodic
orbits. If two flows are “qualitatively different”, there is no topological equivalence.

If there is a topological equivalence between the model and the system, then there is
a sense in which the dynamical properties of the two flows coincide: their attractors (if
any) can be mapped to each other and their dynamical invariants such as Lyapunov
exponents are identical. In this case, an ensemble of initial system states (representing
our uncertainty in the state of the system at an initial instant of time) can be mapped
into a corresponding ensemble of model states which can be evolved forward in time
under the model’s dynamics and then mapped back onto the system’s state space so
that the mapped-back ensemble accurately reflects our uncertainty about a system’s
state at a later time. In short, if the flow of the model and the flow of the system are
topologically equivalent, then evolving information about the uncertainty in an initial
condition forward in time under the model’s dynamics yields the same result as
evolving uncertainty forward in time under the system’s own dynamics. In this
situation the model can reliably trace uncertainty about the system.

This ability is lost if the flows of the model and the system are not topologically
equivalent. The attractor(s) of the system need not correspond to the attractor(s) of the
model, and dynamical invariants need not be identical. In this case the model cannot be
used to define, much less to trace precisely uncertainty about the system.8 Initial
condition ensemble distributions9 are frequently used to express the uncertainty about
system’s state at certain time. Ideally, one would be able to evolve this initial condition
ensemble distribution forward in time with the model to obtain a distribution reflecting
the uncertainty in a future state of the system. In the absence of topological equivalence
this cannot be done because evolving an initial condition ensemble distribution forward
under the dynamics of the model may not provide a probability distribution reflecting
the distribution of uncertainty in a future state of the system.10 This inability is
illustrated in Section 3 of our (2014). We call a probability distribution accountable

8 This result is established in Judd and Smith (2001, 2004) and in Smith (2000, 2001). The proposition is the
result of lengthy mathematical argument, the leading idea of which is follows. Assume, as is the case in any
physical experiment, that our observations are noisy; that is, we can only make measurements with finite
precision. Two states are indistinguishable at t0 (now), iff any number of discrete observations on the system at
any time before t0 does not provide information sufficient to distinguish between them. The argument then
proceeds in two steps. The first step is to show that to produce an accountable probabilistic forecast at t0 one
has to use a probability distribution that (a) is consistent with observations, which amounts to using a
probability distribution over the indistinguishable states at t0, and that (b) takes into account the long-term
behaviour of the dynamics (i.e. its attractor). If one has a perfect model, a set of indistinguishable states exists
and accountable forecasts can be produced. The second step of the argument consists in establishing that if a
nonlinear dynamical simulation model is not perfect (i.e. if the model’s and the system’s dynamics are not
topologically equivalent), then the set of indistinguishable states is empty with a probability equal to one. One
cannot have probability distribution on an empty set, and so there is no distribution that produces an
accountable forecast.
9 Defined by the model given the observations.
10 For an extensive discussion see Judd and Smith (2004). We note that a lack of topological equivalence does
not preclude that the model might have trajectories that shadow trajectories of the system for an arbitrarily long
but finite duration. However, whether or not such trajectories exist, and, if so, the duration they will shadow,
depends on the particulars of the system and of the model, and even the initial state of the system (Smith et al.,
1999). Such trajectories cannot be exploited for predictions. Shadowing says that there is a trajectory that stays
close to observations but it is usually not known which trajectory this is, and the existence of one trajectory
does to warrant that claim that the ensemble behaves as the system does, which would be required for
probability forecast. For an introductory discussion of shadowing see Smith (1998, Ch. 4).
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iff the forecast probabilities reflect the relative frequencies with which outcomes are
observed over future times.11 For a probability distribution to be decision-relevant it has
to be accountable. This is because if a forecast does not reflect the actual frequency of
outcomes, the forecast can be misleading (for instance by regarding something that
rarely happens to be a frequent occurrence), and decisions made on the basis of the
forecast may not have the desired effects.12 Our point can then be stated thus: in the
absence of topological equivalence, it cannot be taken for granted that models provide
accountable (and thereby decision-relevant) probabilities about the uncertainty of a
future state of the system.13

Two remarks are in place. First, this point must not be paraphrased as “models are
unfit for decision making”, or as any other statement to the effect that models are
useless wholesale. Our claim is restricted to probabilities about the uncertainty of a
future state of the system; whether models provide other kinds of decision relevant
information is, at this point, left as open problem (to which we return in Section 5).
Second, there is an important question about how one should react to this point. If one
knows that a model is not topologically equivalent to its target, and if one therefore
knows that it cannot be taken for granted that model probabilities are accountable,
should one renounce the use of model probabilities as probabilities reflecting the
uncertainty of a future state of the system? Our cautionary position is that we should.

To capture structural model error, consider the set of all vector fields on the
Euclidean state space that have a certain desirable property. In the current context,
the standard choice for that property is that vector fields are continuously differentiable
at least once. Then introduce a distance ρ on this set. This distance says how far apart
two vector fields are.14 Intuitively, if ρ is small, the two fields are similar; the values of
ρ increase if the fields become more dissimilar. We are now in a position to define
structural stability. The flow generated by (1) is structurally stable iff, given a small
real number ε > 0, there always exists a small real number δ > 0 so that the following
condition holds: for any vector field in the chosen set with ρ(V,W) < δ there exists a
topological equivalence h of the flows generated by (1) and (2) so that r(x,h(x)) < ε for
all points x in the state space, where r is the metric on the state space. Intuitively
structural stability means that if two vector fields are close (in the sense of not being
further apart than δ), then the two flows that they generate are also close (in the sense of

11 Accountability is defined in Smith (1995). The property Smith calls “accountability” is now one way that
forecast accuracy is measured. For a discussion see Jolliffe and Stephenson (2012).
12 In our (2014) we put the point in terms on non-linear models and said that if a nonlinear model has
structural model error, its ability to generate decision-relevant probabilities is compromised. The mathematical
theorems we mention, both in our (2014) and in the current section, are general and apply to all systems that
are governed by equation (1). The mention of non-linearity was owed to the pragmatics of modelling. The
systems that we are interested in – the global climate, weather, the motion of planets, and so – are all best
modelled as non-linear systems. We framed it in this way because we are interested in what the implications of
structural model error for these systems are. Since the results mentioned in this section are general, non-linear
system are obviously within their scope.
13 A fortiori, it cannot be taken for granted that models provide accurate point predictions.
14 Technically, the relevant class is C1, the class of vector fields that are continuously differentiable at least
once. For a formal definition of ρ see Pilyugin (1991, 110).
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not being further apart than ε). The flow generated by (1) is structurally unstable iff it is
not structurally stable.15

