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Abstract

We consider linear programming in the oracle model: max{c>x : x ∈ P}, where the polyhedron
P = {x ∈ Rn : Ax ≤ b} is given by a separation oracle that returns violated inequalities from
the system Ax ≤ b. We present an algorithm that finds exact primal and dual solutions using
O(n2 log(n/δ)) oracle calls and O(n4 log(n/δ) + n5 log log(1/δ)) arithmetic operations, where δ is
a geometric condition number associated with the system (A, b). These bounds do not depend on
the cost vector c and do not require any a-priori knowledge of δ.

The algorithm works in a black box manner, requiring a subroutine for approximate primal and
dual solutions; the above running times are achieved when using the cutting plane method of Jiang,
Lee, Song, and Wong (STOC 2020) for this subroutine. Whereas approximate solvers may return
primal solutions only, we develop a general framework for extracting dual certificates based on the
work of Burrell and Todd (Math. Oper. Res. 1985).

Our algorithm works in the real model of computation, and extends results by Grötschel, Lovász,
and Schrijver (Prog. Comb. Opt. 1984), and by Frank and Tardos (Combinatorica 1987) on
solving LPs in the bit-complexity model. We show that under a natural assumption, simultaneous
Diophantine approximation in these results can be avoided.

1 Introduction

We consider linear programming (LP) in the oracle model. Let P = {x ∈ Rn : Ax ≤ b} be
a polyhedron given by A ∈ Rm×n and b ∈ Rm; the i-th row of A is denoted by a>i . The linear
feasibility problem is to either find x ∈ P or conclude that P = ∅. In the linear optimization problem,
we are given an objective function c ∈ Rn, and we want to find a solution x ∈ P maximizing c>x,
or the conclusion that the problem is infeasible or that it is unbounded. The focus of this paper is
on exact rather than approximate solutions to these problems, along with exact dual certificates.

We say that the LP is explicitly given, if the matrix A and vector b are given as part of the input.
In the oracle model, these are represented implicitly, via a separation oracle. Our main example
will be what we call a polyhedral separation oracle: given x̄ ∈ Rn, the oracle returns the answer
x̄ ∈ P , or a violated constraint bi > a>i x̄ from the system Ax ≤ b; see Section 2 for a discussion of
different oracle models. The number of constraints m may be exponentially large in n.

LP algorithms in the Turing model For an explicit rational input (A, b, c), the first poly-
nomial time LP algorithm in the Turing model was given by Khachiyan in 1979, using the ellipsoid
method [24]. Degeneracy, i.e., P being contained in a lower dimensional subspace, is a particular
challenge for the ellipsoid method, since the volumetric progress measure is not directly applica-
ble. Khachiyan used a perturbation b̃ of the right-hand-side, based on bit-complexity arguments,
such that the polyhedron P̃ = {x : Ax ≤ b̃} satisfies P̃ = ∅ if and only if P = ∅, and P̃ is
full-dimensional whenever nonempty.

Grötschel, Lovász, and Schrijver [18, 19] used the ellipsoid method to tackle LPs given implicitly
by a strong separation oracle, and developed the theory of rational polyhedra. They showed that
for rational polyhedra with bounded ‘facet complexity’, the ellipsoid method either finds a feasible
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solution in polynomial time, or a lower dimensional subspace containing P can be identified using
simultaneous Diophantine approximation, by an application of the basis reduction algorithm by
Lenstra, Lenstra, and Lovász [29].

LP in the real model of computation In the context of LP it is natural to use a real model
of computation: we assume the input is given by real numbers, each requiring unit storage, and
one can perform a set of arithmetic operations in unit time. Arithmetics include basic operations
(+, −, ×, /); certain models allow further operations such as

√
and log. In the context of LP,

Traub and Woźniakowski [38] advocated using such a model. A computational theory over reals
was developed by Blum, Shub and Smale [5], see also the book [4]. The ultimate goal for an explicit
LP in this model is to develop a strongly polynomial algorithm: one where the number of arithmetic
operations only depends on the number of variables n and constraints m.1 This was listed as the
9th question by Smale on his list of eighteen mathematical challenges for the 21st century [35]. The
existence of a strongly polynomial algorithm remains wide open; such algorithms are only known
for special classes of LPs.

For explicitly given LPs, interior point methods (IPMs) yield algorithms with excellent theoret-
ical and practical performance; for recent developments, as well as for pointers to the literature, see
[8, 27, 41, 42]. IPMs naturally work in the real model; most variants output approximate solutions.
In the Turing model, an approximate solution with sufficiently high accuracy can be converted
to an exact optimal solution. Consider min c>x, Ax ≤ b, A ∈ Rm×n, and let L denote the total
bit-complexity of (A, b, c). Then, van den Brand [41] gives an O(mωL logO(1)(m)) deterministic al-

gorithm, and van den Brand et al. [42] gives a randomized O((mn+ n3)L logO(1)(m)) randomized
algorithm for finding exact primal and dual optimal solutions.

Tardos [37] gave an algorithm in the Turing model with running time dependence only on
the bit-complexity of A, but independent of b and c. This was generalized to the real model of
computation by Vavasis and Ye [43], who gave a poly(n,m, log χ̄A) algorithm for solving explicit
LPs exactly, where χ̄A is a certain condition number associated with the constraint matrix. We
discuss more recent developments along these lines in Section 1.2.

LP in the oracle model Several important problems in combinatorial optimization, including
matching, network design, and submodular optimization problems, can be formulated by LPs with
an exponential number of constraints. For such LPs the explicit description would be exponential;
at the same time, one can efficiently find violated constraints for infeasible points. This motivated
the development of oracle algorithms by Grötschel, Lovász, and Schrijver [19], based on the ellipsoid
method.

Vaidya [40] gave a more efficient cutting plane algorithm in the oracle setting; see [1, 2, 23, 28]
for improvements and related algorithms. These algorithms return approximate solutions. Given
a convex set K ⊆ Rn defined by a strong separation oracle and contained in a ball of radius r,
the algorithm by Jiang, Lee, Song, and Wong [23] (henceforth referred to as the JLSW algorithm)
either finds a feasible point in K, or concludes that K does not contain a ball of radius ε. The
algorithm makes O(n log(nr/ε)) oracle calls and uses O(n3 log(nr/ε)) arithmetic operations. This
oracle complexity is the same as for Vaidya’s algorithm [40] and is asymptotically optimal [31].
Moreover, [23] presents evidence that the arithmetic complexity of O(n2) operations per oracle call
may also be optimal.

Even though ellipsoid and other cutting plane methods deliver approximate solutions only, find-
ing exact solutions is crucial for the applications in combinatorial optimization. Prior to our work,
all known results on finding exact LP solutions in the oracle model were based on bit complexity
assumptions. Strengthening the result of Grötschel, Lovász, and Schrijver [18, 19], Frank and Tar-
dos [17] showed that, assuming that the matrix A and vector b describing the system Ax ≤ b are
integral with the absolute values of the entries bounded by B, then linear optimization in the oracle
model can be solved in time poly(n, logB). This is independent of the encoding length of the cost
function c. The result is achieved by rounding c using simultaneous Diophantine approximation.

Strongly polynomial algorithms for solving LPs in strongly polynomial time for many important
problems such as submodular function minimization or minimum-cost matchings were given in
[19] and [17]. Still, in contrast to explicitly given LPs, one cannot hope for strongly polynomial
algorithms in the oracle model. Indeed, according to the next claim, there may not even exist a
deterministic algorithm using f(n) oracle calls for any function f ; this is proved in Appendix A.

1A strongly polynomial algorithm in the Turing model is further required to be in PSPACE, so that the bit-complexity
of the numbers used in the algorithm remains bounded in terms of the input.
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Proposition 1.1. There exists no function f : N→ N and deterministic algorithm A that solves
the optimization problem max c>x, x ∈ P using at most f(n) oracle calls, where P ⊆ Rn is a
nonempty full-dimensional polyhedron and c ∈ Rn, and P is accessed via the following oracle: for
each x̄ ∈ Rn, either returns x̄ ∈ P , or a facet defining inequality violated by x̄.

1.1 Our contributions

Assume the polyhedron P = {x : Ax ≤ b} ⊆ Rn is given by a polyhedral separation oracle, and
consider the problem of maximizing c>x for an objective function c ∈ Rn. Our main result is an
algorithm such that the number of arithmetic operations and oracle calls is polynomial in n, m, and
the logarithm of a certain positive condition number dependent on (A, b), but independent from c.
This can be seen as extension and strengthening of the results in [17, 18, 19]. Further, our results
imply simpler, more efficient, and potentially more practical algorithms for many applications in
the bit-complexity model. We now introduce the main condition number of interest.

Definition 1.2. Let V ⊆ Rn be a set of vectors. We define δV to be the largest value such that,
for any set of linearly independent vectors {vi : i ∈ I} ⊆ V and λ ∈ RI ,∥∥∥∥∥∑

i∈I
λivi

∥∥∥∥∥ ≥ δV max
i∈I
|λi| · ‖vi‖ .

We note that δV > 0 if and only if the set {v/‖v‖ : v ∈ V } is finite (Lemma 2.2). For a matrix
M ⊆ Rm×n, we let δM denote the value corresponding to the rows of M .

This condition number was previously studied in the context of the shadow simplex algorithm
by Brunsch and Röglin [6], by Eisenbrand and Vempala [16], and by Dadush and Hähnle [9]. They
used the following equivalent characterization (see Lemma 2.2): δV is the largest number such that
for any set of linearly independent vectors {vi : i ∈ I}, the sine of the angle between the vector vi
and the subspace spanned by the vectors {vj : j ∈ I \ {j}} is at least δV . Further, δV bounds the
minimum singular value of a matrix with columns vj (see [6]). For an integer matrix M ∈ Zm×n, let
∆M denote the largest absolute value of any non-singular subdeterminant; then, 1/(n∆2

M ) ≤ δM
[6]. In particular, in the rational model, log(1/δM ) is polynomially bounded by n and the sizes of
numbers. The quantity δM was also studied in the context of lattice basis reduction by Seysen
[34]. A related condition number appears in the characterization of Hoffman constants [20, 25, 32].

In what follows, for vectors v ∈ Rk, w ∈ Rl, we use the shorthand (v | w) :=

(
v
w

)
∈ Rk+l to de-

note corresponding column vector and (v>, w>) to denote the corresponding row vector interpreted
as an element in (Rk+l)∗. For P = {x ∈ Rn : Ax ≤ b}, we consider the matrix

M =

(
0 1
−A b

)
, (1)

corresponding to the conic embedding of P defined by the cone K = {(x | t) ∈ Rn+1 : M(x | t) ≥
0}. Let δ(A,b)+(0,1) denote δM for this matrix M .

Our algorithms provide dual certificates of infeasibility and optimality. For a feasibility problem,
a Farkas certificate of P = ∅ is a vector of nonnegative coefficients λ ∈ RJ+ for a subset J ⊆ [m],
|J | ≤ n such that

∑
j∈J λjaj = 0,

∑
j∈J λjbj < 0. For c ∈ Rn, the dual polyhedron corresponding

to max{c>x : x ∈ P} is Dc = {y ∈ Rm+ : A>y = c}. The LP has a finite optimum if and only
if both primal and dual programs are feasible. In this case, a dual certificate of optimality for the
solution x∗ ∈ P is defined by a subset J ⊆ [m] and a vector of nonnegative coefficients λ ∈ RJ+
such that

∑
j∈J λjaj = c and a>j x

∗ = bj for all j ∈ J . By duality theory, such coefficients always
exists with |J | ≤ n.

Our main result shows that the one can find an exact solution in time O(n) times the running
time of the best approximate algorithm [23], replacing r/ε by 1/δ(A,b)+(0,1), and an additional
O(n5 log log(1/δ(A,b)+(0,1))) term.

Theorem 1.3. Consider the LP problem max{c>x : Ax ≤ b} for A ∈ Rm×n, b ∈ Rm, c ∈ Rn,
given by a polyhedral separation oracle. For parts (ii) and (iii), assume that a polyhedral separation
oracle for the recession cone rec(P ) := {x ∈ Rn : Ax ≤ 0} is also provided.

(i) A primal feasible solution or a Farkas certificate of infeasibility can be found using O(n2 log(n/δ(A,b)+(0,1)))
oracle queries and O(n4 log(n/δ(A,b)+(0,1))) arithmetic operations.
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(ii) A dual feasible solution or a Farkas certificate of dual infeasiblity can be found in O(n2 log(n/δA))
oracle queries and O(n4 log(n/δA) +n5 log log(1/δA)) arithmetic operations.

(iii) If both primal and dual systems are feasible, then primal and dual optimal solutions can be
found in O(n2 log(n/δ(A,b)+(0,1))) oracle queries and O(n4 log(n/δ(A,b)+(0,1)) +n5 log log(1/δ(A,b)+(0,1)))
arithmetic operations.

A few remarks about the result are in order.

• We use a black box approach. The algorithms work in the conic setting via the conic embedding
described above, and require a subroutine that produces ‘approximate dual certificates’. The
running time stated in Theorem 1.3 refers to the JLSW algorithm [23]. In Section 6, we
present a general scheme that allows to extract dual certificates from a broad range of methods,
including the ellipsoid method and geometric rescaling methods method [12, 21].

• Assuming P is given by a polyhedral separation oracle, our result strengthens that by Frank
and Tardos [17]: for A ∈ Zm×n, b ∈ Zm with all entries having absolute value B, for M as in
(1), the maximum subdeterminant ∆M is bounded as ∆M ≤ Bnnn/2 by the Hadamard–
inequality, and we have δM ≥ 1/(n∆2

M ) ≥ 1/(B2nnn+1). Thus, our algorithm makes
O(n3 log(nB)) oracle calls to solve a linear optimization program with an arbitrary objec-
tive function max c>x.2

• The algorithms in [17, 18, 19] rely on bit-complexity arguments. In contrast, our algorithms
are in the real model of computation and are entirely geometric. For the rational settings,
our running time bounds depend on the condition number δM that can be significantly better
than the lower bounds implied by the bit-complexity.

• Cutting planes methods require the feasible region to be enclosed in a ball of known radius.
In the rational setting, the enclosing radius is estimated based on the encoding size of the
coefficients. Our method does not require any such assumptions.

Note that solving the dual feasibility problem only depends on δA of the constraint matrix A,
but not on b or c. One may ask whether also the optimization problem could be solved in time
dependent only on A. This would be the analogue in the oracle model of the Vavasis–Ye [43] result,
and would be the best one can hope for in the oracle model in light of Proposition 1.1. However, we
show that this is not possible; the proof is given in the full version. the proof is given in Appendix A.

Proposition 1.4. Let θA be a condition number associated with a matrix A that remains unchanged
by creating a duplicate copy of a row. There exists no function f : N×R→ N and algorithm A that
solves max c>x s.t. Ax ≤ b for A ∈ Rm×n, b ∈ Rm, c ∈ Rn in f(n, θA) oracle queries, assuming
the system is given by a polyhedral separation oracle.

In light of the negative results, Theorem 1.3 is conceptually the best possible one can hope
for in the oracle model for linear optimization. The only scope for improvement may be to find
algorithms that depend on better condition numbers of (A, b), or use fewer oracle calls or arithmetic
operations.

Even though Theorem 1.3 uses a more restrictive oracle model than the standard strong sep-
aration oracle assumption, we show that it can reproduce many important results for rational
polyhedra in [19]. In particular, simultaneous Diophantine approximation can be avoided in most
applications, and dual optimal solutions can be found much more efficiently. These are discussed
in Section 7.

Reduction to the conic setting The algorithms in Theorem 1.3 are derived from conic
optimization problems using the conic embedding.

We recall that a cone K ⊆ Rn is a convex set that is closed under positive scalings, that is,
λK = K for any λ > 0. We define a conic separation oracle for K, to be an oracle that on input
x̄ ∈ Rn, either outputs that x̄ ∈ K, or if x̄ 6∈ K, outputs a non-zero vector v ∈ Rn \ {0} such
that v>x̄ ≤ 0 and v>x ≥ 0, ∀x ∈ K. We do not assume that K is closed, non-empty or even
polyhedral in this definition. We note that the requirement v>x̄ ≤ 0 is automatically satisfied by
any separator if K 6= ∅ (since 0 must be in the closure of K), so it is only a non-trivial requirement
when K = ∅ (this case will be important for the computation of Farkas certificates). We further
note that the separator produced by the oracle is not required to be strict if x̄ 6∈ K, i.e., we do
not require v̄>x > 0, ∀x ∈ K (such a separator need not exist). The oracle is however required to
exactly decide feasibility in K.

2We note that we do not generalize [17] for arbitrary oracle settings. The result in [17] is a preprocessing step replacing
c by an equivalent c̃ of small encoding length, but does not require any assumptions on the oracle.
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We present black box algorithms using the following subroutine:

Oracle Approx-Conic-Dual
Input: A cone K given by a conic separation oracle, and ε > 0.
Output: Either a point x ∈ K, or an ε-approximate conic Farkas certificate,
which is defined by a set {mj : j ∈ J} of vectors returned by the separation
oracle, along with multipliers λ ∈ RJ++ such that∥∥∥∥∥∥

∑
j∈J

λjmj

∥∥∥∥∥∥ < ε,
∑
j∈J

λj‖mj‖ ≥ 1. (2)

We let To(n, ε) denote the number of oracle calls and Ta(n, ε) the number of arithmetic operations
of this subroutine. We assume these are of the form To(n, ε) = go(n) logνo(n/ε) and Ta(n, ε) =
ga(n) logνa(n/ε) for some νo, νa ≥ 1. We assume that the the number |J | of oracle separators
involved in the ε-approximate conic Farkas certificate (2) is bounded by a function τ(n). In Section 6
we show the following.

Theorem 1.5. There exists an oracle polynomial algorithm for Approx-Conic-Dual with To(n, ε) =
O(n log(1/ε)), Ta(n, ε) = O(n3 log(1/ε)), and τ(n) = O(n).

The above corresponds to the requisite approximate problem we will need to solve certain conic
problems exactly. For the purpose of exact solutions, we will require further assumptions on the
possible outputs of the oracle as in the preceding section.

For this purpose, we will work with cones of the form K = {x ∈ Rn : MTx ≥ 0,MS > 0}, where
M ∈ Rm×n, S ∪ T = [m] is a (possibly trivial) partition, and MS ∈ RS×n, MT ∈ RT×n denote the
corresponding rows of M . Slightly abusing notation, we let mi ∈ Rn, i ∈ [m], satisfy m>i = M{i},

i.e., the column vector whose transpose is the ith row of M . Compared to the previous section,
note that we allow (and we will need) strict inequalities in the definition of K.

A polyhedral conic separation oracle for K is an oracle that, given x̄ ∈ Rn, either returns that
x̄ ∈ K, or a vector v ∈ Rn, such that ∃i ∈ [m] satisfying v = mi and for which v>x̄ < 0 if i ∈ T
or v>x̄ ≤ 0 if i ∈ S. From the perspective of implementation, the separator does not specify the
index i, it needs only reveal whether v> is a row indexed by S or by T . In the applications, the
list of strict inequalities induced by MSx > 0, will in fact be known be in advance and will satisfy
|S| = O(n).

We now formulate our three main conic problems. In each case, our goal is to provide algorithms
that are oracle polynomial in n and log(δM ). The problems are defined over a closed polyhedral
cone K ⊆ Rn of the form K = {x ∈ Rn : Mx ≥ 0}; that is, S = ∅ as above. The particular oracle
assumptions will be detailed in Theorem 1.7. In the first problem, the first row m>1 of M plays a
special role and is given to us.

• Strong conic feasibility problem: either find an x ∈ K and m>1 x > 0, or find a y ∈ Rm+
with y1 = 1 such that M>y = 0 certifying that no such x exists.

• Conic validity problem: Given c ∈ Rn, either find a certificate y ∈ Rk+ such that M>y = c
showing that c>x ≥ 0 holds for every x ∈ K, or return an x̄ ∈ K with c>x̄ < 0.

• Conic minimum-ratio problem: Given c, d ∈ Rn, along with a certificate that d>x ≥ 0 is
valid for K, expressed by a set {mi : i ∈ I} for some I ⊆ [m] with |I| ≤ n and y(d) ∈ Rm+
with M>y(d) = d and supp(y(d)) = I. Find

min

{
c>x

d>x
: x ∈ K, d>x > 0

}
. (3)

This is equivalent to finding the maximum value γ∗ of γ ∈ R such that (c + γd)>x ≥ 0
holds for every x ∈ K, if such value exists. In such case, the optimum value of (3) is −γ∗.
Depending on the outcome, we ask for the following output.

– Optimality: if γ∗ is finite, provide x∗ ∈ K with (c+ γ∗d)>x∗ = 0, d>x∗ > 0, along with
a dual certificate y ∈ Rm+ such that M>y = c+ γ∗d.

– Infeasibility: if d>x = 0 for all x ∈ K, then return y ∈ Rm+ such that M>y = −d.

– Unboundedness: if (3) is unbounded, return x̄ ∈ K with d>x̄ > 0, and x ∈ K with
c>x < 0 and d>x = 0.
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We note that the above cases are all disjoint, and also cover all possibilities by standard LP duality.

Remark 1.6. Throughout the paper, as above, we often refer to vectors y ∈ Rm, and require the
computation of M>y, even though M is only implicitly defined by a separation oracle. Whenever
we use such notation, what we mean is that y is represented by a set of rows {mi : i ∈ I} for some
I ⊆ [m], |I| ≤ poly(n), and by a vector ỹ ∈ RI such that yi = ỹi for i ∈ I, yi = 0 for i /∈ I.

The strong feasibility problem and the validity problem are special cases of each other: the

validity problem is the strong feasibility problem over the matrix M ′ =
(
c>

M

)
, whereas the strong

feasibility problem is the validity problem for c = −m1. We differentiate them since for the validity
problem our goal is to find an algorithm whose running time only depends on n and δM , but not
on c. The strong feasibility algorithm is also significantly simpler than the validity algorithm.

Theorem 1.7. For n ∈ N, ε > 0, assume there exists an oracle polynomial-time algorithm for
Approx-Conic-Dual using To(n, ε) oracle calls, Ta(n, ε) arithmetic operations, and that τ(n) is
the size of the ε-approximate conic Farkas certificate returned. Letting K = {x ∈ Rn : Mx ≥ 0},
M ∈ Rm×n, the following holds:

(i) Given a polyhedral conic separation oracle for

K1 = {x ∈ Rn : Mx ≥ 0,m>1 x > 0} ,

the strong conic feasibility problem can be solved using O(n) · To(n, δM/O(n)) oracle calls and
O(n) · Ta(n, δM/O(n)) +O(n3) · To(n, δM/O(n)) +O((n4 +n2τ(n)2) log log(1/δM )) arithmetic
operations.

(ii) Given c ∈ Rn and a polyhedral conic separation oracle for

Kc = {x ∈ Rn : Mx ≥ 0,−c>x > 0} ,

the conic validity problem can be solved using O(n) · To(n, δM/O(n)) oracle calls and O(n) ·
Ta(n, δM/O(n)) +O(n3) · To(n, δM/O(n)) +O((n5 +n2τ(n)2) log log(1/δM )) arithmetic oper-
ations.

