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ABSTRACT 
Common methods for determining the number of latent dimensions underlying an item set 
include eigenvalue analysis and examination of fit statistics for factor analysis models with 
varying number of factors.  Given a set of dichotomous items, we demonstrate that these 
empirical assessments of dimensionality often incorrectly estimate the number of dimensions 
when there is a preponderance of individuals in the sample with all-zeros as their responses, e.g. 
not endorsing any symptoms on a health battery.  Simulated data experiments are conducted to 
demonstrate when each of several common diagnostics of dimensionality can be expected to 
under- or over-estimate the true dimensionality of the underlying latent variable.  An example is 
shown from psychiatry assessing the dimensionality of a social anxiety disorder battery where 1, 
2, 3, or more factors are identified, depending on the method of dimensionality assessment.  An 
all-zero inflated exploratory factor analysis model (AZ-EFA) is introduced for assessing the 
dimensionality of the underlying subgroup corresponding to those possessing the measurable 
trait.  The AZ-EFA approach is demonstrated using simulation experiments and an example 
measuring social anxiety disorder from a large nationally representative survey. Implications of 
the findings are discussed, in particular regarding the potential for different findings in 
community versus patient populations. 
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Assessing dimensionality in dichotomous items when many subjects have all zero 
responses: An example from psychiatry and a solution using mixture models 

 
1. Introduction 
A substantial psychiatric literature exists that explores the latent dimensional structure 
underlying different psychiatric symptom batteries (e.g., PTSD – Hukkelberg and Jensen, 2011; 
Prolonged Grief Disorder – Prigerson et al., 2009, Simon et al., 2011; Substance Use Disorders – 
Saha et al., 2006).  It is instructive to identify shared dimensions underlying different symptoms 
as it provides a framework for the development of theory related to the characterization of 
psychiatric disorders.  Although we will focus on psychiatric applications herein, analogously in 
educational testing assessing the underlying dimensionality of test batteries can be instructive for 
understanding the nature of multifaceted educational outcomes.  Assessment of dimensionality, 
in particular unidimensionality, is commonly done to justify creating a singular measure or sum 
score representing the severity of the latent disorder based on endorsement of a set of 
dichotomous symptoms (or criteria as referenced in the Diagnostic and Statistical Manual of 
Psychiatric Disorders DSM-5).   For example, MacCoun (2013) notes that unidimensionality is 
the basis for characterizing substance use disorders (SUD) in the DSM-5 according to the count 
of the number of 11 criteria (with Mild, Moderate, and Severe disorder defined at 2, 4, and 6 
criteria met).     

Given the importance of the unidimensionality conclusion for measurement, the present 
paper will examine dimensionality assessment for batteries of dichotomous items when the 
sample has features commonly observed for psychiatric batteries in the general population, i.e. 
where many subjects do not endorse any of the symptoms.  Large surveys of the general 
population are commonly used to understand the prevalence and nature of mental or physical 
health conditions, with prominent examples including the National Comorbidity Survey and the 
National Epidemiologic Survey on Alcohol and Related Conditions. Because the collection of 
survey participants is comprised of a mix of both healthy subjects and subjects with a condition 
of interest, data from such surveys contain many responses that are all zeros. We refer to this as 
“all-zero” inflated data in contrast to simply zero inflated data to emphasize that there is a non-
trivial number of subjects with all items equal to zero, not just one item with a lot of zeros.  Two 
mechanisms could lead to all-zero inflated responses: (1) the items are too extreme or severe for 
some subjects being measured who possess the trait, or (2) the sample contains a subset of 
subjects who do not possess the trait being measured.  The presence of all-zeros depends on the 
real-world setting from which the sample is drawn.  In a treatment-seeking population it is likely 
that many patients will endorse a substantial number of symptoms, and those that do not would 
be considered to be at the low end of severity for the disorder trait (an area of the trait not well 
captured by the battery).  Thus, the first type of all-zero response arises from the pathological 
class of subjects whose status is not severe enough at the time of measurement to lead the subject 
to endorse any of the symptoms. In contrast, in a community sample where most people do not 
have the disorder, many individuals are expected to endorse none of the symptoms because the 
trait is not relevant to them and only a small number are expected to be pathological, i.e. have the 
disorder for which severity is being measured. We refer to this class as the non-pathological or 
healthy subjects. Our discussion here focuses on the problems associated with dimensionality 
assessments in large community-based samples where the presence/absence of symptoms have 
been characterized. Specifically, we show that a naïve handling of the all-zero responses (e.g., 
removing them completely or failing to adapt the analysis methods to account for them) can 
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result in a distortion of the dimensionality assessment. We note that alternative non-normal latent 
traits including unipolar traits may also lead to such type of all-zero inflated data (Smits, et al., 
2020).  

Using an extensive simulation study generating data from different settings, we will 
demonstrate that using traditional exploratory factor analysis (EFA) methods, unidimensionality 
can incorrectly be concluded when the sample has a high proportion of all-zero inflated 
responses.  We also propose an approach to assess dimensionality that utilizes a latent variable 
mixture model with two components, one that is similar to the usual EFA model for dichotomous 
items and one that accounts for the all-zero inflation.  The model extends one previously applied 
to unidimensional IRT models in the presence of zero-inflation (Wall, et al., 2015).  Using a 
latent mixture model allows for the latent trait(s) to be measured one way in the pathological 
group for whom the trait(s) and severity are relevant and to be all-zero with probability one in 
healthy/asymptomatic subjects.  The behavior of the pathological group is modeled with a q-
dimensional factor model, while the healthy group is constrained to be asymptomatic. That is, 
our model implicitly assumes that healthy subjects will yield all-zero responses. Because each of 
the groups potentially contains subjects exhibiting no symptoms, we hypothesize that fitting the 
mixture model to the complete data will yield a more accurate characterization of the 
dimensionality of the latent trait than standard methods applied to either the complete sample or 
the sample after filtering out the subjects exhibiting no symptoms.  

This paper is organized as follows: first we discuss the traditional reflective latent 
measurement model and the assessment of factor dimensionality, then we introduce the all-zero 
inflated EFA (AZ-EFA) for dichotomous items and how it can be used to assess dimensionality 
in a sample with all-zero inflation.  The subsequent section presents a simulation study to 
illustrate the challenge of assessing factor dimensionality using traditional methods and the 
advantage of the proposed AZ-EFA for dimensionality assessment.  We then apply the methods 
to the DSM IV situational fears (13 items) for measuring social anxiety disorder (SAD) as found 
in the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), a large 
national community survey of over 40,000 adults. 