If a system’s trajectories for infinitesimally close initial conditions can diverge
exponentially-on-average in the limit of infinite time, then the system exhibits what
is known as sensitive dependence on initial conditions (SDIC). The manifestations of
SDIC in chaotic systems are commonly referred to as the butterfly effect (Smith, 2007).
If a system is structurally unstable, the flow of an arbitrarily close vector field may
diverge from the flow of the system (in sense specified in the previous paragraph). This
was the motivation for Thompson (2013) to dub the implications of the lack of
structural stability the hawkmoth effect (but the hawkmoth effect is also found when
model flow differs significantly from the system’s).16

The issue of structural stability has important implications for scientific modelling.17

Consider a system whose flow is generated by V and let the system be represented by a
model whose flow is generated byW. If the model’s or the system’s flow is structurally
unstable, then even a small difference between the model’s vector field and the
system’s vector field can result in the two flows not being topologically equivalent.
In his book on chaotic dynamical systems, Devaney points out that such differences are
to be expected because in modelling a system, “certain assumptions will have been
made, and certain approximations and experimental errors will be present”, and as
result the model will be “only an approximation to reality” (1989, 53). In other words,
V and W will not be identical. This, as Devaney notes, can lead to difficulties because

if the dynamical system in question is not structurally stable, then the small errors
and approximations made in the model have a chance of dramatically changing
the structure of the real solution to the system. That is, our ‘solution’ could be
radically wrong or unstable. If, on the other hand, the dynamical system in
question is structurally stable, then the small errors introduced by approximations
and experimental errors may not matter at all: the solution to the model system
may be equivalent or topologically conjugate to the actual solution. (ibid.)

This problem is also clearly stated in Abraham and Marsden (1978, xix-xx) and in
Katok and Hasselblatt (1995, 287). So, if a model is structurally unstable, then the
system, even if it is close to the model, can have a qualitatively different dynamics.

Abraham and Marsden emphasise the importance of this point for scientific model-
ling and report that considerations of this kind led Duhem to list the “criterion of
stability” alongside criteria like verifiability of predictions and agreement with data as a
criterion of theory choice, where the criterion requires the “stability or continuity of the

15 In passing we note that maps can be defined from flows, for instance through Poincaré maps and time-
discrete versions of a flow (stroboscopic maps). Maps inherit the flow’s stability properties: if a flow is
structurally unstable, then so are all maps that derive from the flow.
16 This leaves open how exactly these effects should be characterised or defined. The definition of the butterfly
effect and dynamical chaos has been the subject of a heated debate; see Devaney (1989), Ott (1993) and
Werndl (2009) for reviews and proposed definitions of chaos.
17 In short, as uncertainty in initial condition decreases, in the case of the butterfly effect the forecast remains
informative farther and farther into the future (and we can determine its evolution). This is not the case with the
hawkmoth effect, which persists even when epsilon equals zero (in which case there is no forecast error due to
SDIC).
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predictions, or their adequacy, when the model is slightly perturbed” (1978, xix,
original emphasis). They note that while this criterion is not often discussed explicitly,
it “functioned as a tacit assumption, which may be called the dogma of stability” (1978,
xx, original emphasis). If stability cannot be proven and empirical values for coeffi-
cients have to be used in a model, we are in an epistemically difficult position because
“[p]robably the physicist must rely on faith at this point, analogous to the faith of a
mathematician in the consistency of set theory” (1978, xx, original emphasis).

This brings home the point that structural model error matters. It is curious, though,
that all these statements appear in mathematics books, while there does not seem to be
any recognition in the philosophical literature on modelling that structural model error
raises methodological issues that ought to be taken seriously.18 A central aim of our
papers was to bring this problem to the attention of philosophers. Where leading
practitioners feel that there is a tacit assumption at work which, if absent, forces
scientist to rely on faith when using models, there is a challenge that philosophers
should rise to.

2.2 When should we expect to encounter structural instability?

One might now try to deflect this challenge by pointing out that what has been
established so far is the conditional claim that if models are unstable, then difficult
issues arise. This will have to occupy us only if the models that we are interested indeed
are structurally unstable. But when should we expect to be faced with structural
instability, and how common an occurrence is it? At the end of Section 4 of our
(2014) we have briefly mentioned three reasons – each individually sufficient – for
thinking that structural instability is common, and we now want to discuss these in
more detail.

The first reason is that the relevant models do not in general satisfy the conditions
necessary for structural stability. It is a deep theorem in the theory of dynamical
systems that a flow is structurally stable iff it satisfies Axiom A and the Strong
Transversality Condition.19 Axiom A essentially says that the system is hyperbolic,
and the strong transversality condition says that stable and unstable manifolds must
intersect transversely at every point. The flows of interest in atmospheric modelling
(and this includes climate) do not, in general, satisfy these conditions.20 These general
mathematical results have wide-ranging implications, and the lack of structural stability
disappointed Hirsch and Smale, who report that related insights “dismayed” Poincaré
(Hirsch & Smale, 1974, 321).21

The second reason is the results obtained in Judd and Smith (2004). Judd and Smith
show that if the model is imperfect (i.e. has structural model error), then it is almost
certain that no chaotic trajectory of the model is consistent with an infinite series of

18 Indeed, Abraham and Marsden note that the “traditional mutuality of mechanics and philosophy has
declined in recent years” (1978, xix), and little has changed since 1978, certainly as far as the study of
structural stability is concerned.
19 This result carries over to maps. See Pilyugin (1991) for details.
20 Systems need not be large or complex to face these issues. Devaney notes that there are “simple examples of
systems such as the Lorenz system from meteorology that are ‘far’ from being structurally stable. These
systems cannot even be approximated […] by stable systems.” (1989, 53–54).
21 Poincaré’s own pronouncements are also documented in Barrow-Green (1996) and Smith (2001, 2002).
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observations. This implies that it is not possible to estimate the projection of a system
state using trajectories or form accountable ensembles.

The third reason is a series of theorems regarding structural stability that have been
proven in the dynamical systems literature since the 1960s.22 Smale (1966, 491) poses
what he calls “the problem of structural stability”: “are the structurally stable differen-
tial equations dense in the C′ topology in all (first order, ordinary, autonomous)
differential equations?”. The equations Smale talks about are equations like (1) and
(2), and the C′ topology is a distance on the set of vector fields.23 Smale then states that
he gives a “negative answer” to this problem, namely that “structurally stable systems
are not dense” (ibid.); i.e. they are not dense in the set of systems that are defined by Eq.
(1).