(iii) Given c, d ∈ Rn, y(d) ∈ Rm+ such that d = M>y(d), I = supp(y(d)), |I| ≤ n, and polyhedral
conic separation oracles for the two cones

K−d = {x ∈ Rn : Mx ≥ 0, d>x > 0} and K=
I = {x ∈ Rn : Mx ≥ 0,MIx = 0} ,

the conic minimum-ratio problem can be solved using O(n) · To(n, δM/O(n)) oracle calls and
O(n) · Ta(n, δM/O(n)) +O(n3) · To(n, δM/O(n)) +O((n5 +n2τ(n)2) log log(1/δM )) arithmetic
operations.

Note that if a polyhedral conic separation oracle for K is available, one can implement the
required oracles for K1, Kc, K−d with O(n) additional arithmetic operations. The separation
oracle for K=

I can be implemented with O(n2) additional arithmetic operations, assuming that a
projection matrix to ker(MI) is pre-computed. The reason for stating the theorem with the specific
oracle requirements in each part is for applicability to Theorem 1.3. Using the standard conic
embedding of P = {x ∈ Rn : Ax ≤ b} as K = {(x | t) ∈ Rm+1 : Mx ≥ 0} with M as defined in
(1), we can use the polyhedral separation oracle for P and rec(P ) to implement all required oracles
(with d = m>1 ) in Theorem 1.7. However, we do not directly get separation for K for points of the
form (x | 0); this is further explained in the proof of Theorem 1.7 in Section 2.1. The proof uses
this conic embedding and combines Theorems 1.5 and 1.7.

Application to rational polyhedra Let us now focus on rational polyhedra, i.e. polyhedra
where all facets can be described by rational inequalities of bit complexity at most ϕ, called the facet
complexity. Bounded facet complexity guarantees bounded vertex complexity, i.e. all extreme point
solutions are rational numbers of bounded encoding length. The seminal work of Grötschel, Lovász,
and Schrijver, summarized in the book Geometric Algorithms and Combinatorial Optimization [19],
provided a polynomial-time algorithm for optimizing over rational polyhedra given by a strong
separation oracles.

They use a black-box argument that requires a subroutine to find either a feasible point or
a small-volume enclosing ellipsoid for the a convex set. Such a subroutine can be implemented
using the ellipsoid method. Exploiting that a small volume ellipsoid must be sufficiently thin in a
certain direction, they use simultaneous Diophantine approximation to identify an affine subspace
containing the feasible region.
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For the sake of simplicity, let us discuss the problem of finding dual optimal solutions under the
following simplifying assumption:

The encoding sizes of the vectors returned by the strong separation oracle are polynomially
bounded by the facet complexity ϕ.

(4)

Under this assumption, one can find a optimal dual solutions with oracle inequalities [19, Lemma
6.5.15]. This assumption is not without loss of generality; we discuss this and different concepts of
dual solutions in Section 7. In Section 7.2, we sketch how one can still recover the results of [19]
from our approach in case (4) does not hold.]

For finding the optimal dual solutions, [19] needs several runs of the (primal) ellipsoid method,
including the final one where the variable set corresponds to a large (albeit still polynomially
bounded) set of inequalities. The running time depends on a higher power of ϕ.

Under the same assumption (4), Theorem 1.7 enables a much simpler and more efficient algo-
rithm. Even though Theorem 1.7 requires a polyhedral separation oracle, in Section 7.1 we show
that one can convert a strong separation oracle to a polyhedral separation oracle by rounding the
right hand sides of the inequalities using the continued fractions method. Lemma 7.2 shows that
δM ≥ 1/2O(n3ϕ) for the associated conic system.Compared to the general framework in [19], this
method has the following advantages in the setting of (4).

• We can identify lower dimensional subspaces without simultaneous Diophantine approxima-
tion. The only ‘number theoretic’ subroutine we use is the continued fractions method;
otherwise, we rely on the purely geometric measure δM . Our algorithm can recurse by setting
some inequalities returned by the oracle to equality.

• We recover dual certificates along with the primal solutions, without the need of solving a
second, much larger linear program. The running time in [19] on a higher degree polynomial
of ϕ; our running time depends linearly on log(1/δM ).

• The algorithms in [19] require accuracy depending on ϕ from the approximate subroutines.
The running time of our algorithm depends on the condition number δM that can be drastically
better than the lower bound implied by ϕ. In a sense, we work directly with the condition
numbers implicit in [19] and lower bounded using the facet complexity.

Dual optimal solutions for LPs in the oracle model can be important for applications in com-
binatorial optimization. For example, the recent paper Svensson et al. [36] on the asymmetric
travelling salesman problem crucially uses an optimal dual solution to the Held–Karp relaxation;
prior to our work, this could only be obtained using the method in [19]. For this relaxation, one
can naturally obtain a polyhedral separation oracle that returns a violated degree constraint or
blossom inequality. Therefore, we do not even need to round the right hand sides. Our algorithm
proceeds directly by identifying tight inequalities in an optimal solution, and terminates with exact
primal and dual optimal solutions in strongly polynomial time.

Implementing the approximate conic oracle Both [19] and Theorem 1.7 are black-box
methods. However, [19] requires a seemingly weaker ‘primal-only’ subroutine, whereas Theorem 1.7
requires an approximate dual certificate. We next explain that this difference is illusory: a ε-
approximate conic Farkas certificates can be naturally extracted from the ellipsoid method as well
as other convex feasibility algorithms.

The algorithm of Theorem 1.5 is based on the JLSW [23] cutting plane method. In Section 6, we
present a general technique to extract ε-approximate conic Farkas certificates from various methods
to solve convex feasibility problems; we only list the oracle complexities here.

• The ellipsoid method [19] can be modified to provide an algorithm for Approx-Conic-Dual
with To(n, ε) = O(n2 log(1/ε)) oracle calls(Section 6.3).

• Volumetric cutting plane methods [23, 28, 40] can be used to provide an algorithm for
Approx-Conic-Dual with To(n, ε) = O(n log(1/ε)) oracle calls(Section 6.4). We note that
[28] contains an almost explicit statement that gives the bounds To(n, ε) = O(n log(n/ε)) and

Ta(n, ε) = O(n3 logO(1) log(n/ε)), see Theorem 6.2.

• The geometric rescaling algorithm [12, 21] can be modified to provide an algorithm for
Approx-Conic-Dual with To(n, ε) = O(n3 log(1/ε)) oracle calls(Section 6.5).

A common feature of the above methods applied to the intersection K ∩ Bn(1) of the cone and
the unit ball is that they can find a “ε-thin direction”, that is, an oracle inequality mt such that
m>t x ≤ ε‖mt‖ · ‖x‖ for every x ∈ K. By convex duality, there must exist a dual certificate of this
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bound using inequalities returned by the oracle during the course of the algorithm; such certificate
would provide an ε-approximate Farkas certificate.

One aspect that is ostensibly absent from the original ellipsoid method or from Vaidya’s method
is duality: at first sight, they appear to be “primal” methods only, where infeasibility is concluded
by a volumetric argument, relying on the assumption that the feasible region has a sufficiently large
volume, without returning a Farkas certificate of infeasibility. Furthermore, in the ellipsoid method
no certificate is maintained of the fact the feasible region is contained within the current ellipsoid.

In a remarkable paper, Burrell and Todd [7] showed that, in the context of the ellipsoid method,
both these shortcomings are illusory. They introduced a new view of the ellipsoid method in terms
of what we will refer to in Section 6 as ‘certified concave quadratic forms’. The ellipsoid E produced
by the algorithm at any iteration is maintained in the form E = {x ∈ Rn : q(x) ≥ 0}, where the
strictly concave quadratic form q(x) is built from the defining constraints of P and the initial ball
constraint ‖x‖ ≤ r in a way that immediately verifies the containments P ⊆ E. Furthermore
Burrell and Todd showed that, from such a representation, one can construct dual certificates for
any bound that holds for a linear function over the elliposid E.

We extend Burrell and Todd’s framework beyond the ellipsoid method. A further illustration
is given on the geometric rescaling algorithm, by showing how certified quadratic forms can be
maintained during execution of the algorithm. For volumetric cutting plane methods, there is no
additional overhead in maintaining the quadratic forms. We show that the final output of the
algorithm can be converted to a certified concave quadratic form.

Nemirovski, Onn, and Rothblum [30] extended the work of Burrell and Todd by giving a very
general certification procedure for the oracle model. Consider any convex minimization problem
given by oracle access, returning separators for infeasible points and subgradients of the objective
function for feasible points, and consider an algorithm (such as variants of cutting plane methods),
that can find a feasible solution with objective value within ε > 0 from the optimum value. Under
mild assumptions, they show that it is possible to construct a dual certificate of the approximate
optimality of the solution as an appropriate conic combination of the separators and subgradients
obtained during the algorithm. Any such certification procedure should be applicable to implement
Approx-Conic-Dual.

1.2 Explicit linear programs and connections with circuit imbalance

Let us now consider the implications of our results on explicitly given LP, and compare the running
time achieved by our algorithm with the currently fastest algorithms for this setting. We consider
linear programs of the form

min c>x, Ax = b, x ≥ 0 , (5)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn. The dual can be written as

max b>y, A>y ≤ c . (6)

One can obtain an O(mn) time polyhedral separation oracle for this problem by computing the
vector A>y.

Using the JLSW algorithm [23] to implement the approximate oracle for (6), Theorem 1.3 yields
a complexity bound O

(
nm3 log(n/δA>) +m5 log log(n/δA>)

)
for the feasibility of (5) (that is, the

dual of (6)), and O
(
nm3 log(n/δ(A>,c)+(0,1)) +m5 log log(n/δ(A>,c)+(0,1))

)
for optimization.

We compare this with recent work on explicitly given linear programs [10, 11]. For the com-
parison, we need to introduce the following condition number. For a linear space W ⊆ Rn, the
set of elementary vectors E(W ) is the set of support minimal nonzero vectors in W ; the support
of elementary vectors corresponds to the set of circuits in the associated linear matroid. The cir-
cuit imbalance measure κW is defined as the maximum ratio |gj/gi| over all g ∈ E(W ) and all
i, j ∈ supp(g). For a matrix A ∈ Rm×n, we let κA denote κW for W = ker(A). In particular,
κA = 1 for totally unimodular matrices.

Dadush et al. [11], strengthening Tardos’s result [37] on combinatorial linear programs, gave an
algorithm with running time poly(n,m, log(κA + n)) for solving linear programs of the form (5).

The condition number κA is within a factor 1/n from the Dikin–Stewart–Todd condition number
χ̄A used in [43], see [10, 11]. Hence, log(κA + n) = Θ(log(χ̄A + n)).

The algorithm in [11] is of a black-box nature: for linear optimization, it requires O(nm) calls to
an approximate linear programming solver with accuracy ε = 1/(nκA)O(1). For the linear feasibility
problem Ax = b, x ≥ 0, O(m) calls suffice. Combined with the solver of van den Brand [41] the
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running time is O
(
mnω log2(n) log(κA + n)

)
, and combined with the solver of van den Brand et

al. [42], it is O
(

(nm2 +m4) logO(1)(n) log(κA + n) +m5 log log(κA + n)
)

.

The condition numbers 1/δ and κ are reconciled in Section 8. In Lemma 8.2 and Corollary 8.3
we show that for a matrix of the form A = (Im|A′), log(n/δA>) = Θ(log(κA + n)). We can
therefore use our conic validity algorithm in Theorem 1.7 to find a feasible solution to (5) in
poly(n,m, log(κA + n)) time. In particular, using the JLSW algorithm [23] to implement the
approximate oracle gives us a running time of O(nm3 log(n+κA)+m5 log log(n+κA)) for feasibility
of (5).

At a high level, the feasibility algorithm in [11] and our conic validity algorithm both use
approximate solutions to Ax ≈ b, x ≥ 0 to reduce the problem size, and project out variables
with high xi values. The main difference is that [11] requires a stronger approximate oracle that
enables a more efficient ‘pullback’ of a Farkas certicate in case of infeasibility. Our algorithm has
an additional term O(m5 log log(n + κA)) compared to O(min{m5,mnω} log log(κA + n)) in [11].
We note that our method cannot reproduce the main result of [11] of a poly(n,m, log(κA + n))
algorithm for linear optimization: our running time depends on δ(A>,c)+(0,1). On the other hand,
[11] heavily uses that the system is explicitly given, while our method extends to the oracle setting.

Finally, in Section 8.1, we also show that for an explicitly given matrix A ∈ Rm×n, one can find
a nonsingular T ∈ Rm×m that approximately maximizes δ(TA)> , based on the result of Dadush et
al. [10] on optimal column rescaling κ∗A of κA.

1.3 Overview of techniques

Adaptive bound on δM In general, computing δM may be difficult. Nevertheless, our algo-
rithms are all “oblivious” to the value of δM : we do not need to know this parameter to terminate
within the claimed number of oracle calls. Let us start with the optimistic estimate δ̂ = 1/n,
and run the algorithm with this value. The precision ε required from Approx-Conic-Dual will
depend on our adaptive estimate of δ̂. The algorithm may succeed even if δ̂ > δM . In case the
algorithm fails to deliver the required conclusions, it will be able “certify” such failure, by return-
ing a set of linearly independent rows {mi : i ∈ J} along with coefficients λi ∈ RJ such that∑
i∈J λimi < δ̂maxi∈J λi‖mi‖, thus showing δ̂ > δM . We can then update our guess to the bound

implied by these vectors or to δ̂2, whichever is smaller, and simply restart the algorithm.
Hence, if our algorithm has not succeeded for the very first time, we will have the guarantee

that δ̂ ≥ δ2
M for all subsequent trials. Assuming the running time of each trial is bounded as

poly(n, log(1/δ̂)), the overall running time of all trials will be dominated by the running time of
the final, successful trial.

Strong conic feasibility Consider the strong conic feasibility algorithm for a cone K and
constraint m>1 x > 0. We call the subroutine Approx-Conic-Feasible for the cone K1 = K∩{x ∈
Rn : m>1 x > 0} and ε = δ̂/O(n). The algorithm terminates if a feasible solution is found.
Otherwise, an ε-approximate conic Farkas certificate λ ∈ Rm+ is returned.

Assume first that such vector λ satisfies M>λ = 0. The certificate shows that K ⊆ ker(MJ),
where J = supp(λ). In particular, if λ1 > 0, then this shows that m>1 x = 0 for all x ∈ K, and the
algorithm stops. Otherwise, the algorithm recurses on the lower dimensional space ker(MJ). In
case M>λ 6= 0, we use a Carathéodory-style subroutine which either succeeds in finding another
nonzero λ′ ∈ Rm+ , with linearly independent support such that M>λ′ = 0, in which case we proceed
as above, or fails in finding such a vector, in which case it will output a certificate that our adaptive
estimate δ̂ was incorrect (that is, δ̂ > δM ).

Conic validity and conic minimum-ratio The algorithms for conic validity and conic
minimum-ratio are more involved, due to the fact that the number of iterations should only depend
on n and δM , but not on c and d. In particular, the simple strategy adopted for strong conic
validity does not work, as it would require a level of precision ε dependent on c and d.

We briefly outline the main idea for the conic validity algorithm; the conic-minimum ratio
algorithm is a further extension of this idea. The conic validity algorithm for the cone K and
vector c, calls the subroutine Approx-Conic-Feasible for the cone Kc = K∩{x ∈ Rn : c>x > 0}
and ε = δ̂2/O(n2). We terminate in case a feasible solution is found. Otherwise, we consider the
ε-approximate conic Farkas certificate (λ, τ) ∈ Rm+ ×R+ returned, where τ is the multiplier for the
inequality −c>x < 0. If τ is sufficiently small, then we can recurse as in the feasibility algorithm.

9



If τ is large, then—assuming δ̂ ≤ δM—the inequalities of Mx ≥ 0 corresponding to suitably large
entries of λ have to be satisfied at equality for every x ∈ K. We recurse on the lower dimensional
space and continue. At any step we will therefore have a set F ⊆ [m] with the guarantee that

Kc ∩ ker(MF ) 6= ∅, assuming δ̂ ≤ δM . However, observe that, if our estimate δ̂ was actually not
correct, it is possible that we recursed on the wrong subspace, that is, Kc∩ker(MF ) = ∅. (This is in
contrast with the feasibility algorithm described above, where K1 ⊆ ker(MF ) is always guaranteed
when recursing.) The algorithm recurses until it either finds x ∈ K ∩ ker(MF ) such that c>x > 0,
in which case we stop with the feasible solution x, or a dual certificate λ̃ of the fact that c>x ≤ 0 for
all x ∈ K∩ker(MF ). The main technical tool at this stage is an algorithm, described in Lemma 4.4,
is a pullback subroutine. Starting from λ̃, it either produces a dual certificate λ ∈ Rm+ such that

M>λ = −c, in which case we stop, or detects a failure for δ̂, in which case we update our bound
δ̂M and continue.

1.4 Further related results

In recent work, Jiang [22] improved the complexity bounds of minimizing convex functions over
integers. This is achieved by a more direct application of lattice basis reduction than in [19].
However, this does not seem to lead to an improvement for rational polyhedra in the bounded facet
complexity model.

The Burrell–Todd representation [7] was also used recently by Lamperski, Freund, and Todd
[26] to developed an “oblivious ellipsoid algorithm” that terminates in finite time, assuming P is
explicitly given by inequalities, and that P is either full-dimensional or empty. In contrast, our
result is applicable also for degenerate systems. We also note that whereas [26] use a modification
of the standard ellipsoid method, our approach uses the standard method in a black-box manner.

Geometric rescaling is a more recent class of polynomial-time linear programming algorithms:
the common theme of such algorithms is to boost simple iterative algorithms by adaptively changing
the scalar product. The first such algorithms were given by Betke [3] and by Dunagan and Vempala
[15], and a number of papers have since appear on the subject. We refer the reader to [12] for an
overview of such results. Whereas most of these algorithms work only under the assumption that
the constraints defining the cone are explicitly given as part of the input, some variants, including
those described in [12, 21], can be naturally extended to the oracle setting. We implement the
approximate conic oracle in Section 6.5 for these variants.

Theorem 1.7 also gives an answer to a question raised in [12] on finding a “primal-dual” geometric
rescaling algorithm for the conic maximum support problem that does not depend on a priori bounds
on the condition numbers. Such an algorithm was also recently obtained for explicitly given systems
by Pena and Soheili [32]. Their algorithm runs the rescaling algorithms in parallel on the primal
and dual problems, with increasing estimates on a certain condition number.

Organization of the paper Sections 3, 4, and 5 describe the algorithms for the strong conic
feasibility, conic validity, and minimum conic ratio problems, along with their analyses. Sections 6.1
and 6.2 describe our general approach to finding approximate Farkas certificates from certified
quadratic forms. Sections 6.3–6.5 describe different implementations of the oracle Approx-Conic-
Dual, based on different methods (ellipsoid, volumetric cutting plane, and geometric rescaling).
Section 7 relates the results presented to the classical framework of rational polyhedra. Finally,
Section 8 shows the connection between the condition number δ and the circuit imbalance measure.
Appendix A includes the proofs of the impossibility results of Propositions 1.1 and 1.4.

2 Preliminaries

For a natural number k < m, let [m] = {1, 2, . . . ,m}, [k,m] = {k, k + 1, . . . ,m}. For any number
α ∈ R, we let α+ = max{α, 0} and α− = max{−α, 0}. For a vector x ∈ Rn, x+ and x− in Rn are
defined by (x+)i = xi, (x−)i = x−i , i ∈ [i]. Thus, x = x+ − x−. Let ~ej denote the jth unit vector
in Rn. For a set of vectors {vj : j ∈ J} ⊆ Rn, we let span(vj : j ∈ J) ⊆ Rn the linear subspace
they span; for a matrix B ⊆ Rn×m, let span(B) ⊆ Rn denote the linear subspace spanned by the
columns of B.

For any matrix H ∈ Rk×n and every J ⊆ [k], we denote by HJ the submatrix of H defined
by the rows indexed by J , and similarly, for v ∈ Rk, vJ defined the restriction of v to the entries
indexed by J .
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K ⊆ Rn is a cone if K is convex and K is closed under positive scalings, that is, x ∈ K ⇒ λx ∈
K,∀λ > 0. For a set of vectors v1, . . . , vk ∈ Rn, we let cone(v1, . . . , vk) := {

∑k
i=1 λivi : λ1, . . . , λk ≥

0} denote the closed cone generated by v1, . . . , vk.
For a convex set C ⊆ Rn, we say that F ⊆ C is a face of C if F is convex and if for all x, y ∈ C,

we have that λx + (1 − λ)y ∈ F, λ ∈ (0, 1), implies that x, y ∈ F . The lineality space of C is the
largest linear subspace W such that C +W = C. We say that closed convex set C is pointed if its
lineality space is W = {0}. For a closed pointed cone K, the set of 1-dimensional faces of K are
called the extreme rays of K. Slightly abusing notation, we will also say that v ∈ K \ {0} is an
extreme ray of K if R+v is a 1-dimensional face of K.

Given p ∈ Rn and r > 0, we denote by Bn(p, r) the ball of radius r in Rn centered at p.
We use the notation Bn(r) for Bn(0, r). We denote by Sn++ and Sn+ the sets of symmetric n × n
positive definite and positive semi-definite matrices, respectively. For P,Q ∈ Sn+, we use P � Q

if Q − P ∈ Sn+. For Q ∈ Sn++ and a vector v ∈ Rn, we let ‖v‖Q
def
=
√
v>Qv; this defines a norm

over Rn. We use ‖ · ‖1 for the `1-norm and ‖ · ‖2 for the Euclidean norm. When there is no risk of
confusion we simply write ‖ · ‖ for ‖ · ‖2.

Except for Section 7 on rational polyhedra, weuse the real model of computation, allowing basic
arithmetic operations +, −, ×, / and comparisons. We avoid using square roots exactly: instead
of unit norm vectors, we sometime assume that ‖v‖ ∈ [1, 2] for certain vectors. The results can be
easily adapted to the Turing model; however, this requires rounding stepsfor the ellipsoid method
in Section 6.3.The black box algorithms in Sections 3–4 only use simple linear algebra subroutines
that can be implemented in the Turing model without any modification.

The following simple claim will be needed for running time estimations when using an adaptive
bound on the condition number δM .

Lemma 2.1. Let 1/n = δ1 > δ2 > . . . > δt and δ > 0 be real numbers such that δi+1 < δ2
i for

i ∈ [t− 1], δt > δ2, and ν ≥ 1. Then,

t∑
i=1

logν(n/δi) = O(1) · logν(n/δ) .

Separation oracle variants For a convex set K ⊆ Rn, a strong separation oracle takes as
input a point x̄ ∈ Rn, and either either returns the answer x̄ ∈ K, or a nonzero vector a ∈ Rn,
such that a>x < a>x̄ for every x ∈ K. This is the standard separation oracle model used for
the ellipsoid and other cutting plane methods. The notion of conic separation oracle required for
Approx-Conic-Dual oracle is, as discussed in the Introduction, identical to the strong separation
oracle if the cone K it defines is non-empty.