2. The traditional EFA model for dichotomous items and related methods for assessing 
dimensionality 

The basic idea of EFA is the following: for a given set of p observable response variables 
𝑌𝑌1, … ,𝑌𝑌𝑝𝑝 one wants to find a set of q < p continuous latent variables also known as factors 
𝑓𝑓1, … ,𝑓𝑓𝑞𝑞, that contain essentially the same information. The latent factors are supposed to 
account for the dependencies among the observable response variables in the sense that if the 
factors are held fixed, the observed variables would be independent. If the response variables 
𝑌𝑌𝑗𝑗 , 𝑗𝑗 = 1, … , 𝑝𝑝 are binary, one needs to specify the probability of each response pattern as a 
function of 𝑓𝑓1, … ,𝑓𝑓𝑞𝑞: 

𝑃𝑃𝑃𝑃�𝑌𝑌1 = 𝑎𝑎1,𝑌𝑌2 = 𝑎𝑎2, … ,𝑌𝑌𝑝𝑝 = 𝑎𝑎𝑝𝑝 � 𝑓𝑓1, … , 𝑓𝑓𝑞𝑞)  
where 𝑎𝑎𝑗𝑗 = 0, 1  represents the two response categories of  𝑌𝑌𝑗𝑗 respectively.  

There are two main approaches for analyzing binary observed variables using latent 
variable models and within these there are many variants. The first is the underlying variable 
approach (UVA), which assumes that each observed binary variable 𝑌𝑌𝑗𝑗 is generated by an 
underlying unobserved continuous variable 𝑌𝑌𝑗𝑗∗ assumed to be normally distributed. This 
approach employs the classical linear factor analysis model:  
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𝑌𝑌𝑗𝑗∗ = 𝜆𝜆1𝑗𝑗𝑓𝑓1 + ⋯+ 𝜆𝜆𝑞𝑞𝑗𝑗𝑓𝑓𝑞𝑞 + 𝑒𝑒𝑗𝑗 , (1) 
 where 𝑗𝑗 = 1, … ,𝑝𝑝, and 𝑒𝑒𝑗𝑗  is an error term representing a specific factor and measurement error. 
In addition, 𝑒𝑒𝑗𝑗 is normally distributed with mean 0 and variance 1 and the vector of latent 
variables, 𝒇𝒇 = (𝑓𝑓1, … , 𝑓𝑓𝑞𝑞)′ follows a multivariate normal distribution, 𝒇𝒇~ 𝑁𝑁𝑞𝑞(𝟎𝟎, 𝑰𝑰), where 𝑰𝑰 is the 
identity matrix. The connection between the binary variable 𝑌𝑌𝑗𝑗  and the underlying variable 𝑌𝑌𝑗𝑗∗ is  
𝑌𝑌𝑗𝑗 = 1 when 𝑌𝑌𝑗𝑗∗ > 𝜏𝜏𝑗𝑗  and 0 otherwise and 𝜏𝜏𝑗𝑗 is a threshold parameter estimated by the data.  

The second approach for analyzing binary observed variables using latent variable 
models is the response function approach (RFA), which specifies the conditional distribution of 
the complete p-dimensional response pattern as a function of the latent variables and makes the 
assumption that responses to different variables are independent for given latent variables (𝑌𝑌𝑗𝑗 
independent of 𝑌𝑌𝑗𝑗′ conditional on 𝒇𝒇). Let P(𝑌𝑌𝑗𝑗 = 1|𝒇𝒇) = 𝑃𝑃𝑗𝑗(𝒇𝒇) stands for the probability that a 
randomly selected individual with latent vector 𝒇𝒇 = (𝑓𝑓1, … ,𝑓𝑓𝑞𝑞)′, responds to the 𝑗𝑗th item in the 
affirmative, where 𝑗𝑗 = 1, … ,𝑝𝑝.  We consider the multidimensional two-parameter logistic (2PL) 
model (Birnbaum 1968), 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑗𝑗(𝒇𝒇) = 𝛽𝛽0𝑗𝑗 + ∑ 𝛽𝛽𝑘𝑘𝑗𝑗𝑓𝑓𝑘𝑘
𝑞𝑞
𝑘𝑘=1        (2) 

where 𝛽𝛽0𝑗𝑗 and 𝛽𝛽𝑘𝑘𝑗𝑗 are the item severity parameters and factor loadings respectively.  The latent 
variables are again assumed to be normally distributed, 𝒇𝒇~ 𝑁𝑁𝑞𝑞(𝟎𝟎, 𝑰𝑰), where 𝑰𝑰 is the identity 
matrix.    

Estimation proceeds using weighted least squares for the UVA and (usually) maximum 
likelihood for the RFA. Each approach is easily implemented in standard software (e.g. Mplus 8, 
Muthén and Muthén, 1998-2017).  

In order to use these factor analysis models, it is necessary to specify a-priori q, the 
dimensionality of the underlying latent factor. A common first step in determining q is to 
perform an eigenvalue analysis of either the correlation matrix formed between the items 
observed on a sample of individuals or the adjusted correlation matrix containing estimates of the 
communalities for the factor model as diagonal elements; we refer to the latter (preferred) option 
as “the eigenvalues of the factor model.” In the case of dichotomous items, the tetrachoric 
correlation matrix is used.  While there is no single test for the dimensionality of an item set 
using eigenvalues, common rules of thumb consider the dimensionality to be equal to: (i) the 
number of eigenvalues greater than 1 (or “Rule of 1”), (ii) the number of eigenvalues that occur 
before the elbow in a scree plot, or (iii) the number of eigenvalues that are significantly greater 
than eigenvalues generated by chance with the same sample characteristics – so-called parallel 
analysis (Horn, 1965).  Green et al. (2016) demonstrated satisfactory performance of traditional 
and revised versions of parallel analysis for dimensionality assessment with binary data.  
Although eigenvalue-based criteria for assessing the goodness of fit of a latent variable model is 
considered to be too simplistic in many settings, they are considered here because they remain a 
commonly used rule of thumb for evaluating dimensionality. Other techniques for assessing the 
number of latent dimensions underlying an item set or for comparing models with varying 
numbers of factors include the likelihood ratio test for measuring goodness-of-fit. Furthermore, 
there are many goodness-of-fit measures (e.g., CFI or RMSEA) that aim to determine the 
minimal number of factors needed for the model to satisfy cut-offs determined to indicate “good 
fit.”  For example, commonly used cut-offs include those recommended by Hu and Bentler 
(1999) (i.e., choose the smallest number of factors needed to obtain a CFI value that is greater 
than 0.95 or an RMSEA value that is less than 0.06).  Additionally, if full maximum likelihood 
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estimation is used, model comparison can be done using BIC and choosing the number of factors 
based on the model with smallest value.  