To see the relevance of this theorem, we have to unpack some of the notions that
appear in it. Doing so is important not only to grasp its mathematical content, but also
to see its epistemic relevance.24 Intuitively, a set is open if its boundary does not belong
to it. Think, for instance, of the surface of circle without the periphery. Now consider a
set A that is a subset of a larger set S. Set A is dense (in S) if A intersects every
nonempty open subset of S. Intuitively this means that for every element of S, the
element is either in A or is arbitrarily close to an element of A. As an example, think of
the rational numbers, which are dense in the real numbers, meaning that every real
number either is a rational number or has a rational number arbitrarily close to it. The
fact that structurally stable systems are not dense then means that not every system is
arbitrarily close to a stable system and that there are non-empty sets in the space of
vector fields in which there are no stable systems at all. Coming back to Devaney’s
characterisation of the process of modelling, the best we can do is to come up with a
model that is close to the true mathematical representation of the target system. If the
true mathematical representation is unstable, then a model close to it can exhibit
substantially different dynamical behaviour. If the true mathematical representation is
stable, then we cannot expect a nearby model to be stable because stable models are not
dense, which, again, can result in the model behaving differently than the system.

Unqualified talk of “expectations” may strike some as unsatisfactory because unless
we have a means to quantify expectations, ideally with probabilities, we don’t really
know what to expect. One way to try to address this demand is though the notion of a
property being “generic”. Consider a property Π and let P be the subset of elements of
S that have Π. The notion of a set being “generic” tries to capture the intuitive idea that
the elements of the set P are “typical”, or that “most” elements have Π (Katok &
Hasselblatt, 1995, 287–88). The technical definition of “generic” proceeds via the
notion of a set being a residual: a set A ⊂ S is a residual set iff A is the intersection
of a countable family of open dense subsets of S (Abraham & Marsden, 1978, 16).

22 For surveys see Abraham and Marsden (1978), Katok and Hasselblatt (1995), and Pilyugin (1991). Several
important papers on the issue are in the second volume of Smale’s collected works (Cucker & Wong, 2000).
These theorems have so far gone unnoticed in the philosophical literature on models. Yet, a systematic
exploration of all these results and their consequences for scientific modelling is beyond the scope of this
paper. In the remainder of this section we briefly discuss one of these theorems. We hope that this discussion
shows how important these theorems are for the epistemology of modelling, and that the discussion will
trigger interest in the subject matter.
23 For a discussion see Abraham and Marsden (1978, 532).
24 We give intuitive characterisations of the relevant concepts. Rigorous definition can be found in any
textbook on topology, for instance Jänich (1984).
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Then, a propertyΠ is generic if P contains a residual set (ibid., 532). Unfortunately, this
definition is hardly intuitive. As Katok and Hasselblatt explain, the motivation for it is
that in a complete metric space the countable intersection of open dense sets is dense
(Katok & Hasselblatt, 1995, 288). If so, a generic set is one that is dense, and we have
seen above what that means. With this in place, it then follows that structurally stable
systems are not generic in the set of systems that are defined by Eq. (1) (Abraham &
Marsden, 1978, 535).

Some may see the restatement of the claim in terms of “generic” as a step in the right
direction, but they would prefer to have statement of the kind: if we pick a model at
random from the set of models,25 the probability of this model being stable is zero (or
close to zero). A restatement of this kinds may seem within reach due to the fact that the
complement of a generic set is of “first category” and that a collection of sets of first
category “can be viewed as a topological analog of the collection of sets of measure
zero” (Katok & Hasselblatt, 1995, 288). Under this analogy, structurally stable sets
would then be of measure zero, which, with a suitably chosen measure, could be
translated into the desired claim concerning probabilities.

The extent to which, and under under what conditions, this shift from the topological
notion of genericity to the measure-theoretic notion of probability is possible is, to be
best of our knowledge, an open question. Katok and Hasselblatt are careful to say that
first category sets are a topological analogue of measure zero sets; they do not say that
they are measure zero sets. And the passage from topology to measure theory is not
without perils. Katok and Hasselblatt note two problems (ibid.). First, in finite-
dimensional cases there are natural Lebesgue measures on the relevant spaces, but it
turns out that there exist generic sets of measure zero. Second, in the case of systems
with an infinite-dimensional state space, there are no natural measures at all. This raises
interesting and important questions. Do we really need probabilities for decision
making? If not, what sort of framework for decision making should we use when there
are no probabilities? If we do need probabilities, where do we get them from? To what
extent can we build on a topological analogy? These are questions for fruitful future
research.26

In sum, we have introduced structural model error and pointed out that in the
absence of topological equivalence it cannot be taken for granted that models provide
accountable probabilities about the uncertainty of a future state of the system. We have
then given three reasons why structural model error should be taken seriously in the
context of scientific modelling. We have also drawn attention to open questions and
indicated some avenues for future research. We will now turn to the arguments of
Winsberg and his co-authors, who dismiss our points as unfounded.

25 Ideally, from the set of available models that will run on today’s hardware.
26 We note that this is a point where the debate about modelling can fruitfully interact with discussions in
formal epistemology. In the wake of Belot (2013), a discussion has ensued about the relationship between
measure-theoretic and topological notions of size in Bayesian epistemology, with contributions from Cisewski
et al. (2018), Elga (2016) and Nielsen and Stewart (2019), among others. Future discussion about the
relevance of structural instability ought to take insights gained in this discussion on board. We are grateful
to an anonymous referee for pointing this out to us.
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3 No analogy with the logistic map

The general mathematical concepts discussed in the last section may be counterintuitive
and the consequences of the theorems can be difficult to grasp. For this reason we
followed the lead of May (1976) and used the logistic map to illustrate the relevant
features with more easily visualized dynamical behaviours. We discuss a thought
experiment involving Laplace’s demon and two of his apprentices (2014, Sec. 3).27

In this thought experiment, the demon knows the true dynamics of a system, which is
specified by what we call the quartic map, a function of 4th order. The junior
apprentice models the situation with the well-known logistic map, a 2nd order function.
So the model exhibits structural model error. The parameters of the system (quartic
map) and the model (logistic map) are such that the one-step-error of the model
dynamics with respect the system dynamics is of the magnitude of one part in a
thousand. We run a series of computer simulations showing that even though the
model-dynamics and the system-dynamics are similar (in that the model has small one-
step-error almost everywhere), the trajectories of a distribution of initial conditions
moved forward in time under the system-dynamics differ markedly from the trajectories
of the same distribution of initial conditions moved forward in time under the model-
dynamics. It is common in computational contexts to employ an ensemble of states to
gain information regarding the dynamics of the probability distribution from which
they were drawn (evolving the probability distribution analytically is rarely possible).
Adopting this convention, we considered an ensemble of 1024 initial conditions and
showed that the distribution that these points reflect behaves very differently under the
model dynamics than under the system dynamics. Since the state spaces of both the
model and the system are one-dimensional, one can present the outcomes in the form of
easily comprehensible graphs. The thought experiment thus illustrates some effects of
structural model error in a simple and intuitive setting.