Recall that our main results Theorem 1.3 and Theorem 1.7, make stronger oracle assumptions.
Namely, we assume that a polyhedron P , is defined by a polyhedral separation oracle: if x̄ 6∈ P , the
oracle returns an inequality a>x ≤ β violated by x̄, where the set of all inequalities returned by the
oracle for all possible choices of x̄ /∈ P is finite. We will often write that P = {x : Ax ≤ b} is defined
by a polyhedral separation oracle to mean that Ax ≤ b comprises all such possible inequalities,
with the understanding that Ax ≤ b is not explicitly given, but we have access to it via the oracle.

In Section 7 we show that for rational polyhedra satisfying assumption (4) on bounded bit-
complexity, a strong separation oracle can be converted into a polyhedral separation oracle.

2.1 Reducing LP to the conic setting: proof of Theorem 1.3

We now give the proof of Theorem 1.3 using Theorems 1.5 and 1.7. Consider a polyhedron P = {x ∈
Rn : Ax ≤ b} for some A ∈ Rm×n, b ∈ Rm and its recession cone rec(P ) = {x ∈ Rn : −Ax ≥ 0},
both of which are given by a polyhedral separation oracle.

We derive parts (i), (ii), (iii) of Theorem 1.7 using the standard homogenization of P into
Rn+1. Namely, we examine

K = {(x | t) ∈ Rn+1 : tb−Ax ≥ 0, t ≥ 0} := {(x | t) ∈ Rn+1 : M(x | t) ≥ 0}, (7)

where M ∈ R(m+1)×(n+1) is as in (1). Note that (x | 0) ∈ K ⇔ x ∈ rec(P ) and that (x | t) ∈ K, t >
0⇔ x/t ∈ P .3

3We cannot directly build a polyhedral conic separation oracle for K given our assumptions. In particular, for an
input (x, 0) to the oracle, if (x, 0) /∈ K, we would need to return (−ai | bi) such that −a>i x < 0. Our polyhedral separator
for rec(P ) would give us access to ai but not to bi, noting that the inequality (−ai | 0)>(x | t) ≥ 0 is not necessarily valid
for K. We will be able to circumvent this issue however, as the problems we wish to solve will only require polyhedral
conic seperation oracles for sub-cones of K, that we will be able to build directly.
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(i) Primal feasibility We must compute a solution to Ax ≤ b or a Farkas certicate of infeasi-
bility A>λ = 0, b>λ < 0, λ ≥ 0. We reduce to solving strong conic feasibility using Theorem 1.7 on
K as above with the constraint t > 0 corresponding to m1. For this purpose, we require a polyhe-
dral separator for K1 := {(x | t) ∈ K : t > 0}, which can be derived directly from the polyhedral
separation oracle for P . Namely, given (x′ | t′), if t′ ≤ 0, we return the separator t > 0, and if
t > 0, we call the separator for P on x′/t′. If x′/t′ violates aix ≤ bi for P , we return (−ai | bi) for
K ′. From here, if Theorem 1.7 returns (x | t) ∈ K1, we return x/t ∈ P , and if it returns λ ∈ Rm+
satisfying λ>(−A, b) + 1 · (0, 1) = 0, we return λ as the Farkas certificate.

(ii) Dual feasibility We must compute a solution to A>λ = c, λ ≥ 0, or find a solution to
Ax ≤ 0, c>x > 0. For this purpose, we reduce to the conic validity problem using Theorem 1.7 on
the cone K = rec(P ) := {x ∈ Rn : −Ax ≥ 0} and the vector c̄ := −c. This requires a polyhedral
conic separation oracle for Kc̄ = {x ∈ Rn : −Ax ≥ 0, c>x > 0}. This is direct to implement since
we have access to a polyhedral separation oracle for rec(P ) and c is known to us. Since the conic
validity problem is a direct restatement of the dual feasibility, the correctness of the reduction is
evident.

(iii) Optimization Assuming both Ax ≤ b and A>λ = c, λ ≥ 0 are feasible, we must find an
optimal primal-dual pair x∗, λ∗ satisfying complementary slackness, namely (λ∗)>(b − Ax∗) = 0.
We reduce this to the conic minimum-ratio problem on K given by min{−c>x/t : (x | t) ∈ K, t > 0}
using Theorem 1.7. Note that this problem can be rewritten as min{c̄>(x | t)/d>(x | t) : (x | t) ∈
K, d>(x | t) > 0}, where c̄ = (−c | 0) and d = (0 | 1).

For this purpose, we first require that d = (0 | 1) be given as a conic combination of the original
constraints of K, which trivially holds since (0 | 1) induces an original constraint itself; hence
I = {1}. We also require polyhedral separators for K−d = {(x | t) ∈ K : d>x > 0} = {(x | t) ∈
K : t > 0} and for K=

I = {(x | t) ∈ K : d>x = 0} = {(x | 0) ∈ K} := (rec(P ) | 0). As explained
in the previous paragraphs, these separators can be directly constructed from the corresponding
polyhedral separators for P and rec(P ). Furthermore, we recall that feasibility of Ax ≤ b is
equivalent to K−d 6= ∅ (i.e., d>(x | t) = 0 is not valid for K) and feasibility of A>λ = c, λ ≥ 0 is
equivalent to −c>x = c̄>(x | t) ≥ 0 being a valid inequality for K=

I .
Given the above, the conic minimum-ratio solve must output γ∗ ∈ R, (x∗ | t∗) ∈ Kd, λ

∗ ∈
Rm+ , β∗ ≥ 0 such that γ∗ = −c̄>(x∗ | t∗)/(d>(x∗ | t∗)) = c>x/t and (λ∗)>(−A, b) + β∗(0, 1) =
c̄>+ γ∗d> = (−c, γ∗). We claim that x∗/t∗, λ∗ are the desired optimal primal-dual pair. To begin,
we note that the inclusion x∗/t∗ ∈ P is direct since t∗ > 0. Furthermore, by the guarantees of the
output we have that

0 = (c̄+ γ∗d)>(x∗ | t∗) = ((λ∗)>(−A, b) + β∗(0, 1))(x∗ | t∗) = (λ∗)>(t∗b−Ax∗) + β∗t∗ ≥ 0 + 0 = 0.

Since t∗ > 0, the above implies that β∗ = 0 and that (λ∗)>(t∗b − Ax∗) = 0. Since β∗ = 0, we see
that λ∗ is a valid dual solution. Finally, complementary slackness follows from (λ∗)>(t∗b − Ax∗)
after dividing by t∗.

For all three problems above, the desired running times now follow directly by combining The-
orem 1.5 with the corresponding part of Theorem 1.7.

2.2 Properties of the δ-measure

We start by showing that the δ-measure introduced in Definition 1.2 is equivalent to the definition
of the “δ-distance property” studied in [6, 9, 16], and that it is positive if and only if V is finite.

Lemma 2.2. For a set of vectors V ⊆ Rn, δV is the largest value such that, for every W ⊆ V and
every v ∈ V \ span(W ), the Euclidean distance between v and span(W ) is at least δV ‖v‖. Further,
δV > 0 if and only if |{v/‖v‖ : v ∈ V }| is finite.

Proof. For the first part, let δ′V be the quantity in the statement; we prove δ′V = δV . We can assume
0 /∈ V , and that ‖vj‖ = 1 for all j ∈ V , noting that both quantities δV and δ′V are invariant under
rescaling vectors in V . We first show that δV ≥ δ′V . Let {vj : j ∈ I} ⊆ V be a linearly independent
set of vectors; for any vector vi let zi be the projection of vi to span(vj : j ∈ I\{i})⊥. By definition,
‖zi‖ ≥ δ′V ‖vi‖ = δ′V . It follows that, for every λ ∈ RI ,

∥∥∑
k∈I λkvk

∥∥ ≥ |λi|‖zi‖ ≥ δ′V |λi|. This
shows δV ≥ δ′V .

For the direction δ′V ≥ δV , let W ⊆ V and v ∈ V \ span(W ). W.l.o.g., we can assume that
the vectors in W are linearly independent, hence the vectors in W ∪ {v} are linearly independent.
Denoting by z be the projection of v to span(W )⊥, it follows that there exist a unique vector
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λ ∈ R|W | such that Wλ = v − z. Since the vectors in W ∪ {v} are linearly independent, it follows
from the definition of δV that ‖z‖ = ‖Wλ− v‖ ≥ δV ‖v‖, showing that δ′V ≥ δV .

If |V | is finite, then δ′V is defined as the minimum of a finite number of positive numbers,
showing δV = δ′V > 0. If |V | is infinite, then there exists a convergent sequence in V (recalling that
all vectors are renormalized to 1 and thus V ⊆ Bn(0, 1)); let vk, k ∈ N be such a sequence. Thus,
for any ε > 0, there exists vj , vk ∈ V such that ‖vj − vk‖ < ε. Setting I = {j, k}, λj = 1, λk = −1,
we have ‖

∑
i∈I λivi‖ = ‖vj − vk‖ < ε; on the other hand, |λj | = |λk| = 1. This shows that δV < ε

for every ε > 0.

The following characterization can be shown with a similar argument.

Lemma 2.3 ([6, Lemma 5(i)]). Consider a matrix M ∈ Rm×n such that all rows m>i have norm
one. For a matrix B ∈ Rm×m, let γ(B) denote the maximum column norm of B. Then,

1

δM
= max

{
γ(N−1) : N is an m×m submatrix of M

}
We recall the classical Minkowski–Weyl theorem for polyhedral cones.

Theorem 2.4. Let K = {x ∈ Rn : Mx ≥ 0}, be a closed polyhedral cone with M ∈ Rm×n. Then,
the following holds:

• L = ker(M) = span(M>)⊥ is the lineality space of K, K ∩ L⊥ is a closed pointed cone and
K = L+ (K ∩ L⊥).

• K∩L⊥ = cone(v1, . . . , vk), where v1, . . . , vk are the extreme rays of K∩L⊥. Furthermore, for
each i ∈ [k], there exists S ⊆ [m], |S| = rk(MS) = dim(span(M>))− 1, and j ∈ [m] \ S, such
that vi = λΠSmj for some λ > 0 where ΠS denotes the orthogonal projection onto ker(MS).

The following is the key property of δM in the conic setting. Namely, it gives a lower bound in
terms of δM , on the angles extreme rays of Mx ≥ 0 can form with constraints that they are not
incident to.

Lemma 2.5. Let K = {x ∈ Rn : Mx ≥ 0} be a closed polyhedral cone with M ∈ Rm×n.
Then, for any extreme ray v of K ∩ span(M>) and i ∈ [m], we have that either m>i v = 0 or
m>i v ≥ δM‖mi‖ · ‖v‖, ∀i ∈ [m].

Proof. Let v ∈ K ∩ span(M>) \ {0} be an extreme ray and let i ∈ [m]. Then, by Minkowski–Weyl
(Theorem 2.4), there exists S ⊆ [m], |S| = rk(MS) = dim(span(M>)) − 1 and j ∈ [m] such that
v = λΠSmj , λ > 0, where ΠS is the orthogonal projection onto ker(MS). Since ΠS(span(M>)) is
1-dimensional and v>mi ≥ 0, we see that v>mi = v>ΠSmi = ‖v‖ · ‖ΠSmi‖. If mi ∈ span(M>S ),
then clearly ΠSmi = 0 and thus v>mi = 0. If mi /∈ span(M>S ), then ‖ΠSmi‖ ≥ δM‖mi‖ follows
by Lemma 2.2. The statement thus follows.

3 The strong conic feasibility algorithm

In this section, we prove the part of Theorem 1.7 for the strong conic feasiblity problem. We assume
a polyhedral conic separation oracle is available for

K1 = {x ∈ Rn : Mx ≥ 0,m>1 x > 0} ,

and that the subroutine Approx-Conic-Dual for K1 is provided as in Section 1.1, requiring
To(n, ε) oracle calls, Ta(n, ε) arithmetic operations, and returning an ε-approximate conic Farkas
certificate of size at most τ(n).

The next lemma captures the key recursive step:

Lemma 3.1. Let K = {x ∈ Rn : Mx ≥ 0} for M ∈ Rm×n, given by a conic separation oracle, and
let m>1 be the first row. There exists an oracle polynomial-time algorithm using O(To(n, δM/(2n)))
oracle calls and O(Ta(n, δM/(2n)) + (n3 + nτ(n)2) log log(1/δM )) that either finds an x ∈ K with
m>1 x > 0, or λ ∈ Rm+ that is a minimal support solution to M>λ = 0.

In Section 3.1, we show how the strong conic feasibility algorithm can be obtained by at most
n calls to this subroutine. The proof of Lemma 3.1 relies on the decomposition stated in the
next lemma. This is essentially a careful reading of the proof of Carathéodory’s theorem. It is a
consequence of [11, Lemma 4.1]; we include the proof for completeness.
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Lemma 3.2. There exists an O(n|J |2 + n2|J |) time algorithm that, given vectors {vj : j ∈ J},
λ ∈ RJ+, and c ∈ RJ such that c>λ > 0, outputs one of the following.

(i) A vector λ̄ ∈ RJ+ such that
∑
j∈J λ̄jvj =

∑
j∈J λjvj, c

>λ̄ ≥ c>λ, and the vectors {vj : λ̄j > 0}
are linearly independent.

(ii) A nonzero vector µ ∈ RJ+ which is a support-minimal solution to
∑
j∈J µvj = 0, and such

that c>µ ≥ 0.

Proof. We initialize λ̄ = λ, and maintain
∑
j∈J λ̄jvj =

∑
j∈J λjvj , c

>λ̄ ≥ c>λ > 0 throughout.

At every iteration, either supp(λ̄) becomes strictly smaller, or we find a vector µ as in (ii). If we
do not end with outcome (ii) at some iteration, then we terminate once {vj : λ̄j > 0} are linearly
independent.

If the vectors in the support of λ̄ are linearly dependent, then let µ 6= 0 be a support-minimal
vector such that

∑
j µjvj = 0, supp(µ) ⊆ supp(λ̄). If µ ≥ 0 and c>µ ≥ 0 or µ ≤ 0 and c>µ ≤ 0,

then we we output µ or −µ, respectively, and terminate with outcome (ii). Otherwise, possibly by
replacing µ by −µ, we can assume that c>µ ≥ 0 and µ has a negative component. Let α > 0 be
the largest number such that λ̄ + αµ ≥ 0, and update λ̄ := λ̄ + αµ. Note that supp(λ̄) decreases
by at least one, and by the choice of µ, we have

∑
j∈J λ̄jvj =

∑
j∈J λjvj , c

>λ̄ ≥ c>λ.

The running time bound is standard; it takes O(n2|J |) arithmetic operation to bring the system∑
j∈J vjµj = 0 (in the variables µj , j ∈ J) in normal echelon form via Gaussian elimination.

At every iteration, if we reduce the support of λ̄, we remove the vectors corresponding to zero
components of λ̄, and it take O(n|J |) operations per vector removed to bring the system back to
echelon normal form, for a total of O(n|J |2) operations.

Proof of Lemma 3.1. We maintain an estimate δ̂ on δM , initializing δ̂ := 1/n. A nonzero vector λ ∈
Rm is a failure for δ̂ if {mj : j ∈ supp(λ)} are linearly independent and ϕ := ‖M>λ‖/(maxj∈[m] λj‖mj‖) <
δ̂, proving δM ≤ ϕ. Whenever we detect a failure, we update δ̂ := min{δ̂2, ϕ}.

We call the subroutine Approx-Conic-Dual forK1 for ε := δ̂/(2n). This requires To(n, δ̂/(2n))

oracle calls and Ta(n, δ̂/(2n)) operations. Either we obtain an x ∈ K with m>1 x > 0, or λ ∈ Rm+
such that

∑m
j=1 λj‖mj‖ ≥ 1 and ‖M>λ‖ ≤ δ̂/(2n); let J = supp(λ). If M>λ = 0 then we can

readily return the vector λ.
If M>λ 6= 0, then we apply Lemma 3.2 to λ, the vectors {mj : j ∈ J}, and to the vector

c ∈ Rm defined by cj = ‖mj‖, j ∈ [k]. Recall that |J | ≤ τ(n), hence this step requires O(n2|J | +
n|J |2) = O(n3 + nτ(n)2) arithmetic operations. If outcome (i) occurs, then we obtain λ̄ ∈ Rm+
with supp(λ̄) ⊆ J ,

∑m
j=1 λ̄j‖mj‖ ≥ 1 such that M>λ̄ = M>λ, and the rows of M in the support

of λ̄ are linearly independent. We claim that λ̄ is a failure for δ̂. Suppose not. Then we obtain a
contradiction

δ̂

2n
≥
∥∥M>λ∥∥ =

∥∥M>λ̄∥∥ ≥ δ̂ max
i∈supp(λ̄)

λ̄i‖mi‖ ≥
δ̂

n
, (8)

where the last inequality follows from
∑
j∈J λ̄j‖mj‖ ≥ 1 and supp(λ̄) ≤ n. In this case we update

δ̂ and ε accordingly, and call ε = δ̂/(2n) for the new value of ε. If outcome (ii) occurs, we obtain
a nonzero µ ∈ Rm+ , supp(µ) ⊆ J such that M>µ = 0 and µ is support minimal; we can return µ
as the output. The running time bound follows using Lemma 2.1, using the choice of the estimates
δ̂.

3.1 The recursive algorithm

We now describe the overall strong conic feasibility algorithm, with the running time bound stated
in Theorem 1.7. This can be achieved by making at most n calls to the algorithm in Lemma 3.1.
We gradually identify a subset F ⊆ [m] and find coefficients ξ ∈ Rm+ , such that supp(ξ) = F ,
M>ξ = 0, |F | ≤ 2rk(MF ). This certifies that MFx = 0 for all x ∈ K.

This set is initialized as F = ∅; after the first call to Lemma 3.1, if the output is a support
minimal solution λ ≥ 0 to M>λ ≥ 0, then we select F = supp(λ). F will be extended in every
iteration; thus, the algorithm terminates by making at most n calls.

The following notation and subsequent Lemmas 3.3 and 3.4 will also be used in later sections,
and apply for any F ⊆ [m] (that is, we do not require K ⊆ ker(MF )). Given an index set F ⊆ [m],
let ΠF ∈ Rn×n be the orthogonal projection matrix onto ker(MF ). Computing ΠF requires O(n3)
operations. For every vector v ∈ Rn, let

vF := ΠF v.
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Let TF = {i ∈ [m] : ΠFmi 6= 0} and let MF ∈ RTF×n be the matrix with rows (mF
i )>. Let

KF = {x ∈ Rn : MFx ≥ 0} and KF
1 = {x ∈ Rn : MFx ≥ 0, (mF

1 )>x > 0} . (9)

Lemma 3.3. For any index set F ⊆ [m] and x̄ ∈ Rn, x̄ ∈ KF if and only if ΠF x̄ ∈ K. In
particular, KF = (K ∩ ker(MF )) + span(M>F ). Given a conic separation oracle for K1, we can
implement a conic separation oracle for KF

1 , requiring O(n2) time for each oracle call.

Proof. For the first part, note that x̄ ∈ KF ⇔ M(ΠF x̄) ≥ 0 ⇔ ΠF x̄ ∈ K. The second statement
follows directly from the fact that ΠF x̄ ∈ {x ∈ Rn : m>i x = 0, i ∈ F}. For the separation oracle
for KF

1 , if mF
1 = 0 then we have KF

1 = ∅; for the rest of the proof, let us assume mF
1 6= 0. Take

any x̄ ∈ Rn, and run the conic separation oracle for K1 for the orthogonal projection ΠF x̄. If
ΠF x̄ ∈ K1, we can return x̄ ∈ KF

1 . If not, then we obtain an inequality m>1 x > 0 or m>i x ≥ 0 for
i > 1 violated by ΠF x̄. In the first case this means m>1 (ΠF x̄) ≤ 0, meaning (mF )>x ≤ 0. In the
second case, m>i (ΠF x̄) < 0 for some i ∈ TF . Note that ΠFmi 6= 0 and (mF

i )>x̄ = m>i (ΠF x̄) < 0,
hence (mF

i )>x ≥ 0 is a violated inequality in the system defining KF . Computing ΠF x̄ and ΠFmi

requires time O(n2).

Lemma 3.4. For any F ⊆ [m], we have δMF ≥ δM .

Proof. Consider a set J ⊆ TF such that {mF
j : j ∈ J} are linearly independent. Consider λ ∈ RJ .

There exists θ ∈ RF such that {mi : i ∈ supp(θ)} is linearly independent, and∥∥∥∥∥∥
∑
j∈J

λjΠ
Fmj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
j∈J

λjmj +M>F θ

∥∥∥∥∥∥ ≥ δM max

{
max
j∈J

λj‖mj‖,max
i∈F

θi‖mi‖
}
≥ δM max

j∈J
λj‖ΠFmj‖ ,

where the first inequality follows from the definition of δM , since the vectors in {Πmj : j ∈ J} ∪
{mi : i ∈ supp(θ)} are linearly independent, and the second inequality follows from ‖mj‖ ≥ ‖Πmj‖
for all j ∈ J .

Equipped with the above notation, the description of the algorithm follows. We initialize F = ∅.
If at any iteration mF

1 = 0 then m>1 x = 0 must hold for all x ∈ K; thus, no strong feasible solution
exists. We can obtain an infeasibility certificate as follows. Let µ ∈ Rm with M>µ = 0 such that
supp(µ) ⊆ F ∪ {1} and µ1 = 1. Then, for sufficiently large α > 0, λ′ = µ + αξ is a nonnegative
vector with M>λ′ = 0 such that λ′1 = 1.

Each iteration calls the algorithm described in Lemma 3.1 for MF and KF with the projected
separation oracle as in Lemma 3.3. If the output is a point x ∈ KF with (mF

1 )>x > 0, then we
return the point ΠFx ∈ K with m>1 (ΠFx) > 0, which is a solution to the strong feasibility problem.

The other possible output is a nonzero vector λ̂ ∈ RTF

+ that is a support minimal solution

to (MF )>λ̂ = 0. It follows that M>λ̂ is orthogonal to ker(MF ), so there exists a θ ∈ RF such

that M>λ̂ + M>F θ = 0. Such vector θ can be computed in time O(n3) by Gaussian elimination,

recalling that |F | ≤ 2n. If we extend λ̂ and θ to vectors in Rm by setting to zero the entries

outside of their support, choose α ≥ 0 such that θi + αξi > 0 for all i ∈ F . Let J = supp(λ̂),

and define F ′ = F ∪ J and ξ′ = λ̂ + θ + αξ. We have that M>ξ′ = 0, supp(ξ′) = F ′, ξ′ ≥ 0.

Furthermore, rk(MF ′) = rk(MF ) + rk(MJ) and |J | ≤ rk(MJ) + 1 since λ̂ is support minimal, hence
|F ′| ≤ 2rk(MF ′), so we can update F := F ′, ξ := ξ′.

If none of the recursive calls finds a strongly feasible solution, within at most n iterations we
reach mF

1 = 0 and obtain an infeasibility certificate as above.