3. The AZ-EFA for assessing dimensionality 
A shortcoming of the latent factor models described above is their reliance on the 

homogeneity of the latent factor distribution, typically assumed to be multivariate normal.  The 
more flexible model considered here is to replace the multivariate normality assumption for the 
underlying factors in a traditional latent factor model with a mixture of a multivariate normal and 
a degenerate distribution. To account for the excess of zeros in the data, it is assumed that the 
population is made up of two subgroups, one that has a multivariate normal distribution on the 
latent variables with observed response profiles coming from the factor analysis model described 
in (1) and (2) and another that is degenerate without the latent variables and all-zero responses on 
the observed variables.  Because the two subgroups are unobserved, a mixture model is specified 
in terms of a latent categorical variable (latent class), which here has only two values but in 
principle there could be more than two subgroups. The model with more than two groups but 
unidimensional latent variable is discussed in Wall, et al. (2015). 

Let us assume that the non-pathological group is represented by the first mixture 
component that has a fixed mean at an extreme negative value and a zero variance, i.e. 

𝜇𝜇1 = −100  and 𝜎𝜎12 = 0. 
 In other words, this component has a degenerate distribution with mass 1 at the value of the trait 
equal to -100.  By fixing  𝜇𝜇1 at an arbitrarily large negative value and the variance to zero this 
implies 𝑓𝑓(1) = −100 for all individuals in this class, which then ensures practically zero 
probability of endorsement to each item. The pathological group is represented by the second 
mixture component for which the latent variables remain as before, 𝒇𝒇(𝟐𝟐)~ 𝑁𝑁𝑞𝑞(𝟎𝟎, 𝑰𝑰). 

Finally, the model with the two components is written as: 

𝑝𝑝(𝑌𝑌1, … ,𝑌𝑌𝑝𝑝) = � 𝜂𝜂𝑚𝑚

2

𝑚𝑚=1

�𝑝𝑝(𝒀𝒀� 𝒇𝒇(𝑚𝑚)� 𝑝𝑝�𝒇𝒇(𝑚𝑚)�𝒅𝒅𝒇𝒇(𝑚𝑚) = 

𝜂𝜂1 + 𝜂𝜂2 ∫∏ 𝑝𝑝�𝑌𝑌𝒋𝒋|𝒇𝒇(2)�𝑝𝑝(𝒇𝒇(2))𝒅𝒅𝒇𝒇(2)𝑝𝑝
𝑗𝑗=1   

  
where 𝜂𝜂𝑚𝑚denotes the mixture proportions, and 𝑝𝑝�𝑌𝑌𝒋𝒋|𝒇𝒇(2)� is the Bernoulli distribution with 
probability of a positive response given by  P(𝑌𝑌𝑗𝑗 = 1|𝒇𝒇(2)) = 𝑃𝑃𝑗𝑗(𝒇𝒇(2)) and modelled by (2). For 
simplifying the notation from now on the latent variable in the second mixture component will 
be denoted just with f instead of 𝒇𝒇(2). This model falls within the class of hybrid latent class 
latent factor models and can be estimated via maximum likelihood in existing software such as 
Mplus (Muthén and Muthén, 1998-2017) and LatentGold (Vermunt and Magidson, 2016).  The 
dimensionality of the set of observed items can then be obtained by identifying the best fitting 
number of dimensions q for the non-degenerate mixture component choosing the one with the 
smallest BIC value. Example code for fitting the AZ-EFA with a degenerate component and a 
two-dimensional factor model underlying a set of 12 dichotomous observed variables is given in 
the Appendix S5 of the Supplementary Materials.   
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4. Simulated data experiment 
We will consider the following data generating model:  twelve dichotomous items 𝑌𝑌1,𝑌𝑌2 … ,𝑌𝑌12 
are generated from a two-dimensional latent factor model with the following two-parameter 
logistic (2PL) structure relating the logit of the probability that 𝑌𝑌𝑖𝑖=1 and the latent factors f1 and 
f2: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Pr(𝑌𝑌𝑖𝑖 = 1 |𝑓𝑓1, 𝑓𝑓2) = −𝛽𝛽𝑜𝑜𝑗𝑗 + 𝛽𝛽1𝑗𝑗𝑓𝑓1 + 𝛽𝛽2𝑗𝑗𝑓𝑓2  (3) 
where 𝛽𝛽𝑜𝑜𝑗𝑗 = 𝛽𝛽𝑜𝑜 is the same for all 12 items and will be at a fixed value described below, 𝜷𝜷1 =  
(1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)’, 𝜷𝜷2 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)’,  and (𝑓𝑓1,𝑓𝑓2) follow a 
bivariate uncorrelated standard Normal N2(0,I).    Model (3) exhibits what is often called “simple 
structure” with the first 6 items measuring the first factor and the second 6 items measuring the 
second factor.  Furthermore, because the non-zero values in β1 and β2 are all equal, the strength 
of the relationship between each item and its respective factor, 𝑓𝑓1 or 𝑓𝑓2, are all equal.  We chose 
these features of the data generating model for illustration to emphasize a case where identifying 
the latent dimensionality to be two (rather than one or three) should be straightforward.   

Suppose that 4000 subjects are generated from the model (1) with 𝛽𝛽𝑜𝑜 = 0.25 (note, the 
sample size corresponds to a large national survey – NESARC – used later in the example).  The 
tetrachoric correlations for pairs of items associated with the same factor are roughly 0.27 while 
the tetrachoric correlations for pairs of items associated with two different (independent) factors 
will have an expected value of 0.  A two-dimensional latent factor structure is clearly evident 
from the block diagonal nature of the correlation matrix.  But, now consider what happens if we 
add a large number of asymptomatic subjects (i.e., subjects having all-zeroes) to the dataset.  
This all-zero inflation makes the relationship between items as measured by the tetrachoric 
correlation increase dramatically.  For example, adding 36,000 asymptomatic subjects (such that 
90% of the whole sample is all-zeros) increases the tetrachoric correlation for items associated 
with the same factor from roughly 𝑃𝑃 = 0.27 to 𝑃𝑃 = 0.64.  Moreover, it also induces correlation 
for items associated with independent factors, increasing them from 𝑃𝑃 = 0.00 before the 
asymptomatic subjects are added to 𝑃𝑃 = 0.48 afterwards.  This happens because subjects with a 
zero on one item are now much more likely to also have a zero on the other items.  Thus, with 
the large number of asymptomatic cases included, differentiating between a one- and two-
dimensional latent structures is much more difficult since the tetrachoric correlations among 
structurally related items are only 33% larger than the correlations between structurally unrelated 
items.  This demonstration indicates that all-zero inflation can lead to a distortion of the apparent 
latent dimensionality underlying a set of dichotomous items.   