Winsberg and Goodwin (2016; “WG” henceforth) describe our argument as follows:

The form of their [Frigg and Smith’s] argument is an argument by analogy: they
demonstrate that a particular, imperfect mathematical model fails to produce
decision relevant predictions of a certain sort, diagnose this failure, then argue
that a broad but indeterminate range of additional imperfect modeling projects,
with their associated predictions, would fail for the same, or similar, sorts of
reasons. (WG, 9).

They then expand on this and explain that we take the “logistic equation” as the “base
case” from which we “generalize” to “other modelling projects”, which we do “because
of their similarity to the base case”. We are reported to “contend that most time
evolutions are relevantly similar to the logistic equation” from which we are said to
draw the conclusion that the effects observed in the logistic map also apply in
“modeling projects of climate scientists” (WG, 11–12). This analysis is repeated in
(Goodwin & Winsberg, 2016, 1125–27; “GW” henceforth). In Winsberg’s recent book
(2018; “W” henceforth) it reappears as the second route to the hawkmoth effect (W,

27 These charaters were introduced in Smith (2007).
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232). Accordingly, Winsberg and Goodwin conceptualise the task of evaluating our
argument as assessing “the strength of the argument by analogy that the authors offer”
(WG, 13), and later claim to have debunked it by showing that the analogy is weak.

This is wrong. Our argument is not an argument by analogy with the logistic map,
and none of our conclusions rest on similarity claims between the logistic map and
other models. Winsberg seems to acknowledge this in passing in the appendix of his
book (W, 235), but throughout his papers with Goodwin (WG and GW), the authors
conflate a pedagogical illustration with the scope of mathematical results. The math-
ematical results we described in Section 2 are general.28 They apply to any system that
has the mathematical structure described in the last section, and any such system is
structurally stable iff it satisfies both Axiom A and the Strong Transversality Condition.
This is a general mathematical result that applies to systems because they have the
requisite mathematical structure and not because they are in any way similar to the
logistic map. Those who set out to show that models of a particular system do not face
the effects of structural model error have three options: (a) they can show that the
results we cite in Section 2 are mathematically flawed; (b) they can show that the
mathematical results do not apply to the system of interest; or (c) they can show that the
system of interest satisfies Axiom A and the Strong Transversality Condition and is
therefore structurally stable.

Demonstrating any of these would provide great insight. Winsberg and Goodwin
have not, however, attempted to so. Instead they go to great lengths to assess the
strength of the (wrongly) alleged analogy between the logistic map and modelling
projects in climate science. This is tilting at windmills: no such analogy has been
invoked to prove anything anywhere. We use the model-system pair consisting of the
logistic map and the quartic map to illustrate what can happen when small structural
errors occur in nonlinear dynamical systems. This one-dimensional example allows for
visual illustration because pictures are easier to draw in such cases, which allows us to
present the mathematical points in an intuitively accessible way. But the example is
merely an illustration. Our general claim in no way rests on the example and can be
made without ever mentioning either the logistic or the quartic map, or the other model-
system pairs mentioned in (Judd & Smith, 2004).

Finally, in our example we calculated the relative entropy of 2048 probability
distributions that are evolved both under the system’s and under the model’s dynamics.
We found that after eight time steps model probabilities and system probabilities have
low relative entropy in only about a quarter of the cases; the relative entropy increases
in the other three quarters of cases. The specifics of the example don’t generalise: we
cannot infer that in other cases one quarter of model distributions will remain close to
system distributions or that the same values of the relative entropy will also be seen in
other cases, nor can we infer anything about the timescales on which a growth of
relative entropy can be observed. These details will depend on the specifics of the
model-system pair under investigation. What we do claim is that the qualitative overall
pattern generalises: one can expect a majority model-system distribution pairs to drift
apart and hence have increasing relative entropy. For this not to happen, it would have

28 To be painfully clear that our use of a one-dimensional system-model pair was merely illustrative of the
effects of model error, we note that the relevant theorems on structural stability apply only in higher
dimensional systems even though structural model error can, of course, arise in models of any dimension.

European Journal for Philosophy of Science           (2022) 12:33 Page 11 of 24    33 



to be the case that the two distributions either never separate or that they re-converge,
which is something that generally does not occur if the model and the system have
dynamics that are not topologically equivalent.

4 Mathematical considerations

In two recent publications Winsberg (W), and Nabergall et al. (2019; “NNW” hence-
forth) take a different line. Rather than attributing to us an argument by analogy
between the logistic map and climate models, they construe the analogy as being
between sensitive dependence on initial conditions and structural model error. Thus,
we are reported to hold that “when structural stability is absent […], errors in output
depend on errors in model structure in a way that is tightly analogous to the phenom-
enon of sensitive dependence on initial conditions in chaotic systems” (NNW, 3–4). In
his book Winsberg summarises what he takes to be our view by saying that “the
hawkmoth effect is supposed to be a model-structure analog of the butterfly effect” (W,
232, cf. 71). Their project then is to assess the strength of that analogy. We welcome
the focus on the formal aspects of the problem, which has so far gone largely unnoticed,
and we agree that progress will most likely be made through paying careful attention to
the relevant mathematical results. Unfortunately, NNW’s discussion suffers from a
number of inadequacies that undermine their conclusions.

NNW begin by framing the problem as the question whether “model error destroys
forecast skill faster than the ordinary or ‘classical’ chaos”, and they attribute to us an
affirmative answer to this question.29 This is a misattribution. We never said anything
about how fast the hawkmoth effect becomes manifest; we did not engage in compar-
isons between the speeds of the butterfly effect and the hawkmoth effect; and we never
claimed that the hawkmoth effect was “faster” than “ordinary chaos”. Indeed, there are
good reasons not to engage in any such a comparison because how fast effects manifest
themselves varies with the particulars of the system. If the aim is to understand the
relation between the two effects in general, then focussing on which effect is faster is a
red herring.30

Setting aside matters of speed, we can identify two claims in NNW. First, they argue
that the implications of the hawkmoth effect for forecasting skill are much more benign
than the implications of the butterfly effect, and that the two are therefore not “tightly
analogous” (NNW, 4), as we are reported to have said they were. Second, they question
whether we have provided valid evidence for thinking that the hawkmoth effect is
relevant in the context of climate modelling. We address these claims one at a time and
argue that they are mistaken.