Running time analysis Each call to the algorithm in Lemma 3.1 needs O(To(n, δM/(2n)))
oracle calls and O(Ta(n, δM/(2n))+(n3 +nτ(n)2) log log(1/δM )) arithmetic operations, and we call
this algorithm at most n times. By Lemma 3.3, each oracle call for KF requires O(n2) arithmetic
operations. This gives a total number of operations of O(n3To(n, δM/(2n)))+O(nTa(n, δM/(2n))+
(n4 + n2τ(n)2) log log(1/δM )). Whenever we call such an algorithm, we need to update F and ξ,
which requires O(n3) arithmetic operations, as well as ΠF , also in O(n3) arithmetic operations, for
a total of O(n4) operations.
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4 The conic validity algorithm

Next, we prove the part of Theorem 1.7 on conic validity. Recall that in the conic validity problem,
the input is a cone K ⊆ Rn of the form K = {x ∈ Rn : Mx ≥ 0} with M ∈ Rm×n, given by a
conic separation oracle, and an objective vector c ∈ Rn, c 6= 0. The goal is to either find y ∈ Rm+
with M>y = c, or an x ∈ K with c>x < 0. Here, we assume a polyhedral conic separation oracle
is available for

Kc = K ∩ {x ∈ Rn : c>x < 0} ,

and that a subroutine Approx-Conic-Dual for Kc is provided with running time To(n, ε) oracle
calls and Ta(n, ε) arithmetic operations, and returns an ε-approximate conic Farkas certificate
comprised of at most τ(n) oracle separators. The next lemma formulates the main recursive step,

analogously to Lemma 3.1. Note that here we use an arbitrary estimate δ̂ ∈ (0, 1) as opposed to

the true value δM . Outcome (iv) provides a certificate that δ̂ > δM .

Lemma 4.1. Let K = {x ∈ Rn : Mx ≥ 0} for M ∈ Rm×n, given by a conic separation oracle, let

c ∈ Rn, c 6= 0, and let Kc be defined as above. Let δ̂ ∈ (0, 1). There exists an oracle polynomial-time

algorithm using To(n, δ̂2/(8n2)) oracle calls and Ta(n, δ̂2/(8n2)) + O(n3 + nτ(n)2) operations that
returns one of the following:

(i) an x ∈ K with c>x < 0;

(ii) a nonzero vector λ ∈ Rm+ which is a support minimal solution to M>λ = 0;

(iii) a vector λ ∈ Rm+ such that {mj : j ∈ supp(λ)} are linearly independent, along with a

nonempty subset J ⊆ [m] such that for every j ∈ J , λj‖mj‖ > ‖M>λ− c‖/δ̂.
(iv) a vector λ ∈ Rm+ such that {mj : j ∈ supp(λ)} are linearly independent and ‖Mλ‖ <

δ̂maxj∈[m] λj‖mj‖.

Proof. Observe that outcome (i) corresponds to finding a point in Kc. Let us call the subroutine

Approx-Conic-Dual for Kc with ε = δ̂2/(8n2), using the separation oracle just described. This

will require To(n, δ̂2/(8n2)) oracle calls and Ta(n, δ̂2/(8n2)) operations. Either we obtain an x ∈ K
with c>x < 0, or an ε-certificate consisting of oracle inequalities. If these are only original separating
inequalities mi, then we have λ ∈ Rm+ , such that

∑m
j=1 λ‖mj‖ ≥ 1 and ‖M>λ‖ ≤ ε. As in the

proof of Lemma 3.1, we can obtain outcomes (ii) or (iv) using Lemma 3.2.
Assume next the combination also includes −c: we get ‖M>λ̄− τc‖ ≤ ε for (λ̄, τ) ∈ Rm+ × R+

with
∑m
j=1 λ‖mj‖ + τ‖c‖ ≥ 1. First, assume that τ‖c‖ ≤ δ̂/(4n). Then, ‖M>λ̄‖ ≤ ε + τ‖c‖ ≤

ε + δ̂/(4n) < 3δ̂/(8n). At the same time,
∑m
j=1 λ‖mj‖ ≥ 1 ≥ 1 − τ‖c‖ > 3/4. For λ := 4λ̄/3, we

have ‖M>λ‖ ≤ δ̂/(2n) and
∑m
j=1 λ̄‖mj‖ ≥ 1. As in the previous case, we can obtain outcomes (ii)

or (iv).

For the rest, assume that τ‖c‖ > δ̂/(4n). We perform a Carathéodory reduction to find a vector
λ ∈ Rm+ such that M>λ = M>λ̄/τ and such that {mi : i ∈ supp(λ)} are linearly independent.
Similar to the proof of Lemma 3.2, this requires O(n3 + nτ(n)2) time. We derive outcome (iii) by

showing that the set J :=
{
j ∈ [m] : λj‖mj‖ > ‖M>λ− c‖/δ̂

}
is nonempty. Note that

‖M>λ− c‖
δ̂

=
‖M>λ̄− τc‖

τ δ̂
≤ 4n‖c‖

δ̂2
· ε =

‖c‖
2n

. (10)

From the triangle inequality, (10), and the assumption δ̂ < 1, we obtain∑
j∈[m]

λj‖mj‖ ≥ ‖c‖ − ‖M>λ− c‖ ≥ (2n− δ̂)‖M
>λ− c‖
δ̂

> n · ‖M
>λ− c‖
δ̂

.

By the linear independence assumption, |supp(λ)| ≤ n and hence arg maxj∈[m] λj‖mj‖ ∈ J .

Lemma 4.2. In Lemma 4.1, if outcome (iii) occurs and δ̂ ≤ δM , then

Kc 6= ∅ ⇒ Kc ∩ {x ∈ Rn : m>j x = 0, j ∈ J} 6= ∅.

Proof. Let Π denote the orthogonal projection onto ker(M). We examine two cases, Πc 6= 0 or
Πc = 0. If Πc 6= 0, note that c>(−Πc) = −‖Πc‖2 < 0 and m>i (−Πc) = (Πmi)

>(−Πc) = 0,
∀i ∈ [m]. In particular, −Πc ∈ Kc ∩ {x ∈ Rn : m>j x = 0, j ∈ J}, and thus the desired conclusion
holds in this case.
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We may now examine the case Πc = 0 ⇔ c ∈ span(M>). If Kc = ∅, there is nothing to prove,
so we may assume ∃x ∈ Kc. Let Π′ := I −Π denote the orthogonal projection onto span(M>) and
let x′ = Π′x. Note that m>i x

′ = m>i x ≥ 0, i ∈ [m], and c>x′ = c>x < 0, since mi, c ∈ span(M>)
by assumption. Thus, x′ ∈ K ∩ span(M>) ∩ {x : c>x < 0} ⊆ Kc. By Minkowski-Weyl, we can

write x′ =
∑k
i=1 vi, where v1, . . . , vk are extreme rays of K ∩ span(M>).

Since c>x′ < 0, we may choose ` ∈ [k] such that c>v` < 0. Let J and λ ∈ Rm+ as in
Lemma 4.1(iii). We claim that m>j v` = 0, for j ∈ J . This will prove the lemma, since then

v` ∈ Kc ∩ {x ∈ Rn : m>j x = 0, j ∈ J}. Since v` ∈ Kc, applying the Cauchy–Schwartz inequality we
get that

0 ≤ −c>v` +
∑
j∈[m]

λjm
>
j v` ≤ ‖M>λ− c‖ · ‖v`‖ . (11)

By the definition of J , α := maxj∈J
‖M>λ−c‖
δ̂λj‖mj‖

∈ [0, 1). For j ∈ J , we thus obtain m>j v` ≤

αδ̂‖v`‖ · ‖m`‖ ≤ αδM‖v`‖ · ‖mj‖, ∀j ∈ J . Since v` is an extreme ray of K ∩ span(M>), by
Lemma 2.5 we have that m>j v` > 0 ⇒ m>j v` ≥ δM‖mj‖ · ‖v`‖. We conclude that m>j v` = 0,
∀j ∈ J , as needed.

4.1 The recursive algorithm

Similarly to Section 3.1, the recursive calls restrict the problem to a subspace ker(MF ) for an
index set F ⊆ [m] such that |F | ≤ 2rk(MF ). We use the same notation ΠF , vF , TF , MF , and
KF . Similarly to Lemma 3.3, we can implement the required oracle for (KF )c. We recall from

Lemma 3.4 that δMF ≥ δM . Hence, if we find a certificate δ̂ > δMF in a recursive call then this
also implies that δ̂ was a wrong estimate on δM .

We initialize F = ∅. If at any iteration we find a solution (cF )>x < 0 for some x ∈ KF , then
we obtain a solution ΠFx ∈ K and c>(ΠFx) = (cF )>x < 0 to the original system.

Claim 4.3. Let F ⊂ F ′ ⊆ [m] such that J := F ′ \ F ⊆ TF , |J | ≤ 2rk(MF
J ). Let v ∈ Rn and

y′ ∈ RTF ′ such that (MF ′)>y′ = vF
′

and supp(y′) ≤ 2rk(MF ′). Then, in time O(nω) we can
compute y ∈ RTF such that (MF )>y = vF , supp(ȳ) ⊆ TF ′ ∪ J , |supp(y)| ≤ 2rk(MF ) and yi = y′i
for i ∈ TF ′ .

Proof. Note that each row (mF ′

i )> of MF ′ , i ∈ TF ′ , mF ′

i is the orthogonal projection of mF
i onto

ker(MF
J ), and similarly vF

′
is the orthogonal projection of vF onto ker(MF

J ). It follows that there

exists a matrix Q ∈ RTF ′×J such that MF ′ = MF
TF ′

+QMF
J . Thus, (MF

TF ′
)>y′ + (MF

J )>(Q>y′) =

vF . In particular, the system vF − (MF
TF ′

)>y′ = (MF
J )>µ, µ ∈ RJ , has a solution. For any such

µ, the vector yi = y′i, i ∈ TF ′ , yi = µi, i ∈ J , satisfies the requirements of the lemma noting

that 2(rk(MF
J ) + rk(MF ′)) = 2rk(MF ). To compute µ, we must first compute the left hand side

vF − (MF
TF ′

)>y′ = ΠF v − ΠFM>TF ′
y′ which requires O(n2) = O(n) time since |supp(y′)| ≤ 2n (we

assume ΠF ,ΠF ′ have already been computed). From here, the matrix (MF
J )> = ΠFM>J requires

O(nω) to compute (noting that |J | ≤ 2n), and finally solving for µ also requires O(nω) time.

As in the proof of Lemma 3.1, we maintain an estimate δ̂ of δM , updated whenever we detect a
failure. We define a subroutine Recursive-Conic-Validity(K, c, F, δ̂), which takes as arguments

F ⊆ [m], c ∈ Rn, and δ̂ ∈ (0, 1). The output of this algorithm is one of the following:

(a) A vector y ∈ RTF
+ with |supp(y)| ≤ 2rk(MF ), such that (MF )>y = cF , certifying that

(cF )>x ≥ 0 for all x ∈ KF .

(b) A point x̄ ∈ K with c>x̄ < 0.

(c) A certificate for δ̂ > δMF
, namely, a vector λ ∈ RTF

+ with {mF
j : j ∈ supp(λ)} linearly

independent and ϕ = ‖MFλ‖/(maxj∈TF λj‖mF
j ‖) < δ̂.

Our algorithm is the following: initialize δ̂ := 1/n, and call Recursive-Conic-Validity(K, c, ∅, δ̂).
If outcomes (a) or (b) occur, then terminate with the desired solution. If outcome (c) occurs, then

update δ̂ := min{δ̂2, ϕ} and restart the entire algorithm.

We now describe Recursive-Conic-Validity on input K, c, F, δ̂. If cF = 0, we return the
trivial solution y = 0 to the system (MF )>y = cF , y ≥ 0. If cF 6= 0, we run the subroutine in

Lemma 4.1 for KF , cF and δ̂, and perform one of the following actions according to the outcome:
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(i) Lemma 4.1 returns x ∈ KF with (cF )>x < 0; we return x̄ := ΠFx and the algorithm
terminates.

(ii) Lemma 4.1 returns a nonzero λ ∈ RTF
+ that is a support minimal solution to (MF )>λ = 0.

Let J := supp(λ); λ provides a proof that (KF )c ⊆ KF ⊆ {x : MF
J x = 0}. We set

F ′ := F ∪ J . Note that |J | ≤ rk(MJ) + 1, by the minimality of λ, hence |F ′| ≤ 2rk(MF ′).

We call Recursive-Conic-Validity(K, c, F ′, δ̂). If this recursive call outputs x̄ ∈ K with
c>x̄ < 0 (outcome (b)), we return x̄. If the recursive call outputs a failure (outcome (c)), we
return the corresponding ϕ and λ.

Finally, assume that the recursive call outputs y′ ∈ RTF ′
+ such that (MF ′)>y′ = cF

′
(outcome

(a)) and |supp(y′)| ≤ 2rk(MF ′). By Claim 4.3, we can compute a vector y ∈ RTF with
supp(y) ∈ TF ′ ∪ J , |supp(y)| ≤ 2rk(MF ), such that (MF )>y = cF , and yi = y′i for i ∈ TF ′ .
However, yi < 0 is possible for i ∈ J . Since MFλ = 0 and λJ > 0, for sufficiently large α > 0,
we obtain ȳ = y + αλ ≥ 0 such that (MF )>ȳ = cF ; we return the vector ȳ.

(iii) Lemma 4.1 returns λ ∈ RTF
+ such that {mF

i : i ∈ supp(λ)} are linearly independent, along

with a nonempty J ⊆ supp(λ) such that λj‖mF
j ‖ > ‖(MF )>λ − cF ‖/δ̂ for all j ∈ J . If

(MF )>λ = cF , we can output this vector λ as outcome (a).

By Lemma 4.2, if δ̂ ≤ δM ≤ δMF , then (KF )c 6= ∅ ⇒ (KF )c ∩ {x : MF
J x = 0} 6= ∅.

Therefore, we set F ′ = F ∪ J and call Recursive-Conic-Validity(K, c, F ′, δ̂). Note that
|F ′| ≤ 2rk(MF ′) by the linear independence assumption on λ.

Note that, unlike in case (ii) above, we do not have a proof that MJx ≥ 0 can be set at

equality; indeed, if δ̂ > δMF , then we may have set at equality an incorrect set of inequalities.
As we will now explain, the algorithm will either return a correct solution, or detect a failure,
in which case we will restart from F = ∅ and an updated value of δ̂.

As in the previous case, if the output of Recursive-Conic-Validity(K, c, F ′, δ̂) is x̄ ∈ K
with c>x̄ < 0 (outcome (b)), we return x̄, whereas if the output is a failure (outcome (c)), we
return the corresponding ϕ and λ.

Assume the output is ȳ ∈ RTF ′
+ with |supp(ȳ)| ≤ 2rk(MF ′), such that (MF ′)>ȳ = cF

′
. By

Claim 4.3, we can compute a vector y′ ∈ RTF with supp(y′) ∈ TF ′ ∪ J , |supp(y′)| ≤ 2rk(MF )
such that (MF )>y′ = cF , and y′i = ȳi for i ∈ TF ′ . In the case that y′i < 0 for some i ∈ J we
invoke the following lemma. The proof will be given in Section 4.1.1.

Lemma 4.4. Let H ∈ Rk×n, let [k] = L1 ∪ L2, and let δ̂ ∈ (0, 1). Consider y, y′ ∈ Rk such
that y ≥ 0, y′L2

≥ 0 and

yi‖hi‖ ≥ ‖H>(y′ − y)‖/δ̂, ∀i ∈ L1.

In time O(k3n) we can find one of the following:

(i) A nonnegative vector q ∈ Rk+ such that H>q = H>y′ and |supp(q)| ≤ rk(H).

(ii) λ ∈ Rk, such that {hi : i ∈ supp(λ)} are linearly independent and
∥∥H>λ∥∥ < δ̂maxi∈[k] |λi|·

‖hi‖.

To remove the negative components of y′J , we apply the algorithm in Lemma 4.4 with the
choice H = MF , y = λ, L1 = J and L2 = TF \ J . Observe that HT (y′− y) = cF − (MF )>λ,
hence y, y′ satisfy the assumptions of Lemma 4.4. If outcome (ii) of Lemma 4.4 occurs, then we

detected a fail since δ̂ > δMF ≥ δM , and output the corresponding bound ϕ and combination
λ. Otherwise, outcome (i) of Lemma 4.4 occurs, we obtain q ∈ RTF

+ with (MF )>q = cF ,
|supp(q)| ≤ rk(MF ), and we return q as outcome (a).

(iv) Lemma 4.1 returns a failure for δ̂, in which case we return outcome (c), along with the
corresponding bound ϕ and combination λ.

Correctness. It is clear that, if the procedure terminates, it terminates with a correct output,
so we only need to argue termination. Note that, for every value of δ̂, each call to Recursive-
Conic-Validity(K, c, ∅, δ̂) will make at most rk(M) ≤ n recursive calls of the form Recursive-

Conic-Validity(K, c, F, δ̂). To see this, note that rk(MF ) decrease in cardinality by at least 1 at
every successive recursive call. Furthermore, once rk(MF ) = 0⇔ TF = ∅, one of the following two
things will happen. Either cF = 0, and we return the trivial combination y = 0, or cF 6= 0, and
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then the call to Lemma 4.1 on KF , cF , δ̂ must return a solution x ∈ Kc. To justify the latter, simply
note that TF = ∅ and ‖cF ‖ 6= 0 excludes all outcomes except outcome (i) (indeed, −cF ∈ Kc).

Lastly, if δ̂ ≤ δM , then Recursive-Conic-Validity(K, c, ∅, δ̂) will not detect any failure, and
so it will terminate with one of the two desired outcomes.

Running time analysis For each value of δ̂ set by the algorithm, we have at most n recursive
calls to Recursive-Conic-Validity. Recall that each time we update δ̂ to a value which is less
than or equal to δ̂2, and we terminate with δ̂ ≥ δ2

M , for a maximum of O(log log(δM )) updates. In
each recursive call to Recursive-Conic-Validity we call to the algorithm in Lemma 4.1, which
requires To(n, δ̂2/(8n2)) oracle calls and Ta(n, δ̂2/(8n2))+O(n3+nτ(n)2) arithmetic operations. By
Lemma 3.3, each oracle call for KF requires O(n2) arithmetic operations. By Lemma 2.1, it follows
that the total time required by the calls to Lemma 4.1 is dominated by the time for the last value of
δ̂, hence it requires O(nTo(n, δ2

M/O(n))) oracle calls and O(n3To(n, δ2
M/O(n))+nTa(nδ2

M/O(n)))+
O(n4 + n2τ(n)2) log log(1/δM )) arithmetic operations.

At each recursive call, we need to compute the projection matrix ΠF , which requires O(n3)
arithmetic operations. In case (ii) of the recursion, the running time is dominated by the application
of Claim 4.3, which requires O(nω) operations (since |F | ≤ 2n). In case (iii) of the recursion, the
running time is dominated by the application of Lemma 4.4, which requires O(n4) operations
(observe that this is because, when we apply the lemma to H = MF , we can limit ourselves to the
rows of H corresponding to supp(y) ∪ supp(y′), and by construction |supp(y)|, |supp(y′)| = O(n)).

Since we have n recursive call per value of δ̂, and δ̂ is updated at most log log(δM ) times, it follows
that the running time of all these operations is bounded by O(n5 log log(1/δM )).

4.1.1 The proof of Lemma 4.4

In this section, we prove Lemma 4.4, which is a slight adaptation of [11, Lemma 4.3].

Lemma 4.5 ([11, Lemma 4.3]). Let B ∈ Rt×n with row vectors b>i , ` ∈ (R ∪ {−∞})t, u ∈
(R∪{∞})t, and let z ∈ ker(B>), ` ≤ z ≤ u. Then, in O(t3n) time, we can compute r, v ∈ ker(B>),
along with a set S ⊆ [t] such that:

• ` ≤ r ≤ u, ‖r‖∞ ≤ ‖v‖∞
• S ⊇ {i ∈ [t] : li = ui} and ri = vi = `+i − u

−
i for all i ∈ S.

• the vectors in {bi : i ∈ supp(v) \ S} are linearly independent.

In [11, Lemma 4.3], the only difference is that we express r =
∑k
j=1 λjv

j , where λ ≥ 0 is

a convex combination, and v1, . . . , vk ∈ ker(B>) satisfy the last two bullets. In the above, we
simply take v := vj∗ where j∗ := argmaxj∈[k]‖vj‖∞, which clearly satisfies the first bullet since r

is a convex combination of v1, . . . , vj . The role of the vector v above is to serve as an “algebraic
witness” that the norm of r is controlled by the “difficult” bound constraints induced by l+ and
u− (i.e., those that cut off 0 as a solution).

This lemma was previously used in the following context; recall the definition of the circuit
imbalance measure κA from the Introduction. According to [11, Theorem 3.1], whenever the system
Ax = 0, ` ≤ x ≤ u is feasible, there exists a feasible solution x with ‖x‖∞ ≤ κA‖`++u−‖. Note that
the right hand side is 0 if and only if ` ≤ 0 ≤ u, in which case we can select x = 0. Algorithmically,
given a feasible solution Az = 0, ` ≤ z ≤ u, Lemma 4.5 enables one to find another feasible Ar = 0
with ‖r‖∞ ≤ κA‖`+ + u−‖ in strongly polynomial time. See Section 8 for further discussion of the
circuit imbalance measure.

Proof of Lemma 4.4. The statement is invariant under renormalizing the rows of H, so let us
assume ‖hi‖ = 1 for all i ∈ [k]. Let τ = ‖H>(y′ − y)‖, and define B> = (H>, 1

τH
>(y − y′)) ∈

Rn×(k+1); that is, we add to B the row (y − y′)>H normalized to 1. Let z ∈ Rk+1 = (y′ − y; τ);
clearly, z ∈ ker(B>).

Define `, u ∈ Rk+1 as follows. For i ∈ L1, we set `i = −∞, ui =∞. For i ∈ L2, we set `i = −yi
and ui =∞, and let `k+1 = uk+1 = τ . Note that ` ≤ z ≤ u holds due to the assumptions on y and
y′. Using Lemma 4.5, we obtain r, v ∈ ker(B>) and S ⊆ [k + 1], such that k + 1 ∈ S, ` ≤ r ≤ u,
‖r‖∞ ≤ ‖v‖∞, ri = vi = (`+i −u

−
i ) for all i ∈ S, and the vectors in {hi : i ∈ supp(v)\S} are linearly

independent. By our assumptions, note that (`+ − u−)i = 0 for i ∈ [k] and that (`+ − u−)k+1 = τ .
Let r̄ := r[k] and v̄ := v[k] be the vectors in Rk obtained by dropping the (k + 1)’st coordinate τ .

Since r, v ∈ ker(B>), we see that H>r̄ = H>v̄ = H>(y′ − y).
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Note that, since vi = 0 for i ∈ S ∩ [k], we have supp(v̄) ⊆ [k] \ S, hence {hi : i ∈ supp(v̄)}
are linearly independent. If ‖H>v̄‖ < δ̂‖v̄‖∞, then we output λ = v̄ and stop with outcome (ii).