We now describe details of the current simulation study to examine the ability of 
different methods for identifying the correct dimensionality under various data scenarios.  
Specifically, we study dimensionality assessment when using different sample sizes (n = 4000, 
12,000, or 20,000) and symptom severity levels (𝛽𝛽𝑜𝑜 = 0.25 and 2), and the possible addition of a 
large number of subjects with all-zeros as responses. The large sample sizes chosen here 
correspond to the sample size of a nationally representative sample – NESARC – used in the 
example application. When 𝛽𝛽𝑜𝑜 = 0.25 and 2, the probability that the response vector under (1) 
will contain all zero values equals approximately 1% and 20%, respectively.   The various 
scenarios for the simulation are outlined in Table 1.  The first three rows of the table illustrate the 
performance of dimensionality assessment methods under a baseline scenario of 𝛽𝛽𝑜𝑜 = 0.25—
when severity is moderate (about 1% of simulated subjects have all-zero responses) and there are 
no additional all-zero observations mixed into the data.  Rows four through six consider how 
dimensionality assessments change from the baseline scenarios when the severity of the items 
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(𝛽𝛽𝑜𝑜 = 2) increases to the point that roughly 20% of simulated subjects have all-zero responses.  
The final three rows evaluate dimensionality assessment techniques when the severity of items 
are identical to the first three rows (𝛽𝛽𝑜𝑜 = 0.25), but when the data for analysis contain additional 
subjects with all-zero responses.  That is, scenarios 1a, 2a, and 3a represent data coming from a 
mixture of pathological subjects like those in Scenarios 1-3 plus healthy subjects without any 
symptoms. Figure 1 shows histograms of the sum of the total symptoms present for 3 scenarios.    

The true dimensionality of the item set 𝑌𝑌1,𝑌𝑌2 … ,𝑌𝑌12 is equal to two in all scenarios since 
the items are always generated with probabilities that are a function of two factors.  To 
empirically assess the dimensionality of the item set we will consider four types of general 
approaches: (i) eigenvalue based methods, (ii) exploratory factor analysis (EFA) for 1-, 2-, and 
3-factor models using weighted least squares based methods to estimate the parameters of model 
(1) in Section 2, (iii) EFA for 1-, 2-, and 3-factor models using maximum likelihood methods to 
estimate the parameters of model (2) in Section 2, and (iv) the AZ-EFA approach.  The 
eigenvalue based methods were implemented in R (R Core Team, 2019).  We calculate 
tetrachoric correlations among the 12 items and consider the number of principal component 
eigenvalues that exceed 1. We also consider the number of eigenvalues of the factor model 
(defined in Section 2) that exceed the 95th percentile of the eigenvalues obtained from random 
matrices (as implemented in the fa.parallel function from the psych package in R; see 
[Horn, 1965]).  All other approaches were implemented in Mplus. For EFA with weighted least 
squares methods, we consider an approximate X2 goodness-of-fit test (𝑋𝑋WLS

2 ), the root mean 
square error of approximation (RMSEA) index of Steiger and Lind (1980), and the comparative 
fit index (CFI) of Bentler (1989).  For EFA with maximum likelihood, we consider the Pearson 
X2 goodness-of-fit test (𝑋𝑋P2) and the Bayesian Information Criterion (which we denote BICML).  
For the AZ-EFA, we used the BIC (which we denote BICAZ-EFA). When using BIC metrics, the 
estimated dimensionality was determined by the number of factors that minimizes the criterion.  
For the other EFA model assessment criteria, following commonly used cutoffs (see references 
within Hu and Bentler, 1999) we identify the dimensionality as the smallest number of factors 
that satisfy the following rules: X2 test p-value > 0.05, RMSEA < 0.06, and CFI > 0.95.  Other 
metrics available in Mplus (such as Akaike’s Information Criterion, adjusted BIC, and the 
Likelihood Ratio X2 test statistic) were also considered, but in the interest of brevity, were not 
highlighted in the discussion below because they performed uniformly worse than some other 
criterion.  
4.1 Results of simulated data experiment 

In Section 4.1.1, we first consider the fit of the traditional factor analysis model and the 
AZ-EFA model to the complete data set. Because an intuitive approach is to fit a traditional 
factor analysis to the data after removing the all-zero responses, Section 4.1.2 evaluates this 
strategy. As will be confirmed later, this strategy is expected to perform poorly when the all-zero 
cases arise at least in part from pathological subjects responding negatively to high-severity 
items.     
4.1.1 Comparing methods for assessing dimensionality 

Table 1 summarizes the analyses of 100 simulated data sets generated for each scenario 
and the percent of time that the correct number of factors (i.e., two) is chosen.  Scenarios 1, 2, 
and 3 in Table 1 illustrate the performance of dimensionality-assessment techniques when the 
data are “well behaved.”  That is, moderate-severity items are generated from a two-factor model 
so that few subjects (≈1%) have all zeros for responses, and no additional all-zero responses are 
appended to the data.  Regardless of the sample size (4,000, 12,000, or 20,000), most of the 
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techniques have adequate performance, identifying the correct number of factors (i.e., two) at 
least 90% of the time. Among the dimensionality assessments that performed adequately in the 
scenarios characterized by the first three rows of Table 1, the top performers were the 
eigenvalue-based “Rule of 1” (the number of eigenvalues exceeding 1 for the tetrachoric 
correlation matrix) and BICAZ-EFA; each of these techniques identified the correct dimensionality 
100% of the time in the well-behaved data scenarios.   

The rows for Scenarios 4, 5, and 6 in Table 1 illustrate the performance of 
dimensionality-assessment techniques when data are generated from a two-factor model where 
items have high severity (i.e., roughly 20% of the subjects have all-zero responses), but no 
additional all-zero responses are appended to the data.  The results for these high-severity 
scenarios are similar to the results for Scenarios 1, 2, and 3, but for these data, two additional 
methods break down.  The criteria associated with 𝑋𝑋P2 and RMSEA (from the ML and WLS fits 
of the traditional model, respectively) are also unable to consistently diagnose the dimensionality 
of the item set.   As in the moderate-severity scenarios (Scenarios 1 through 3), the eigenvalue-
based “Rule of 1” and BICAZ-EFA always identified the correct dimensionality of the item set for 
the high-severity scenarios. 