29 The question whether structural model error destroys forecast skill “faster” than ordinary chaos is presented
as a crucial issue throughout the paper, and the discussion makes it clear that NNW attribute an affirmative
answer to us (see NNW, 1, 3, 4, 5, 6, 10, 13, 15).
30 There are of course specific cases in which structural model error accumulates faster than initial condition
error. This can happen, for instance, in weather forecasting where, in a perfect model scenario, the system can
remain predictable for a couple of weeks, while real forecasts do not exhibit that much skill due to structural
model errors (we are grateful to an anonymous referee for pointing this out). Our point is that this is not a
general feature of structural model error.
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NNW argue that there is a profound mismatch between the butterfly effect and the
hawkmoth effect. For structural model error to be the analogue of SDIC, it would have
to be the case that “for almost any ϕϵΦ”, where Φ is a space of time-evolution
functions, a small change in ϕ would result in a significantly different time evolution
(NNW, 11). This, so the argument continues, is not the case because structural
instability only warrants the much weaker claim that there exists “one trajectory” that
can be deformed by more than ε (ibid.). In more detail: “Rather than requiring thatmost
trajectories […] go far away, it [the absence of structural stability] only requires that
one trajectory go more than a very small epsilon away” (NNW, 12, original emphasis).
The absence of structural stability is therefore reported to be much weaker than SDIC,
and they summarise their findings as follows: “both with regard to how much error you
can get, and with respect to how many nearby trajectories will do it, SDIC says things
are maximally bad, while structural instability merely says they will not be maximally
good” (NNW, 14, original emphasis). So, according to NNW, the contrast between
SDIC and the absence of structural stability is that SDIC establishes that almost all
initial conditions diverge, while the absence of structural stability only guarantees that
there exists one time evolution function for which the trajectories differ.

How do NNW reach this conclusion? The standard definition of SDIC is that a
topological dynamical system consisting of a state space X, a metric d, and a time
evolution ϕt exhibits SDIC at x ∈ X iff there exists an ε > 0 such for every δ > 0 it is the
case that there exists a y ∈ X with d(x, y) < δ and d(ϕt(x), ϕt(y)) > ε for some time t. In
other words, there is a distance ε > 0 such that no matter how small a region around x
we consider, that region will always contain at least one state y that lies on a trajectory
that will eventually move more than ε away from x. If this holds for all x ∈ X (or
a subset of X that maps onto itself under the dynamics) then the system exhibits SDIC
on X (or the subset). This definition is standard both in the physics literature and in the
philosophy literature, and when a system is said to exhibit SDIC then this definition is
appealed to.31

NNW state this definition (on pp. 6–7), but immediately after the definition they add
that “[w]e could also strengthen the definition of sensitivity to initial conditions to
require that almost all such states have this property” (NNW, 7, emphasis added). This
is not just a casual throw-away remark. In fact, this then becomes their go-to definition
of SDIC on which they base their argument. Accordingly, their Definition 2 states that
a system exhibits SDIC if “almost all elements y ∈ X” lead to divergent trajectories
(NNW, 7). This definition is also repeated in Winsberg’s book (W, 233).

But moving from “there exists a y ∈ X” to “almost all y ∈ X” is huge departure from
the standard definition of SDIC in the physics and the philosophy literature, and one
that is problematic for two reasons. First, NNW give no justification for this change.
While it is true that some systems are such that the “strengthened” condition holds true
in them, the mathematical results of nonlinear dynamics are established with the
standard definition (based only on an existential claim). But one cannot base a general
characterisation the difference between SDIC and structural model error on a version of
SDIC that is true only of some but not all systems that have SDIC. Second, NNW’s

31 As regards the definition in the physics literature, see, for instance, the classic texts by Devaney (1989, 49),
Hirsch et al. (2004, 338) and Wiggins (2003, 574); as regards the philosophy literature see, for instance, Smith
(1998, 15) and Werndl (2009, 205).
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“strengthened” definition is the crucial ingredient that drives their entire argument. As
we have seen, they claim that structural instability is weaker than SDIC because it only
establishes that there exits one trajectory that will go more than a very small epsilon
away, while SDIC shows that almost all trajectories go far away. To reach this
conclusion they have to appeal to their “strengthened” definition. But this difference
does not exist in the standard mathematical definitions of the relevant notions; NNW
have artificially created this difference by altering the standard mathematical definition
of SDIC. The entire massive difference they claim to have uncovered between SDIC
and structural instability is an artefact supported by a tweaked definition!

A further problem with NNW’s argument is that it is unclear what the qualification
“almost all” could even mean in the context of a topological dynamical system.
“Almost all” is a measure theoretic concept that is undefined in a topological system.
NNW admit this in a footnote and say that they state their definition “without there
being specific mention of a measure”, but they immediately assure the reader that
“[t]his is fairly standard; the reader is free to interpret them as either conditional on a
specified metric or, as we more naturally intend it, as presupposing the Lebesgue
measure, a standard practice in discussions of the state space of classical systems”
(NNW, 7). Neither do they say what they mean by a measure being “conditional on a
specified metric”; nor do they give a reason for the claim that taking the Lebesgue
measure is standard. In fact, measures have to be invariant under the system’s dynamics
for statements about “almost all” initial conditions to be meaningful, and the Lebesgue
measure is not invariant under many dynamical laws. And even if one were to restrict
attention to invariant measures, the measure of sets can vary depending on what
measure is used, and whether a set of initial conditions qualifies as “almost all” will
depend on the choice of the particular measure.

Their claim that the definitions of SDIC and structural stability imply that SDIC is
maximally bad and structural instability is maximally good is odd because both
definitions make existential claims and because SDIC allows for informative forecasts
on arbitrarily long timescales when decreasing uncertainty in initial conditions, while
structural instability does not. But NNW seem to take it for granted that there will
always be such an asymmetry when they ask the rhetoric question: “What reason is
there to think that small model errors of the kind we would expect to find in climate
science, atmospheric science, and other domains of non-linear modeling will normally
produce deviations on such short timescales as they do in the demon example? Why
should such a weirdly concocted example shift any burdens of proof of the kind the
LSE group demand of us?” Those who decide to discard the principled arguments we
presented may still want to pay attention to the practice of modelling, where examples
of “small model errors of the kind we would expect” are not hard to come by.
Gettelman et al. (2019), for instance, report that the equilibrium climate sensitivity in
the most recent version of the Community Earth System Model (CESM2) is signifi-
cantly influenced by how aerosol cloud interactions are modelled.32

NNW accuse us of conflating two claims: “failure to stay arbitrarily close is not the
same thing as being guaranteed to go an arbitrary (bounded) distance away. But in
analogizing absence of structural stability to SDIC, the LSE group are engaging in
exactly this conflation” (NNW, 10, cf. 11). We make no such conflation, and NNW

32 Thanks to an anonymous referee for suggesting this example.
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misrepresent our argument. We are not saying that the lack of structural stability
guarantees trajectories to “go an arbitrary (bounded) distance away”. What we are
saying is that in the absence of structural stability it is always possible that trajectories
do so (and that we cannot see it coming), and that it is therefore always possible that
forecasts are misleading; our illustrations show what can happen in situations of
structural model error, not what we are somehow guaranteed to see. The point of
contention between NNW and what they call “the LSE group” seems to be how to react
to this situation. Our position is that models should be regarded as unreliable in such
situation unless there is additional evidence to support their predictive capability in the
specific context and on the relevant timescale. NNW seem to take issues with this
cautionary attitude when reject our “shift in burden of proof” as “overstated” (NNW,
4). This is a difference in the attitude to risk. How much risk one is willing or able
tolerate may well depend on the context. We are concerned with projections at a local
scale. This is also the scale at which businesses like insurances operate, for instance
when they sell policies against storm damage. In the UK, the national regulators oblige
insurance companies to provide evidence on whether or not there is no more than a
1/200 chance that an event occurs. If you know that you face structural model error,
making this case will involve more than just saying that nothing has undermined
forecasts so far.