Assume that ‖H>v̄‖ ≥ δ̂‖v̄‖∞. We next observe that

‖r̄‖∞ ≤ τ/δ̂. (12)

Indeed, ‖v̄‖∞ ≤
∥∥H>v̄∥∥ /δ̂ =

∥∥H>(y′ − y)
∥∥ /δ̂ = τ/δ̂, hence ‖r̄‖∞ ≤ ‖r‖∞ ≤ ‖v‖∞ = max{‖v̄‖∞, τ} ≤

τ/δ̂, since δ̂ ≤ 1.
We claim that the vector q := y + r̄ satisfies H>q = H>y′, q ≥ 0. Recalling that H>r̄ =

H>(y′ − y), we have H>q = H>y′. For i ∈ L2, qi = yi + ri ≥ yi + `i = 0. For i ∈ L1,

qi = yi + r̄i ≥ yi − ‖r̄‖∞ ≥ yi −
τ

δ̂
≥ 0 ,

where the last inequality follows by (12) and the assumptions yi‖hi‖ ≥ τ/δ̂, ‖hi‖ = 1.
Finally, in time O(k2n + n2k) we can turn q into a basic solution of H>q = H>y′, q ≥ 0,

ensuring |supp(q)| ≤ rk(H).

5 The conic minimum-ratio algorithm

Recall the conic minimum-ratio problem: the input is a cone K ⊆ Rn of the form K = {x ∈ Rn :
Mx ≥ 0} with M ∈ Rm×n, given via a conic separation oracle, and vectors c, d ∈ Rn, y(d) ∈ Rm+
such that M>y(d) = d, I = supp(y(d)), |I| ≤ n. The goal is to find the minimum value γ∗ ∈ R
such that (c+ γ∗d)>x ≥ 0 for all x ∈ K, or conclude that the problem is infeasible or unbounded.
We assume polyhedral separation oracles are available for the cones

K−d = {x ∈ Rn : Mx ≥ 0, d>x > 0} and K=
I = {x ∈ Rn : Mx ≥ 0,MIx = 0} ,

Further, provide certificates as described in Section 1.1. For an index set F ⊆ [m], we will use the
same notation ΠF , vF , TF , MF , and KF as in Sections 3 and 4.

Detecting infeasibility and unboundedness First, let us decide if problem (3) is infea-
sible, i.e. if d>x = 0 for all x ∈ K. The combination y(d) already certifies that d>x ≥ 0 for all
x ∈ K. Let us run the conic validity algorithm for the cost vector −d, using the oracle for K−d.
Then, we either find x̄ ∈ K such that d>x̄ > 0, or a certificate y ∈ Rm+ such that M>y = −d.

Next, let us check if problem (3) is unbounded. We need to verify if there exists an x ∈ K with
c>x < 0 and d>x = 0. According to the combination y(d) ∈ Rm+ , M>y(d) = d, I = supp(y(d)), we
have d>x = 0 if and only if x ∈ K=

I . We thus run the conic validity algorithm for K=
I and the

projection cI . (The required oracle for (K=
I )cI can be implemented using the oracle assumed for

K=
I and checking the additional inequality (cI)>x < 0.) If the original problem is unbounded, then

we find an x ∈ K=
I with (cF )>x < 0. If we establish that c>x ≥ 0 for all x ∈ K=

I then we conclude
that (3) is not unbounded.

The optimal set and the main subroutine After the above preprocessing, from now on
we assume that

K−d 6= ∅ and c>x ≥ 0 for all x ∈ K=
I . (13)

Hence, a finite optimal γ∗ exists, in which case (c+ γ∗d)>x ≥ 0 is valid for K and there exists an
x∗ ∈ K with (c+ γ∗d)>x∗ = 0, d>x∗ > 0. Let

K0 =
{
x : Mx ≥ 0 , (c+ γ∗d)>x = 0 , d>x > 0

}
denote the set of optimal solutions. By the above assumptions, K0 6= ∅. Note that if c = −γd for
some γ ∈ R, then c>x/d>x = −γ for every x ∈ K−d. Hence, K0 = K−d in this case.

The purpose of the next lemma, which is an analogue of Lemma 4.1 for the set K0, is to identify
inequalities of Mx ≥ 0 that can be set at equality for K0.

Lemma 5.1. Let K = {x ∈ Rn : Mx ≥ 0} for M ∈ Rm×n, given by a conic separation oracle,
and let c, d ∈ Rn such that (13) holds, and c and d are linearly independent. Furthermore, let

y(d) ∈ Rm+ such that M>y(d) = d. Let δ̂ ∈ (0, 1). There exists an oracle polynomial-time algorithm

using To(n, δ̂2/(8n2)) oracle calls and Ta(n, δ̂2/(8n2)) +O(n3 +nτ(n)2) operations that returns one
of the following:
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(i) a nonzero vector λ ∈ Rm+ that is a minimum support solution to M>λ = 0;

(ii) a vector λ ∈ Rm+ such that {mj : j ∈ supp(λ)} are linearly independent, a point x̄ ∈ K, such
that d>x̄ > 0, along with a nonempty subset J ⊆ [m] such that, for γ = −c>x̄/d>x̄, every

j ∈ J satisfies λj‖mj‖ > ‖M>λ− (c+ γd)‖/δ̂;
(iii) a certificate of δ̂ > δM , namely, a vector λ ∈ Rm+ such that {mj : j ∈ supp(λ)} are linearly

independent and ϕ = ‖Mλ‖/maxj∈[m] λj‖mj‖ < δ̂.

Proof. Let K̂ be the cone implicitly defined by the following conic separation oracle. We can obtain
the following separation oracle based on the one provided for K−d. For every x̄ ∈ Rn, the oracle
returns one of the following:

(i) If x̄ /∈ K−d, then return a violated inequality m>i x ≥ 0 or d>x > 0.

(ii) If x̄ ∈ K−d, then set γ̄ = −c>x̄/d>x̄, and return the inequality (c+ γ̄d)>x < 0.

Observe that, by definition of the oracle, K̂ = ∅, since every point in Rn is separated. By the
assumption that c and d are linearly independent, c + γ̄d 6= 0. For every inequality returned in
case (ii), we have γ̄ ≤ γ∗, since (c+ γ̄d)>x̄ = 0 ≤ (c+ γ∗d)>x̄, and d>x̄ > 0.

We call the subroutine Approx-Conic-Dual with ε = δ̂2/(8n2) using the above separation
oracle. Since K̂ = ∅, Approx-Conic-Dual always terminates with a ε-certificate consisting of
inequalities returned by the oracle. The combination may include vectors corresponding to the
inequalities of Mx ≥ 0, d>x ≥ 0, and inequalities −(c + γtd)>x ≥ 0, t ∈ S, for different values of
γt. The certificate is a vector of the form (λ̄, τ̄ , µ̄) ∈ Rm+ × RS+ × R+ such that∥∥∥∥∥M>λ̄−∑

t∈S
τ̄t(c+ γtd) + µ̄d

∥∥∥∥∥ ≤ ε ,
m∑
j=1

λ̄j‖mj‖+
∑
t∈S

τ̄t‖c+ γtd‖+ µ̄‖d‖ ≥ 1 .

Recall that d = M>y(d) for a given vector y(d) ∈ Rk+. Let us define (λ, τ) ∈ Rm+ ×R+ as follows.

If S = ∅, then we let λ = λ̄+ µ̄y(d) and τ = 0. If S 6= ∅, let γ = maxt∈S γt. Define

λ = λ̄+

(
µ̄+

∑
t∈S

τ̄t(γ − γt)

)
y(d) , and τ =

∑
t∈S

τ̄t .

In both cases, M>λ− τ(c+ γd) = M>λ̄−
∑
t∈S τ̄t(c+ γtd) + µ̄d. Furthermore,

m∑
j=1

λj‖mj‖+ τ‖c+ γd‖ ≥
m∑
j=1

λ̄j‖mj‖+
∑
t∈S

τ̄t‖c+ γtd‖+ µ̄‖d‖ ≥ 1

by the triangle inequality. Note that during the algorithm the inequality −(c + γd)>x ≥ 0 was
returned to separate a point x̄ ∈ K such that d>x̄ > 0 and γ = −c>x̄/(d>x̄). The rest of the proof
is now identical to the proof of Lemma 4.1, applied for the vector c+ γd in place of c.

Lemma 5.2. In Lemma 5.1, if outcome (ii) occurs and δ̂ ≤ δM , then

∅ 6= K0 ⊆ {x ∈ Rn : m>j x = 0, j ∈ J}.

Proof. Let x̄ ∈ K, γ, J and λ ∈ Rm+ as in Lemma 4.1(iii). Recall that K0 6= ∅ by assumption
(13). Let K ′ be the face of K defined by the valid inequality (c + γ∗d)>x ≥ 0, so that K0 =
{x ∈ K ′ : d>x > 0}. We will show that K ′ ⊆ {x ∈ Rn : m>j x = 0, j ∈ J}, which clearly
suffices. By Minkowski-Weyl, K ′ = ker(M) + cone(v1, . . . , vq), where v1, . . . , vq are the extreme
rays of K ′ ∩ span(M>). To verify the desired containment, it clearly suffices to show that m>j vi =

0,∀i ∈ [q], j ∈ J . Since K ′ ∩ span(M>) is a face of K ∩ span(M>), we note that v1, . . . , vq are also
extreme rays of K ∩ span(M>). Therefore, by Lemma 2.5, for j ∈ J, i ∈ [q], m>j vi > 0⇒ m>j vi ≥
δM‖mj‖‖vi‖.

On the other hand, for any z ∈ K ′, by the Cauchy–Schwartz inequality we get that

0 ≤ −(c+ γd)>z +
∑
j∈[m]

λjm
>
j z ≤ ‖M>λ− (c+ γd)‖ · ‖z‖ .

By the definition of J , α := maxj∈J
‖M>λ−(c+γd)‖

δ̂λj‖mj‖
∈ [0, 1). For j ∈ J , we thus obtain m>j z ≤

αδ̂‖z‖ · ‖mj‖ ≤ αδM‖z‖ · ‖mj‖ for every z ∈ K ′ . Applying the above to z = vi, i ∈ [q], it follows
that m>j vi = 0, ∀j ∈ J .
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The recursive algorithm The algorithm follows the same lines as those in Section 3.1 for
strong conic feasibility and in Section 4.1 for conic validity. We assume that (13) holds. For
F ⊆ [m] we use the same notation MF , ΠF , TF , KF and cF ; further, let dF = ΠF d.

As in the previous algorithms, we will maintain a set of inequalities F ⊆ [m], |F | ≤ 2rk(MF ) and

an estimate δ̂ ∈ (0, 1) of δM . We will defined an algorithm Recursive-Min-Ratio(K, c, d, F, δ̂)
which outputs either of the following:

(a) A point x∗ ∈ K such that d>x∗ > 0 along with the value γ∗ := −c>x∗/d>x∗ and a certificate

y ∈ RTF

+ with |supp(y)| = O(n) such that (MF )>y = cF + γ∗dF .

(b) Claim a failure for δ̂.

Our algorithm is the following: initialize δ̂ := 1/n and call Recursive-Min-Ratio(K, c, d, ∅, δ̂).
If outcome (a) occurs, then γ∗ is the optimal value, x∗ and optimal solution, and y ∈ Rm a dual

certificate of optimality. If outcome (b) occurs, then update δ̂ := δ̂2 and repeat. ( For simplicity, in
the description we give below, we do not compute an explicit combination of linearly independent
rows of M certifying a failure, as we had done in the previous sections. Hence, we do not have
an explicit upper bound δM ≤ ϕ < δ̂. This does not make a difference in term of the worst-case
running time.)

We now describe Recursive-Min-Ratio(K, c, d, F, δ̂). If dF = 0, then we declare a failure,
i.e., outcome (b). This is because according to (13), K0 6= 0, and d>x > 0 for all x ∈ K0. Thus,
K0 ⊆ KF is not possible, since it would imply d>x = (dF )>x = 0 for all x ∈ K0.

If dF 6= 0, but cF = −γdF for some γ ∈ R, then we run the conic validity problem for KF

and −dF (Section 4). If this returns a feasible solution x̄, then we return outcome (a) with x̄, γ,
and the trivial dual certificate y = 0. If this returns infeasibility, then we again declare the failure
outcome (b) as above.

Finally, if dF 6= 0 and cF and dF are linearly independent, then we call the subroutine in
Lemma 5.1 for the lower dimensional problem KF , cF , and dF , and consider the possible outcomes:

(i) From Lemma 5.1 we obtain a nonzero λ ∈ RTF
+ that is a minimal support solution to

(MF )>λ = 0. Let J = supp(λ) and F ′ = F∪J , and call Recursive-Min-Ratio(K, c, d, F ′, δ̂).

If this call returns x∗ ∈ K such that d>x∗ > 0, γ∗ = c>x∗/d>x∗, and y ∈ RTF ′
+ such that

(MF ′)>y = cF
′
+γ∗dF

′
(outcome (a)), then we compute y′ ∈ RTF as in Claim 4.3, and return

x∗ and ȳ := y′ + αλ ≥ 0, for some α large enough, satisfying (MF )>ȳ = cF + γ∗dF . If the
recursive call returns a failure (outcome (b)), then we return a failure.

(ii) From Lemma 5.1 we obtain λ ∈ RTF
+ such that {mj : j ∈ supp(λ)} are linearly independent,

x̄ ∈ KF with (dF )>x̄ > 0, γ = −(cF )>x̄/(dF )>x̄, and a nonempty J ⊆ supp(λ) such that
λj‖mF

j ‖ > ‖(MF )>λ − (cF + γdF )‖/δM for all j ∈ J . If (MF )>λ = cF + γdF , then return

outcome (a), along x∗ = ΠF x̄ ∈ K, γ∗ = γ, and y = λ. Otherwise, we set F ′ = F ∪ J , and

call Recursive-Min-Ratio(K, c, d, F ′, δ̂). Indeed, recall that, if δ̂ ≤ δM , then by Lemma 5.2
∅ 6= K0 ⊂ ker(MF ′). It this call returns a failure (outcome (b)), then we return a failure.

Consider the case where Recursive-Min-Ratio(K, c, d, F ′, δ̂) returns x∗ ∈ K such that

d>x∗ > 0, γ∗ = −c>x∗/d>x∗, and ȳ ∈ RTF ′
+ with |supp(ȳ)| = O(n) such that (MF ′)>ȳ =

cF
′
+γ∗dF

′
(outcome (a)). If γ > γ∗, then we return a failure. Assume γ∗ ≥ γ. By Claim 4.3,

we can compute y′ ∈ RTF
+ such that (MF )>y′ = cF + γ∗dF ; supp(y′) ⊆ TF ′ ∪ J and y′i = ȳi

for all i ∈ TF ′ , where possibly yi < 0 for some i ∈ J .

Recall that the input included a vector y(d) ∈ Rk+ such that M>y(d) = d; observe that the

restriction ỹ = y
(d)

TF satisfies (MF )>ỹ = dF . Define y = λ + (γ∗ − γ)ỹ. Observe that, by

construction, (MF )>y − (cF + γ∗dF ) = (MF )>λ − (cF + γdF ) and y ≥ λ. It follows that

we can apply Lemma 4.4 to H = MF , y and y′. The outcome will be either a failure for δ̂,
in which case we return a failure, or a vector q ∈ RTF

+ such that (MF )>q = cF + γ∗dF . We

output x∗, γ∗, and the certificate q ∈ RTF

+ .

(iii) From Lemma 5.1 we obtain a failure for δ̂, in which case we return a failure.

Correctness. It is clear that, if the procedure terminates, it terminates with a correct output,
so we only need to argue termination. Note that, for every value of δ̂, each call to Recursive-
Min-Ratio(K, c, d, ∅, δ̂) will make at most rk(M) ≤ n recursive calls of the form Recursive-Min-

Ratio(K, c, d, F, δ̂). Furthermore, if δ̂ ≤ δM , then Recursive-Min-Ratio(K, c, d, ∅, δ̂) will not
detect any failure, and so it will terminate with one of the two desired outcomes.
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Running time analysis The running time analysis is identical to the one in Section 4.1, so
we omit it.

Remark 5.3. The above recursive algorithm can be modified to explicitly compute a “certified
failure” for the current δ̂, instead of simply declaring that δ̂ > δM . There are three places in the
above recursive procedure where a failure is detected. One is when dF = 0, the second when dF and
cF are linearly independent, and the third when γ < γ∗ in outcome (ii). In the first two cases, we
proceed as in the conic-validity algorithm to repeatedly apply Lemma 4.4 to pull-back certificates
of the form (MF )>λ = dF , λ ≥ 0. Since we cannot recover a certificate M>λ = d, λ ≥ 0, at some
point Lemma 4.4 must compute a failure. If γ < γ∗ in outcome (ii), then we proceed as in the
above algorithm to repeatedly apply Lemma 4.4 to pull-back the certificate (MF ′)>ȳ = cF

′
+γ∗dF

′

to a certificate M>y = c + γ∗d, y ≥ 0. Since such a certificate does not exist, because γ∗ is not
optimal, it follows that at some point Lemma 4.4 must compute a failure.

6 Computing approximate dual certificates

Our goal in this section is to exhibit a general technique for implementing the Approx-Conic-
Dual oracle using various methods. We define a more general notion of dual certificates also
applicable for the non-conic setting.

Definition 6.1. Given a convex set K ⊆ Rn and r, ε > 0, an ε-approximate Farkas certificate
for K ∩ Bn(r) is given by a system Ax ≤ u of valid inequalities for K, A ∈ Rm×n, u ∈ Rm, and
multipliers λ ∈ RJ++

λ>u+ r
∥∥A>λ∥∥ < ε,

m∑
i=1

λi‖ai‖ ≥ 1.

If K ⊆ Rn is a cone given by a conic separation oracle, then we can assume ui = 0 for all oracle
inequalities a>i x ≤ 0. Setting r = 1, an ε-approximate Farkas certificate for K ∩Bn(1) using oracle
inequalities coincides with the notion of an ε-approximate conic Farkas certificate for K as required
in Approx-Conic-Dual.

The Lee, Sidford, and Wong’s cutting plane method [28] (LSW algorithm) explicitly provides
dual certificates; the proof follows easily using Theorem 31 in the paper.

Theorem 6.2. Let K be a convex set given by a strong separation oracle, r > 0, and ε ∈ (0, 2r).

Then, in expected O(n log(nr/ε)) calls to the separation oracle, and expected O(n3 logO(1)(nr/ε))
arithmetic operations, the LSW algorithm either returns a point x ∈ K, or an ε-approximate Farkas
certificate for K ∩ Bn(r) comprising only oracle inequalities.

The rest of this section is dedicated to showing that ε-Farkas certificates can be recovered from a
broad class of algorithms, including seemingly ‘primal-only’ methods such as the ellipsoid method.
For any R ∈ Sn++ and p ∈ Rn, we define the ellipsoid

E(R, p)
def
= {z ∈ Rd : ‖z − p‖R ≤ 1}.

Given a compact set K ⊆ Rn and a vector v ∈ Rn, we define the width of K along v as

widthK(v)
def
= max{v>z : z ∈ K} −min{v>x : z ∈ K}. (14)

We say that v is an ε-thin direction for K if widthK(v) ≤ ε. The width of an ellipsoid can be
characterized as follows. Recall that for every v ∈ Rn, min{v>x : x ∈ E(R, p)} = v>p − ‖v‖R−1 ,
achieved by x∗ = p−R−1v/‖v‖R−1 .

Lemma 6.3. Given R ∈ Sn++, and p ∈ Rn, let E := E(R, p). For any v ∈ Rd, widthE(v) =
2‖v‖R−1 . In particular, for K = E(R, p), v is an ε-thin direction if and only if ‖v‖R−1 ≤ ε/2.

Consider the feasibility problem for a polyhedron P ⊆ Rn given by a strong separation oracle.
The algorithms discussed in this section—the ellipsoid method, Vaidya’s cutting plane methods [40],
as well as the geometric rescaling algorithms [12, 21]—proceed by maintaining a containing ellipsoid
E(R, p) ⊇ P ∩ Bn(r). In every iteration, they either terminate with a feasible solution, or modify
the containing ellipsoid; the main progress measure is decrease in the volume of the ellipsoid.

In particular, all these methods maintain the matrix R in the form R = γ0In +
∑m
i=1 γiaia

>
i for

coefficients γ ∈ Rm+1 and vectors ai returned by the oracle calls. The next lemma shows that if
the volume of E(R, p) is small, or equivalently the determinant of R is large, then P must be thin
in one of the directions ai returned by the oracle. We include the simple proof for completeness.
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Lemma 6.4 ([12, Lemma 4.11]). Let R ∈ Sn++ be defined by

R = γ0In +

m∑
i=1

γiaia
>
i ,

where a1, . . . , am ∈ Rn, and γ0, . . . , γm ≥ 0, with γ0 ≤ 1. Then, for every i ∈ [t], γi‖ai‖2R−1 < 1

holds, and
∑t
i=1 γi‖ai‖2R−1 ≤ n. Further, if det(R) > 1, then there exists k ∈ [t] such that

‖ak‖R−1 ≤ ‖ak‖2√
det(R)1/n − 1

.

Proof. Let Q = R−1. The bound γi‖ai‖2Q < 1 follows by

‖ai‖2Q = aiQRQai = aiQ

γ0In +

m∑
j=1

γjaja
>
j

Qai > γi‖ai‖4Q .

For
∑m
i=1 γi‖ai‖2Q < n, we see that

m∑
i=1

γi‖ai‖2Q =

m∑
i=1

γi
(
a>i Qai

)
= tr

(
Q

m∑
i=1

γiaia
>
i

)
(15)

= tr(Q(R− γ0In)) = tr(In)− γ0tr(Q) < n .

In the final inequality we used that tr(Q) > 0, since Q is positive definite.
For the third claim, we see that tr(R) = γ0n +

∑m
i=1 γi‖ai‖22 since ‖ai‖2 ≤ 2. Noting that

γ0 ≤ 1,
∑m
i=1 γi‖ai‖22 ≥ tr(R)−n ≥ n(det(R)1/n−1), using the well-known inequality det(R)1/n ≤

tr(R)/n for positive semidefinite matrices. Let k = arg mini∈[m](‖ai‖Q/‖ak‖2). Using the bound∑m
i=1 γi‖ai‖2Q < n, we see that

‖ak‖2Q
‖ak‖22

≤ n∑m
i=1 γi‖ak‖22

<
1

det(R)1/n − 1
.

Thus, we can identify a thin direction ak. Our goal in this section is to provide a dual certificate
of thinness of P ∩ Bn(r), using the oracle inequalities a>i x ≤ ui and the initial ball constraint
‖x‖2 ≤ r. For a conic set P , this will imply ε-approximate conic Farkas certificate from the
algorithms mentioned.

Our certification scheme builds on the work of Burrell and Todd [7] on the ellipsoid method.
The key idea is to use an alternative representation of the strictly concave quadratic form q(x) =
−(x − p)>R(x − p) corresponding to the ellipsoid E(R, p). In Section 6.1, we introduce certified
concave quadratic forms, and show how this representation can be used to construct dual certificates
for valid inequalities. These ingredients are combined to derive the Farkas certificate in Section 6.2.
The remaining three subsections demonstrate the use of certified concave quadratic forms for the
ellipsoid method (Section 6.3), volumetric cutting plane methods (Section 6.4), and for geometric
rescaling methods (Section 6.5).

6.1 Dual certificates from certified quadratic forms

Duality theory provides the following variant of Farkas’ lemma.