Data-generation Scenarios 1a, 2a, and 3a are described in the seventh through ninth rows 
of Table 1.  These scenarios are similar to the well-behaved scenarios (1, 2, and 3), except that in 
these scenarios, a set of all-zero observations were added to the pathological cases so that the 
total sample size was 40,000 in each case.  These scenarios simulate a large community-based 
sample wherein a relatively small number of pathological cases are mixed with a large number of 
healthy subjects who exhibit none of the measured symptoms. In these scenarios, most of the 
commonly-used dimensionality-assessment tools fail badly. Although the eigenvalue-based 
“Rule of 1” performed well when the 40,000 subjects are split evenly between pathological and 
healthy (all-zero) subjects, for the two cases where the healthy subjects outnumber the 
pathological subjects (Scenarios 1a and 2a in Table 1), the eigenvalue-based “Rule of 1” 
consistently diagnoses the item set to be unidimensional.  This tendency toward unidimensional 
assessments in the presence of additional all-zero cases also holds true for the RMSEA and CFI 
measures obtained from the WLS fit of the traditional factor analysis model. The parallel 
analysis based on the eigenvalues of the factor model and BICAZ-EFA are each able to properly 
identify the proper dimensionality in the data for all cases. 

For a more detailed discussion of the impact of all-zero cases on tetrachoric correlations, 
see Appendix S1 in the Supplemental Materials. We also provide additional simulations in 
Appendix S2 in the Supplemental Materials which examine the dimesionality-assessment 
approaches when: (i) factors are correlated, (ii) the data-generation model is truly 
unidimensional, and (iii) sample sizes are small. To summarize the conclusions drawn from these 
simulations in Appendix S2, we conclude that identifying true unidimensionality is relatively 
easy for the majority of methods considered, and that generating data using correlated factors 
(versus uncorrelated ones) has little impact on these dimensionality assessments. However, we 
do see that dramatically reducing the sample sizes (e.g., to 80 pathological cases plus 320 
healthy—and asymptomatic—cases) causes all of the methods to break down and erroneously 
conclude unidimensionality at unacceptably high rates. This is not entirely surprising, but 
emphasizes the fact that the AZ-EFA approach was designed for large mixed-status samples 
(such as the NESARC study discussed in Section 5) where hundreds or thousands of pathological 
cases are intermingled with many more healthy cases.    
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Although it is not central to this article’s primary focus on dimensionality assessment, 
also of importance to practitioners is the ability of the various models to estimate the parameter 
values of the underlying model. Among the model parameters of greatest interest are the factor 
loadings and—for the AZ-EFA model—the mixture coefficient that characterizes the split of 
healthy from pathological subjects. Supplemental Appendix S3 in the Supplemental Materials 
discusses the issue of factor loading estimation in greater detail, but here we summarize that 
discussion by noting that the addition of all-zero observations to the pathological cases causes 
the factor loadings to exhibit substantial bias. In contrast, the estimated factor loadings for the 
non-degenerate (pathological) class in the AZ-EFA fit are unbiased. With respect to the 
estimation of the mixing proportion of healthy versus pathological subjects in the data, the AZ-
EFA is nearly perfect in its ability to identify the proportions of all-zero cases arising from (1) 
pathological subjects whose current state is not severe enough to warrant endorsement of any of 
the severe items and (2) healthy subjects who exhibit no symptoms. See Supplemental Appendix 
S4 in the Supplemental Materials for a thorough discussion of the estimation of the mixing 
proportion. 

To summarize the conclusions drawn from these simulations, the presence of the inflated 
zeros is problematic only in those scenarios where the additional all-zero subjects are healthy and 
the trait is not relevant.  We conclude that the presence of additional all-zero subjects (as when 
healthy subjects are mixed with pathological subjects in community-based samples) will often 
lead researchers to underestimate the dimensionality of the phenomena measured by the items. 
Finally, when the number of pathological cases among the observations is expected to be small 
(e.g., ≤ 200), the true dimensionality of a phenomenon is likely to be understated using any of 
these methods; AZ-EFA is a useful tool only when the data contain a moderate to large number 
of pathological subjects. These simulations indicate that BICAZ-EFA is the best indicator of 
dimensionality, with the parallel analysis based on the eigenvalues of the factor model and the 
𝑋𝑋WLS
2  approaches performing only slightly worse. 

4.1.2 A close look at deleting the all-zero responses 
When working with data consisting of many all-zero cases, one possible method an 

industrious researcher may consider is to assess dimensionality using the traditional methods 
after removing all of the all-zero cases. For our simulation, we also consider this approach, 
repeating the traditional methods described above but in datasets where the subjects with all-
zeros are dropped (Table 2).  That is, Scenarios 1-6 in Table 2 have the same data-generation 
structure as previously described, but the all-zero observations are omitted after the data are 
generated.  Note that Scenarios 1a, 2a, and 3a are not included in Table 2 because after removing 
the all-zero observations, these scenarios yield data that are identical to Scenarios 1, 2, and 3.  
Figure S2 in the Supplemental Materials illustrates the average eigenvalue profile for Scenarios 1 
and 4 of Table 2.  For moderate-severity items, removing the all-zero items has little impact on 
the eigenvalue profile for the data; the profile for Scenario 1 is nearly identical when comparing 
the “use all data” approach in Figure S1 and the “remove all-zero observations” approach in 
Figure S2 (found in the Supplementary Materials).  This might seem to imply that removing the 
all-zero observations before analysis is an easy solution to the problem of many all-zero 
observations in a data set. However, when the severity of items is high (as in Scenario 4), 
removing the all-zero observations distorts the eigenvalue profile and leads to underestimation of 
the second eigenvalue and overestimation of the subsequent eigenvalues (compare the 
eigenvalue profile for Scenario 4 in Figures S1 and S2). Thus, without understanding the 
underlying severity of the measured items, it is difficult or impossible to accurately determine 
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whether the removal of all-zero items will improve or destroy the integrity of standard 
assessments of dimensionality. 

Table 2 validates the concerns raised by the changes in eigenvalue profiles when 
removing the all-zero observations.  When analyzing moderate-severity items as in Scenarios 1, 
2, and 3 (and correspondingly, Scenarios 1a, 2a, and 3a), all methods but the 𝑋𝑋P2 perform 
adequately (i.e., all other methods identify the correct number of factors at least 90% of the 
time).  However, Scenarios 4, 5, and 6 tell a different story.  In Scenarios 1a, 2a, and 3a, the all-
zero observations in a data set originate from the healthy subjects in the sample’s mixture of 
pathological and healthy subjects (i.e., a mixture of high-severity cases and non-cases). In 
contrast, Scenarios 4, 5, and 6 draw subjects from a homogeneous population of pathological 
persons, but all-zero observations arise because the items are sufficiently severe to yield a large 
number of sampled subjects with a negative response (i.e., “no” or “incorrect”) on every item. In 
Scenario 4, the “Rule of 1” and the parallel analysis of the factor model’s eigenvalues tend to 
overestimate dimensionality.  Most other methods conclude unidimensionality in Scenario 4. 
Scenarios 5 and 6 are problematic for all methods except the “Rule of 1.”  