What should one do in such a situation? NNW conclude “that we are forced to
examine the empirical evidence on a case-by-case basis” and that we “need to look
carefully at similar evidence, and at the decision maker’s context, to decide what
models are decision relevant and can produce decision relevant probabilities even
when the likelihood of very small model error is high” (NNW, 4, original italics). We
agree with that. But we insist that if the evidence has not been examined in this way,
then the cautionary note for the decision-maker remains.

Let us now turn to NNW’s second argument, that we have provided no valid
evidence for thinking that the hawkmoth effect is relevant in the current context. We
are reported to present a “very weak argument and at worst a confusion” (NNW, 13).
NNW’s reasons for thinking so are, first, that “Smale himself certainly never uses the
term ‘generic,’ nor any term that we would regard as being a close cousin” and, second,
that “density is a topological notion with no obvious measure-theoretic implications”
(ibid.). This is false. Readers of Volume 2 Smale’s of collected papers (Cucker &
Wong, 2000) will find ample mention of the term, and they will encounter publications
with titles like “Stability and Genericity in Dynamical Systems”. Smale notes that
“attempts at solving the problem of structural stability, guide one toward the study of
the generic or general dynamical systems in contrast to the exceptional ones” (ibid.,
616), and Smale proves the “nongenericity” of certain kinds of stability (see, e.g., ibid.,
735). As regards NNW’s second point, they are correct in pointing out that Smale’s
results are topological, but they fail to elaborate on why this is supposed to be an
argument against them, and why an argument that is not a “confusion” would have to
be couched in measure-theoretic terms.

NNW then go on to claim that Smale’s result that we cite in our (2014) “would show
that structural stability is generic in certain settings”. We have discussed this result in
some detail in Section 2. If NNW think that this should be interpreted as establishing
that structural stability is generic, then the reader would need an explanation of how
they reach this conclusion. This said, we agree that Smale’s results, as well as other
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mathematical results concerning structural stability, deserve more attention from phi-
losophers than they have hitherto received, and much could be learned about the
epistemic issues that arise in connection with models by studying the implications of
these results for predictive tasks.

5 Matters of significance and scope

There is a question of how significant the points we made in Section 2 are. A number of
arguments in the papers by WG try show that the manifestations of model error are
more benign than they take us to be saying they are.

In a first move, WG try to establish that structural stability as defined in Section 2 is
irrelevant in practical applications. They note that structural instability “is not a
property that a single time evolution function, considered in isolation, exhibits. We
can only say that such and such a function is unstable relative to a family of nearby
functions, and relative to a metric defined between each pair of such functions” (WG,
13). They then claim that the reference class we are looking at is too large:

And it is of course interesting that Frigg et al’s simulations, the base case in their
argument, are two functions, one of which is a polynomial of 5th order. Thus, in
so far as we might be inclined to believe that the Earth’s climate, being a physical
system governed by physical laws, is best modelled by second order equations, it
is not at all clear that the analogy between the pond of fish and the earth’s climate
holds […]” (WG, 14).

So the argument is that we consider structural variations in a class of models that is too
large because systems that are governed by “physical laws” obey “second order
equations” (in passing we note that the function we use is of 4th and not of 5th
order).33 A demonstration that a function is unstable in that large class is therefore
irrelevant because one knows that the real system is located in a much smaller class.

Winsberg and Goodwin are right in pointing out that structural stability is a property
that a dynamics has with respect to a certain reference class, and it would constitute
momentous progress if one could (a) narrow down the reference class that is relevant
for the Earth’s climate (or physics in general) and (b) show that the time evolution of
the Earth’s climate is in fact stable in that relevant reference class.

WG have achieved neither one nor the other. We do not know what WG have in mind
when they say that physical laws dictate that the Earth’s climate is best modelled by a second
order equation. Many laws of physics do not have the mathematical form of a second order
equation (think of the law of gravity, the law of electrostatic attraction, and the Stefan-
Boltzman law, which plays a fundamental role in atmospheric dynamics). Furthermore, later
in the paper they note that “there are far too many open questions about climate modelling.
We simply do not have a clear grip onwhat the right universality class is for climate models,
nor on what the relevant metric of similarity ought to be” (WG, 14). If so, there is no way to
support their claim that relevant physical system are governed by second order equations.

33 A similar point is made in (NNW, 24).
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The next argument is that structural instability becomes irrelevant once one focuses on
the correct dynamical properties. WG submit that our focus is too narrowly on point
predictions and as soon as one looks at a larger class of predictions the problem goes away.
This is because “[i]t is perfectly possible for a model’s synchronic predictions to be unstable
under a class of perturbations, while at the same time allowing for certain other kinds of
predictive tasks to be stable under that same class” (WG, 15). They cite Fillion and Corless
(2014) as showing that “almost every model that has any degree of empirical confirmation
will have some statistics that are relevantly stable under any class of perturbations” (ibid.).

There can be predictions or features of distributions, as well as qualitative aspects of
the finite time dynamics, that are stable under small perturbations either in model
parameters or in model structure. We have never claimed that structural model error
makes models useless wholesale, and we have drawn attention to this ourselves (see,
for instance, our 2014, 48–50): models can, for instance, provide physical understand-
ing of large-scale processes. There are, however, no blanket answers to how under-
standing is gained and an analysis of what we can learn from models will have to
proceed case-by-case. We are, however, unable to decipher WG’s position on this issue
with precision. They point out that it is “perfectly possible” that an unstable system
allows for “kinds of predictive tasks” to be stable, and that models with “any degree of
empirical confirmation” will have “some” statistics that remains unchanged under
perturbations. WG’s wording here is too unspecific to address the specific concerns
about stability which they criticise. To put a specific predictive task of concern to us –
probability forecasting of, for instance, the temperature on the hottest day in central
London in 2080 – on a firm epistemic footing it is not enough to know that it is possible
that there is some statistic that is invariant under some unspecified perturbation on some
unspecified time scale. Rather, one must establish that the specific statistic that is
relevant to that particular task is stable. Indeed, for each particular predictive task
one would first have to identify the relevant dynamic properties that would have to be
stable for the task to be carried out successfully, and then one would have to show that
the relevant properties are indeed stable on desired time scales as required. This is a task
that has to be carried out case-by-case, and focussing on such properties is the way
forward to put model results on firm epistemic grounds. WG do nothing of that kind.