Lemma 6.5. Given A ∈ Rm×n, u ∈ Rm, r > 0, the system Ax ≤ u has no solution in Bn(r) if
and only if there exists λ ∈ Rm+ such that

r‖A>λ‖ < −λ>u . (16)

Further, given v ∈ Rn, the inequality v>x ≥ ν is valid for {x ∈ Rn : Ax ≤ u} ∩ Bn(r) if and only
if there exists λ ∈ Rm+ such that

r‖A>λ+ v‖+ ν ≤ −λ>u . (17)

24



Consider a polyhedron P = {x ∈ Rn : Ax ≤ u}, where A ∈ Rn×m and u ∈ Rm. Let ai, i ∈ [m]
be the rows of A. We will refer to λ ∈ Rm+ satisfying (17) as a dual certificate of validity of v>x ≥ ν
for P ∩ Bn(r).

Definition 6.6. Let P = {x : Ax ≤ u} for A ∈ Rm×n, u ∈ Rm, and r > 0. Let q : Rn → R be a
concave quadratic form given as

q(x) := γ0(r2 − ‖x‖2) +

m∑
i=1

γi(ui − a>i x)(a>i x− `i) + d>x− β (18)

for γ ∈ Rm+1
+ , ` ∈ Rm, d ∈ Rn, β ∈ R. We say that P is a certified concave quadratic form for

P ∩ Bn(r) if we are also given µ(i) ∈ Rm+ , i ∈ [m], ϑ ∈ Rm+ such that

• r‖A>µ(i) + ai‖+ `i ≤ −u>µ(i) (certifying a>i x ≥ `i for P ∩ Bn(r))

• r‖A>ϑ+ d‖+ β ≤ −ϑ>u (certifying d>x ≥ β for P ∩ Bn(r))

We will also say that the quadratic form (18) is certified by µ(i), i ∈ [m], and ϑ.

The certificates µ(i), i ∈ [m], and ϑ guarantee that P ∩ Bn(r) ⊆ {x : q(x) ≥ 0}. We will show
in Lemma 6.8 that any inequality v>x ≥ ν that is valid for {x : q(x) ≥ 0} admits a closed-form
dual certificate of its validity for P ∩Bn(r) that can be derived from the representation of q(x). As
the first step, we need the following technical lemma.

Lemma 6.7. Let q be a strictly concave quadratic form q for A, u, r, `, γ, d, β as in Definition 6.6.
In particular, assume we are also give ϑ ∈ Rm+ certifying d>x ≥ β for P∩Bn(r) as r‖A>ϑ+d‖+β ≤
−ϑ>u. Let p ∈ Rn be a maximizer of q(x). Define λ ∈ Rm by λi = γi(`i + ui − 2a>i p), i ∈ [m].
Then

r‖A>(λ− ϑ)‖ ≤ max
x∈Rn

q(x) + `>λ+ − u>λ− − u>ϑ.

Proof. Since q is a strictly concave quadratic form, it achieves a maximum p ∈ Rn, which must
satisfy ∇q(p) = 0. We use the notation ¯̀ := Ap− ` and ū := u−Ap. The following equation states
that ∇q(p) = 0, and the next one computes the value of q(p), expressed with ūi and ¯̀

i:

m∑
i=1

γi(ūi − ¯̀
i)ai + d = 2γ0p (19)

γ0(r2 − ‖p‖2) +

m∑
i=1

γiūi ¯̀i + d>p− β = q(p) . (20)

Note that λi = γi(ūi − ¯̀
i) for all i ∈ [m]. Hence, (19) can be written as A>λ + d = 2γ0p. Let

P := {i ∈ [m] : λi ≥ 0} and N := [m] \ P . The proof is completed by

`>λ+ − u>λ− − u>ϑ = −
∑
i∈P

λi ¯̀i +
∑
i∈N

λiūi +

m∑
i=1

λia
>
i p− u>ϑ

(by (19)) = −
∑
i∈P

γi(ūi − ¯̀
i)¯̀

i +
∑
i∈N

γi(ūi − ¯̀
i)ūi + 2γ0‖p‖2 − d>p− u>ϑ

= −
m∑
i=1

γiūi ¯̀i +
∑
i∈P

γi ¯̀
2
i +

∑
i∈N

γiū
2
i + 2γ0‖p‖2 − d>p− u>ϑ

(by (20)) ≥ −q(p) + γ0(r2 + ‖p‖2)− β − u>ϑ
(by the definition of ϑ) ≥ −q(p) + 2rγ0‖p‖+ r‖A>ϑ+ a‖

(by (19)) = −q(p) + r
∥∥A>λ+ a

∥∥+ r‖A>ϑ+ a‖
≥ −q(p) + r

∥∥A>(λ− ϑ)
∥∥ .

The next lemma shows that, if P is a polyhedron and q is a strictly concave quadratic form
certified for P ∩ Bn(r), then we can compute a dual certificate for P ∩ Bn(r) for the inequality
v>x ≥ ν where ν = min{v>x : q(x) ≥ 0}. This is a variant of [7, Proposition 3.1 and Theorem
3.2]. Recall that if q is a strictly concave quadratic form, then there exist R ∈ Sn++ such that
q(x) = −(x− p)>R(x− p) + q(p), where p is the unique maximizer of q. In particular, if q(p) > 0
then {x ∈ Rn : q(x) ≥ 0} =

√
q(p)E(R, p).
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Lemma 6.8. Let P = {x ∈ Rn : Ax ≤ u}, where A ∈ Rm×n and u ∈ Rm. Let r > 0, and let
q : Rn → R be a strictly concave quadratic form as in (18), certified for P ∩ Bn(r) by µ(i) ∈ Rm+ ,

i ∈ [m] and ϑ ∈ Rm+ . Assume that maxx∈Rn q(x) > 0, and let p := arg max q(x), α :=
√
q(p).

Define R = γ0In +
∑m
i=1 γiaia

>
i .

Given v ∈ Rn, let ν := v>p− α‖v‖R−1 and x∗ = p− αR−1v/‖v‖R−1 . Define λ, λ̃ ∈ Rm by

λi =
‖v‖R−1

2α
γi(`i + ui − 2a>i x

∗) ∀i ∈ [m] , λ̃ :=

m∑
i=1

λ+
i µ

(i) + λ− +
‖v‖R−1

2α
ϑ.

Then, λ̃ is a dual certificate for v>x ≥ ν for P ∩ Bn(r), that is, r‖A>λ̃ + v‖ + ν < −λ̃>u.
Furthermore, λ̃ can be computed in time O(n2m+ nω).

Proof. Note that x∗ = arg min{v>x : x ∈ E(R, p)} and v>x∗ = ν. Define σ :=
‖v‖R−1

2α and

γ̃i := σγi for i = 0, . . . ,m. Consider the polyhedron P̃ = {x : Ax ≤ u, v>x ≤ ν}, and the
quadratic form defined by q̃(x) = σq(x)− v>x+ ν. Observe that

q̃(x) := γ̃0(r2 − ‖x‖2) +

m∑
i=1

γ̃i(ui − a>i x)(a>i x− `i) + (σd− v)>x− (σβ − ν) ,

hence q̃ is certified for P̃∩Bn(r) by λ(i), i ∈ [m], and by ‖A>(σϑ)+v+(σd−v)‖+σβ−ν ≤ −σϑ>u−ν.
Since q̃(x) = σ(α2 − (x − p)>R(x − p)) + ν − v>x, we have that q̃ is strictly concave and

∇q̃(x) = −2σR(x − p) − v. This implies that x∗ is the unique maximizer of q̃ since ∇q̃(x∗) = 0.
Furthermore, one can compute that q̃(x∗) = 0. Applying Lemma 6.7 to q̃, and observing that
λi = γ̃i(ui + `i − 2a>i x

∗), i ∈ [m], we obtain

`>λ+ − u>λ− − u>(σϑ)− ν ≥ q̃(x∗) + r
∥∥A>(λ− σϑ)− v

∥∥ = r
∥∥A>(λ− σϑ)− v

∥∥ . (21)

We need to show that r‖A>λ̃+ v‖+ ν ≤ −λ̃>u. From (21), we have

ν ≤ `>λ+ − u>(λ− + σϑ)− r
∥∥A>(λ− σϑ)− v

∥∥
≤

m∑
i=1

λ+
i

(
−u>µ(i) − r

∥∥∥A>µ(i) + ai

∥∥∥)− u>(λ− + σϑ)− r
∥∥A>(λ− σϑ)− v

∥∥
(triangle inequality) ≤ −u>

(
m∑
i=1

λ+
i µ

(i) + λ− + σϑ

)
− r

∥∥∥∥∥
m∑
i=1

λ+
i

(
A>µ(i) + ai

)
−A>(λ− σϑ) + v

∥∥∥∥∥
= −u>

(
m∑
i=1

λ+
i µ

(i) + λ− + σϑ

)
− r

∥∥∥∥∥A>
(

m∑
i=1

λ+
i µ

(i) + λ− + σϑ

)
+ v

∥∥∥∥∥
= −λ̃>u− r‖A>λ̃+ v‖.

To compute λ̃, we need to compute R, which can be done in time O(n2m), as well as x∗ and p.
The time to compute these two points is dominated by the computation of R−1, which can be
performed in time O(nω). Computing λ and λ̃ requires time O(nm).

The above lemma will be used to compute ε-approximate Farkas certificates from the ellipsoid
method (Section 6.3), from volumetric cutting plane methods [23, 28, 40] (Section 6.4), and from
the geometric rescaling algorithms [12, 21] (Section 6.5). For all three, we will need to show that
we can find an appropriate certified quadratic form for the polyhedron defined by the current
set of oracle inequalities. For the ellipsoid method and the geometric rescaling algorithms, such
quadratic form will need to be maintained explicitly at every iteration. For the volumetric cutting
plane algorithms, we will instead show that, once the algorithm has achieved the required level
of accuracy, we can a-posteriori compute a suitable certified quadratic form directly from the
information that is maintained by the algorithm.

Throughout, these algorithms maintain a set of oracle inequalities Ax ≤ u along with a strictly
feasible point with respect to these inequalities. The main technical ingredient will be the following
lemma. This is only needed for Section 6.4 and readers interested in the other algorithms only may
skip it.

Lemma 6.9. Let P = {x ∈ Rn : Ax ≤ u} be a polytope, where A ∈ Rm×n and u ∈ Rm. Let z be
a point in the interior of P , and γ ∈ Rm++. Define

R :=

m∑
i=1

γiaia
>
i

(ui − a>i z)2
, w =

m∑
i=1

γiai
ui − a>i z

(22)
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Let ρ := ‖w‖R−1 and ϕ := maxi∈[m] ‖ai‖R−1/(ui − a>i z). Assume that ϕρ ≤ 1/2. Let ` ∈ Rm
and the quadratic form q be defined by

`i := a>i z − 3ϕ2‖γ‖1(ui − a>i z), q(x) =

m∑
i=1

γi
(ui − a>i x)(a>i x− `i)

(ui − a>i z)2
. (23)

The following hold.

(i) In O(nω) time, we can find coefficients µ(k) ∈ Rm+ , such that A>µ(k) = −ak, u>µ(k) ≤ −`k
for k ∈ [m], i.e. a dual certificate of validity of a>k x ≥ `k for P .

(ii) q is strictly concave, maxx∈Rn q(x) ≤ (3ϕ‖γ‖1)2, proving that P ⊆ 3ϕ‖γ‖1E(R, p) for p =
arg max q(x).

Proof. Define āi = ai/(ui − a>i z) for i ∈ [m]. With this notation, R =
∑m
i=1 γiāiā

>
i and w =∑m

i=1 γiāi. Observe that P = {x ∈ Rn : ā>i (x− z) ≤ 1, i ∈ [m]}. For part (a), for any k ∈ [m], let
us define µ̄(k) by

µ̄
(k)
i := γi

(
2ϕ2(1− ā>i R−1w)− ā>i R−1āk

)
, i = 1, . . . ,m. (24)

Observe that µ̄(k) ≥ 0 because |āiR−1w| ≤ ‖āi‖R−1‖w‖R−1 ≤ ρϕ ≤ 1/2 and |āiR−1āk| ≤
‖āi‖R−1‖āk‖R−1 ≤ ϕ2, by definition of ϕ and ρ.

Next, observe that

m∑
i=1

µ̄
(k)
i āi = 2ϕ2

(
m∑
i=1

γiāi −
m∑
i=1

γiāiā
>
i R
−1w

)
−

m∑
i=1

γiāiā
>
i R
−1āk = −āk

and

m∑
i=1

µ̄
(k)
i = 2ϕ2(‖γ‖1−

m∑
i=1

γiāiR
−1w)−(

m∑
i=1

γiāi)R
−1āk = 2ϕ2(‖γ‖1−ρ2)−w>ak ≤ 2ϕ2‖γ‖1+ϕρ ≤ 3ϕ2‖γ‖1,

where the last inequality follows from ρ ≤ ϕ‖γ‖1, because ρ2 =
∑m
i=1 γ

ia>i R
−1w ≤

∑m
i=1 γ

iϕρ.
It follows that the vector µ(k) ∈ Rm+ defined by

µ
(k)
i :=

uk − a>k z
ui − a>i z

µ̄
(k)
i ,

satisfies A>µ(k) = −ak, u>µ(k) ≤ −`k, since

A>µ(k) = (uk − a>k z)
m∑
i=1

µ̄
(k)
i āi = −(uk − a>k z)āk = −ak,

and

u>µ(k) =

m∑
i=1

(ui−a>i z)µ
(k)
i +

m∑
i=1

a>i zµ
(k)
i = (uk−a>k z)

m∑
i=1

µ̄
(k)
i −a

>
k z ≤ (uk−a>k z)3ϕ2‖γ‖1−a>k z = −`k.

For part (b), note that q is strictly concave because P is a polytope, hence rk(A) = n. Consider
any x ∈ Rn and let y = x− z. We have

q(x) = q(y + z) =

m∑
i=1

γi(1− ā>i y)(ā>i y + 3ϕ2‖γ‖1)

= −y>
(

m∑
i=1

γiāia
>
i

)
y −

(
1 + 3ϕ2‖γ‖1

) m∑
i=1

γiā
>
i y + 3ϕ2‖γ‖1

m∑
i=1

γi

= −y>Ry − (1 + 3ϕ2‖γ‖1)w>y + 3ϕ2‖γ‖21 .

If we define p = z − (1/2)(1 + 3ϕ2‖γ‖1)R−1w, we have that

(x− p)>R(x− p) = (x− z)>R(x− z) + 2(x− p)>R(z − p) + (z − p)>R(z − p)
= (x− z)>R(x− z) + (1 + 3ϕ2‖γ‖1)w>(x− z) + (1/4)(1 + 3ϕ2‖γ‖1)2ρ2

= y>Ry + (1 + 3ϕ2‖γ‖1)w>y + (1/4)(1 + 3ϕ2‖γ‖1)2ρ2 .
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It follows that

q(x) = −(x− p)>R(x− p) + 3ϕ2‖γ‖21 + (1/4)(1 + 3ϕ2‖γ‖1)2ρ2 .

In particular, p is the unique maximizer of q, and

max
x∈Rn

q(x) = 3ϕ2‖γ‖21 + (1/4)(1 + 3ϕ2‖γ‖1)2ρ2 ≤ (3ϕ‖γ‖1)2 ,

where the last inequality follows from (1 + 3ϕ2‖γ‖1)ρ ≤ ϕ‖γ‖1 + (3/2)ϕ‖γ‖1, because ρ ≤ ϕ‖γ‖1
and ϕρ ≤ 1/2.

6.2 Finding approximate Farkas certificates

The following theorem is the main technical tool for finding an ε-approximate Farkas certificate.
The theorem shows that, given a convex set K, if we have a strictly concave certified quadratic form
q(x) for K ∩ Bn(r), and if we have a direction v, ‖v‖ ≥ 1, such that the ellipsoid {x : q(x) ≥ 0}
has small width in the direction of v, then we can compute an ε-approximate Farkas certificate for
K ∩ Bn(r). All methods we consider start from some initial simple set containing K ∩ Bn(r). For
the ellipsoid method and the geometric rescaling algorithm, the initial relaxation is simply Bn(r),
whereas for the volumetric cutting plane algorithms, the initial relaxation is [−r, r]n. In particular,
for the ellipsoid method and the geometric rescaling algorithms, the certified quadratic form (18)
has γ0 > 0 (this corresponds to the initial quadratic form r2 − ‖x‖2 ≥ 0), whereas for Vaidya’s
algorithm we will always have γ0 = 0, but some of the inequalities a>i x ≤ ui may be the initial
box-constraints xj ≤ r or −xj ≤ r. Note that, in both cases, the ε-approximate Farkas certificate
computed using the theorem below will always be purely in terms of the oracle inequalities for K.

Theorem 6.10. Let K ⊆ Rn be a convex set, r > 0, and ε ∈ (0, 2r). Assume we are given
inequalities Ax ≤ u valid for K, A ∈ Rn×n, u ∈ Rm, and let Āx ≤ ū, Ā ∈ Rk×n, ū ∈ Rk,
k ≥ m, be a system comprising all inequalities in Ax ≤ u and some of the “box constraints”
xj ≤ r or −xj ≤ r, j ∈ [n]. Assume we are also given ` ∈ Rk and µ(i) ∈ Rk+, i ∈ [k] such that

r‖Ā>λ(i) + ai‖+ `i ≤ −ū>µ(i), and d ∈ Rn, β ∈ R, ϑ ∈ Rk+ such that ‖Āϑ+ d‖+ β ≤ −ū>ϑ. Let

γ ∈ Rk+1
+ , and assume that the quadratic form

q(x) = γ0(r2 − ‖x‖2) +

k∑
i=1

γi(ui − a>i x)(a>i x− `i) + d>x− β.

is strictly concave. Let E = {x : q(x) ≥ 0}. If we are given v ∈ Rn such that ‖v‖ ≥ 1 and
widthE(v) ≤ ε/3, then in time O(n2m + nω) we can compute an ε-approximate Farkas certificate
for K ∩ Bn(r) in terms of the inequalities Ax ≤ u, that is, λ ∈ Rm+ such that λ>u+ r

∥∥A>λ∥∥ < ε,∑m
i=1 λi‖ai‖ ≥ 1.

Proof. Recall that E is an ellipsoid centered at p := arg maxx∈Rn q(x). Since widthE(v) ≤ ε/3, it
follows that E ⊆ {x ∈ Rn : −ε/6 ≤ v>x− v>p ≤ ε/6}.

It will be convenient to assume ‖ai‖ ∈ [1, 2] for i ∈ [m], which is without loss of generality.
By Lemma 6.8, in time O(n2m + nω) we can compute dual certificates for {x : Āx ≤ ū} ∩ Bn(r)
of both inequalities −v>x ≥ −v>p − ε/6 and v>x ≥ v>p − ε/6. To distinguish the roles of
the constraints in Ax ≤ u from the box constraints, we express these certificates by two vectors
(λ′, µ′), (λ′′, µ′′) ∈ Rm+ × Rn, where (µ′)+, (µ′′)+ define the multipliers for the inequalities xj ≤ r,
and (µ′)−, (µ′′)− define the multipliers for the inequalities −xj ≤ r. Hence (λ′, µ′) and (λ′′, µ′′)
satisfy

r‖A>λ′+µ′−v‖−v>p−ε/6 ≤ −u>λ′−r‖µ′‖1, r‖A>λ′′+µ′′+v‖+v>p−ε/6 ≤ −u>λ′′−r‖µ′′‖1.

Note that, since ‖µ′‖ ≤ ‖µ′‖1 and ‖µ′′‖ ≤ ‖µ′′‖1, the triangle inequality implies

r‖A>λ′ − v‖ − v>p− ε/6 ≤ −u>λ′, r‖A>λ′′ + v‖+ v>p− ε/6 ≤ −u>λ′′. (25)

In what follows, we show that λ = (λ′ + λ′′)/‖λ′ + λ′′‖1 is a ε-approximate Farkas certificate.
By definition, ‖λ‖1 = 1, hence

∑m
i=1 λi‖ai‖ ≥ 1 by our assumption that ‖ai‖ ∈ [1, 2].

Adding up the two inequalities in (25) we obtain

ε

3
≥ u>(λ′ + λ′′) + r‖A>λ′ − v‖+ r‖A>λ′′ + v‖
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From the triangle inequality, we have

α := ‖A>λ′ − v‖+ ‖A>λ′′ + v‖ − ‖A>(λ′ + λ′′)‖ ≥ 0 .

If α > ε
3r , then the two equations above give u>(λ′ + λ′′) + r‖A>(λ′ + λ′′)‖ < 0, proving

u>λ+ ‖A>λ‖ < 0, and we are done.
Assume therefore that α ≤ ε

3r . Note that

ε

3‖λ′ + λ′′‖1
≥ u>λ+ r‖A>λ‖ ,

hence it suffices to show that ‖λ′ + λ′′‖1 = ‖λ′‖1 + ‖λ′′‖1 ≥ 1/3.
From the triangle inequality, using that ‖ai‖ ∈ [1, 2] for all i ∈ [m], we obtain

1 ≤ ‖v‖ ≤
∥∥A>λ′∥∥+

∥∥A>λ′ − v∥∥ ≤ 2‖λ′‖1 +
∥∥A>λ′ − v∥∥ ,

and a similar inequality holds for λ′′. Adding up the two bounds and using the definition of α, we
get

α+
∥∥A>(λ′ + λ′′)

∥∥ =
∥∥A>λ′ − v∥∥+

∥∥A>λ′′ − v∥∥ ≥ 2− 2(‖λ′‖1 + ‖λ′′‖1) .

Using the assumption α ≤ ε/(3r) and the upper bounds ‖ai‖2 ≤ 2,

ε

3r
+ 2(‖λ′‖1 + ‖λ′′‖1) ≥ 2− 2(‖λ′‖1 + ‖λ′′‖1).

Since ε ≤ 2r, the above implies ‖λ′‖1 + ‖λ′′‖1 ≥ 1
3 as required.

6.3 Approximate Farkas certificates from the ellipsoid method

In this section we describe an algorithm, which we will call the Certified Ellipsoid Method and prove
the following.

Theorem 6.11. Let K be a convex set given by a strong separation oracle, r > 0, and ε ∈ (0, 2r).
Then, the Certified Ellipsoid Method runs in oracle-polynomial time and, by making O(n2 log(nr/ε))
calls to the strong separation oracle, either returns a point x ∈ K, or an ε-approximate Farkas
certificate for K ∩ Bn(r) comprising only oracle inequalities.

As previously noted, this yields a subroutine Approx-Conic-Dual with T (n, ε) = O(n2 log(1/ε))
oracle calls.

Remark 6.12. In the remainder of the section, we will assume r = 1. Indeed, if we define
K ′ = K/r, and ε′ = ε/r, observe that an inequality a>x ≤ β is valid for K if and only if
ra>x ≤ β is valid for K ′. Hence, given a system rAx ≤ u of m valid inequalities for K ′, an ε′-
approximate Farkas certificate for K ′∩Bn(1) is of the form λ′ ∈ Rm+ such that ‖rA>λ′‖+u>λ′ ≤ ε′,∑m
i=1 λ

′
ir‖ai‖ ≥ 1, hence λ = rλ′ is an ε-approximate Farkas certificate for K ∩ Bn(r).