As noted earlier, the difficulty in choosing whether to retain or remove the all-zero data 
observations lies in the fact that the answer depends on the source of the all-zero observations.  
When the all-zero observations in data arise from the inclusion of healthy subjects in the sample 
(true zero-inflation since the trait(s) are not relevant to them), removing the all-zero observations 
results in adequate dimensionality assessments associated with standard approaches like the 
“Rule of 1,” parallel analysis, RMSEA, and CFI. However, if the all-zero observations in data 
arise not from a mixed sample but from a set of high-severity items, then removing the all-zero 
observations ruins the performance of all the standard dimensionality-assessment methods.  In 
practice, removing the all-zero observations in this latter scenario will cause some otherwise-
trustworthy methods to underestimate the true dimensionality while others overestimate it. A 
possible aid in apprehending the source of the all-zero observations is a histogram of the total 
number of exhibited symptoms for all subjects.  When the all-zero observations arise from 
measurements of moderate-severity items on a mixed sample, one might expect to see a large 
spike at 0, with a distinguishable second mode at some positive value, as in Figure 1(c). When 
the all-zero observations arise solely from a high-severity set of items, one would expect a mode 
at or near zero and a monotonically decreasing probability distribution function for all values 
greater than the mode, as in Figure 1(b).  Notwithstanding the utility of such exploratory tools, it 
is not knowable whether the all-zero observation arises from a mixed sample (e.g., of 
pathological and healthy subjects), from high-severity items, or some combination of the two. 
Because it is difficult to determine which analyses might be facilitated by dropping the all-zero 
observations, such a strategy is discouraged. 

5. Dimensionality assessment of social anxiety disorder from the NESARC study 
In this section we consider the underlying dimensionality exhibited by responses to the 13 DSM 
IV situational fears for measuring social anxiety disorder (SAD) as found in the National 
Epidemiologic Survey on Alcohol and Related Conditions (NESARC), a large national U.S. 
community survey.  The NESARC study contained 43,093 subjects, including 5044 reporting 
presence of at least one symptom of SAD and 38,093 subjects with all-zero responses (88% of 
the sample).  Distributions for the total number of symptoms exhibited are shown in Figure 2.  
Note that the distribution of exhibited symptoms reflects a scenario where the representation of 
symptomatic subjects within the total sample is low and—from a comparison of the distributions 
for total symptoms exhibited on the plot on the right of Figure 2 and the plot on the right of 
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Figure 1—the aggregate severity of the symptoms for these data appears to be in between the 
two levels of severity in the simulations from the previous section. That is, we believe that most 
of the all-zero responses are due to a large number of healthy subjects combined with a small 
number of pathological subjects who have low severity on the trait.  Consequently, based on our 
simulation experiment we suspect that when assessing the latent dimensionality of the SAD 
symptoms in the NESARC sample, the “Rule of 1” and other traditional methods (RMSEA and 
CFI) could each lead to erroneous conclusions of reduced dimensionality or unidimensionality.     
 The 13 fear symptoms are listed in the left column of Table 3.  Table 4 reports the 
dimensionality assessment metrics calculated in Tables 1 and 2 from the simulated data 
experiments.  Using BIC with the recommended AZ-EFA method, it is apparent that the 1-factor 
model is vastly inferior to relatively comparable 2- and 3-factor models and that the 3-factor 
model is considered optimal using the recommended BIC statistic.  The “Rule of 1” yields strong 
but likely misleading evidence for the 1-factor model, with the first three eigenvalues equal to 
11.13, 0.50, and 0.29.  Recall from the simulations that a false indicator of unidimensionality is 
exactly what we expect from the “Rule of 1” if the number of all-zero (asymptomatic) subjects 
dominates the number of pathological subjects and if the all-zero observations are not likely to 
have arisen from high-severity items.  

Using the full sample with standard ML and WLS methods leads to a suite of 
incongruous conclusions when using the standard dimensionality-assessment metrics; the “Rule 
of 1” and some of the statistics associated with the WLS estimation (RMSEA and CFI) all 
choose the 1-factor model, the parallel analysis of the factor model’s eigenvalues gives slight 
preference to the 2-factor model over the 3-factor model, and the maximum-likelihood-based 𝜒𝜒P2 
and BICML indicate that three or more factors are necessary.  These results generally correspond 
to the dimensionality assessments obtained from Scenario 1a in Table 1, which showed that most 
methods (“Rule of 1,” RMSEA, and CFI) identify a number of factors that is less than that 
identified by the top-performing BICAZ-EFA and parallel analysis approaches. In contrast, 
simulations show that the 𝜒𝜒P2 and BICML methods often identify a number of factors that is 
greater than that identified by BICAZ-EFA. When the asymptomatic subjects are removed (an 
approach we generally discourage) and the same estimation approaches are used, the methods 
choose 2 or 3 or more factors. Based on the simulations, these changes in dimensionality 
assessments are exactly as expected when the all-zero observations are removed before analysis.   
 The AZ-EFA approach yields factor loadings for the pathological portion of the mixed-
sample.  The estimated loadings and associated p-values for the three-factor AZ-EFA are given 
in Table 3.  Note that the first factor is dominated by symptoms 1-4, the second factor is 
dominated by symptoms 4-10, and the third factor is dominated by symptoms 4 and 9-13.   An 
examination of the symptoms in these groups leads us to characterize the first factor as a 
measurement of an anxiety related to the subject being placed in a “spotlight”—the subject is an 
object of focused attention in a class, meeting, or performance setting.  The second factor is 
characterized as relating to social interactions.  The negative loading on the item related to taking 
an important exam serves to distinguish the meaning of factor 2 (“social”) from the meaning of 
factor 3 (“scrutiny”).  Factor 2 has a 0.36 correlation with factor 1 (“spotlight”).  We characterize 
factor 3 as an anxiety associated with social scrutiny. The “scrutiny” factor includes anxieties 
related to the personal judgment associated with writing while being watched, taking an exam, 
being interviewed, speaking to an authority figure, or dating.  The negative loading on the item 
associated with speaking in front of people accentuates that the “scrutiny” factor is not capturing 
the anxiety associated with the mechanics of a social interaction, but rather with the social 
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phenomenon related to being judged.  The correlations between the third (“scrutiny”) factor and 
each of the first two factors (0.60 and 0.82, respectively) are stronger than the correlation 
between the first (“spotlight”) and second (“social”) factors. These correlations characterize the 
importance of the second and third factors in much the same way as the values of BIC for the 
one-, two-, and three-factor AZ-EFA models.  That is, there is a great deal of additional latent 
structure that is captured when moving from one factor to two (BIC drops 1241 units) whereas 
the case for the addition of a third factor (numerically warranted by a further 106 unit drop in 
BIC) is less compelling than the addition of a second factor.   