WG suggest that dimensionality is key to any response to this challenge and claim that “it
will almost always be the case that the more degrees of freedom a prediction statistic
averages over, the less likely it is to be unstable under a class of perturbations” (WG, 15).
Neither reasons nor citations are given for this “almost always” claim. As we have seen in
Section 2, the general theorems concerning structural stability apply to any system with a
state space ofmore than two dimensions. It would therefore be of value to know the scope of
WG’s claim that large systems are less likely to manifest instabilities in a nontrivial way.34

34 In passing we note that Winsberg and Goodwin’s discussion of dynamical systems not only suffers from
omissions; it is also misleading. When discussing the uncertainties in models, they say that dynamical systems
“can also live for a very long time on what appears to be a robust attractor, only to abruptly jump to another
attractor after a long period of time” (WG, 16). By definition an attractor is set a set of states that neighbouring
states in a given basin of attraction asymptotically approach in the course of dynamic evolution and that is
invariant under the dynamics. A trajectory on one attractor simply cannot “jump to another attractor.”
Transients can be long, basins of attractions can be riddled, and “appears to be” might have been intended
to reflect the rich variety of mathematical behaviours nonlinear systems can display; nevertheless it is
mathematical nonsense to say that a trajectory can jump from one attractor to another.
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WG then draw attention to time scales and point out that “it is entirely unclear what
the relevant time scales would be for such instabilities [i.e. ones due to the hawkmoth
effect] to manifest themselves” and that even if one could establish a priori that models
are unstable “such an a priori argument would not provide us with anything like the
resources for determining what the relevant notion of ‘short run’ is” (WG, 14). We
agree that questions of time scale matter for decision makers and have drawn attention
to this ourselves (2014, 48). That said, the lack of topological equivalence implies that
the model attractor differs from the system attractor, and this holds consequences at all
lead times, as discussed in Smith (2001), Judd et al. (2008) and in Berger and Smith
(2019).

We also note that the lack of a priori arguments cuts both ways. There are no a priori
arguments regarding the lead times on which structural model errors manifest them-
selves. As in the case of initial condition uncertainty in a structurally perfect model,
whether such uncertainties have an impact on a certain predictive task is matter that has
to be decided on a case-by-case basis; the conclusion will depend both on the system
and the task at hand. WG provide no argument for the conclusion that time scales in the
case we mention (UKCP09’s local climate projections) are such that structural model
errors do not manifest themselves; nor do they offer arguments that relevant lead times
are unproblematic in other cases. The issue of lead times on which climate models are
informative is an interesting open issue that should receive more attention than it has
received so far. That said, the systematic differences between today’s best climate
models (even on global scales) and the nonlinearity of the relevant physics in those
models suggest that probability predictions for the wettest day of 2099 at a 25 square
km resolution are untenable. Lower bounds on current structural model error suggest
in-practice limits which swamp a priori timescales for in-principle limits due to
structural stability. This is a reason why climate modellers today are concerned about
structural model error.

The next issue concerns the scope of the argument. According to WG we have
“provocative moments” when our argument apparently shows that “it is safe to say that
much of what climate scientists claim to know would have to be regarded as untrust-
worthy” (WG, 10). This implies that “not only would the most basic results of
contemporary climate science – that the climate is changing as a result of human
activity and will continue to do so – be cast under suspicion, but so too would most
scientific modelling endeavors” (WG, 9). They then turn to the IPCC report and point
out that “according to the IPCC, establishing the reality of anthropogenic climate
change requires, both detecting and attributing climate change” and claim that we cast
doubt on the reality and risk of climate change, and that our argument therefore
“undermines the most basic conclusions of contemporary climate science” (WG 10).
In his recent book Winsberg describes the stance of “the LSE group” as “highly
skeptical” (W, 71) and adds that our position “would have devastating consequences
for attribution claims, and for policy making recommendations based on climate
science if any of their [i.e. our] view were true.” (W, 72, original italics). Finally,
NNW accuse us of violating the maxim “do no harm” because we argue for “wildly
sceptical scenarios” (NNW, 20–21).

While we maintain with Richard Feynman that all scientific knowledge is uncertain,
we reject any and all anti-science sceptical positions with no ifs, ands, or buts, and
repeated attempts to attribute an anti-science sceptical position to us are groundless. In
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none of the papers Winsberg and co-workers cite do we reject the basic conclusions of
contemporary climate science. We call into doubt detailed predictions like the high-
resolution local climate projections produced by UKCP09.35 And we hold this to be
well within the bounds of healthy scientific criticism, even where we may later learn we
were wrong. Furthermore, Winsberg (W, 71–72) and Winsberg and Goodwin (WG,
10–11) take us to task for our views on attribution and detection. To our knowledge
there is no mention of these two topics in any of the papers of ours they cite. Whether
these arguments have any implication for detection and attribution, and if so what the
implications are, is at best an open question, and, as far as we can see, it is one that is
not discussed in their papers.

While we do not discuss the IPCC in the papers WC cite, the IPCC does cite our
papers on structural model error. Specifically, we note that the IPCC does not disagree
with us regarding the significant role of structural model error, and it quotes Smith
(2002) explicitly in its 4th Assessment Report: “Such limitations imply that distribu-
tions of future climate responses from ensemble simulations are themselves subject to
uncertainty Smith (2002) and would be wider were uncertainty due to structural model
errors accounted for” (Solomon et al., 2007, 797). The IPCC also rejects a literal
interpretation of the fidelity of model-based distributions. The 5th IPCC Assessment
Report supports this view and attempts to address it quantitatively, making it clear that
the probability placed in the (outer 10%) tails of model-distribution for future global
mean temperature must be increased to 34%, the additional 24% taken from the central
(90%) model-range. These numbers are based on their expert judgement, as are the
models themselves, of course (more about this case below). In its 6th Assessment
Report, the IPCC cites our discussion of UKCP09 in Frigg et al. (2013b).

WG appear to claim that even if we don’t state an anti-science climate-change
denier’s position explicitly, such a position is implied by what we say (WG, 10). They
provide no argument for this conclusion that we can identify as such. It is unclear to us
whether WG believe that the role of structural model errors in today’s climate models
have negligible impact in the applications we criticise, or if they hold that issues of
topological equivalence and structural stability play no role in the class of large fluid
dynamical models. It would advance the discussion if they made their position on this
matter explicit.