We give a self-contained exposition of the ellipsoid method and the certification procedure that
may provide new insights into the classical algorithm. Section 6.3.1 describes the Basic Ellipsoid
Method in a slightly stronger form. Section 6.3.2 introduces the Certified Ellipsoid Method, where
we modify the original framework to show how the containing ellipsoid can always be maintained
in terms of certified quadratic forms, which will imply Theorem 6.11.

6.3.1 The Basic Ellipsoid Method

Theorem 6.13. Let K be a convex set given by a strong separation oracle, and ε > 0. Then,
there exists an oracle-polynomial time algorithm that, by making O(n2 log(n/ε)) calls to the strong
separation oracle, either returns a point x ∈ K, or returns a vector a ∈ Rn with ‖a‖2 ∈ [1, 2]
such that widthK∩Bn(1)(a) ≤ ε. Moreover, the vector a will be one of the vectors returned by the
separation oracle during the algorithm.

The statement differs from the usual form in the case when no feasible solution is found. For
this case, the usual outcome as in [19, Theorem 3.2.1] is a small volume ellipsoid containing K.
Given such an ellipsoid E, one can show that E (and thus K) is thin in the direction in one of the
principal axes of E (see e.g. the proof of [19, Lemma 6.4.2]). Instead, using Lemma 6.4, we observe
that a small volume ellipsoid is thin in one of the directions returned by the oracle.
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At the t-th iteration, the algorithm maintains positive definite matrices Rt, Qt ∈ Sn++ such that

Qt = R−1
t , and a vector pt ∈ Rn. We let Et = E(Rt, pt). Throughout, we maintain

K ∩ Bn(1) ⊆ Et . (26)

We initialize E0 = Bn(1) = E(In, 0). At iteration t = 1, 2, . . ., the strong separation oracle is called
to check if pt−1 ∈ K. If the answer is yes, the algorithm terminates. Otherwise, the oracle returns
a direction at such that a>t pt−1 > a>t z for any z ∈ K. In this case, the matrices are updated as
follows:

Rt =
n2 − 1

n2
·Rt−1 +

2n+ 2

n2
· ata

>
t

‖at‖2Qt−1

, Qt = R−1
t , pt = pt−1 −

Qtat
(n+ 1)‖at‖Qt

. (27)

We note that computing Qt does not require a matrix inversion, but can be computed via a simple
rank-1 update formula from Qt−1, similarly to Rt.

The following lemma is the key in showing the progress in the volumetric potential. In Sec-
tion 6.3.2, we present a new proof using quadratic forms.

Lemma 6.14. If K∩Bn(1) ⊆ Et−1, then K∩Bn(1) ⊆ Et also holds, and det(Rt) > e1/n det(Rt−1).

The next lemma is immediate from the construction sequence.

Lemma 6.15. At iteration t ≥ 1 of the Basic Ellipsoid Method, there exist coefficients 0 < γ
(t)
0 < 1,

and γ
(t)
i > 0 for i ∈ [t] such that

Rt = γ
(t)
0 In +

t∑
i=1

γ
(t)
i aia

>
i . (28)

The next lemma completes the proof of Theorem 6.13.

Lemma 6.16. If the Basic Ellipsoid Method does not terminate in T = O(n2 log(n/ε)) iterations,
then widthK∩Bn(1)(at) ≤ ε for some t ∈ [T ].

Proof. Initially, det(R0) = 1. Using Lemma 6.14, we see that after t = O(n2 log(n/ε)) iterations,
det(Rt)

1/n > 1/ε2 + 1. The claim follows using Lemmas 6.3 and 6.4.

6.3.2 The certified ellipsoid method

Let us denote by qt(x) the strictly concave quadratic form defined as

qt(x) := 1− (x− pt)>Rt(x− pt) , (29)

so that Et = {x ∈ Rn : qt(x) ≥ 0}. Note that initially q0(x) = 1 − ‖x‖2. The Certified Ellipsoid
Method will maintain a qt as a certified quadratic form as in Definition 6.6. Combined with
Theorems 6.10 and 6.13, this will imply Theorem 6.11.

Assume that for the current ellipsoid Et = E(Rt, pt), the separation oracle returned at such
that a>t pt−1 > a>t z for all z ∈ K. If we let

ut := a>t pt−1

then the inequality a>t x ≤ ut is the inequality returned by the oracle, and it is valid for K. Further,
if we let

`t := a>t pt−1 − ‖at‖Qt−1 ,

then the fact that K ∩ Bn(1) ⊆ Et−1 ensures that a>t x ≥ `t is also valid for K ∩ Bn(1).
The following lemma shows that the ellipsoid update (27) corresponds to the following update

of the quadratic form, for some values α, β > 0.

qt(x) = αqt−1(x) +
β

‖at‖2Qt−1

(ut − a>t x)(a>t x− `t) , (30)

Lemma 6.17. For some α, β > 0, consider the expression qt(x) as in (30) with ut = a>t pt−1 and
`t = a>t pt−1 − ‖at‖Qt−1 , and let pt be the unique maximizer of qt(x). There exists Rt ∈ Sn++ such
that qt(x) = 1− (x− pt)>Rt(x− pt) if and only if

α =
1− 2γ

(1− γ)2
, β =

2γ

(1− γ)2
, for some 0 < γ <

1

2
. (31)
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Furthermore, for any such α, β, and γ,

Rt = αRt−1 + β
ata
>
t

‖at‖2Qt−1

, pt = pt−1 + γ
Qt−1at
‖at‖Qt−1

. (32)

Finally, the choice of γ that minimizes the volume of Et (or, equivalently, maximizes det(Rt)) is
γ∗ := 1/(n+ 1), for which choice det(Rt)/det(Rt−1) ≥ e1/n.

Proof. Denote qt := q, a := at/‖at‖Qt−1
, p := pt−1, p′ := pt, R := Rt−1, Q := Qt−1, and R′ = Rt.

If there exists a positive definite matrix R′ and p′ such that q(x) ≡ 1 − (x − p′)>R′(x − p′) then
q(p′) = 1. Since p′ is the unique maximizer of q(x), we have ∇q(p′) = 0. Using that

∇q(x) = −2αR(x− p)− β(1 + 2a>(x− p))a , (33)

from ∇q(p′) = 0 we see that p′ = p− γQa, where γ ∈ R satisfies

2αγ − β(1− 2γ) = 0. (34)

The condition q(p′) = 1 implies

α(1− γ2) + βγ(1− γ) = 1. (35)

Solving the linear system given by (34), (35) for α and β in terms of the parameter γ, we obtain
(31), and α, β > 0 if only if 0 < γ < 1/2.

Let us now fix a value of 0 < γ < 1/2 and compute α and β as above. Let us set R′ = αR+βaa>.
We show that q(x) ≡ q′(x) for q(x) = qt(x) as defined in (30), and for q′(x) = 1−(x−p′)>R′(x−p′).
This is a consequence of the following simple claim.

Claim 6.18. Two strictly concave quadratic functions are identical if and only if the following are
the same for the two functions: (i) the quadratic terms; (ii) the unique maximizers; and (iii) the
maximum values.

The quadratic term in both q(x) and q′(x) is −x>(αR + βaa>)x. The maximizer of both
functions is p′, and the maximum value is 1 in both cases. This completes the proof of (32).

Finally, we need to determine the choice of γ in order to minimize the volume of Et. This is
equivalent to maximizing det(R′). Note that

det(R′) = αn det

(
R1/2

(
I +

β

α
Q1/2aa>Q1/2

)
R1/2

)
= det(R)αn

(
1 +

β

α

)
= det(R)αn−1(α+ β) = det(R)

(1− 2γ)n−1

(1− γ)2n
.

(36)

This is maximized for γ = 1/(n+ 1), for which choice

det(Rt)

det(Rt−1)
=

(
n− 1

n

)n−1(
n+ 1

n

)n+1

≥ e1/n .

Observe that the above lemma immediately implies Lemma 6.14, hence this provides an alter-
native exposition of the standard volumetric argument for the ellipsoid method.

Corollary 6.19. At the t-th iteration of the Basic Ellipsoid Method, we can maintain qt(x) in the
form

qt(x) = γ
(t)
0 (1− ‖x‖2) +

t∑
i=1

γ
(t)
i (ui − a>i x)(a>i x− `i), (37)

where γ
(t)
0 = αt, and for each i ∈ [t], ai is the vector returned by the separation oracle at the i-th

iteration, ui = a>i pi−1, `i = ui − ‖ai‖Qi−1
, and γ

(t)
i = βαt−i/‖ai‖2Qi

, where α, β are defined as in

(31) for γ = 1/(n+ 1). Furthermore, for every k ∈ [t], we can compute a certificate µ(k) ∈ Rt+ for
the validity of a>k x`k, that is ∥∥∥∥∥

t∑
i=1

µ(i)ai + ak

∥∥∥∥∥+ `(k) ≤ −
t∑
i=1

λ
(k)
i ui. (38)
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Proof. The first statement follows by construction and by Lemma 30. For the last statement, we
observe that µ(k) ∈ Rt+, k ∈ [t] can be computed throughout the execution of the ellipsoid method.
Indeed, suppose that up to iteration t − 1 we have computed qt−1 in the form (37), along with
µ(1), . . . , µ(t−1). Since the inequality a>t x ≥ `t is valid for Et−1 = {x : qt−1(x) ≥ 0}, it follows
from Lemma 6.8 that we can compute µ(t) satisfying (38).

Maintaining a compact representation So far, we kept adding a new term aia
>
i to Rt in

every iteration, and thus Rt will be the weighted sum of the identity and t rank-1 matrices aia
>
i .

This would lead to O(n2 log(n/ε)) terms in R when running the Basic Ellipsoid Method to obtain
a ε-thin direction, according to Lemma 6.16. Thus, the space complexity of the algorithm is large,
albeit polynomial. Furthermore, we must maintain certificates µ(i) for each inequality a>i x ≥ `i,
i ∈ [t]. In what follows, we observe that one can maintain each quadratic form qt in terms of only
O(n2) terms of the form (ui − a>i x)(a>i x − `i), and that one needs to only keep O(n3) vectors ai
to certify the inequalities a>i x ≥ `i.

Indeed, one can readily verify from the expression (37) that

qt(x) = (1,−x>)H

(
1
−x

)
,

where the vector (γ
(t)
1 , . . . , γ

(t)
t ) is a feasible solution to the following system of

(
n+1

2

)
equations in

the nonnegative variables γ1, . . . , γt

t∑
i=1

γi

(
`iui a>i (`i + ui)/2

ai(`i + ui)/2 aia
>
i

)
= H − γ(t)

0 In+1.

If we choose γ ∈ Rt+ to be a basic solution and let It ⊆ [t] be its support, it follows that |It| ≤
(
n+1

2

)
and

qt(x) = γ
(t)
0 (1− ‖x‖2) +

∑
i∈It

γi(ui − a>i x)(a>i x− `i).

Furthermore, for every k ∈ It, given µ(k) ∈ Rt+ satisfying (38), we can compute a basic solution

µ̃(k) ∈ Rt+ to the system
∑t
i=1 µ̃

(i)ai =
∑t
i=1 µ

(i)ai with
∑t
i=1 µ̃

(i)ui ≤
∑t
i=1 µ

(i)ui, hence obtaining

a certificate for a>k x ≥ `k of support size at most n. If we denote by Ck the support of µ̃(k), then

we only need to maintain the vectors ai, i ∈ It ∪
⋃
i∈It Ci, along with the certificates µ̃(k) ∈ RIt+ .

By induction, we will guarantee that we obtain µ(t) as in (38) of support size O(n3). This can
be reduced to an O(n) size basic solution in time O(n5). This amounts to a substantial running
time overhead: whereas an update takes O(n2) time for the Basic Ellipsoid Method, maintaining a
small I amounts to O(n4) per update, and maintaining the certificates to O(n5).4 The increased
complexity bound is however still much lower than the algorithm for finding a dual optimal solution
in [19, Lemma 6.5.15] that would amount to running the Ellipsoid Method for a second time with
O(n2 log(n/ε)) variables (for an appropriate ε in the context of rational polyhedra).

6.4 Approximate Farkas certificates from volumetric cutting plane meth-
ods

We now show how to derive Farkas certificates from volumetric cutting plane methods. This
method was introduced by Vaidya [40]; similar cutting plane methods with improved arithmetic
complexity were given by Lee, Sidford, and Wong [28] and by Jiang, Lee, Song, and Wong [23]. For
simplicity, we present the implementation for Vaidya’s original algorithm, but the same framework
is applicable for the subsequent variants as well. As previously noted, [28] also includes an explicit
statement on dual certificates.

In contrast to the ellipsoid method, we do not maintain the certified concave quadratic form
during the algorithm, but construct it at termination using Lemma 6.9.

Given a polyhedron P = {x ∈ Rn : Ax ≤ u}, A ∈ Rm×n, u ∈ Rm, the log-barrier function is
defined over the interior of P by f(x) = −

∑m
i=1 log(ui − a>i x), and its Hessian is

∇2f(x) =

m∑
i=1

aia
>
i

(ui − a>i x)2
.

4It is possible to improve the complexity of maintaining a small I to O(n3), by only approximately maintaining q(x).
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Let F be the function defined over the interior of P by F (x) = log(det(∇2f(x))).
The function F is strictly convex [40], and the minimizer ω̃ of F is called the volumetric center

of P . The gradient of F is

∇F (x) =

m∑
i=1

σi(x)
ai

ui − a>i x
, where σi(x) =

a>i (∇2f(x))−1ai
(ui − a>i x)2

, i ∈ [m].

Observe that
∑m
i=1 σi(x) = n and σi(x) ≤ 1 for i ∈ [m]. Finally, let us define

Q(x) =

m∑
i=1

σi(x)
aia
>
i

(ui − a>i x)2
.

The σi(x) values are the leverage scores of the subspace

span(diag((u1 − a>1 x)−1, . . . , (um − a>mx))A).

Since σi(x) ≤ 1, i ∈ [m], ∇2f(x) � Q(x). Let µ(x) be the largest number µ̃ such that Q(x) �
µ̃∇2f(x), and note that µ(x) ≥ mini∈[m] σi(x).

Let K defined by a strong separation oracle, ε > 0, and assume we want to find a point in K or
an ε-approximate Farkas certificate for K ∩ Bn(1); as in Remark 6.12, we can assume r = 1. Let
δ ≤ 10−4, c ≤ 10−3δ. At every iteration, Vaidya’s algorithm maintains a set of inequalities Ax ≤ u,
where a>i x ≤ ui is either an inequality returned by the oracle, or one of the bound inequalities
xj ≤ 1 or −xj ≤ 1. The algorithm also maintains a point z ∈ Rn satisfying Az < u such that

F (z)− F (ω̃) ≤ c4µ(ω̃). (39)

The system is initialized to −1 ≤ xj ≤ 1, j ∈ [n], and z = ω̃ = 0. At any given iteration, if σi(z) < c
for some i ∈ [m], the inequality a>i x ≤ ui is removed from the system. If mini∈[m] σi(z) ≥ c, the
separation oracle is queried for z; if z ∈ K then the algorithm stops, else the oracle returns a
vector ai ∈ Rn such that a>i x < a>i z, and the algorithm adds the inequality a>i x ≤ ui to the
system, for some appropriately chosen value ui > a>i z. In both cases (whether an inequality has
been added or removed), the algorithm performs a fixed number of Newton steps to compute a new
point z satisfying (39) with respect to the new system. Each iteration requires O(nω) arithmetic
operations; the algorithms [23, 28] improve on the arithmetic complexity.

Let us denote by ρk the value of F (ω̃) at the kth iteration. Note that at the beginning ∇2f(z) =
In, hence ρ0 = log(det(In)) = 0. Vaidya [40] shows

ρk ≥ ck

2
. (40)

Theorem 6.20. Let K be a convex set given by a strong separation oracle, r > 0, and ε ∈ (0, 2r).
Then, in O(n log(nr/ε)) calls to the strong separation oracle and O(nω+1 log(nr/ε)) arithmetic
operations, Vaidya’s algorithm either returns a point x ∈ K, or an ε-approximate Farkas certificate
for K ∩ Bn(r) comprising only oracle inequalities. The support of the certificate has cardinality
O(n).

Proof. As previously noted, we may assume r = 1. Observe that, since
∑m
i=1 σi(z) = n, then

at every iteration m ≤ n/c, since otherwise mini∈[m] σi(z) < c, and an inequality is removed
from the system. By (40), after O(n log(n/ε)) iterations we have det(∇2f(z)) ≥ c−1.5n(20n/ε)2n.
Furthermore, continuing Vaidya’s algorithm by removing constraints as long as mini∈[m] σi(z) < c,
which requires at most m ≤ n/c further iterations, we can also guarantee that σi(z) ≥ c for all
i ∈ [m]. In particular, it follows that det(Q(z)) ≥ cn det(∇2f(z)) ≥ c−n/2(20n/ε)2n.

Vaidya (Lemma 10 in [40]) shows that, if F (z)−F (ω̃) ≤ δ
√
µ(ω̃), then ∇F (z)>Q(z)−1∇F (z) ≤

(F (z) − F (ω̃))/0.14. Since we maintain a point z satisfying (39), and since c4µ(ω̃) < δ
√
µ(ω̃), it

follows that ∇F (z)>Q(z)−1∇F (z) ≤ c4µ(ω̃)/0.14.
Vaidya (Claim 4 in [40]) also shows that a>i Q(z)−1ai/(ui − a>i z)2 ≤ 1/

√
µ(z) ≤ c−1/2, i ∈ [m].

Let us now define γ ∈ Rm++ by γi := σi(x), i ∈ [m], R := Q(z), w = ∇F (z). Observe that

γ, z, R, and w satisfy (22). By the above discussion, we have ρ := ‖w‖R−1 ≤
√
c4µ(ω̃)/0.14 and

ϕ := maxi∈[m] ‖ai‖R−1/(ui − a>i z) ≤ c−1/4. Note that ρϕ ≤ 1/2, hence γ satisfies the assumptions
of Lemma 6.9, which shows that the quadratic form defined in (23) is certified for Ax ≤ u, and
that the ellipsoid E = {x ∈ Rn : q(x) ≥ 0} satisfies E = αE(R, p), p being the center of E
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and α ≤ 3ϕ‖γ‖1 ≤ 3nc−1/4. It now follows from Lemmas 6.4 that there exists k ∈ [m] such that
‖ak‖R−1/‖ak‖2 ≤ (det(R)1/n − 1)−1/2, and from Lemma 6.3 we have that, for v = ak/‖ak‖2,

widthE(v) = 2α‖v‖R−1 ≤ 6nc−1/4(det(R)1/n − 1)−1/2 ≤ 6nc−1/4(c−1/2(20n/ε)2 − 1)−1/2 ≤ ε/3.

It follows from Theorem 6.10 that we can compute an ε-approximate Farkas certificate for K∩Bn(1)
comprising only oracle inequalities.

6.5 Approximate conic certificates from geometric rescaling methods

We consider a particular variant of the geometric rescaling algorithms introduced by Dadush et
al. [12, 13] and by Hoberg and Rothvoß [21]. Similar certification should be applicable for other
variants as well. The algorithm discussed here takes as input a cone K ⊆ Rn defined by a conic
separation oracle, along with ε > 0, and returns either a point x ∈ K or determines a “thin
direction”, that is, a vector v ∈ Rn, ‖v‖ = 1, such that K ⊆ {x ∈ Rn : |v>x| ≤ ε}. Here we
briefly describe the algorithm and the analysis, to show that in the second case we can compute an
ε-approximate conic Farkas certificate for K.

The algorithm will maintain, at each iteration t, a matrix Rt ∈ Sn++ such that K ∩ Bn(1) ⊆
E(Rt, 0) and such that det(Rt) increases at each iteration. Throughout we denote Qt = R−1

t .
Initially R0 := In. The algorithm sets a threshold β := 1/(11n). At iteration t+ 1, the algorithm
applies von Neumann’s algorithm (first described by Dantzig in [14]) to compute a set of vectors
{mi : i ∈ Jt} returned by the conic separation oracle and ζ(t) ∈ RJt+ , ‖ζ(t)‖1 = 1, such that the
vector

y :=
∑
i∈Jt

ζ
(t)
i mi

‖mi‖Qt

,

either satisfies that Qty ∈ K (in which case we stop), or ‖y‖Qt
≤ β. In the latter case, we update

Rt+1 :=
Rt + Pt
1 + β

, where Pt :=
∑
i∈Jt

ζ
(t)
i

‖mi‖2Qt

mim
>
i . (41)

We have det(Rt+1) ≥ (16/9) det(Rt) [12, Lemma 11].
Next we observe that the quadratic form qt(x) := 1 − x>Rtx can be maintained as a certified

quadratic form for K ∩ Bn(1). Inductively, assume that

qt(x) = γ0(1− ‖x‖2) +
∑
i∈It

γim
>
i x(ui −m>i x) + ν − v>x, (42)

where we have maintained dual certificates of validity over K∩Bn(1) for the inequalities m>i x ≤ ui,
i ∈ It, and v>x ≤ ν.

Note that, for all i ∈ Jt, by Cauchy-Schwartz the inequalitym>i x ≤ ‖mi‖Qt is valid forK∩Bn(1),
because ‖x‖Rt

≤ 1 for all x ∈ K ∩ Bn(1) ⊆ E(Rt, 0). Since E(Rt, 0) = {x : qt(x) ≥ 0} and qt
is a certified strictly concave quadratic form, by Lemma 6.8 we can compute dual certificates of
validity for m>i x ≤ ‖mi‖Q over K ∩ Bn(1). Similarly, we have that y>x ≤ ‖y‖Qt

≤ β is valid for
K ∩ Bn(1), and we can compute a dual certificate of validity for it. Hence the quadratic form

r(x) =
∑
i∈Jt

ζ(t)

‖mi‖2Qt

m>i x(‖mi‖Qt
−m>i x) + β − y>x,

is certified for K ∩ Bn(1). It follows from the definition of y and Pt that r(x) = β − x>Ptx, hence
qt+1(x) = (1 + β)−1(qt(x) + rt(x)). Since qt and rt are both certified, also qt+1 is certified, as
can be seen by observing that inequality (v + y)>x ≤ ν + β, corresponding to the linear-term in
qt+1(x), can be certified as follows. If ϑ and ϑ′ certify the validity of v>x ≤ ν and y>x ≤ β for
K∩Bn(1), then ϑ+ϑ′ certifies the validity of (v+y)>x ≤ ν+β, since ‖

∑
i∈It(ϑi+ϑ′i)mi+v+y‖ ≤

‖
∑
i∈It ϑimi + v‖+ ‖

∑
i∈It ϑ

′
imi + y‖ ≤ ν + β.

Note that, exactly as explained in Section 6.3.2, we can apply Caratheodory to maintain the
expression

∑
i∈It γim

>
i x(ui −m>i x) in (42) so that |It| ∈ O(n2).