6. Discussion 
We have presented evidence to demonstrate the problem of determining the dimensionality 
associated with of a set of items when a preponderance of subjects have all-zeros as their 
responses.  Examples include educational testing where answers to exam questions for many 
students are all incorrect, diagnostic assessments where some subjects exhibit none of the 
measured symptoms, or marketing assessments where none of the measured products are 
purchased by some respondents.  In all of these examples, interest is in assessing the latent 
dimensionality associated with items measured on an effected subset of the sample (e.g., students 
who have exceeded a level of mastery, patients in a pathological class, or consumers of a class of 
products.) We note for clarity that other authors have discussed the latent variable modeling of 
count responses with zero inflation (Magnus and Thissen, 2017), but our inquiry focuses on sets 
of dichotomous response items where there is a large number of all-zero responses. 

When all-zero inflated responses arise from items that have high severity, most 
dimensionality assessment techniques are unaffected as long as the researcher includes all 
observations in the data set used for analysis; removing the all-zero observations is likely to 
result in incorrect assessment of dimensionality. For scenarios where high severity of items is the 
mechanism driving the large number of all-zero observations, either the BIC statistic in 
conjunction with the AZ-EFA model or one of the eigenvalue-based methods (the “Rule of 1” or 
the parallel analysis of the factor model’s eigenvalues) can be recommended for identifying the 
latent dimensionality of the item set.  

When all-zero inflated responses arise from a mixed-status sample where some subjects 
exhibit the trait and others do not, the BIC statistic in conjunction with the AZ-EFA (BICAZ-EFA) 
is again the recommended approach for identifying the latent dimensionality in an item set, with 
the parallel analysis of the factor model’s eigenvalues also proving successful.  In this case, 
removing the all-zero observations could render many standard dimensionality assessment 
methods viable, but such a strategy is ill-advised without knowing if it is a mixed-status sample 
or else just items with high severity.  An additional reason to fit the AZ-EFA instead of a 
standard factor analysis model is that parameter estimates for the standard factor analysis model 
will exhibit extreme bias when drawing data from a community-based sample while the AZ-EFA 
parameter estimates are unbiased for the parameters associated with the pathological subset of 
the sample.  We see in both the simulations involving mixed-status samples and the example 
analysis of the Social Anxiety Disorder symptoms from the NESARC data that the “Rule of 1” 
and common metrics such as RMSEA, CFI, and SRMR tend to erroneously indicate 
unidimensionality.     

Using simulation studies, we have shown that for assessing latent dimensionality of a 
phenomenon that is exhibited by only a subset of respondents, an implementation of the AZ-EFA 
in concert with the BIC metric is superior to all commonly used dimensionality-assessment 
approaches. Parallel analysis of the factor model’s eigenvalues is a reasonable (albeit slightly 
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inferior) alternative. However, when the number of pathological cases among the observations is 
expected to be small (e.g., less than 200), the true dimensionality of a phenomenon is likely to be 
understated using any of the methods considered here; AZ-EFA is a useful tool only when the 
data contain a moderate to large number of pathological subjects.  Estimation of latent variable 
models to mixture distributions in small samples remains an area of open research. Regardless of 
the method for assessing dimensionality, the only approach for adequate estimation of model 
parameters (e.g., factor loadings) is the use of AZ-EFA, which yields factor loading estimates 
that do not exhibit the biases associated with the standard factor analysis model for dichotomous 
data. (See Supplemental Appendix S3 in the Supplemental Materials.)  

A drawback of fitting the AZ-EFA in Mplus is the increased computational requirement, 
particularly when fitting more than two factors. For example, using a Mac Pro Intel(R) Xeon(R) 
CPU E5-1680 v2 @ 3.00GHzwith 64 GB of memory, fitting the one-, two-, and three-factor AZ-
EFA model to the social anxiety disorder data from NESARC took 1, 25, and 84 minutes, 
respectively. Some of the scenarios in the simulation had average computation times for the 
three-factor model that approached 8 hours. 

Applied to the NESARC social anxiety disorder (SAD) data, we have identified and 
interpreted three underlying dimensions of fear scenarios for SAD, rejecting the unidimensional 
characterization implied by both the commonly used dimensionality assessment approaches.  Our 
assessment of the latent dimensionality of the SAD symptoms uses three factors: one associated 
with being placed in a “spotlight,” another associated with small-group social interactions, and a 
third associated with heightened scrutiny or judgment in interpersonal settings.  

An important implication of this research is that researchers need to be particularly 
careful in the ways they treat a community sample as compared to a patient sample. Improperly 
accounting for the mixture nature of community-based samples can lead to improper conclusions 
of unidimensionality. Further, historical assessments of unidimensionality for symptom batteries 
and other test item sets may warrant reevaluation when those assessments were based on 
community-based or other mixed-status sample data sets.  
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Figure 1: Probability distributions for the total number of exhibited symptoms when generating 
data from: (a) Scenario 1, (b) Scenario 4, and (c) Scenario 1a (as described in Table 1).  Note the 
different vertical scale in plot (c). 
 

 
Figure 2: Total Social Anxiety Disorder symptoms exhibited within the complete NESARC data 
set (left), and among subjects exhibiting at least one symptom (right). 
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Table 1. Dimensionality assessments. For each scenario, the body of the table gives the percent of the cases where the method selects 
1 factor, 2 factors, or 3+ factors.  Results for the correct (2-factor) model are bolded. Each of the nine scenarios is characterized by the 
number of pathological cases in the data, the number of all-zero (i.e., non-pathological or healthy) cases added to the pathological 
sample, and the percent of the pathological cases that would be expected to be all zeros (as determined by the value of β0 in equation 
(1)). 
 