WG are correct in claiming that in practice climate probabilities are computed
differently than was done in our example used to define “the default position” (WG,
12). We are happy to consider renaming this position, if the name causes confusion. In
our illustrations we made many simplifications and considered an ensemble of 1024
initial conditions, and we use a histogram based on 32 bins of equal size on the unit
interval as a proxy for a continuous probability distribution (2014, 37–39). In an early
paper we called this the “default position” (2013a, 481). Winsberg and Goodwin object
that this position is irrelevant because probabilities are not calculated in this way (WG,
12). The projections produced by UKCP09 are the result of complicated statistical

35 Winsberg and Goodwin keep repeating that UKCP09 produces “projections” and not “predictions”, which
they see as a further reason why our arguments fail (WG, 12). This is what we say in the detailed discussion of
UKCP09 in our (2015), where we also explain the relation between predictions and projections. For reasons
unbeknownst to us, they appear to have ignored the detailed discussion of UKCP09 in our (2015) completely.
For further a discussion of projections see Werndl (2019).
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techniques, which we describe in some detail in our (2015), which, curiously, Winsberg
and his co-workers systematically ignore (judged by the absence a reference in any of
their papers). WG are right to point out that the determination of probabilities by
UKCP09 is more complex than the one in our example. We said as much both in our
(2013b, 890) and (2015, 3989–90, 3998–4000), and those complicated methods are
also discussed in (Berger & Smith, 2019). But this does not render structural model
error irrelevant to the determination of probabilities.

It is true that probabilistic predictions are not always generated using our so-called
“default position”; real applications are more complex than our simple illustration, as
one would expect. Consider the case of the IPCC’s assessment of global mean
temperature projections for 2100 in the 5th Assessment Report.36 The projection is
arrived at by using the CMIP5 ensemble, a set of state-of-the-art climate models that
have each been run under the RCP8.5 scenario to supply a value for the projected
temperature change in 2100. It turns out that [2.67C, 4.87C] is the interval that
symmetrically spans 90% of the ensemble distribution, which the IPCC classifies as
“very likely”. The IPCC authors then downgrade the model-derived “very likely” range
to “likely”, which means that the probability that the real climate system will produce
this outcome is taken to be only above 66%. Hence, the IPCC reckons that there an
additional 24% probability that we would experience something outside the 90%
central range of model results. That is, the probability in the model-based tails (10%)
is increased to 34%. This judgment has been made by the IPCC authors to account
for structural model errors, for instance due to shared systematic biases, similar
resolutions, common algorithms (and sometimes code), computational constraints,
and similar parameterizations. So the authors of the IPCC report regard structural
model error as an important factor, explicitly even for coarse variables like global
mean temperature.

Finally, Winsberg and Goodwin make a methodological recommendation. To
find out whether a quantity of interest is stable, “the best we can do is to play
around with our models and see which predictions are stable under the perturba-
tions that we think ought to concern us” (WG, 15). While there is merit in such
explorations, there are doubts that the question can be settled in this way. First, as
noted above, it is unclear which perturbations to consider. Second, carrying out
simulations is extremely costly and it takes a long time to produce a model run.
“Playing around” with state-of-the-art models is arguably impossible by definition
of a “state-of-the-art model” (Smith, 2002). While we would hesitate to deem
climateprediction.net (Stainforth et al., 2005) “playing around” with any model, it
is interesting to examine the response of the climate community to these results. In
general, viable trial and error approaches to determine which properties are stable
under perturbations and which aren’t have not yet been employed in the study we
criticised.37 Principled mathematics, and statistics, and physical science would
each play a role in such an endeavour.

36 For a discussion of this case see Thompson et al. (2016).
37 The UKCP09 project had only 17 runs with the full model (HadCM3) and 280 runs with a reduced model
with a slab ocean (i.e. an ocean with no currents and a uniform effective depth of 50 m). For details see our
(2015).
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6 Conclusion

In their papers, Winsberg and co-workers appear to attempt a wholesale rejection of
everything we say about structural model error, yet they do not come out as saying that
models’ structural error is ignorable and that UKCP09’s high resolution probability
statements are trustworthy. They emphasise – as we do – that the particulars of the case
such as lead times and choice variables matter, and they conclude that “the question is
highly complex, and depends on details of the definition of structural stability being
employed and on the timeframe of the prediction” (WG, 15). As regards UKCP09, they
say that “if our best models are currently unsuitable for making the fine-grained
projections of the kind we find in, e.g., UKCP09, we believe, the reasons have to do
with the fact that some of the features of our climate system are poorly understood or
poorly parameterized” (WG, 16). This is structural model error. We agree, and our
(2015, 3994) contains a graph showing the range of the simulations for global mean
annual temperature over the twentieth century.38 These vary by several degrees.
Current models, as high resolution prediction engines, are far from perfect. But poorly
understood features of a system and poor parameterizations are a source of structural
model error, and so Winsberg and co-workers in fact attribute the models’ shortcom-
ings to structural model error. We are in agreement with Winsberg and co-workers that
in current climate science model errors are not epsilon-small, they are significant. It is
nevertheless important to understand what effects even small errors can have, and a
discussion of the hawkmoth effect gives us exactly that.

We feel the failure to acknowledge clearly and transparently the limits that either
structural model error or the large systematic errors in our current models place on their
high-resolution real-world predictions puts the credibility of solid climate science at
risk (one of us has regularly faced resistance to statements made in the IPCC reports).
Indeed, lack of transparency in how science is presented in public debates places the
credibility of all science in support of decision making at greater risk. We expect that
these errors could and will be reduced, noting that climate scientists themselves deem
this a difficult task (Palmer & Weisheimer, 2011). Even if these errors were reduced to
well below the magnitude of current weather models, we note that structural stability –
and the recognition that models aren’t structurally stable – implies limits on models,
which, unlike many current shortcomings, it appears we cannot overcome. This,
however, leaves open the question where these limits lie and how they affect particular
modelling endeavours. As noted in Section 5, there may exist project-specific goals
which lessen the impact of model error; accountable probability forecasts however
appear to be out of reach.

WG proffer Parker’s (2018) recommendation to assess adequacy for purpose on a
case-by-case basis as the solution to the problem (WG, 16). We agree and add that
assessing adequacy for purpose will involve evaluating stability properties of relevant
variables and considering appropriate lead-times. That said, once one recognises that
climate prediction operates on a grander scale than weather prediction and accepts that
it is simply not possible to show adequacy on climate targets in as useful a way as
might be done in weather forecasting, the purposes we have considered (probability
forecasts at high resolution long lead (2090) time scales) simply cannot be deemed

38 See also Figure 9.9a on p. 768 in the IPCC’s AR5 (Stocker et al., 2013).

European Journal for Philosophy of Science           (2022) 12:33 Page 21 of 24    33 



adequate today. We also hold that while one can never prove any forecast system to be
adequate for this purpose, one can nevertheless, show a forecast system to be inade-
quate. Theoretical considerations, and consistency between both model and simulations
with the present conditions will have to play an important role in developing an
appropriate level of confidence in climate modelling simulation, and acknowledging
the limitations of our current models plays a critical role in maintaining the credibility
of science in application. The aim of our project was to draw attention to the importance
of these issues.
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