Theorem 6.21. Let K ⊆ Rn be a convex cone given by a conic separation oracle, and ε > 0.
Then, in O(n3 log(n/ε)) calls to the separation oracle, and O(n5 log(n/ε)) arithmetic operations,
the geometric rescaling algorithm either returns a point x ∈ K, or an ε-approximate conic Farkas
certificate.
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Proof. Since det(Rt+1) ≥ (16/9) det(Rt), after T ∈ O(n log(n/ε)) iterations, there exists k ∈ IT
such that ‖mk‖QT

≤ ε‖mk‖2. Since the quadratic form qT (x) is certified, we can compute a

certificate of validity λ ∈ RIT+ for the inequality (mk/‖mk‖2)>x ≤ ε, that is, ‖
∑
i∈IT λimi +

mk/‖mk‖2‖ ≤ ε. This gives a ε-approximate conic Farkas certificate. For the running time, each
von Neumann call requires d1/β2e = O(n2) calls to the separation oracle and O(n3) arithmetic
operations [12, Lemma 8], so in particular |Jt| ∈ O(n2) at each iteration t. Hence the total number
of oracle calls is O(n3 log(n/ε)). Computing the new matrix Rt for t = 1, . . . , T requires time
O(n2|Jt|) ∈ O(n4), which gives O(n5 log(n/ε)) arithmetic operations overall.

7 Rational polyhedra

In this section, we consider rational polyhedra in the bit complexity model as in [19], and show
some implications of our algorithms in this model. We denote by 〈α〉 the binary encoding length
of a rational number α, and 〈D〉 denote the encoding length of a matrix D, defined as follows: for
an integer n 6= 0, 〈n〉 := dlog2 |n|+ 1e; for a rational number α = p/q given as the ratio of co-prime
integers with q > 0, 〈α〉 := 〈p〉+ 〈q〉; and for a matrix D ∈ Qn×n, 〈D〉 is the sum of the encoding
length of all entries. Let us recall the definitions of facet and vertex complexity; see [19, Definition
(6.2.2)].

Definition 7.1. Let P ⊆ Rn be a polyhedron.

(i) We say that P has facet-complexity at most ϕ, if P can be defined by a system of linear
inequalities with rational coefficients such that each inequality has encoding length at most ϕ.
If P = Rn, we require ϕ ≥ n+ 1. The triple (P ;n, ϕ) is called a well-described polyhedron.

(ii) We say that P has vertex-complexity at most ν, if there exist finite sets of vectors VP , DP ∈
Qn such that P = conv(VP ) + cone(DP ), and all vectors in VP ∪DP have encoding length at
most at most ν. If P = ∅, then we require ν ≥ n.

Dual solutions in the oracle model The results in [19] appear to be the only known
methods in the literature for obtaining dual certificates of infeasibility and optimality in the oracle
model. In this context, it is important to clarify which inequalities can be involved in the dual
solution. In this respect, [19] considers two different concepts: optimal standard dual solutions and
optimal dual solutions with oracle inequalities.

The former concept means that the dual solution assigns non-zero multipliers only to facet-
defining inequalities for P , in some standard representation of P . Since there is typically no
guarantee that the separation oracle returns facet-defining inequalities, it is not conceivable to be
able to derive such certificates directly from the execution of the method, and indeed getting an
optimal standard dual solution requires repeated applications of the ellipsoid method and the use
of polarity (Theorem 6.5.14 in [19]).

The second concept, instead, requires that the nonzero entries of the dual solution correspond to
inequalities that have been output by the oracle during the application of the method. Grötschel,
Lovász, and Schrijver [19] point out that this is not possible in general. Assumption (4) on bounded
encoding length of the oracle inequalities plays a key role in this context: under this assumption,
one can obtain a dual certificate as follows (cf. Lemma 6.5.15 in [19]). We first run the (primal)
ellipsoid method, obtaining a set F of oracle inequalities. Next, we “tighten” each inequality in F ,
by another run of the ellipsoid per inequality. Finally, we apply the ellipsoid method to the dual
LP, with the variable set corresponding to F . Note that the dimension of this latter problem will
be very large (albeit still polynomially bounded).

It has to be noted that, while assumption (4) is natural and applies widely in combinatorial
optimization, it is not without loss of generality. A notable exception to assumption (4) is optimizing
over the ϑ-body [19, Chapter 9]. In Section 7.2, we sketch how our method can be adapted to
settings that do not satisfy assumption (4).

Bounding δ by ϕ The next lemma shows bounds on our condition number δ in terms of the
bit-complexity.

Lemma 7.2. If every row of a matrix M ∈ Rm×n has bit-complexity at most ϕ, then δM ≥
1/2O(n3ϕ). Let P = {x ∈ Rn : Ax ≤ b} such that for all inequalities a>i x ≤ bi, the vector (a>i , bi)

has bit-complexity at most ϕ. Then, δA, δ(A,b)+(0,1) ≥ 1/2O(n3ϕ).
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Proof. The second part follows by the first by recalling that δ(A,b)+(0,1) = δM for the matrix M as

in (1). Let us now show the first part; let m>i be the i-th row of M . Consider a set {mi : i ∈ J}
of linearly independent vectors and nonzero coefficients λ ∈ RJ ; let v =

∑
i∈J λimi.

Let B ∈ Qn×n be a matrix whose first |J | columns are the vectors mi, i ∈ J , with arbitrary
further n−|J | unit vectors added such that B is non-singular. Then, for x = B−1v, we have xi = λi
for i ∈ J and xj = 0 otherwise. We have 〈B〉 = O(nϕ), and consequently,

〈
B−1

〉
≤ 4n2 〈B〉 =

O(n3ϕ) (see [19, Exercise 1.3.5(d)]). In particular, the norm of every row in B−1 is bounded

by 2O(n3ϕ), and consequently, |xi| ≤ 2O(n3ϕ)‖v‖. We also have ‖mi‖ ≤ 2O(ϕ); consequently,

maxi∈J |λi|‖mi‖2 ≤ 2O(n3ϕ)‖v‖, showing the bound on δM .

Together with Theorem 1.3, we yield the following.

Corollary 7.3. Let P = {x ∈ Rn : Ax ≤ b}, and assume we are given polyhedral separation oracles
for both P as well as the recession cone rec(P ) = {x ∈ Rn : Ax ≤ 0}. Further, assume for every
inequality a>i x ≤ bi in the system, (a>i , bi) has bit-complexity at most ϕ. Then, there exists oracle
polynomial algorithms for linear feasibility and linear optimization, also returning dual certificates,
using O(n5ϕ) oracle calls.

Remark 7.4. In order to obtain a polynomial algorithm in the bit-complexity model using an
implementation of Approximate-Conic-Dual as in Section 2, one needs to provide an imple-
mentation of the subroutine that maintains rational numbers of bounded encoding length. This can
be done by suitably rounding the coefficients encountered by the algorithms described in Section 6,
but we do not elaborate the details here as the main focus of this paper is on the real model of
computation.

7.1 Strong separation oracles with bounded bit complexity

The algorithms in [19] can return dual certificates with oracle inequalities under assumption (4).
Recall that this assumption requires that the we have a strong separation oracle returning vectors
whose encoding size is polynomially bounded by the facet complexity ϕ. However, in Corollary 7.3,
we use a seemingly stronger polyhedral separation oracle model, where we require the oracle to
return inequalities a>i x ≤ bi such that (ai, bi) has encoding size polynomially bounded by ϕ.
Furthermore, Corollary 7.3 also requires such separation oracle also for the recession cone.

In this section, we show that a strong separation oracle satisfying assumption (4) can be turned
into polyhedral separation oracles of bounded bit-complexity. Assume that for the well-described
polyhedron (P ;n, ϕ) with vertex complexity at most ν, and we have a strong separation oracle that
for each x̄ ∈ Qn, returns a vector a ∈ Qn, such that max{a>x : x ∈ P} < a>x̄ with 〈a〉 = O(ϕ).
This oracle returns the inequality a>x < a>x̄, that is, the right hand side a>x̄ depends on the
point x queried, and a priori there could be an infinite number of potential inequalities returned.

Regarding the recession cone, [19, Lemma (6.4.8)] shows that the strong separation oracle of P
implies a strong separation oracle for rec(P ), returning inequalities a>x ≤ 0, where a>x ≤ a>x̄ is
an inequality that can be returned by the separation oracle for P . Hence, we obtain a polyhedral
separation oracle fo rec(P ), with the inequalities of encoding length ϕ.

Next, we show that a polyhedral separation oracle can be implemented for P by rounding the
inequalities a>x ≤ a>x̄ to a>x ≤ b such that b has bit-complexity O(ϕ + ν). Thus, there exists a
finite description Ax ≤ b of P such that every inequality has encoding length O(ϕ+ ν). Together
with the rounding procedure, we can map the strong separation oracle to a polyhedral separation
oracle with respect to this system, and therefore, Corollary 7.3 is applicable.

Let us note the following bounds relating facet- and vertex-complexity.

Lemma 7.5 ([19, (6.2.4)]). Let P ⊆ Rn be a polyhedron.

(i) If P has facet-complexity at most ϕ, then P has vertex-complexity at most 4n2ϕ.

(ii) If P has vertex-complexity at most ν, then P has facet-complexity at most 3n2ν.

Rounding using the continued fractions method The key tool is the continued fractions
method, an efficient algorithm for the following existential result by Legendre. We do not describe
the method but summarize its properties in the next theorem, see [33, Section 6.1]

Theorem 7.6. For given real number α ≥ 0 and integer N > 0, there exists at most one pair

(p, q) of nonnegative integers such that
∣∣∣α− p

q

∣∣∣ ≤ 1
2N2 and q ≤ N . There exists an algorithm that,

in O(logN) arithmetic operations, either finds such a pair (p, q), or concludes that no such pair
exists. Further, if α is rational, then the space complexity of the algorithm is poly(〈α〉 , logN).
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Lemma 7.7. For given rational number α ≥ 0 and integer σ > 0, in O(σ) iterations the continued
fraction method finds the largest rational number q ≤ α such that 〈q〉 ≤ σ. If α is rational, then
the space complexity of the algorithm is poly(〈α〉 , σ).

Proof. This follows as in the proof of [19, Theorem (5.1.9)]. The continued fractions method
constructs a sequence of iterates βk = gk/hk such that hk grows exponentially. Further, β2k ≤ α ≤
β2k+1. Thus, there are O(σ) iterates of size at most σ; the largest such β2k provides the required
answer.

Consider now the well-described polyhedron (P ;n, ϕ) with vertex complexity at most ν, and a
valid inequality a>x ≤ u such that 〈a〉 ≤ ϕ. Let b be the largest rational number b < u such that
〈b〉 ≤ ϕ+ ν. Such a value b can be computed in polynomial time in 〈u〉 and ϕ + ν via continued
fractions, as in Lemma 7.7. We claim that a>x ≤ b is a valid inequality for P . This follows since
the linear function a>x is bounded on P , and thus takes its maximum value on an extreme solution
that has encoding length ≤ ν. Hence, the value max{a>x : x ∈ P} has encoding length ≤ ϕ+ ν.

Remark 7.8. Finally, let us remark that it is not necessary to apply the rounding procedure to
every inequality returned by the oracle. We can postpone the roundings to the inequalities that
participate in the ε-approximate Farkas certificates.

7.2 Removing the assumption on the complexity of oracle inequalities

Let us now briefly sketch how one can (inefficiently) recover the [19] result without the simplifying
assumption (4) within the polyhedral separation oracle model. In this context, one assumes that
the bit-complexity of the facets of the polyhedron P have bit-size at most ϕ, but one only makes
the assumption that the complexity of the output of the separation oracle grows polynomially as
a function of the bit-size of the query point (i.e., it is not bounded by a fixed function of ϕ). To
convert any such oracle to a polyhedral one with lower bounded δ, one may simply post-process
each inequality outputted by the oracle using Diophantine approximation. Using the iterated
Diophantine approximation method of Frank and Tardos [17], one can convert any valid inequality
a>x ≤ b for P to a “nearby” valid inequality ã>x ≤ b̃ for P , where ã, b̃ have bit-size poly(n, ϕ). More
precisely, the closeness of ãx ≤ b̃ to ax ≤ b is formalized by saying that for any low-complexity point
x̄ ∈ Qn, i.e., with bit-size poly(n, ϕ), satisfies sign(b − a>x) = sign(b̃ − ã>x). In particular, if we
maintain that we only query the oracle with inputs of bit-size at most poly(n, ϕ), which is relatively
straightforward to achieve in most settings, the “post-processed” oracle behaves analoguously to a
polyhedral separation oracle with lower-bounded δ. In particular, log 1/δ will be polynomial in ϕ
and n, using standard bit-complexity arguments.

One can make the above reduction more efficient by only lazily post-processing the “important”
oracle inequalities, which would reduce to number of Diophantine approximations to O(n), similar
to [19]. As the details are technical and somewhat orthogonal to our main contributions, we defer
a thorough presentation of this reduction to the full version of the paper.

8 Relating the circuit imbalance and δ

In this section, we investigate the relation between the condition number δ and the circuit imbalance
measure κ. Lemma 8.2 shows bounds between these numbers; Corollary 8.3 shows that if A is in
the form A = (I|A′), then δA> is comparable to κA. Using this, Theorem 8.4 adapts our conic
validity algorithm to solving linear feasibility systems with κA dependence. Finally, in Section 8.1,
we study optimal rescalings of δ. We use the following result on self-duality of κW .

Lemma 8.1 ([10]). For every linear subspace W ⊆ Rn and the dual subspace W>, κW = κW> .

The relation between δ and κ is as follows.

Lemma 8.2. Let A ∈ Rm×n be a matrix with full row rank and m < n with ‖ai‖ = 1 for all
columns i ∈ [n]. Let σmin(A>) be the minimum singular value of A> (that equals the minimum
nonzero singular value of A). Then,

σmin(A>)√
nδA>

≤ κA ≤
1

δA>
.
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Proof. Let us start with the upper bound on κA. Let g ∈ E(ker(A)) be an elementary vector.
Select an arbitrary i ∈ supp(g), and let J = supp(g) \ {i}. Then, the columns {gj : j ∈ J} are
linearly independent, and −giai =

∑
j∈J gjaj . Thus,

|gi| · ‖ai‖ =

∥∥∥∥∥∥
∑
j∈J

gjaj

∥∥∥∥∥∥ ≥ δA> max
j∈J
|gj | · ‖aj‖ ,

and using that all columns have unit norm, we get |gj/gi| ≤ 1/δA> for all j ∈ J . This shows that
κA ≤ 1/δA> .

We now turn to the lower bound on κA. According to Lemma 2.3, there exists an index set
B ⊆ [n], |B| = m, and an index k ∈ B, such that AB is non-singular, and 1/δA> equals the norm of
the k-th row of A−1

B . This row of A−1
B is the unique solution z ∈ Rm to the system (AB)>z = emk ,

where emk is the k-th unique vector in Rm.
Let us now consider the vector y = A>z ∈ Rn; this is a vector in im(A>), and we claim that it

is an elementary vector. Indeed, suppose a nonzero vector y′ ∈ im(A>) exists with strictly smaller
support. We have yi = 0 for all i ∈ B \ {k}. If y′k = 0, then the nonsingularity of AB implies
that y′ = 0. If y′k 6= 0, then we can normalize to y′k = 1; but now y′B = yB , and again by the
nonsingularity of AB , we must have y′ = y.

Let us use duality of κW (Lemma 8.1) for W = ker(A) and W⊥ = im(A>). Since yk = 1, we
obtain ‖y‖∞ ≤ κW⊥ = κW . We thus get

σmin(A>)

δA>
= σmin(A>)‖z‖ ≤ ‖A>z‖ = ‖y‖ ≤

√
n‖y‖∞ ≤

√
nκW .

Corollary 8.3. Let A ∈ Rm×n be of the form A = (Im|A′). Then,

1

δA>
≤
√
nmκ3

A .

Proof. For any column ai of A, i ∈ [m + 1, n], we have a circuit g in ker(A) defined as gj = −aij
for j ∈ [m], gi = 1, and gj = 0 otherwise. Hence, all nonzero entries of A are between 1/κA and
κA, and therefore all column norms are between 1/κA and

√
mκA.

Let Â be the matrix arising by normalizing all columns of A so that all columns have norm 1, and
let us apply Lemma 8.2 to A. Note that, since A contains an identity matrix, σmin(Â>) ≥ 1. Hence,
1/δÂ> ≤

√
nκÂ. Renormalization may increase the ratio between two entries of an elementary

vector by at most
√
mκ2

A; thus, the claim follows.

Theorem 8.4. Let A ∈ Rm×n, b ∈ Rm, and consider the linear feasibility problem Ax = b, x ≥ 0;
assume rk(A) = m. There exists an O(nm3 log(n+ κA) +m5 log log(n+ κA)) time algorithm that
either finds a feasible solution, or a Farkas certificate A>y ≥ 0, b>y < 0.

Proof. First, we can use Gaussian elimination to bring A to the basic form A−1
B A in O(nm2) time.

To simplify the notation, we henceforth replace A by A−1
B A and b by A−1

B b. Consider the conic
validity problem for the vector b and the cone K = {y ∈ Rm : A>y ≥ 0}. The output is either a
primal feasible solution or a Farkas certificate to our problem.

We obtain the claimed running time from Theorem 1.7 with the oracle as in Theorem 1.5
implementing the JLSW algorithm [22], and noting that every oracle call takes nm time by checking
each inequality a>i y. Finally, note that by Corollary 8.3, log(n/δA) = O(log(n+ κA)).

8.1 Optimizing the measure δ

Consider a full-row rank matrix A ∈ Rm×n. As we have already observed, the measures κA and δA>
are invariant under different rescalings: for any positive diagonal matrix D ∈ Rn×n, δ(AD)> = δA> ,
but κAD might be different from κA. On the other hand, for any nonsingular T ∈ Rm×m, the
opposite holds: κTA = κA, but δ(TA)> and δA> may be different. One can naturally ask for the
following quantities.

κ∗A := inf
{
κAD : D ∈ Rn×n positive diagonal

}
δ∗A> := sup

{
δ(TA)> : T ∈ Rm×m nonsingular

}
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Lemma 8.5. Given a matrix A ∈ Rm×n, δ∗A> ≤ 1/κ∗A.

Proof. Let D be the diagonal matrix with ith diagonal entry equal to 1/‖ai‖, so that all columns
of AD have unit norm. For any nonsingular T ∈ Rm×m, Lemma 8.2 implies

δ(TA)> = δ(TAD)> ≤
1

κTAD
=

1

κAD
≤ 1

κ∗A
.

The quantity κ∗A was studied in [10]; they gave a min-max characterization, as well as the
following algorithmic result:

Theorem 8.6 ([10]). Given a matrix A ∈ Rm×n, in O(n2m2 + n3) time one can find a positive
diagonal matrix D such that κAD ≤ (κ∗A)3.

As a consequence, all results with running time dependence on log(κA+n) can be strengthened
to dependence on log(κ∗A + n). Note that the approximability result is in surprising contrast with
that of Tunçel [39] who showed that χ̄A (and consequently, κA) cannot be approximated within a
factor 2poly(m).

Combined with Corollary 8.3, we obtain the following result on δ∗A> .

Corollary 8.7. For a matrix A ∈ Rm×n, in O(n2m2 + m3) time we can find a nonsingular
T ∈ Rm×m such that

(δ∗A>)9

√
nm

≤ δ(TA)> .

Proof. Let us compute the near optimal rescaling D such that κAD ≤ (κ∗A)3 as in Theorem 8.6.
Compute any non-singular m×m matrix B of AD, and return T = B−1. We show that T satisfies
the statement. Indeed, TAD contains an m ×m identity matrix, therefore, by Corollary 8.3, we
get

δ(TA)> = δ(TAD)> ≥
1√

nm(κTAD)3
=

1√
nm(κAD)3

≥ 1√
nm(κ∗A)9

≥
(δ∗A>)9

√
nm

,

where the last inequality follows from Lemma 8.5.

Note that we are only able to use the above renormalization for an explicitly given matrix A,
but not in the oracle model.

A Impossibility results

We now turn to the proofs of Proposition 1.1 and 1.4 showing the impossibility of strongly poly-
nomial algorithms in the oracle model.

Proof of Proposition 1.1. Let Pm denote the set of polytopes P ⊆ R2 of the form

P =

{
(x1, x2) ∈ R2 :

x1

pi
+
x2

qi
≤ 1, i ∈ [m], (x1, x2) ≥ 0

}
, (43)

for some numbers p1 > p2 > . . . > pm > 0, 0 < q1 < q2 < . . . < qm. For any such choice of
parameters, these define a full-dimensional polytope with m+ 2 facets. Let Pm denote the class of
all polytopes of this form.

Consider the problem max x1, x ∈ P for such a polytope P ∈ Pm. Clearly, the optimal solution
is (pm, 0). We claim that an adversary can answer oracle queries such that, for any prescribed
m∗ ∈ N, any algorithm will require at least m∗ queries to compute an optimal solution. This
proves the claim, since m∗ can be chosen independently from n = 2.

The adversary strategy is as follows. At the current iteration, say iteration m, they maintain
two polytopes Pm ∈ Pm and Qm ⊆ Pm, starting with m = 0, P0 = R2

+, Q0 = {0}. For m ≥ 1, the
polyhedron Pm is given in the form (43) with p1 > p2 > . . . > pm > 0 and 0 < q1 < q2 < . . . < qm.
For m = 1 we let z = (0, q1), and for m > 1 we let z = (z1, z2) be the point corresponding to
the intersection of the last two separators x1/pm−1 + x2/qm−1 = 1 and x1/pm + x2/qm = 1. For
1 ≤ m < m∗, we let Qm = Pm ∩ {(x1, x2) ∈ R2 : x1 ≤ z1}.

In each iteration, if the algorithm queries a point x ∈ R2 that is in Qm, the oracle responds that
the point is feasible. If x /∈ Pm, then we return one of the facet defining inequalities of Pm that
separates x. Finally, if x ∈ Pm \Qm, then we return a new inequality x1/pm+1 +x2/qm+1 ≤ 1 with
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0 < pm+1 < pm and qm+1 > qm; it is easy to see that such an inequality can always be added. We
obtain Pm+1 from Pm by adding this new inequality, update Qm+1, and increase m by one. Once
we reach m = m∗, we set Qm = Pm.

Note that this oracle strategy maintains Pm+1 ⊂ Pm, Qm+1 ⊃ Qm, and all facets of Pm are also
facets of Pm+1. Thus, all previous separators returned by the oracle are valid to Pm+1. Moreover,
m gives a lower bound on the total number of oracle queries.

Proof of Proposition 1.4. The proof is similar to the previous one, but even simpler, in 1-dimension.
Consider b ∈ Rm with values b1 > b2 > . . . > bm ∈ R. Let A ∈ Rm×1 be a matrix with all entries 1.
Let P = {x1 ∈ R : Ax1 ≤ b}; thus, P = (−∞, bm]. Consider the problem of max x1 for x1 ∈ P ;
the optimal solution is x∗1 = bm. However, m oracle queries are necessary: Similarly to the previous
proof, the adversary answering the oracle queries can always maintain P in this form such that the
first k oracle queries are x1 ≤ bi, i ∈ [k].

Note that all rows of the matrix A are identical, hence, any condition number θA unchanged
by duplicating copies must be the same as for the 1 × 1 matrix A′ = (1). Therefore, f(n, θA)
is the same for all instances in this form, showing that no algorithm may terminate in f(n, θA)
queries.
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