    Eigenvalue-based methods 
Traditional FA model (1) 

(fit with WLS) 
Traditional FA model (2) 

(fit with ML) 
AZ-EFA  

(fit with ML) 

    
"Rule of 1" 

 (# evals > 1) 
Parallel analysis 
(factor model) 𝑿𝑿𝐖𝐖𝐖𝐖𝐖𝐖

𝟐𝟐  RMSEA CFI 
𝑿𝑿𝐏𝐏𝟐𝟐 

(Pearson) BICML BICAZ-EFA 

Scenario 

# of 
pathological 

cases 

# of all-
zero cases 

added 

% expected 
all-zero   
(β0) 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 

1 4000 0 1% 
(0.25) 0 100 0 0 96 4 4 92 4 4 96 0 4 96 0 0 92 8 0 100 0 0 100 0 

2 12000 0 1% 
(0.25) 0 100 0 0 95 5 2 95 3 2 98 0 2 98 0 0 93 7 0 100 0 0 100 0 

3 20000 0 1% 
(0.25) 0 100 0 0 99 1 1 99 0 1 99 0 1 99 0 0 92 8 0 100 0 0 100 0 

4 4000 0 20% 
(2.00) 0 100 0 0 95 5 3 95 2 57 43 0 3 97 0 0 93 7 0 100 0 0 100 0 

5 12000 0 20% 
(2.00) 0 100 0 0 94 6 3 94 3 31 69 0 3 97 0 0 85 15 0 100 0 0 100 0 

6 20000 0 20% 
(2.00) 0 100 0 0 96 4 1 95 4 22 78 0 1 99 0 0 92 8 0 100 0 0 100 0 

1a 4000 36000 90.1% 
(0.25) 100 0 0 0 100 0 0 93 7 100 0 0 100 0 0 0 0 100 0 5 95 0 100 0 

2a 12000 28000 70.3% 
(0.25) 85 15 0 0 100 0 0 96 4 100 0 0 100 0 0 0 0 100 0 1 99 0 100 0 

3a 20000 20000 50.5% 
(0.25) 0 100 0 0 100 0 2 95 3 2 98 0 100 0 0 0 0 100 0 56 44 0 100 0 
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Table 2. Dimensionality assessments when removing the all-zero cases from the sample data. For each scenario, the body of the table 
gives the percent of the cases where the method selects 1 factor, 2 factors, or 3+ factors.  Results for the correct (2-factor) model are 
bolded.  
 

 
   Eigenvalue-based methods 

Traditional FA model (1) 
(fit with WLS) 

Traditional FA model (2) 
(fit with ML) 

 

   
"Rule of 1" 

 (# evals > 1) 
Parallel 
analysis 𝑿𝑿𝐖𝐖𝐖𝐖𝐖𝐖

𝟐𝟐  RMSEA CFI 
𝑿𝑿𝐏𝐏𝟐𝟐 

(Pearson) BICML 
 

# of 
path. 
cases 

% 
expected 
all-zero 
among 
path. 
cases   
(β0) 

# of 
cases 
after 

removing 
all-zero 
cases 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+ 

 

Scen-
ario 

1 4000 1%   
(0.25) ≈3960 

0 100 0 0 97 3 3 92 5 3 97 0 3 97 0 0 93 7 0 100 0 

2 12000 1%   
(0.25) ≈11880 

0 100 0 0 98 3 3 94 3 3 97 0 3 97 0 0 80 20 0 100 0 

3 20000 1%   
(0.25) ≈19800 

0 100 0 0 100 0 1 99 0 1 99 0 1 99 0 0 43 57 0 100 0 

4 4000 20%   
(2.00) ≈3200 

0 33 67 5 42 53 64 34 2 99 0 0 94 5 0 37 13 50 100 0 0 

5 12000 20%   
(2.00) ≈9600 

1 99 0 0 60 40 8 90 2 100 0 0 100 0 0 0 0 100 100 0 0 

6 20000 20%   
(2.00) ≈16000 

2 98 0 0 81 19 5 91 4 100 0 0 100 0 0 0 0 100 95 5 0 
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Table 3.  Items in Social Anxiety Disorder inventory and associated AZ-EFA factor loadings when using the 3-factor AZ-EFA 
approach. 
 
 Factor 1 ("Spotlight")  Factor 2 ("Social")  Factor 3 (“Scrutiny") 
SAD Inventory Item estimate (p-value)   estimate (p-value)  estimate (p-value) 
2. Taking part/speaking in class 1 --  0 --  0 -- 
3. Taking part/speaking at a meeting 2.38 <0.001  0.37 0.321  0.06 0.875 
4. Performing in front of people 1.19 <0.001  -0.01 0.963  0.59 0.006 
1. Speaking in front of people 3.03 <0.001  0.90 0.002  -1.51 <0.001 
9. Eating/drinking in front of other people -0.36 0.012  1.54 <0.001  0.44 0.042 
10. Having conversations with people you don't know well  0.31 0.091  2.54 <0.001  -0.55 0.007 
11. Going to parties or social gatherings 0 --  1 --  0 -- 
13. Being in a small group situation -0.37 0.022   1.69 <0.001  0.53 0.137 
12. Dating -0.64 <0.001  0.87 0.001  1.06 <0.001 
6. Taking an important exam -0.69 <0.001  -1.90 <0.001  3.68 <0.001 
5. Being interviewed 0.33 <0.001  -0.40 0.011  1.87 <0.001 
7. Speaking to an authority figure 0 --  0 --  1 -- 
8. Writing when someone watches -0.34 0.004  0.14 0.482  1.25 <0.001 
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Table 4. Dimensionality assessment for the Social Anxiety Disorder symptom battery using the same metrics as those in the 
simulation summarized in Table 1.  The 1-, 2-, and 3-factor models were fit using each method and the resulting statistic or p-value is 
given, with the bolded value indicating the number of factors chosen by each method.  
 

 

Eigenvalue-based methods 
 

Traditional FA model (1) 
(fit with WLS) 

 

Traditional FA model (2) 
(fit with ML) 

 

AZ-EFA  
(fit with ML) 

 
 "Rule of 1" 

 (# evals > 
1) 

Parallel 
analysis 

(factor model) 𝑿𝑿𝐖𝐖𝐖𝐖𝐖𝐖
𝟐𝟐  RMSEA CFI 

𝑿𝑿𝐏𝐏𝟐𝟐 
(Pearson) BICML BICAZ-EFA 

 

1 2 3 1 2 3      4    1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

All cases x    x  <0.01 <0.01 <0.01 0.02 0.01 0.01 0.99 1.00 1.00 <0.01 <0.01 <0.01 103897 101278 100597 101551 100310 100204 

Removing 
all-zero 
cases 

  x          x <0.01 <0.01 <0.01 0.07 0.05 0.03 0.88 0.96 0.99 <0.01 <0.01 <0.01 66695 64959 64544 - - - 

 


